Executive Summary

Lovell Water Master Plan
Level I Study
October 2013

Prepared For:
Wyoming Water Development Commission
and the Town of Lovell

Prepared By:
DOWL HKM
Lovell Level I Water Master Plan

Executive Summary – October 2013

Prepared For:

Wyoming Water Development Commission
6920 Yellowtail Road
Cheyenne, WY 82002
307-777-7626
wwdc.state.wy.us

Submitted by:

DOWL HKM
16 W. 8TH Street
P.O. Box 7010
Sheridan, WY
307-672-9006
www.dowlhkm.com

Professional Engineer (Civil)
DAYTON ALSAKER
6148

Date: 7/27/14
1.0 Purpose of Study

Purposes for this WWDC funded Level I study included compiling and evaluating existing information on this system, and making recommendations for improvements as well as for the future operation and management of this water system.

Highlights from the scope of work for this study include the following. To:

1. Compile and review existing information on the Lovell water system.
2. Inventory and evaluate the existing infrastructure of this water system and consider its capability to supply future estimated demands.
3. Identify components that will require repair/replacement within the next 20 years.
4. Assess the water system regarding leakage and water loss.
5. Assemble the record drawings of the projects completed and other drawings available, and create a geographic information system (GIS) of the water system.
6. Develop a hydraulic model of the Lovell water system to analyze the existing system as well as to aid in the preliminary design of the proposed improvements.
7. Develop current and projected future water demands for system analysis and future planning. Incorporate these demands into the model of the system.
8. Analyze the historic population of Lovell and develop population growth estimates for the future. Associated with these projections are the estimated water demands.
9. Collect data on the water source relating to capacity, reliability, and pressure. Determine if the existing water source is adequate for future needs.
10. Gather and review existing water quality information and reports. Assess the water quality in regards to the compliance with drinking water standards.
11. Review the status of the water rights for the Town and the adequacy of these rights.
12. Evaluate the management and operation of this water system to determine if changes would be beneficial.
13. Review existing planning boundaries where future growth is expected to occur. Consider how best to expand the water system into these areas.
14. Prepare recommendations in two areas:
 a. Non-structural improvements for the funding, operation, maintenance, and replacement of the system.
 b. Infrastructure improvements.
15. Develop cost estimates for the proposed infrastructure improvements.
16. Analyze the Town’s finances, water rates, debt, and enterprise funds in regards to current financial needs as well as proposed improvements.
17. Develop funding strategies for the proposed improvements.
18. Summarize all findings and recommendations in a project report.

2.0 Existing Facilities

The original Town water system was constructed sometime prior to 1940. Lovell commenced a major upgrading of their water distribution and transmission facilities in 2005. Through 2012 they
have completed four major projects, with one remaining project under the current program which is Main Street. This is being designed with construction planned for 2014. This project is coordinated closely with WYDOT. These five projects complete the reconstruction of almost the entire distribution system for Lovell.

Water is supplied to the Town of Lovell by the Shoshone Municipal Pipeline (SMP). SMP is a large regional water wholesaler that serves many municipalities and water districts in eastern Park County and northwestern Big Horn County. The SMP receives its water supply from the Buffalo Bill reservoir which is on the Shoshone River west of Cody. The water treatment plant is located immediately west of Cody. Due to the plant’s elevation it provides water to most of its service area by gravity flow. SMP is governed by a Joint Powers Board (JPB) made up of one representative of each of the entities it serves, so Lovell has a representative on the JPB. The supply of water to Lovell by the SMP has been very satisfactory since it begin this service in 1991.

The facilities maintained by the SMP include the transmission main up to the Town of Lovell and the pressure reducing valve vault (PRV) at the delivery point into the Lovell water system. In addition to reducing pressure, the PRV also controls the flow rate into the system. This valve is automatically opened and closed based on the water level in the 1 million gallon (MG) steel water tank that resides on the lower (primary) pressure zone or service area for Lovell. The SMP maintains this structure and its control system.

The SMP system is a very well operated, maintained, and financially managed system. It has been providing dependable water supply to Lovell over the last 22 years, and should be able to continue this dependable supply into the future. Based on the investigations made and discussions held regarding the water supply from SMP, no recommendations for improvements to the SMP supply facilities are needed in regards to this study.

The quantity of water delivered into Lovell through the master meter at the PRV vault is billed monthly by SMP. This bill is calculated as follows:

- $9.00 per tap equivalent (of which there are currently 1086)
- $1.34 per 1000 gallons

The Town of Lovell must of course pay for all water that passes through this master meter. They then bill each user based on their individual meter reading. Any resulting water lost or difference between these two readings (unaccounted for water or nonrevenue water) must be absorbed into their operating costs. This is currently a significant issue in Lovell.

The SMP can provide up to 1200 gallons per minute (gpm). They currently are providing flow at the rate of 650 gpm, when the flow control valve into the Lovell system opens (the water level in the 1 MG tank drops and calls for it to open). It takes 5 to 8 hours to fill the tank depending on demand during that time. So the capacity of these supply facilities will serve Lovell well beyond any current planning period. Pressure is also more than adequate, as the pressure is reduced from the 160 to 180 psi range to 37 to 43 psi, depending on the water level in the 1 MG tank.
The Lovell water system is illustrated in Figure 1. Two 12-inch transmission mains deliver water from the connection point to the SMP into the distribution system. The distribution system consists of well-looped 6 and 8-inch water mains, and strategically located 10 and 12-inch transmission mains. Two steel water tanks ride on the lower pressure zone. These are a 1 MG (primary) tank and a backup, older 0.3 MG tank. A variable speed drive pump station serves the upper pressure zone. This station should be replaced.

There are two pressure zones in the Lovell water system. These are the lower zone (Zone 1) which serves most of the town and the upper zone (Zone 2) which serves the area on the hill around the hospital. The hydraulic grade lines (HGLs) that establish the pressure within these two zones are as follows:

- Lower zone. The HGL is set by the overflow elevation in the 1 MG tank, which is 3953. Pressures throughout this service area are determined by the difference between this hydraulic elevation and the ground elevation.
- Upper zone. The HGL is set by the discharge pressure of the pump station. With a discharge pressure of 70 psi, the HGL of the upper zone is approximately 4055. There is no gravity storage on this upper zone.

Regarding water quality, the SMP provides a high quality water supply to the Town of Lovell that complies with all of the Safe Drinking Water Act (SDWA) requirements. Due to the size of this water system, SMP uses chloramines as its disinfectant, which persists longer in the system than does a free chlorine residual, so Lovell does not need to provide chlorine boosting facilities.

There are three SDWA distribution system rules that the Town of Lovell must comply with. These are: Total Coliform Rule, Disinfection ByProducts (DBPs) and the Lead and Copper rule. The Town of Lovell has a very good history in complying with these rules.

There are two governmental agencies involved with regulating water quality and water systems in Wyoming. These are the Environmental Protection Agency (EPA) which regulates the SDWA from their Region 8 office in Denver and the Wyoming Department of Environmental Quality (DEQ) from their district office in Lander. Contacts were made with both agencies, and Lovell is in good standing with both of them in regards to their water system.

3.0 Local Issues

The Town of Lovell had a comprehensive community plan prepared in 2006. This master plan was to set forth an achievable vision and a roadmap for the renewal and revitalization of Lovell. There are several issues in this plan that pertain to the water system. The recommendations included in this Level I study are in compliance with this master plan.

The Northwest Rural Water District (NWRWD) is a major water district that serves a large rural area in northeastern Park County and northwestern Big Horn County. NWRWD has several service areas, including the areas immediately south and southeast of Lovell. They have been
providing service to this area since 1995. Their water source is also the SMP. They come off the same SMP transmission main that Lovell does, just southwest of the Lovell connection point. NWRWD provides service along the County Road (Lane 12) immediately south of Lovell. This results in some NWRWD users being directly across the road from Lovell users. The close proximity of these two systems may result in some confusion as to which entity should be the primary service provider. There is no written or agreed to policy as to which entity should serve a given area other than the Town of Lovell has jurisdiction within the town limits. In the past a user has approached whichever system they wish to, with the primary deciding factor probably being which system had a main closest to their particular connection point. The close proximity of NWRWD’s service area definitely limits the ability for the Lovell system to expand to the south.

NWRWD provides domestic water supply to the areas it serves. It is specifically designed not to provide fire flows. They have sufficient main capacity, supply capability, and pressure to adequately serve their users in this area. NWRWD has a $3000 hookup fee, which appears to be a reasonable fee given the costs associated with developing the infrastructure to provide service to these rural areas. Any extensions to a new service area have to be paid for by the users requesting this extension.

Prior to the connection to the SMP source, the Town of Lovell had water rights off the Shoshone River and its own WTP. When it connected to the SMP source these water rights were transferred to SMP. The rights transferred were a water storage contract for 1000 ac-ft in Buffalo Bill Reservoir and 3.3812 cubic feet per second (cfs) of direct flow right. Therefore while Lovell does not have any water rights of its own, these quantities are sufficient to cover Lovell’s water needs.

Lovell has several wells to help in the watering of their parks, but they also use water from their water system for watering of parks and other public areas. Most of their parks are metered, so the volume of water from the water system applied to parks is generally accounted for. The permitting process through the State Engineer’s Office has not been completed on some of the wells, and it is recommended that this be done.

Lovell has a bulk loadout facility for rural residents to obtain water. In 2012 Lovell sold about 1,500,000 gallons of water through their bulk sales load-out facility for approximately $2,000. So while this facility is important, it does not significantly impact this water system.

4.0 Design Parameters

Population and population growth data were gathered from the Wyoming Department of Administration and Information. The 2010 census lists the population of Lovell as 2360. This number is the baseline for the population growth estimates. Using the past census data and the 2006 Lovell Town Master Plan, a growth rate of 0.5% per year was used. Applying the 0.5% growth rate per year up to the design year of 2040, results in an estimated population of 2714, which was used to estimate demand for water modeling.
There were 951 users on the Lovell water system in January 2013, of which 914 were residential users on 5/8"x3/4" or 3/4-inch meters. There also are several major water users utilizing older meters. These included the hospital, nursing home, swimming pool, the three schools, the sugar factory and three trailer courts. The possible under-registering of these larger meters is believed to represent a suspected major loss of water from this system. Water loss is a significant issue with this system, which must be addressed.

Considerable data exists on past water usage by the Town of Lovell. One interesting point with water usage in Lovell is that the usage doesn't peak as much in July and August as with most systems. This is because of the relatively high water rates, and the self-imposed conservation measures. Many residents have shallow wells for lawn watering, or simply cut back on watering. This is a very important factor as projections for future water needs are developed for the design year. Per capita usage becomes 132 gal/day for average day and 219 gal/day for peak day.

Water loss (or non-revenue water) is a significant issue in this water system, running at about 32%. This is particularly important because Lovell must pay SMP for each gallon of water that passes through the master meter, but then does not resell as much water as it should. This becomes an extra expense that must be met by the water enterprise fund. Since most of the lines in this system are newer, it was believed leakage was not a major issue, but to be sure, a leak detection survey was completed. This found a few small leaks, but not the explanation for the above loss. It is believed the major contributor to this water loss is the under-registering of some meters, as discussed above. A meter replacement project is included in the recommendations.

The following table presents the Design Criteria that were developed for this study. These criteria were used in the assessment of the existing system, its ability to meet the design year projections, and for the proposed improvements to Zone 2. The water model developed for this system, also utilized these current and projected demands.

<table>
<thead>
<tr>
<th>Design Criteria – Lovell Water System</th>
<th>Design Year</th>
<th>Zone 1</th>
<th>Zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012 2040</td>
<td>2012 2040</td>
<td>2012 2040</td>
</tr>
<tr>
<td>Population Projection</td>
<td>2389 2714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water System Demand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Day (MGD)</td>
<td>0.315 0.358</td>
<td>0.277 0.293</td>
<td>0.038 0.065</td>
</tr>
<tr>
<td>Peak Day (MGD)</td>
<td>0.522 0.593</td>
<td>0.455 0.486</td>
<td>0.067 0.107</td>
</tr>
<tr>
<td>Peak Hour (gpm)</td>
<td>766 870</td>
<td>673 712</td>
<td>93 158</td>
</tr>
<tr>
<td>Per Capita Demand (gpcpd)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Day</td>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Day</td>
<td>219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peaking Factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Day/Average Day</td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hour/Average Day</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Flows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential Areas</td>
<td>1000 gpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Areas</td>
<td>1500 gpm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.0 Mapping & Modeling

GIS mapping began with the record drawings for the four Lovell water system projects that have been completed to date and the recent surveying for the Main Street project set to be constructed in 2014. The vertical datum and various coordinate systems were coordinated and converted as necessary and imported into ArcMAP. A Geodatabase was then created with shapefiles of the pipes, valves, hydrants, tanks, the pump station and other appurtenances.

The GIS map was published and is available to view using ArcReader, which is free software Town staff can download. This allows the staff to zoom into any area on the map and view locations of system components. The program used for the hydraulic modeling of the water system is Bentley® WaterGEMS® V8i.

Base demands were allocated to selected junctions to distribute estimated system usage. These demands were based on usage history and the design criteria discussed above. Peak day and peak hour demands were developed using the design criteria shown. Base, peak day, and peak hour demands were also projected for the year 2040. The two tanks were set up according to their elevations and operating ranges. The PRV that supplies this system was set at its operating pressure and flow rate of 650 gpm.

Modeling scenarios were run using base demands, peak day and peak hour demands for both 2012 and 2040. Select locations were chosen to represent flows in pipes and pressures at junctions within the system in both pressure zones in the existing and future (2040) water system. Fire flow scenarios were run to determine if the existing water system meets fire flow demands in both pressure zones. The fire flow minimum was set at 1000 gpm for most locations with 1500 gpm at locations such as the sugar beet factory, schools and hospital. The maximum fire flow was set at 3000 gpm, with a minimum pressure of 25 psi. All locations within pressure zone 1 met the fire flow requirements in both 2012 and 2040, whereas all locations in pressure zone 2 did not meet fire flow requirements, with maximum flows of about 600 gpm.

Two alternatives for the Zone 2 improvements were modeled. These improvements will allow the fire flows discussed to be met. These alternatives were constructing either a new pump station or providing a high pressure transmission main from the SMP pipeline, to supply the new elevated tank. Piping improvements required in this project, were also included in the modeling.

6.0 Financial Considerations

The Town of Lovell maintains a separate fund for its water system. It is operated as an enterprise fund. The fund is entirely self-supporting, including paying debt obligations and funding reserve accounts for depreciation, repairs and emergencies. Large capital projects are supported with grant and loan funding from various state and federal sources and are budgeted in a separate construction project fund.

Lovell is unique because the Town has undertaken an extensive, town-wide infrastructure upgrade which is nearing completion with the fifth project in seven years under design.
upgrades have been funded using state and federal loans and grants, with the Town’s rates set to comply with the conditions of the funding programs, including setting rates to adequately pay off debt, and fund required reserve accounts.

Water Supply Costs. Lovell’s source of supply is the SMP. A base rate of $9.00 per tap equivalent is paid monthly as a base charge plus water usage is paid at $1.34 per 1,000 gallons. These costs are included in the Water Fund budget as the Water Purchase (usage charge) and Water Tap Equivalent (base rate) line items in the Expenditures budget for the Water Fund.

Usual Operating Costs. The cost of employees, benefits, supplies, equipment, materials, meters, outside services, permitting, testing, training, and utilities are all accounted for with various line item entries in the Expenditures portion of the Water Fund. Operating expenses over the previous five years have averaged just under $390,000 per year, which is reasonable and appropriate for a water system of this size.

Revenue Structure. The Town of Lovell’s water rate structure includes a Base Charge that is set by the meter size (beginning at $9.00 for a ¾-inch meter), a Demand Charge (beginning at $18.32 for a ¾-inch meter) and a Usage Charge of $4.70 per 1000 gallons. The Town does not charge a tap fee or plant investment fee. The rationale is that the cost for connections is included in the Demand Charge as new services are typically installed with the ongoing system-wide replacement projects. This is valid for existing service connections, but consideration to instituting a tap fee for new connections to the system is recommended to help pay for water system extensions and improvements for growth or needed replacement of facilities.

The Base Charge is a pass through charge from the SMP, while the Demand Charge is a second flat rate included in the water rate structure and covers debt payments and funds reserves. All of the operating expenses of the Water Fund are therefore funded from the $4.70/1000 gallon usage charge. Of this usage charge, $1.34/1000 gallons is paid to SMP to purchase the supply, leaving $3.36/1000 gallons for other expenses.

This rate structure translates into a monthly water bill of $74.32 for a household using 10,000 gallons of water, which is a typical monthly usage for a family. Annually, this is equivalent to 2% of Lovell’s median household income of $44,821. The average daily usage per person in Lovell for 2012 was 85 gallons per day, a very conservative amount, so Lovell’s usage charge of $4.70/1,000 gallons promotes conservation.

Since the Water Fund is self-supporting, no alternative rate structure is proposed. The existing structure provides the necessary revenues for the Town and is a clear, consistent and concise way to communicate the cost of projects to the users.

Funding Opportunities. Wyoming is fortunate to have a number of funding programs to assist communities in making improvements to public water systems. Without these programs, projects such as the improvements recommended in this study would not be affordable. For example, if
Lovell were to finance the entire $3.53 million in proposed water system improvements without any assistance, the impact to each water account would be nearly $22 per month.

Of the many possible funding sources discussed in the final report, a combination of the WWDC (67% grant) and the State Revolving Fund (SRF) (50% principal forgiveness) is recommended. All of the system components are WWDC eligible.

It is important to recognize that funding programs are constantly evolving and significant changes can be seen on a year to year basis. These changes could easily result in a different funding package being better for the recommended improvements. Therefore, before the funding applications are made, this evaluation needs to be reviewed. The current estimated construction costs and proposed funding package results in an average monthly cost increase per tap of $3.19, which is a 4.3% increase in a normal water bill (10,000 gallons used) of $74.32 per month.

7.0 Proposed Improvements

There are four improvement projects proposed under this Level I study. These are:

1. Zone 2 (Upper Bench) Supply Project
2. SCADA System (proposed to be completed in conjunction with #1)
3. Meter upgrade project
4. Other water mains

Since the Zone 2 project is the primary proposed project coming out of this study, it will be covered in this summary. Refer to the Final Report for information on the other projects. The improvements to Zone 2 are a new elevated tank to provide water supply and the appropriate pressure to this entire pressure zone, a new pump station to fill the tank, some additional piping and a SCADA system.

Constructing a water storage tank in this upper zone will provide several benefits including the following. The size and height of the tank will be determined to fulfill the goals stated below. Due to the flat terrain, an elevated steel spheroid tank will be used. A 400,000-gallon tank will be used, as discussed in the Final Report. Benefits the tank provides include:

- Helping to maintain a constant, dependable pressure.
- Improved ability to meet peak domestic demands.
- The capability to provide fire flows.
- Supply during power outages or times when there are problems with the pump station.
- Supply during emergencies.

A properly designed and operated SCADA system is becoming an essential part of a water system. A SCADA system can be invaluable for its monitoring and alarm functions. The SCADA system will use a license-free radio frequency communication system to link each of the water distribution system sites to a master station for central monitoring of the system operating status and data collection. It is proposed that the master station for the SCADA system be located at the
Town Hall since this location is staffed on a regular basis. The SCADA system can also be configured to report critical alarm conditions to specific telephone numbers based on a user-definable on-call operations schedule. Final decisions regarding the configuration and features of the SCADA system will be determined during the design phase. As a new SCADA is designed within the Lovell system, it is recommended that it be compatible with the existing system used by SMP, and that it be designed and constructed in conjunction with the proposed new pump station and elevated tank for Zone 2. More details regarding the proposed SCADA system are included in the Final Report.

The cost estimate for the recommended Zone 2 improvement project is presented below. This project consists of an elevated tank, new pump station to replace the existing station, connecting piping for the new tank, a SCADA system, and associated appurtenances.

Zone 2 Improvement Project

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of Final Designs and Specifications (10%)</td>
<td>$250,000</td>
</tr>
<tr>
<td>Permitting and Mitigation</td>
<td>$10,000</td>
</tr>
<tr>
<td>Legal Fees</td>
<td>$10,000</td>
</tr>
<tr>
<td>Acquisition of Access and Right of Way</td>
<td>$50,000</td>
</tr>
<tr>
<td>Cost of Components</td>
<td></td>
</tr>
<tr>
<td>Mobilization, Bond and Insurance</td>
<td>$160,000</td>
</tr>
<tr>
<td>Construction Stormwater Management</td>
<td>$10,000</td>
</tr>
<tr>
<td>Construction Signing & Traffic Control</td>
<td>$15,000</td>
</tr>
<tr>
<td>Pump Station</td>
<td>$320,000</td>
</tr>
<tr>
<td>Station sitework - access, fence, site piping</td>
<td>$60,000</td>
</tr>
<tr>
<td>Pump Station electrical package</td>
<td>$20,000</td>
</tr>
<tr>
<td>400,000 Gallon Tank</td>
<td>$1,500,000</td>
</tr>
<tr>
<td>Tank Sitework - access, fencing, site piping</td>
<td>$50,000</td>
</tr>
<tr>
<td>SCADA system</td>
<td>$110,000</td>
</tr>
<tr>
<td>Waterlines (2800' of 10" @ $74/foot)</td>
<td>$207,200</td>
</tr>
<tr>
<td>Waterlines (700' of 8" @ $65/foot)</td>
<td>$45,500</td>
</tr>
<tr>
<td>Construction Subtotal</td>
<td>$2,497,700</td>
</tr>
<tr>
<td>Engineering During Construction (10%)</td>
<td>$250,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$3,067,700</td>
</tr>
<tr>
<td>Contingency (Subtotal x 15%)</td>
<td>$460,000</td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>$3,527,700</td>
</tr>
</tbody>
</table>

8.0 Recommendations

The following summarizes the recommendations included in this Level I report. All of these recommendations are discussed in more detail in the Final Report, and those discussions should be referred to for additional and backup information. The purpose of this section is to present a brief summary of the recommendations.
1. Zone 2 improvement project. Construct the Zone 2 Improvement project, with an elevated storage tank, pump station, and connecting piping within this distribution system to provide improved water supply to this upper pressure zone. The major improvement in this project is the construction of an elevated gravity storage tank. This will allow water supply to take place at all times even during power outages, and provide important fire protection to this zone which it is currently missing.

2. SCADA system. In conjunction with the Zone 2 project, install a SCADA system in Lovell. This will connect the new pump station and tank and will also provide important monitoring and alarm functions for this water system. A base unit will be installed at Town Hall. Flow and pressure at the SMP connection will also be monitored. For compatibility, this system will be similar in technology to SMP’s.

3. Complete the Main Street project with a new 10-inch main extending the entire length of Main Street. Funding is already in place for this project. This project is proposed for construction in 2014.

4. Upgrade the larger and higher volume meters as recommended in Section 7.3 of the Final Report. Funding for the meter improvements can come out of the reserves that are set aside for system upgrades.

5. Conduct final planning and then design and construct the following two water main extensions. The routing of both of these lines should be considered at the time of final design, so they provide maximum benefit to their respective areas.
 a. On the eastern edge of town to the proposed Forest Service building site, and eventually extend out to loop in the dead end line to the east.
 b. On the southeastern edge of town to the Rodeo Grounds site that will allow the future development of this site for the benefit of Lovell.

6. Funding. Proceed with the funding plan including the applications required, to construct the proposed improvements, as outlined in Section 6.4.7 of the Final Report.

7. Policy recommendations. The following are recommendations relating to policies for the operation and management of this water system:
 a. Implement a connection fee (system impact fee) for new hookups to the water system to accumulate money in a separate fund that can be used to help accommodate capital improvements needed to this system in the future. A $1500 fee is recommended at this time.
 b. Continue with a water service area and system expansion plan to the area south and southeast of Lovell in the vicinity of the NWRWS. This will help define the future service area for Lovell and provide a reasonable expansion of this water system without being too restricted by another entity. Hold a meeting with NWRWS and establish a Memorandum of Understanding as to how service to this area is to be coordinated. It is recommended at all users north of the county road (Lane 12) and all users within the Lovell Town limits, be or become Town of Lovell users.

8. Install a meter and fix the card reader at the bulk loadout facility.