This is a digital document from the collections of the Wyoming Water Resources Data System (WRDS) Library.

For additional information about this document and the document conversion process, please contact WRDS at wrds@uwyo.edu and include the phrase “Digital Documents” in your subject heading.

To view other documents please visit the WRDS Library online at: http://library.wrds.uwyo.edu

Mailing Address:
Water Resources Data System
University of Wyoming, Dept 3943
1000 E University Avenue
Laramie, WY 82071

Physical Address:
Wyoming Hall, Room 249
University of Wyoming
Laramie, WY 82071

Phone: (307) 766-6651
Fax: (307) 766-3785

Funding for WRDS and the creation of this electronic document was provided by the Wyoming Water Development Commission (http://wwdc.state.wy.us)
EXECUTIVE SUMMARY
FOR
WHEATLAND IRRIGATION DISTRICT
MASTER PLAN, LEVEL I

Prepared For:

Wyoming Water Development Commission
6920 Yellowtail Road
Cheyenne, WY 82002

Prepared By:

Anderson Consulting Engineers, Inc.
375 E. Horsetooth Road, Bldg 5
Fort Collins, CO 80525

April 8, 2011
EXECUTIVE SUMMARY
for
WHEATLAND IRRIGATION DISTRICT
MASTER PLAN, LEVEL I

Prepared for:
Wyoming Water Development Commission
6920 Yellowtail Road
Cheyenne, WY 82002

Prepared by:
Anderson Consulting Engineers, Inc.
375 E. Horsetooth Road, Bldg. 5
Fort Collins, CO 80525
(ACE Project No. WYWDC30)

April 8, 2011
TABLE OF CONTENTS

I. INTRODUCTION ... 1
II. DESCRIPTION OF THE WHEATLAND IRRIGATION DISTRICT .. 1
III. EXISTING SYSTEM STUDIES REVIEW .. 3
IV. WATER QUALITY ... 3
V. GEOGRAPHICAL INFORMATION SYSTEM (GIS) DEVELOPMENT AND MAPPING 3
VI. STRUCTURE INVENTORY AND EVALUATION .. 4
VII. EXISTING SYSTEM AUTOMATION ... 4
VIII. CANAL AND LATERAL LOSSES ... 5
IX. WID MASTER PLAN ... 5

9.1 Replacement and Rehabilitation of Structures ... 5
9.2 System Automation Improvements ... 5
9.3 Canal and Lateral Improvements ... 6
9.4 Pipeline Conversion Projects .. 6
9.5 Summary of Master Plan .. 6

X. IMPLEMENTATION PLAN .. 7
XI. FUNDING STRATEGY AND ECONOMIC ANALYSIS .. 8

11.1 Evaluation of Existing Assessment .. 8
11.2 Evaluation of Phase I/II Implementation Plans ... 9

XII. RECOMMENDATIONS .. 10

LIST OF FIGURES

Figure 1. Wheatland Irrigation District: Location Map ... 2
Figure 2. Relative Distribution of Conveyance Structures .. 4
Figure 3. Relative Condition of Conveyance Structures ... 4

LIST OF TABLES

Table 1. Total Estimated Construction Costs for WID Master Plan Components 6
Table 2. Phase I and II Implementation Plans .. 7
Table 3. Results of Economic Evaluation for Scenarios 1 and 2 .. 9
I. INTRODUCTION

This document presents the results of a feasibility study focused on the development of a “master plan” of improvements to the existing facilities and infrastructure of the WID. This work included and inventory and assessment of existing structures and facilities, review of system delivery and conveyance losses, evaluation of alternatives to improve water conveyance and management through automation, development of conceptual design and cost estimates related to irrigation system improvements, development of an implementation plan, and an economic evaluation associated with implementation of the plan of improvements. Formulation of the initial implementation plan assumed two phases with each phase representing a construction period of 2 years.

II. DESCRIPTION OF THE WHEATLAND IRRIGATION DISTRICT

The WID spans three counties in southern Wyoming: Carbon, Albany, and Platte. Its history spans Wyoming statehood and its accomplishments represent several ‘firsts’ for the State. Initial surveys of the Wheatland Flats began in 1881 followed by the incorporation of the Wyoming Development Company in 1883: the first actual irrigation corporation within the Territory of Wyoming. By 1886 the Bluegrass Tunnel and portions of the canal system on the Wheatland Flats were completed. These construction efforts were soon followed by completion of Wheatland Reservoir No. 1 and its supply canal (1896) and Wheatland Reservoir No. 2 (1901). In 1932, The Wheatland Irrigation System was formed as a public entity in order to pursue public funding of Wheatland Reservoir No. 3. That reservoir was eventually completed in 1943.

In 1947, the Wheatland Irrigation System was incorporated as the Wheatland Irrigation District (WID) and organized under Wyoming State Statutes as a public entity. The WID incrementally grew to its current size and infrastructure. Today, the WID infrastructure includes eleven reservoirs with total storage rights of approximately 180,000 acre feet and water rights on 10 streams. The general configuration of the WID’s primary delivery system is displayed on Figure 1. As indicated in this figure, the system is long and complex. Water is initially stored in Sand Lake, located in the Medicine Bow Mountains within Carbon County. Water released from the lake is conveyed via Rock Creek to the Canon Canal headgate. This portion of the system represents the first legal trans-basin diversion in the State of Wyoming.

Once in the Canon Canal, flows are conveyed to Dutton Creek, diverted again at the Dutton Canal headgate and ultimately delivered to the Laramie River and Wheatland Reservoirs No. 2 and 3. Storage released from the reservoirs into the Laramie River is diverted downstream at the Bluegrass Tunnel. Flows are finally conveyed via Blue Grass Creek and Sybille Creek to the WID’s main canal headgates. Once in the main canal and conveyance system, water is ultimately delivered to the farm.

Presently, the primary conveyance facilities consists of approximately 120 miles of the canal, two tunnels, several siphons, five principal canals and laterals (Canal No. 1, Canal No. 2, Canal No. 3, Lateral No. 1, and the Bordeaux Lateral), several spillways/wasteway structures, pipelines, and all appurtenant structures.
III. EXISTING SYSTEM STUDIES REVIEW

Several investigations pertinent to the WID have been previously completed on behalf of the WWDC. Included within the reports associated with these investigations are numerous recommended improvements. The review of this information resulted in the tabulation of the recommended improvements and a determination of the status of each recommendation. Overall, 42 system improvements were identified. The WID has been very proactive in implementing the improvements identified through funding obtained from the WWDC and other sources. Of the 42 recommended improvements, 17 have been completed and several of the remaining items have been integrated into the recommendations contained in this study.

A digital library was also developed to compile all previous work completed for the WID on behalf of the WWDC. Hyperlinks were included to allow the user to open the documents directly from the digital library. Nine (9) reports, previously completed for the WID on behalf of the WWDC were included in the digital library.

IV. WATER QUALITY

A limited investigation was completed to characterize the quality of the water diverted and conveyed within the WID irrigation facilities. Samples were collected at two locations; one at Canal No. 1 near the diversion from Sybille Creek, and the other sample at the outlet from Wheatland Reservoir No. 1. Both samples were analyzed for a suite of standard water quality parameters recommended for domestic water analysis, irrigation classification and livestock suitability. The analysis results indicated that both samples meet the use suitability requirements for domestic, agriculture, and livestock. In addition to the comparison of sample data to Wyoming Use Suitability Standards, the water quality was assessed for its suitability for agriculture based on the Sodium Adsorption Ratio (SAR). Based on the water quality data obtained from the two samples, the results indicated that the quality of the water delivered within the WID system is of good quality and meets the recommended limits for its intended use associated with irrigated agriculture.

V. GEOGRAPHICAL INFORMATION SYSTEM (GIS) DEVELOPMENT AND MAPPING

During the completion of this work, GIS mapping and a project database were developed to facilitate the planning process, document the inventory of structures, and promote the operation and management of water deliveries as well as the implementation of planned improvements. This effort included: (1) collection of existing spatial data, development of software architecture and selection of the UTM coordinate system; (2) completion of the irrigation system mapping, specifically digitizing the location of the existing facilities along with the results of the inventory; and (3) development of customized GIS tools to promote the utilization of the data base and tailored to meet the needs of the WID.
VI. STRUCTURE INVENTORY AND EVALUATION

The inventory was conducted for 1,118 structures within the WID. The inventory effort included an assessment of the overall condition of each structure, GPS location and photographic documentation. This work provides a snapshot of the condition of the irrigation structures within the WID in 2010. The inventory focused on the conveyance structures (979 structures) that typically consist of headgates, checks, culverts, drop structures, canal lining, measurement devices, siphons, tunnels, wasteways, and farm headgates. Of the 979 conveyance structures assessed during the inventory, 334 (34.0%) were found to be in poor condition and 134 (13.7%) were considered to be in failing condition. Replacement or rehabilitation plans were developed for all conveyance structures found to be in poor or failing condition. Figures 2 and 3 display the distribution of the type of structures within the WID their relative condition, respectively.

VII. EXISTING SYSTEM AUTOMATION

Several automation sites presently exist within the WID. In general, these 39 existing automation sites typically represent monitoring stations installed by the Wyoming State Engineers Office (WSEO) and the WID. The WSEO sites (total of 35 stations) monitor streamflow or reservoir levels; remote access of the data is available through the Geostationary Operational Environmental Satellites (GOES).

The WID installed and manages three (3) automation sites and a base station in the WID office; these sites consist of automated Rubicon overshot weirs to maintain canal levels. To date, the WID sites lack the ability for remote operation or remote telemetry of data. One site is jointly operated by the WSEO and the WID. This is the Wheatland Tunnel No. 1 automation site which includes the capability to monitor water levels in the impoundment upstream of the tunnel intake, monitor outflows from the reservoir and into the tunnel, and remote actuation of gates regulating the reservoir outflows. The WID
recently completed the rehabilitation of this site to promote the remote monitoring and operation of the gates regulating release from the Laramie River into the tunnel.

VIII. CANAL AND LATERAL LOSSES

The irrigation conveyance system includes approximately 222 miles of earthen canal and laterals, natural streams and lined reaches. Consequently, conveyance losses are expected. Where mitigation of these conveyance losses appeared to be cost effective, canal improvements should be considered. Based on previous estimates of seepage losses and irrigation deliveries, efforts were focused on Canal No. 2 below Wheatland Reservoir No. 1 and the Bordeaux Lateral.

Based on information collected in 2007, as much as 3,000 acre-feet of seepage losses were experienced in two reaches of Canal No. 2 (estimated length of canal identified for potential seepage mitigation is 5,000 ft). For the Bordeaux Lateral, the 2010 annual report reflect losses to evaporation and seepage exceeding 50% of the water conveyed to the lateral headgate. Furthermore, estimates of potential seepage along four reaches of the lateral accounted for almost one half of the total conveyance losses or as much as 1,000 acre-feet.

IX. WID MASTER PLAN

The WID Master Plan was formulated to identify practical and economic improvements associated with systematic rehabilitation of its existing structures, canal and lateral improvements including lining, automation of structures and measurement devices, and pipeline conversion projects. Structure rehabilitation or replacement becomes an important component of the master plan because it reduces the economic risk associated with the potential loss of irrigation water to the WID water users.

9.1 Replacement and Rehabilitation of Structures

Through the completion of this project, 134 structures have been identified for replacement and 216 structures earmarked for rehabilitation efforts. The construction costs associated with replacement and rehabilitation projects is estimated to be $6.02 million and $2.82 million, respectively. The priority associated with replacement or rehabilitation of each structure has also been computed to assist in the development of implementation of plans for replacement or rehabilitation of individual structures.

9.2 System Automation Improvements

The master plan includes improvements to 23 sites to supplement the existing automation system available to the WID. The automation improvements include: (1) rehabilitation/replacement of equipment at existing automation sites, (2) incorporation of added functionality at existing sites, and (3) installation of new automation facilities. The estimated cost of the automation components was determined to be approximately $510,000. Implementation priority values were also assigned to system automation improvements.
9.3 Canal and Lateral Improvements

Several canal and lateral improvements were included in the formulation of the master plan. Overall, 10 projects were identified with improvements consisting of the following:

- Installation of liners to reduce canal/lateral seepage (6 liner projects identified)
- Stabilization of the Canon Canal upstream of Interstate 80
- Installation of a new wasteway structure at the Bordeaux Tunnel inlet
- Enlargement of Lateral No. 1 upstream of Reservoir No. 1 Feeder Canal
- 10th Street Bridge Culvert extension

The cost of project components for the 10 projects identified above was estimated to be $11.8 million.

9.4 Pipeline Conversion Projects

Four (4) rehabilitation projects were identified that involve replacement of open ditch and laterals with pipelines. The Canal No. 2 Bypass project is intended to reduce maintenance costs and liabilities associated with Canal No. 2 within the City of Wheatland. The Bordeaux Pipeline project involves replacement of sections of open ditch with a pipeline to mitigate seepage losses. The remaining two projects involve construction of pipelines to conserve water through diversion of operational waste from tail-end laterals to Canal No. 2. The construction cost of these improvements is estimated to be $4.86 million.

9.5 Summary of Master Plan

The total construction costs associated with each of the components of the WID Master Plan are presented in Table 1.

Table 1. Total Estimated Construction Costs for WID Master Plan Components.

<table>
<thead>
<tr>
<th>Master Plan Component</th>
<th>Component Construction Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure Replacement and Rehabilitation Components</td>
<td>$6,024,021</td>
</tr>
<tr>
<td>Structure Replacement</td>
<td>$6,024,021</td>
</tr>
<tr>
<td>Structure Rehabilitation</td>
<td>$2,821,600</td>
</tr>
<tr>
<td>System Automation Components</td>
<td>$509,988</td>
</tr>
<tr>
<td>Canal and Lateral Improvement Components</td>
<td>$11,774,523</td>
</tr>
<tr>
<td>Pipeline Conversion Components</td>
<td>$4,859,821</td>
</tr>
<tr>
<td>Total Master Plan Projects</td>
<td>$25,989,953</td>
</tr>
</tbody>
</table>
X. IMPLEMENTATION PLAN

Improvements to the existing facilities that have been identified for implementation are estimated to cost as much as $26 million. Development of the implementation plan included consideration of the following factors:

(a) reducing the risk of failure of existing structures and subsequent loss of income related to the inability to deliver irrigation water;

(b) benefits related to potential conservation of water, including the increase in potential crop production and income to the WID water users;

(c) construction capability and capacity of the WID to construct the proposed improvements; and

(d) the ability of the water users to pay for construction of the proposed improvements.

Based on the information compiled during this study, an implementation plan for construction of the “high priority” improvements identified in the master plan was developed. Input from the WID staff and board members was solicited to develop the initial implementation planning projects.

The initial implementation plans assumed two phases of construction over two planning periods spanning a total of 4 years. Each phase represents a 2-year period of construction to coincide with the 2-year budget cycle associated with the funding programs available through the WWDC. The implementation plans are presented in Table 2.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Master Plan Project No.</th>
<th>Project Description</th>
<th>Total Project Cost</th>
<th>33% Loan</th>
<th>Annual Payment</th>
<th>Assessment (Cost/Acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1, 2</td>
<td>Canon Canal Headgate/Diversion Dam</td>
<td>$252,455</td>
<td>$83,310</td>
<td>$6,130</td>
<td>$0.11</td>
</tr>
<tr>
<td>I</td>
<td>4, 15</td>
<td>Reservoir No. 3 Headgate/Reservoir No. 3 Drop</td>
<td>$1,784,174</td>
<td>$588,577</td>
<td>$43,323</td>
<td>$0.80</td>
</tr>
<tr>
<td>I</td>
<td>70</td>
<td>Deadhead Creek Wasteway</td>
<td>$75,399</td>
<td>$24,882</td>
<td>$1,831</td>
<td>$0.03</td>
</tr>
<tr>
<td>I</td>
<td>554, 560, 568</td>
<td>System Automation</td>
<td>$97,653</td>
<td>$32,226</td>
<td>$2,372</td>
<td>$0.05</td>
</tr>
<tr>
<td>I</td>
<td>578</td>
<td>Upper Lateral No. 1 Enlargement</td>
<td>$701,422</td>
<td>$231,469</td>
<td>$17,032</td>
<td>$0.31</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>Phase I Subtotal</td>
<td>$2,911,104</td>
<td>$960,664</td>
<td>$70,687</td>
<td>$1.31</td>
</tr>
<tr>
<td>II</td>
<td>18</td>
<td>Reservoir No. 3/ Dam No. 2</td>
<td>$1,402,020</td>
<td>$462,667</td>
<td>$34,044</td>
<td>$0.63</td>
</tr>
<tr>
<td>II</td>
<td>557, 558, 559</td>
<td>System Automation</td>
<td>$38,859</td>
<td>$12,823</td>
<td>$944</td>
<td>$0.03</td>
</tr>
<tr>
<td>II</td>
<td>576</td>
<td>Canon Canal Slide</td>
<td>$2,188,807</td>
<td>$722,306</td>
<td>$53,149</td>
<td>$0.98</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>Phase II Subtotal</td>
<td>$3,629,685</td>
<td>$1,197,796</td>
<td>$88,136</td>
<td>$1.63</td>
</tr>
</tbody>
</table>

Table 2. Phase I and II Implementation Plans.
XI. FUNDING STRATEGY AND ECONOMIC ANALYSIS

The economic analysis focused on identification of alternative funding sources and funding strategy. Alternative funding sources are largely related to federal and state programs. Federal programs include those related to the BOR, USDA/NRCS, and USCOE. Potential funding opportunities exist from these federal sources. However, limitations associated with funding levels, competition for funds, availability of funds and the timeframe to obtain these funds prevents consideration for immediate availability in a funding strategy.

Several state programs may be applicable to fund improvements identified in the rehabilitation plan. Funding sources include the Wyoming Department of Environmental Quality (DEQ), WWDC, Office of State Lands and Investments (SLIB), and Wyoming Business Council. DEQ funding is considered limited and typically focuses on water quality issues. The Wyoming Business Council through the Community Development Block Grant Program also offers limited funding. The SLIB program lends itself more readily to construction of on-farm improvements, individual loans are limited and the terms of the loan are less attractive than those offered through the WWDC. The WWDC through its Level III Development and Rehabilitation Program offers the most attractive funding opportunities involving 67% in grant money with 33% in loans.

The funding capability of the WID is also integral to the implementation of the rehabilitation master plan. Financial contribution from the WID largely reflects raising existing assessments or debt retirement to obtain funding obtained through sources such as the WWDC. The WID has indicated a willingness to consider raising assessments and the incurrence of debt.

Given the magnitude of the total project costs along with the limitation associated with available funding, an evaluation of the existing assessment along with the assessment associated with the implementation of the rehabilitation plan was conducted. The evaluation included the following scenarios:

- Scenario 1: ability of the existing assessment to satisfy the expenses associated with the operation and maintenance of the WID facilities.
- Scenario 2: assessment necessary to fund the implementation of project identified in the Phase I and II Implementation Plans.

11.1 Evaluation of Existing Assessment

Existing expenses and revenues were initially evaluated to determine whether the existing assessment is adequate to avoid any shortfalls. The assessment for 2010 was $6.00 per acre. During the evaluation, an assessment of $8.00 per acre was utilized assuming no additional income from water leases. Based on the annualized expenses and revenues for the WID, a deficit of $151,500 was noted.

A financial planning model was developed and utilized as a tool to evaluate each scenario through balancing the annual expenses and revenues. The analysis was conducted for years extending...
from 2010 to 2040. During this time period, O&M expenses were assumed to increase an average of 1.5% per year to account for inflation. Given the budget deficit, an increase in assessment was identified as a means to balance future expenses and revenues for Scenario 1. To balance expenses and revenues requires an annual assessment increase of $3.25 in 2011 followed by increases every four years of $1.00 to $1.25, as indicated in Table 3. The increases are necessary to balance expenses versus revenues and allow for inflation associated with the operation and maintenance expenses in future years.

Table 3. Results of Economic Evaluation for Scenarios 1 and 2.

<table>
<thead>
<tr>
<th>Year</th>
<th>Scenario 1: Existing Assessment O&M Assessment Increase ($/ac)</th>
<th>Scenario 2/Phase I: Project Assessment Increase ($/ac)</th>
<th>Scenario 2/Phase II: Project Assessment Increase ($/ac)</th>
<th>Total ($/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$8.00</td>
</tr>
<tr>
<td>2011</td>
<td>$3.25</td>
<td>$</td>
<td>$</td>
<td>$11.25</td>
</tr>
<tr>
<td>2012</td>
<td>$-</td>
<td>$1.31</td>
<td>$</td>
<td>$12.56</td>
</tr>
<tr>
<td>2014</td>
<td>$1.00</td>
<td>$-</td>
<td>$1.63</td>
<td>$15.19</td>
</tr>
<tr>
<td>2018</td>
<td>$1.00</td>
<td>$-</td>
<td>$</td>
<td>$16.19</td>
</tr>
<tr>
<td>2021</td>
<td>$1.00</td>
<td>$-</td>
<td>$</td>
<td>$17.19</td>
</tr>
<tr>
<td>2025</td>
<td>$1.25</td>
<td>$-</td>
<td>$</td>
<td>$18.44</td>
</tr>
<tr>
<td>2029</td>
<td>$1.25</td>
<td>$-</td>
<td>$</td>
<td>$19.69</td>
</tr>
<tr>
<td>2032</td>
<td>$1.25</td>
<td>$ (1.31)</td>
<td>$</td>
<td>$19.63</td>
</tr>
<tr>
<td>2034</td>
<td>$-</td>
<td>$</td>
<td>$ (1.63)</td>
<td>$18.00</td>
</tr>
<tr>
<td>2036</td>
<td>$1.25</td>
<td>$-</td>
<td>$</td>
<td>$19.25</td>
</tr>
<tr>
<td>2040</td>
<td>$1.25</td>
<td>$-</td>
<td>$</td>
<td>$20.50</td>
</tr>
</tbody>
</table>

11.2 Evaluation of Phase I/II Implementation Plans

Scenario 2, implementation of the Phase I and II Plans assumed WWDC funding (67% grant/33% loan) for structure replacement and rehabilitation, system automation, and canal/lateral improvements. Total assessment increases for Scenario 2 are also presented in Table 3. In addition to the increase in assessments associated with Scenario 1, balancing expenses and revenues for Scenario 2 requires a project assessment as indicated below:

- $1.31 per acre beginning in Year 2012 and ending in 2032 (Phase I improvements)
- $1.63 per acre beginning in Year 2014 and ending in 2034 (Phase II improvements)

It should be noted that a future increase in assessments could be reduced should WID continue to receive income from water leases. Furthermore, the WID may wish to consider the implementation
of a first-acre assessment as a means to more equitably assess all water users and minimize the annual assessment on a per-acre basis.

XII. RECOMMENDATIONS

Based on the foregoing information, the following recommendations are provided for consideration:

- the existing expenses versus revenues should be balanced through an increase in the assessment;
- increase the existing assessment through an increase in the O&M assessment in accordance with the information in Table 3;
- initiate the implementation of the Phase I and II Plans as indicated for Scenario 2; and
- implementation of a first-acre assessment, in conjunction with a per-acre assessment, as a means to equitably distribute operation and maintenance expenses to all water users.

It is understood that raising the assessment may economically impact each member of the WID to varying degrees. However, the risk of structure failure should also be considered along with the loss of income that would accompany such a failure. Furthermore, implementation of several of the improvement projects will provide for water conservation as well as the reduction in operation and maintenance costs.

It is understood that several irrigation districts within the State of Wyoming have structures that were originally constructed over 80 years ago. Deterioration of these structures will continue and ultimately, rehabilitation or replacement will be required. Furthermore, projects that provide for water conservation have become vital to these entities and their water users, especially during the drought conditions experienced in recent years. It is likely that the need for structure rehabilitation and water conservation projects will increase significantly in the near future. With this in mind, it is also likely that the funding available from the WWDC will become more competitive. Given the need identified by the Phase I and II Implementation Plans, it is recommended that the WID conduct coordination with the WWDC to determine the level and commitment of funding and funding strategy that may be available to implement these improvements.