WRDS Library [Home]
Digital Library Publications Videos Card Catalog

WWRC 85-39
Influence of Shoot Structure on Light Interception and Photosynthesis in Conifers

Abstract

The influence of shoot structure on net photosynthesis was evaluated under field conditions for the central Rocky Mountain (United States) conifers Picea engelmannii (Parry ex Engelm.), Abies lasiocarpa ([Hook] Nutt.), and Pinus contorta (Engelm.). In all species, the greater number of needles per unit stem length on sun shoots correlated with a smaller silhouette leaf area to total leaf area ratio (STAR). Decreased STAR was due primarily to greater needle inclination toward the vertical, plus some needle mutual shading. However, photosynthesis expressed on a total leaf area basis did not decrease in sun shoots (lower STAR) but remained nearly constant at approximately 3 micromoles per square meter per second over a wide range of STAR (O.1 to 0.3). Relatively low light saturation levels of 200 to 1400 microeinsteins per square meter per second and diffuse light to 350 microeinsteins per meter per second maintained photosynthetic flux densities in inclined and/or shaded needles at levels comparable to those in unshaded needles oriented perpendicular to the solar beam. As a result, net CO2 uptake per unit stem length increased as much as 2-fold in sun shoots (low STAR) in direct proportion to increasing needle density.

Water Resources Publications List
Water Resources Data System Library | Water Resources Data System Homepage


  WRDS Library [Home]
Digital Library Publications Videos Card Catalog