SOUTH GARDEN CREEK WATER SUPPLY

LEVEL I STUDY
EXECUTIVE SUMMARY

PREPARED FOR:
The Wyoming Water Development Commission
The Central Wyoming Regional Water System
AND
The City of Casper

OCTOBER 31, 2002

PREPARED BY:
CEPI
Civil Engineering Professionals, Inc.
South Garden Creek
Water Supply
Level I Study
Executive Summary

Prepared For:
The Wyoming Water Development Commission, The
Central Wyoming Regional Water System
and the City of Casper

October 31, 2002

Prepared By:
C.E.P.I
Civil Engineering Professionals, Inc.
305 North Lincoln St. Casper, Wyoming 82001
(307) 266-4840 • (307) 266-0009 fax
The Wyoming Water Development Commission (WWDC) authorized and funded this Level I Reconnaissance Study for the South Garden Creek Water Supply. The Study area is generally located south of the Casper City limits, along the flank of Casper Mountain, as shown in Figure ES-1. The Study area includes the residential areas known as Pursel Lands and Moonbeam Acres, Coates Road, Squaw and Wolf Creek Roads, South Garden Creek, and Elkhorn Valley area. The purpose of this Level I Study is to evaluate methods of providing public water supplies to serve the developments in the Study area.

The initial request for this Study came from residents in the South Garden Creek area who were concerned over the drought and its effect on private wells. Some wells in the area were drying up and residents were hauling water for domestic use. Because there was no governmental entity to represent the area, the residents approached the Central Wyoming Regional Water System (CWRWS), and requested it to be the sponsor for the Study. Subsequently, and at the request of the City of Casper, the Study area was expanded to include other residential developments along the flank of Casper Mountain that were experiencing similar well problems.

The Study is divided into 7 sections; a brief description of each is provided below:

- **Section I – Introduction**: this section presents the Study background, the purpose of the Study, and acknowledgements.

- **Section II – Public Participation**: this section describes the public participation process which was undertaken throughout the Study’s progress.

- **Section III – Service Area and Demand Projections**: this section identifies the service areas and presents population and corresponding water demand projections for the 20-year and 50-year life of each service area.

- **Section IV – Water Supply Alternatives**: this section evaluates the water supply alternatives for the individual service areas.
Figure ES-1
South Garden Creek Water Supply Study Area
• **Section V – Selected Water Supply Alternatives:** this section evaluates the water system alternatives for each of the service areas, and offers recommendations for the selected water supply alternatives.

• **Section VI – Reconnaissance Level Designs and Cost Estimates:** this section presents reconnaissance level designs and cost estimates for the selected water system alternatives for each service area.

• **Section VII – Economic Analysis and Project Financing:** the final section addresses financing plans for construction, operation and maintenance costs and estimated water rates for the water supply systems proposed for each service area.

PUBLIC PARTICIPATION

Throughout the course of the Study, public participation activities were ongoing. Public participation activities included newsletters, questionnaires, newspaper press releases, and public meetings. Monthly newsletters were mailed to each property owner of record. The primary functions of each newsletter were to notify property owners of the status of the Study, present important issues facing the property owners, and provide schedules of upcoming public meetings. Questionnaires were provided to the property owners to determine if there was interest in a public water system, and what the property owners may be willing to pay for it. News releases were prepared and placed in the Casper Star Tribune to inform the public about the Study. A total of four public meetings were held to allow the public the opportunity to hear about the Study, and provide input about issues, interests, and the direction the Study should take.

Service Area and Demand Projections

Five distinct service areas were identified and are briefly described hereinafter.

Pursel/Moonbeam Acres Service Area – This service area is located west of Casper, and includes the developed areas situated between the North Platte River and US highway 220, just west of Red Butte Village Subdivision No.2. The area contains approximately 143 lots ranging in size from 1 to 8 acres. The total number of developed lots is estimated to be 123, while approximately 20 lots are undeveloped. The current population is estimated to be 394. The nearest water supply system is the City of Casper which serves the adjacent Red Butte Village
and Westland Park Subdivisions. All of the service area lies within the topographic range of Casper’s Zone I water system service area.

Coates Road Service Area – This service area located southwest of Casper, is generally located along Coates Road, south of US Highway 220. There are approximately 30 parcels of land in the area ranging in size from 2 to over 100 acres. Approximately 25 parcels are developed. The current population is estimated to be 80. The service area extends over a broad range of topographic elevations. The nearest municipal water supply is the City of Casper Zone 2 water system which serves the lower Coates Road area and the adjacent Skyline Ranches Subdivision. The entire service area lies above Casper’s Zone 2 service area elevations.

Squaw/Wolf Creek Road Service Area – This service area, located southwest of Casper, is generally located along the Squaw Creek and Wolf Creek Roads, just west of the Wolf Creek Subdivision. There are approximately 110 parcels in the service area ranging in size from 1 to 30 acres. The current population is estimated to be 230. The nearest municipal system is the City of Casper Zone 2 water system located in the adjacent Wolf Creek subdivision. Nearly all of the service area lies within the topographic elevations of the City Zone 2 water service area. There are approximately 12 properties in the southern most portion of the area which are situated above the Zone 2 service area.

South Garden Creek Service Area – This service area is located south of Casper’s city limits and extends to the foothills and lower slopes of Casper Mountain. The terrain is very hilly and rises over 1,000 feet in elevation from north to south. There are approximately 210 parcels of land in the area ranging in size from ½ to over 100 acres. Approximately 105 of the parcels are developed. The current population is estimated to be 336. The nearest water supply is the City of Casper water supply which is located along the northern border of the service area. The entire service area is situated well above the highest service elevation of the Casper water system.

Elkhorn Valley Service Area – This service area is located south and east of the Casper city limits and generally along Elkhorn Creek. There are approximately 40 parcels in the area, ranging in size from 10 to over 1000 acres. It is estimated that 30 of the parcels are currently developed. The current population is estimated to be 96. The nearest municipal water supply is the City of Casper water system which is situated nearly one mile north of the northern service.
area boundary. The service area lies well above the Casper Zone 2 water service area elevations.

Population projections were made for three of the service areas using an annual growth rate of 1 percent. The Pursel/Moonbeam Acres and Coates Road service areas can only grow by filling of vacant lots and are limited to the number of lots available. Population projections for 20-year and 50-year time periods are shown in Table ES-1 attached at the end of this Summary.

Water demand projections were made for each service area’s projected population. Average day water demands (ADD) were calculated using 200 gallons per capita per day. The peak day water demand (PDD) was calculated using a peak day demand ratio of 3.0. The peak hour water demand was calculated using a peak hour water demand ratio of 6.0. Water demand projections are given in Table ES-1 attached at the end of this Summary.

WATER SUPPLY ALTERNATIVES

There are two water supply alternatives available to the service areas: 1) The City of Casper Municipal water supply, and 2) a deep groundwater supply.

City of Casper

The City of Casper sells water outside of its city limits to other water districts, homeowners associations, etc. The City classifies its outside City customers either as “wholesale” customers, or “retail” customers. A wholesale customer is one that constructs, owns, operates and maintains its own water system. A wholesale customer is responsible for its meter reading, billing, collections, repairs, and must employ a licensed water system operator(s). A retail customer is one that constructs its system, and then turns its ownership, operation, and maintenance over to the City. The City is then responsible for all billing, collections, repairs, etc. In order for the City to take on a retail customer, the customer’s system must be designed and constructed in accordance with City’s design and construction standards. The most significant requirements in complying with the City standards are providing waterlines and storage facilities sized to provide fire protection, installing the associated fire hydrants at the required spacing, and providing the required spacing for isolation valves throughout the water system.
The City also differentiates between its wholesale and retail customers through its water rates and connection charges. The outside City wholesale water rate is currently set at $1.64 per thousand gallons. The outside City retail water rate is a minimum charge of $13.04 for the first three thousand gallons of water used during each two month billing period, and $2.82 per thousand gallons consumed thereafter during the two month period.

The City also charges for customer connections to its water system. The connection charge is called a “system investment charge”, and varies depending on the size of the meter to be installed and the type of customer. The system investment charge for an outside City wholesale customer is 125% greater than the in-City charge. The system investment charge for an outside City retail customer is 150% greater than an in-City charge.

In addition to the City’s system investment charge, any new customer connecting to a City waterline must also pay the CWRWS system investment charge, which varies depending on water meter size.

The total connection charge when connecting to a City supplied waterline, including both the City and CWRWS system investment charges, is shown in Table ES-2.

TABLE ES-2
CASPER & CWRWS COMBINED SYSTEM INVESTMENT CHARGE SCHEDULE

<table>
<thead>
<tr>
<th>Water Meter Size (inch)</th>
<th>In-City Customer</th>
<th>Out of City Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wholesale</td>
<td>Retail</td>
</tr>
<tr>
<td>¾</td>
<td>$1,610.00</td>
<td>$1,862.50</td>
</tr>
<tr>
<td>1</td>
<td>$2,692.00</td>
<td>$3,114.50</td>
</tr>
<tr>
<td>1 ½</td>
<td>$5,358.00</td>
<td>$6,198.00</td>
</tr>
<tr>
<td>2</td>
<td>$8,583.00</td>
<td>$9,929.25</td>
</tr>
<tr>
<td>3</td>
<td>$15,377.00</td>
<td>$17,470.75</td>
</tr>
</tbody>
</table>
Finally, in order to become an outside City water customer, whether wholesale or retail, each property owner in the service area must sign a “Commitment to Annex” to the City of Casper. The intent of the annexation commitment is that if the City ever decides to annex the property, the property owner has already agreed through the previous commitment to annex.

Local Groundwater Supply
The other water supply alternative available to each of the services areas is a deep local groundwater supply. Nearly all of the private groundwater wells in the service areas are shallow and of low production capacity. Most of the private wells are located in the sands and gravels within the shallow pediment terraces which cap the shales and siltstones of the Cody Shale. Shale reportedly yields small quantities of water to the domestic wells and springs in the area. As illustrated by the many wells and springs where the water levels and yield are dependent on the years with normal to above normal precipitation, the pediment aquifers may either be limited in a real extent, or may be directly or indirectly influenced by surface water.

The concept behind a local groundwater supply is to drill deep, high capacity wells to serve as a large source capable of supplying the greater service area needs. In the study area, the most extensive aquifer is the Lakota Sandstone. Potential well sites within the Study area are estimated to encounter the Lakota Sandstone at depths between 2,000 and 4,500 feet. In general, the Lakota Sandstone will be encountered at increasingly shallower depths the closer the wells are drilled to the Casper Mountain Fault. The potential yield of the Lakota is expected to range from 150 to 300 gallons per minute (gpm) and good water quality is expected.

SELECTED WATER SUPPLY ALTERNATIVES
The selection of a water supply alternative for two of the service areas was very straightforward and clear. However, the selection of a water supply for the other service areas was not as clear cut so more than one alternative was offered. The selected water supply alternatives for each of the service areas are summarized below:

Pursel Lands/Moonbeam Acres	Outside City Retail
Coates Road	Outside City Wholesale
Squaw/Wolf Creek Road	Outside City Retail
	Outside City Wholesale
South Garden Creek	Outside City Wholesale
Elkhorn Valley	Outside City Wholesale
	Groundwater
RECONNAISSANCE LEVEL DESIGNS AND COST ESTIMATES

Reconnaissance level designs and cost estimates were developed for the selected water supply alternatives for each service area. A brief description of each system is provided below. The estimated total project costs are given in Table ES-1 attached at the end of this Summary.

Pursel Land/Moonbeam Acres – The proposed outside City retail system consists of approximately 3,800 feet of 12-inch and 20,000 feet of 8-inch water transmission pipelines to serve the area, and 120 service taps. The system includes 34 fire hydrants and is capable of providing City required fire flow volumes. The total project cost is estimated to be $1,481,800.

Coates Road – The proposed outside City wholesale system has three water zones and consists of three buried duplex booster stations, three buried water storage tanks, approximately 18,600 feet of 4-inch and 6-inch water transmission pipelines, and 25 water service taps. The system includes 8 flushing hydrants, but is not sized to provide fire flow volumes. The total project cost is estimated to be $1,326,500.

Squaw/Wolf Creek Road – There was no clear preference for a water supply alternative, so three options were provided. The proposed outside City retail water system option has two service zones and consists of approximately 6,700 feet of 12-inch, 16,400 of 8-inch, and 1,000 feet of 6-inch water transmission pipelines, 35 fire hydrants, a buried duplex booster station, a 50,000 gallon buried water storage tank, and 72 water service taps. The system is sized to provide fire flow volumes in the lower zone, but not in the upper zone. The total project cost is estimated to be $2,003,900.

The proposed outside City wholesale water system option has two service zones and consists of approximately 24,100 feet of 6-inch and 8-inch water transmission pipelines, a buried duplex booster station, a 25,000 gallon buried water storage tank, and 72 water service taps. There are 12 flushing hydrants, but the system is not sized to provide fire flow volumes. The total project cost is estimated to be $1,794,400.

The proposed water system supplied by a deep groundwater supply consists of a well located in the southern most part of the service area. The well would pump to fill a 200,000 gallon water storage tank that would supply flow to the system. The water transmission system includes 23,200 feet of 4, 6, and 8-inch water transmission pipelines, and 72 water service taps. There
are 11 flushing hydrants, but the system is not sized to provide fire flow volumes. The total project cost is estimated to be $2,457,937.

South Garden Creek – The proposed outside City wholesale water system consists of 4 water service zones and includes 3 buried duplex booster stations, 3 buried water storage tanks, 49,000 feet of 4, 6, and 8-inch water transmission pipelines, and 105 service taps. The system includes 36 flushing hydrants but is not sized to provide fire flow volumes. The total project cost is estimated to be $3,896,100.

Elkhorn Valley – Two water supply system options were provided. The proposed outside City wholesale water supply system consists of one service zone and includes a duplex booster station, a buried 50,000 gallon water storage tank, approximately 27,200 feet of 3, 4, and 6-inch water transmission pipelines, and 14 water service taps. There are 8 flushing hydrants in the system but the system is not sized for fire flow volumes. The total project cost is estimated to be $1,166,900.

The proposed groundwater supply option consists of a 50 gpm well and 100,000 gallon buried water storage tank located in the uppermost service area. The well would fill the tank which would supply approximately 20,000 feet of 3, 4, and 6-inch water transmission pipelines, with 14 water service taps. There are 5 flushing hydrants in the system, but the system is not sized to provide fire flow volumes. The total project cost is estimated to be $1,313,264.

ECONOMIC ANALYSES AND PROJECT FINANCING

In order to construct and operate any of the proposed water supply systems, three economic considerations must be addressed: 1) the debt incurred to construct the system; 2) the cost to operate and maintain the system; and 3) the cost to connect to the water system.

DEBT FINANCING

The most favorable plan for financing the debt for constructing the proposed water systems in each service area is the following:

- A Wyoming Water Development Commission (WWDC) grant for 50% of the construction cost of all water transmission and supply pipelines, flushing hydrants, booster stations, groundwater wells, water storage tanks and associated construction.
• A State Lands and Investments Board (SLIB) grant for 50% of the cost of all water service taps, meter pits, service lines from the main to the meter pit, fire hydrants, and associated construction.

• A 20-year loan at 2½% interest from the State Revolving Loan Fund (SRF) for the matching portion (50%) of all the water lines, booster stations, wells, water storage tanks, water service taps, meter pits, flushing and fire hydrants, and associated construction.

The repayment of the construction debt is proposed to be paid through a special assessment made on each property in the service area which benefits from having access to a water main. In each service area there are more parcels of land which will benefit than the total number of developed lots. The share of the debt due from each property owner can be paid initially in one lump sum, or can be paid over the 20-year period through the special assessment. The cost of the debt for each benefiting lot, the annual assessment and the cost of the assessment per month for each water supply option in the service areas are shown in Table ES-1.

ANNUAL OPERATING BUDGET

Each water service area must develop operating budgets which account for the costs to operate, maintain and repair the water system.

Outside City Retail Systems

For outside City retail systems, the City retail water rate includes all the costs for operating and maintaining the water system. The current outside City retail water rate is a minimum charge of $13.04 for the first three thousand gallons used during each two month billing period and $2.82 per thousand gallons thereafter. The typical cost for using 12,000 gallons per month is estimated to be $36.13 per month as shown in Table ES-1. The service area will need to maintain a Board of Directors until the construction debt is paid off. The Board's primary responsibility will be collecting the assessments and making the annual loan payment to the State. Operating costs include Board meetings, advertising, accounting, legal, engineering, insurance, bonding, materials and supplies. The operating budget for an outside City retail water system is estimated to range between $5,000 and $15,000 per year.
Outside City Wholesale and Groundwater Systems

The annual operating budget for outside City wholesale and groundwater supply systems will depend on the size of the entity, and will be more complex than outside City retail systems. Operating costs will need to include certified operators, testing and sampling, meter reading and billing, bookkeeping, repairs, accounting, electricity, telephone, materials and supplies, reserve funds, bonding, insurance, legal, engineering, advertising, Board meetings, water purchases, radio system operations, and other miscellaneous costs. A typical estimated annual operating budget for the proposed water supply system in each service area is given in Table ES-1.

The water rate in these areas will need to be set at a level which equals or exceeds the annual operating budget. The typical water usage in rural areas is estimated to be 12,000 gallons per month per residence. The estimated water rate and monthly water bill for the proposed water system in each service area is given in Table ES-1.

ONE-TIME CONNECTION COSTS

Each property owner will incur one-time connection costs when connecting to the water system. These costs will depend on the type of water system, size of meter and distance from the meter pit to the residence. None of these connection costs are payable with State grants or loans and are the responsibility of the property owner. The costs include: 1) Casper system investment charge; 2) Central Wyoming Regional Water system investment charge; 3) water service line installation (from meter pit to residence); 4) house plumbing conversion; and 5) oversize service tap charge for those residents wanting a tap larger than a ¾ inch meter, (see Table ES-2). The estimated one-time connection costs typical to each service area are summarized in Table ES-1.
<table>
<thead>
<tr>
<th>Description</th>
<th>Purcell Lands/Moonbeam Acres Outside City Retail</th>
<th>Coates Road Outside City Wholesale</th>
<th>Squaw/Wolf Creek Outside City Wholesale</th>
<th>Squaw/Wolf Creek Outside City Wholesale</th>
<th>Squaw/Wolf Creek Outside City Wholesale</th>
<th>South Garden Creek Outside City Wholesale</th>
<th>South Garden Creek Outside City Wholesale</th>
<th>Elkhorn Valley Outside City Wholesale</th>
<th>Elkhorn Valley Outside City Wholesale</th>
<th>Elkhorn Valley Outside City Wholesale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Population</td>
<td>394</td>
<td>80</td>
<td>230</td>
<td>230</td>
<td>230</td>
<td>336</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>20-Year Projected Population</td>
<td>460</td>
<td>98</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>410</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>50-Year Projected Population</td>
<td>460</td>
<td>132</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>555</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>20-Year Average Day Water Demand (gal/day)</td>
<td>92,000</td>
<td>19,600</td>
<td>56,200</td>
<td>56,200</td>
<td>56,200</td>
<td>82,000</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
</tr>
<tr>
<td>50-Year Average Day Water Demand (gal/day)</td>
<td>92,000</td>
<td>26,400</td>
<td>76,000</td>
<td>76,000</td>
<td>76,000</td>
<td>111,000</td>
<td>16,000</td>
<td>16,000</td>
<td>16,000</td>
<td>16,000</td>
</tr>
<tr>
<td>20-Year Peak Day Water Demand (gpm)</td>
<td>192</td>
<td>41</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>231</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>50-Year Peak Day Water Demand (gpm)</td>
<td>192</td>
<td>110</td>
<td>158</td>
<td>158</td>
<td>158</td>
<td>231</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Number of Benefitting Lots</td>
<td>130</td>
<td>25</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>170</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Number of Developed Lots (taps)</td>
<td>120</td>
<td>25</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>105</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Estimated Total Project Cost</td>
<td>$1,481,800</td>
<td>$1,326,500</td>
<td>$2,003,900</td>
<td>$1,794,400</td>
<td>$2,457,937</td>
<td>$3,896,100</td>
<td>$1,166,900</td>
<td>$1,313,264</td>
<td>$1,313,264</td>
<td>$1,313,264</td>
</tr>
<tr>
<td>Construction Loan Amount</td>
<td>$740,900</td>
<td>$663,250</td>
<td>$1,001,950</td>
<td>$897,200</td>
<td>$1,228,968</td>
<td>$1,948,050</td>
<td>$583,450</td>
<td>$656,632</td>
<td>$656,632</td>
<td>$656,632</td>
</tr>
<tr>
<td>Loan Share For Each Benefitting Lot</td>
<td>$5,699.23</td>
<td>$26,530</td>
<td>$663,250</td>
<td>$1,001,950</td>
<td>$1,228,968</td>
<td>$1,948,050</td>
<td>$583,450</td>
<td>$656,632</td>
<td>$656,632</td>
<td>$656,632</td>
</tr>
<tr>
<td>Annual Construction Loan Payment (entire area)</td>
<td>$47,526.61</td>
<td>$42,545.58</td>
<td>$64,272.22</td>
<td>$57,552.80</td>
<td>$78,777.00</td>
<td>$124,961.81</td>
<td>$37,426.64</td>
<td>$42,090.12</td>
<td>$42,090.12</td>
<td>$42,090.12</td>
</tr>
<tr>
<td>Annual Assessment per Benefiting Lot</td>
<td>$365.59</td>
<td>$1,701.82</td>
<td>$803.40</td>
<td>$719.41</td>
<td>$984.71</td>
<td>$1,536,211.00</td>
<td>$11,459.12</td>
<td>$154.94</td>
<td>$154.94</td>
<td>$154.94</td>
</tr>
<tr>
<td>Monthly Assessment Cost</td>
<td>$30.47</td>
<td>$141.82</td>
<td>$66.95</td>
<td>$59.95</td>
<td>$82.06</td>
<td>$11,459.12</td>
<td>$154.94</td>
<td>$175.38</td>
<td>$175.38</td>
<td>$175.38</td>
</tr>
<tr>
<td>Estimated Annual Operating Budget</td>
<td>$11,000</td>
<td>$33,600</td>
<td>$11,000</td>
<td>$66,800</td>
<td>$59,500</td>
<td>$103,600</td>
<td>$32,000</td>
<td>$27,600</td>
<td>$27,600</td>
<td>$27,600</td>
</tr>
<tr>
<td>Total Annual Water Usage</td>
<td>$17,280,000</td>
<td>$3,600,000</td>
<td>$10,400,000</td>
<td>$10,400,000</td>
<td>$10,400,000</td>
<td>$15,120,000</td>
<td>$2,160,000</td>
<td>$2,160,000</td>
<td>$2,160,000</td>
<td>$2,160,000</td>
</tr>
<tr>
<td>Water Rate per 1,000 gal.</td>
<td>* $9.33</td>
<td>* $6.42</td>
<td>* $5.72</td>
<td>* $6.85</td>
<td>* $14.81</td>
<td>* $12.78</td>
<td>* $153.33</td>
<td>* $153.33</td>
<td>* $153.33</td>
<td>* $153.33</td>
</tr>
<tr>
<td>Monthly Water Bill (12,000 gal/mo.)</td>
<td>$36.13</td>
<td>$112.00</td>
<td>$36.13</td>
<td>$77.08</td>
<td>$82.22</td>
<td>$177.78</td>
<td>$153.33</td>
<td>* $153.33</td>
<td>* $153.33</td>
<td>* $153.33</td>
</tr>
<tr>
<td>Casper System Investment Charge (3/4 inch tap)</td>
<td>$1,515.00</td>
<td>$1,262.50</td>
<td>$1,515.00</td>
<td>$1,262.50</td>
<td>$1,262.50</td>
<td>$1,262.50</td>
<td>$1,262.50</td>
<td>$1,262.50</td>
<td>$1,262.50</td>
<td>$1,262.50</td>
</tr>
<tr>
<td>Regional System Investment Charge (3/4 inch tap)</td>
<td>$600.00</td>
</tr>
<tr>
<td>Service Line, Plumbing Cost</td>
<td>$1,000</td>
<td>$1,500</td>
<td>$1,000</td>
<td>$1,000</td>
<td>$1,500</td>
<td>$1,500</td>
<td>$1,500</td>
<td>$1,500</td>
<td>$1,500</td>
<td>$1,500</td>
</tr>
</tbody>
</table>

* The Outside City retail water is $13.04 for the first 3,000 gallons used during each two month billing period, and 2.82 per thousand gallons thereafter.