LITTLE SNAKE RIVER
WATER MANAGEMENT PROJECT

STATUS REPORT

WYOMING
WATER DEVELOPMENT COMMISSION

JANUARY 1982
STATE OF WYOMING
ED HERSCHLER
GOVERNOR

WYOMING WATER DEVELOPMENT COMMISSION

ED WREN
CHAIRMAN

Commission Members
Walter J. Pilch
Lewis Freudenthal
Lee Coffman
J. Kenneth Kennedy
William J. Kirven, Jr.
J. W. Myers
James Noble
Willard C. Rhoads

Office Staff
Mike Reese
Vicki Beckman
Lee Ann Costanzo
Evan J. Green
John W. Jackson
Elmer H. Likes
Michael T. O'Grady
Jon W. Wade
Stella Webb
David L. Zelenka

Advisors
George Christopoulos
Myron Goodson
Larry Wolfe
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Alternative A</td>
<td>3</td>
</tr>
<tr>
<td>Alternative B</td>
<td>4</td>
</tr>
<tr>
<td>Alternative C</td>
<td>5</td>
</tr>
<tr>
<td>Alternative D</td>
<td>6</td>
</tr>
<tr>
<td>Alternative D-I</td>
<td>8</td>
</tr>
<tr>
<td>Alternative D-II</td>
<td>9</td>
</tr>
<tr>
<td>Alternative D-III</td>
<td>10</td>
</tr>
<tr>
<td>Alternative D-IV</td>
<td>11</td>
</tr>
<tr>
<td>Alternatives Comparison Chart</td>
<td>12</td>
</tr>
<tr>
<td>Sequence of Events</td>
<td>14</td>
</tr>
<tr>
<td>Conclusions</td>
<td>15</td>
</tr>
</tbody>
</table>
The 1979 Wyoming Legislature passed Enrolled Act No. 49 which called for a water management study of the Little Snake River, authorized Stage II of the Cheyenne Water Project, and defined Stage III. The Enrolled Act defines "Stage III" as:

"... a transbasin diversion of water from the headwater of the Little Snake River and its tributaries on the western side of the Continental Divide north and west of stage I and stage II. Stage III proposes to construct storage structures to increase storage for in-basin use and to construct interception lines and diversion and collection structures to increase availability of water for transportation of water across the Continental Divide from the Little Snake River drainage into the North Platte River system, and increase storage and availability of water for use by cities, towns, and other water users located in Carbon, Albany, Natrona, Converse, Niobrara, Goshen, Platte, and Laramie Counties. ..."

In 1980 the Wyoming Legislature appropriated monies and directed the Wyoming Water Development Commission to prepare a feasibility study and preliminary engineering plans for Stage III of the Little Snake River Water Management Project. Pursuant to these objectives, the Wyoming Water Development Commission selected the firm of Banner Associates, Inc. to conduct a feasibility study of a system to provide water for transbasin diversion as well as providing in-basin storage sufficient to meet projected demands. The Wyoming Water Development Commission also contracted the services of the Wyoming Game and Fish Department to supplement the Banner study by identifying and enumerating populations of fish inhabiting the various streams within the study area.

Under the coordination of WWDC, the Banner report entitled "Little Snake River Water Management Project - Feasibility Study" was completed in November, 1980. The timing made it impossible to digest the contents of the report, hold public hearings, and formulate recommendations to the legislature when it convened in 1981.

The 1981 Wyoming Legislature approved a footnote on the appropriation bill identifying $5,000,000 to be used by the WWDC to prepare final plans and specification for the Stage III project defined in W. S. 41-2-204(a)(iv). The exact items to be pursued by expenditures of these funds are more particularly defined as follows:

An additional five million dollars ($5,000,000.00) is appropriated from the Water Development Account under W. S. 39-6-305(g) to be expended by the Wyoming Water Development Commission to obtain water permits, plan methods of funding, develop plans and specifications and perform geological and other studies and investigation necessary to expedite the Stage III project defined in W. S. 41-2-204(a)(iv). The plans and specifications shall be developed for the Battle Creek to Jack Creek Collection System and Pipelines, Jack Creek Reservoir and Jack Creek to North Platte River Pipeline and Upper Savery Reservoir. Any city, town or special district contributing to the costs under this section shall
be included within the option to purchase Stage III water as described by Section 2, Chapter 72, Session Laws of Wyoming 1980.

In April, 1981 the WWDC held public hearings in Casper, Rawlins, Baggs, and Rock Springs for the purpose of receiving input from those citizens affected by the proposed projects. Many objections, corrections, and alternative recommendations were voiced as well as support for the proposed projects. In an effort to comply with the enacted legislation and to respond to comments from the affected public, the Wyoming Water Development Commission prepared a supplementary report entitled Little Snake River Water Management Project Examination of Alternatives. In the report the WWDC has outlined all of the Stage III alternatives by identifying the system recommended in the Banner report and those alternatives which have been developed by WWDC in response to public input.

In accordance to information received at the public hearings four alternatives were examined by the Wyoming Water Development Commission. These alternatives are summarized on the following pages.
The elements composing this alternative are those recommended in the "Little Snake River Water Management Project - Feasibility Study." The main elements involved are:

Battle Creek to Jack Creek Collection System
This system is a pipeline thirty-eight (38) miles in length. It begins near the old town site of Rambler with a 24-inch diameter concrete pipe. The system then continues in a northwesterly direction accumulating collected water and increasing in size until it reaches the proposed tunnel through the Continental Divide.

Upper Jack Creek Reservoir
This reservoir would be located on Jack Creek within the National Forest. As proposed, the dam would have an active storage capacity of 38,160 acre-feet. The high water level would inundate about 735 acres including much of Jack Creek Park.

Jack Creek to North Platte River Pipeline
This pipeline would intercept water released from Jack Creek Reservoir and transmit it 17.5 miles to the North Platte River. This is necessary to minimize erosion on the lower reaches of Jack Creek.

Upper Savery Reservoir
This reservoir which will be constructed on the upper end of Savery Creek will not provide water for out-of-basin transfer in this alternative, but rather will provide a supplemental supply of water for in-basin needs.

If it is developed, this alternative will collect 30,000 acre-feet of water per year and deliver it to Jack Creek Reservoir by way of the Battle Creek to Jack Creek Collection System. Water would be released from Jack Creek Reservoir and into the North Platte River where it will be available to project participants.

Construction Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Collection System and Tunnel</td>
<td>$77,199,124</td>
</tr>
<tr>
<td>2) Jack Creek Reservoir</td>
<td>19,000,000</td>
</tr>
<tr>
<td>3) Reservoir to North Platte Pipeline</td>
<td>7,300,000</td>
</tr>
<tr>
<td>4) EIS</td>
<td>500,000</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>$103,999,124</td>
</tr>
<tr>
<td>5) Upper Savery Reservoir</td>
<td>31,163,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$135,162,124</td>
</tr>
</tbody>
</table>
The key elements and general method of operation under this alternative are essentially the same as those for Alternative A. However, based upon input from the public hearings held in April, 1981, WWDC decided to consider replacing the reservoir identified in Alternative A with a reservoir which would lie out of the National Forest and which would not inundate Jack Creek Park, a prominent recreation area.

To safeguard against erosion, a pipeline will be introduced to deliver water from the proposed tunnel to the backwaters of the Lower Jack Creek Reservoir. As it is proposed, the pipeline will traverse Jack Creek Park but should be less offensive than the reservoir originally proposed for this site.

This alternative would, as would Alternative A, deliver 30,000 acre-feet per year to out-of-basin use, as well as provide for in-basin needs.

Construction Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Collection System and Tunnel</td>
<td>$ 77,199,124</td>
</tr>
<tr>
<td>2) Tunnel to Reservoir Pipeline</td>
<td>17,629,920</td>
</tr>
<tr>
<td>3) Lower Jack Creek Reservoir</td>
<td>13,297,513</td>
</tr>
<tr>
<td>4) Reservoir to North Platte River Pipeline</td>
<td>4,320,000</td>
</tr>
<tr>
<td>5) EIS</td>
<td>500,000</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>$112,946,567</td>
</tr>
<tr>
<td>6) Upper Savery Reservoir</td>
<td>$ 31,163,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$144,109,567</td>
</tr>
</tbody>
</table>
ALTERNATIVE C

The most inexact portion of Alternative A and Alternative B is the cost of tunneling under the Continental Divide to provide access whereby water can pass from the collector system into Jack Creek. The problems, costs, and hazards of tunneling are never completely identified until the task is underway. To alleviate this uncertainty, the WWDC considered alternate routes where water could flow by gravity from the collector system across the Continental Divide without requiring a tunnel. The route chosen in this alternative accomplishes this purpose.

During the course of this project it has been brought to the attention of the Commission that the City of Rawlins not only requires additional water but that an existing supply is in jeopardy due to the condition of an old wooden supply line. The routing selected here will deliver the water from the collector system to the North Platte River and will allow Rawlins the option of replacing its old line by paying the cost of enlarging the delivery line in this alternative.

More specifically, this alternative would deliver water by gravity from the collector system to the upper end of Sage Creek. A regulating reservoir would be constructed just downstream of the existing Rawlins Reservoir which would be inundated by the new impoundment. A second delivery line would be constructed from the new reservoir northward along the Sage Creek Road to near the Atlantic Rim Reservoir. This section of pipe has been designed and priced to accommodate either the projected Sage Creek supply available to Rawlins or to carry only the imported water, or both. From the Rawlins Reservoir the delivery line would continue northeasterly past Sinclair and on to the North Platte River near the confluence of Sugar Creek.

Construction Costs

1) Modified Collector System $42,517,400
2) Collector to Sage Creek Pipeline 21,989,840
3) Sage Creek Reservoir 16,402,306
4) Reservoir to Atlantic Rim Pipeline 15,127,409
5) Atlantic Rim to North Platte Pipeline 6,007,570
6) EIS 500,000

SUBTOTAL $102,544,525
7) Upper Savery Reservoir $31,163,000

TOTAL $133,707,525
ALTERNATIVE D

Due to the many variations inherent in this alternative it has been separated into four subalternatives; I, II, III, and IV, based upon the amount of water made available by each proposal. Every proposal offered under Alternative D consists of the same basic elements. Assumptions as to the management of the system results in the four variations. The basic segments outlined in these alternatives are as follows:

Upper Savery Reservoir -
As proposed, this reservoir would be built on Savery Creek at the confluence of Bird Gulch and would have an average annual yield of 30,400 acre-feet. Storage would be used to supplement all permitted agriculture on Savery Creek below the dam, on the Little Snake River below the confluence of Savery Creek, and the excess, (approximately 18,600 acre-feet annually), would remain in the stream to the Town of Baggs where it would be diverted and pumped into a delivery line.

Three Forks Reservoir -
Located high on the Little Snake River near the confluence of the Roaring Fork, this reservoir is in an advantageous position to provide supplemental water for agriculture, industrial, and municipal needs along the Little Snake River. The projected yield from this reservoir is 102,800 acre-feet per year. Assumptions made as to the distribution of this water are the elements which dictate the four options to be discussed.

Pump Stations -
Three pump stations have been located to lift the water from the Little Snake River near Baggs to the Continental Divide. The pump stations will vary in cost and capacity from one option to another. The options of powering with electricity or natural gas have been explored under each alternative.

Pipeline -
The pipeline routing has been selected to follow the corridor established by the Exxon Pipeline Company for its proposed "LaSal Oil Line". The route begins at Baggs and proceeds north along the west side of Highway 789 to a point near the Overland Stage Monument. From this point the alignment crosses the highway, proceeds northeasterly across the Continental Divide, then northerly to Interstate 80 near the Riner Interchange. The pipeline will then turn eastward in an established corridor, past Rawlins to Sinclair and then to the North Platte River near Sugar Creek.

It should be noted here that since these alternatives are energy intensive, their feasibility is dependent on a maximum efficiency design. The pipeline sizes have been selected in conjunction with pump capacities and energy costs to provide the most cost effective system for the life of the project. These pipe sizes will not be universally applicable to all pumping quantities but rather are restricted to a
range of quantities. However, this does not mean that a given system can only deliver the specifically mentioned target quantity in each option. The system will be efficient with quantities higher and lower than those specified.

Though these alternatives are energy intensive and are unique by comparison to the aforementioned alternatives, they have been explored because they offer several advantages to both in-basin and out-of-basin users alike. These options do eliminate several points of controversy due to the location of the key elements of the system.

Unlike the other alternatives, the elements in this proposal will all be located outside of the Medicine Bow National Forest. This will eliminate the requirement of an environmental impact statement to address the effects on the National Forest. By virtue of utilizing two lower basin reservoirs to regulate the delivery of water, those small tributaries and headwaters of the basin will remain in a virgin state, while yearlong releases from the reservoirs will enhance streamflows and provide flood protection in Savery Creek and the Little Snake River.

This system has the capability of producing hydroelectric power from both reservoirs as well as from the pipeline on the east side of the Continental Divide. Revenues from the sale of such power could be used to offset the pumping costs associated with the operation of the system.

The management of this type of system will develop a surplus of available water which need not be committed to either in-basin or out-of-basin use until such time as an established need is identified. It is believed that when all aspects of these options are examined that the merits of the system deem it worthy of consideration.
ALTERNATIVE D-I

This alternative is intended to provide 30,000 acre-feet annually to serve as a means of comparison with Alternatives A, B, and C. The system will generate 115,900 acre-feet per year; 85,500 acre-feet from Three Forks Reservoir and 30,400 acre-feet from Upper Savery Reservoir. After supplying 18,768 acre-feet to supplement permitted agricultural rights and projected municipal growth, 30,000 acre-feet for out-of-basin transfer and 3,000 acre-feet for conveyance losses; there remains 64,132 acre-feet available for use within the drainage. If this alternative was fully developed there would still remain in excess of 20,000 acre-feet of water to be developed by Wyoming appropriators in the Little Snake River drainage at a future time.

YIELD 115,900 ACRE-FEET PER YEAR
(Upper Savery Reservoir and 85,500 acre-foot Three Forks Reservoir)

<table>
<thead>
<tr>
<th>Description</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-Basin</td>
<td>30,000</td>
</tr>
<tr>
<td>Conveyance Loss</td>
<td>3,000</td>
</tr>
<tr>
<td>In-Basin Use</td>
<td>18,768</td>
</tr>
<tr>
<td>Excess in System</td>
<td>64,132</td>
</tr>
<tr>
<td>Remaining Compact Allocation</td>
<td>20,221</td>
</tr>
</tbody>
</table>

1) Upper Savery Reservoir $31,163,000
2) Three Forks Reservoir 42,000,000
3) Hydroelectric Generation 1,524,181
4) Pipeline 68,964,720
5) Pump Stations (Electric) 4,239,840
6) Electrical Hook-up 7,345,808
7) Gaging Station (Baggs) 25,000
8) Gaging Station (North Platte) 50,000
9) EIS 250,000

Total $155,562,549
ALTERNATIVE D-II

This option offers the management of 93,146 acre-feet of water annually. The amount is composed of 30,400 acre-feet from Upper Savery Reservoir, 54,400 acre-feet (½ the capacity of Three Forks Reservoir), and a direct flow diversion from the Little Snake River at Baggs during periods of high runoff.

After providing for existing in-basin permits and allowing for conveyance losses, this option could provide 68,000 acre-feet per year for transbasin diversions. According to the Little Snake River Compact, Wyoming would be allowed to develop in excess of 43,000 acre-feet in addition to the amount suggested by this plan.

YIELD 93,146 ACRE-FEET PER YEAR
(Upper Savery Reservoir, One-Half the Yield of Three Forks Reservoir, Direct Flow Diversion)

<table>
<thead>
<tr>
<th>YIELD</th>
<th>ACRE-FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-Basin</td>
<td>68,000</td>
</tr>
<tr>
<td>Conveyance Loss</td>
<td>6,378</td>
</tr>
<tr>
<td>In-Basin Use</td>
<td>18,768</td>
</tr>
<tr>
<td>Remaining Compact Allocation</td>
<td>42,975</td>
</tr>
</tbody>
</table>

Outcomes and Costs:

1) Upper Savery Reservoir $31,163,000
2) Three Forks Reservoir (½) 28,500,000
3) Hydroelectric Generator 1,824,323
4) Pipeline (66 inch) 56,308,560
5) Pipeline (48 inch) 38,269,440
6) Pump Stations (Electric) 8,117,334
7) Electrical Hook-up 3,438,096
8) Gaging Station (Baggs) 25,000
9) Gaging Station (North Platte) 50,000
10) EIS 250,000

Total $168,055,753
This proposal can generate 133,200 acre-feet of storage per year. Upper Savery Reservoir would provide 30,400 acre-feet and Three Forks can provide 102,800 acre-feet. By management of this system toward maximum yield, it is possible to provide for existing permitted agricultural use within the Little Snake River drainage, assess conveyance losses, and deliver 102,989 acre-feet for demands outside the basin.

Although there would remain undeveloped water in the Little Snake River drainage available under the compact, this alternative would more nearly approach total development of Wyoming's allocation than would the other alternatives.

<table>
<thead>
<tr>
<th>Out-of-Basin</th>
<th>102,989 acre-feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conveyance Loss</td>
<td>11,443 acre-feet</td>
</tr>
<tr>
<td>In-Basin Use</td>
<td>18,768 acre-feet</td>
</tr>
<tr>
<td>Remaining Compact Allocation</td>
<td>2,921 acre-feet</td>
</tr>
</tbody>
</table>

1) Upper Savery Reservoir $31,163,000
2) Three Forks Reservoir $53,000,000
3) Hydroelectric Generation $3,648,646
4) Pipeline (66 inch) $56,308,560
5) Pipeline (48 inch) $38,269,440
6) Pump Stations (Electric) $9,445,818
7) Electrical Hook-up $2,346,000
8) Gaging Station (Baggs) $25,000
9) Gaging Station (North Platte) $50,000
10) EIS $250,000

Total $194,506,464
ALTERNATIVE D-IV

This alternative, as proposed, would completely allocate Wyoming's allotment under the Little Snake River Compact. A total of 156,616 acre-feet would be developed by securing 30,400 acre-feet from Upper Savery Reservoir. Three Forks would be built 10 feet higher than that proposed in Alternatives D-II and D-III. This excess capacity and the assumption that the Stage II collection system would not be built would raise the yield of Three Forks Reservoir to 126,216 acre-feet.

The proposed operation of the system would provide 18,768 acre-feet for existing agricultural permits and extended municipal needs. There would be 27,848 acre-feet available for unspecified in-basin uses, 10,000 acre-feet for conveyance losses, and 100,000 acre-feet for transbasin delivery.

YIELD 156,616 ACRE-FEET PER YEAR
(Upper Savery Reservoir and Enlarged Three Forks Reservoir Without Stage II Diversion)

Out-of-Basin	100,000 acre-feet
Conveyance Loss	10,000 acre-feet
In-Basin Use	18,768 acre-feet
Excess for In-Basin Use	27,848 acre-feet
Remaining Compact Allocation	0 acre-feet

1) Upper Savery Reservoir $31,163,000
2) Enlarged Three Forks Reservoir 56,800,000
3) Hydroelectric Generation 3,648,646
4) Pipeline (66 inch) 56,308,560
5) Pipeline (48 inch) 38,269,440
6) Pump Stations (Electric) 9,445,818
7) Electric Hookup 2,346,000
8) Gaging Station (Baggs) 25,000
9) Gaging Station (North Platte) 50,000
10) EIS 250,000

Total $198,306,464
ALTERNATIVE COMPARISON CHART

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D-I</th>
<th>D-II</th>
<th>D-III</th>
<th>D-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Yield (Acre-Feet)</td>
<td>52,450</td>
<td>52,450</td>
<td>52,450</td>
<td>115,900</td>
<td>93,146</td>
<td>133,200</td>
<td>156,616</td>
</tr>
<tr>
<td>Out-Of-Basin Transfer (Acre-Feet)</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>68,000</td>
<td>102,989</td>
<td>100,000</td>
</tr>
<tr>
<td>Available In-Basin (Acre-Feet)</td>
<td>22,450</td>
<td>22,450</td>
<td>22,450</td>
<td>82,900</td>
<td>18,768</td>
<td>18,768</td>
<td>46,616</td>
</tr>
<tr>
<td>Cost to In-Basin Users Per 1,000 Gallons/Acre-Foot</td>
<td>$.49</td>
<td>$.49</td>
<td>$.49</td>
<td>$.18</td>
<td>$.18</td>
<td>$.18</td>
<td>$.16</td>
</tr>
<tr>
<td>Cost to Rawlins</td>
<td>$1.60</td>
<td>$1.72</td>
<td>$1.21</td>
<td>Electric $1.19</td>
<td>Electric $1.09</td>
<td>Electric $0.93</td>
<td>Electric $0.93</td>
</tr>
<tr>
<td>Cost to Out-Of-Basin Users Per 1,000 Gallons</td>
<td>$1.33</td>
<td>$1.44</td>
<td>$1.24</td>
<td>Electric $1.59</td>
<td>Electric $1.45</td>
<td>Electric $1.15</td>
<td>Electric $1.20</td>
</tr>
</tbody>
</table>
One element in particular is common to all of the alternatives considered and that element is the Upper Savery Reservoir. It was felt that the integrity of the proposed site would have to be proven prior to selecting a preferred alternative for if the site would prove to be unsafe then that site would have to be abandoned. Subsequently, another site would have to be selected to provide water for the needs of the Little Snake River drainage.

The selection of a substitute reservoir site could be a decision of sufficient magnitude to influence the selection of the Stage III alternative. For example, if the Upper Savery site were unsafe and it was determined that the Three Forks Reservoir is the best remaining site for the in basin needs then it would be essential to consider Alternative D very seriously as the Three Forks Reservoir cost comprises 1/4 the total cost of this alternative.

Although a reconnaissance level study was made of the Upper Savery site by Banner Associates in their 1980 report, no drilling or indepth inspections were made. Due to evidence of massive landslides immediately downstream of the proposed dam site and the apprehension expressed by the Bureau of Reclamation when they contemplated a dam on Upper Savery Creek, it was decided not to assume the site to be safe and acceptable until such time as it could be verified by an experienced professional consultant.

Pursuant to this end, the Commission contracted the services of Rollins Brown and Gunnell, a geotechnical consultant from Provo, Utah in October of 1981. The contract was for $126,345.00. It was specified that the consultant provide the Commission with an interim report of their findings prior to the legislative session in order that the Commission could report the results and give an indication of their direction from this point on.

An interim report was received on December 21, 1981, summarizing the tasks performed, information gathered, and conclusions based upon the information. At the time this report is written there had been four test borings drilled to depths of 135 feet along the axis of the dam, and 63 test pits had been excavated in the vicinity of the dam. Both disturbed and undisturbed samples were obtained and a variety of tests have been performed. The results of the investigation indicate that there is a solid formation of impervious shale overlain by some 50 to 60 feet of permeable granular materials. This should pose no problem in placing an impervious core for the proposed dam. No sign of significant potential land slides are mentioned in the report. Tests also indicate that there are adequate quantities of acceptable materials in the vicinity of the proposed dam to be used in the construction of the dam. Generally speaking, the Upper Savery site is acceptable.
Legislature appropriates $400,000 to study Stage III and in-basin needs to WWDC.

WWDC reviews consultants and selects Banner, Associates, Inc. to conduct a study of Stage III and in-basin needs.

Banner study completed and report presented to the WWDC.

WWDC reviews Banner report.

WWDC presents an interim report to the legislature.

Legislature appropriates $5,000,000 to WWDC for design of Stage III.

WWDC conducts public hearings on the Banner report.

WWDC develops alternatives in response to public input.

WWDC reviews consultants and selects Rollins, Brown and Gunnell to investigate the Upper Savery Reservoir site.

WWDC conducts public hearings on the proposed Stage III alternatives.

WWDC receives an interim report on Upper Savery Reservoir.

WWDC presents a Status Report to the legislature.
CONCLUSION

The last obstacle involving major decisions is a philosophical one. There is a possibility of developing enough water to meet both in basin and out of basin needs for the near future, and there is the option to develop Wyoming's entire allotment in the Little Snake River drainage. The question is whether to limit the size of development to that of identified short term needs and committed industrial demands, or to develop the maximum amount available at the time irregardless of cost. This is a difficult question and must be resolved before a specific Stage III alternative is selected.

Once an alternative is selected work can proceed in several phases, many of them occurring simultaneously. The work can progress as follows:

- Coordinate environmental assessments or EIS with the U. S. Forest and/or the Bureau of Land Management.
- Pursue the acquisition of right of way.
- Amend existing water right filings and submit additional applications where appropriate.
- Complete surveying and mapping of reservoir sites, pipeline routes and diversion points.
- Conduct an indepth investigation of the short and long range needs of potential water users including municipal, industrial, and agricultural.
- Conduct a hydrologic analysis of the sections of the North Platte River affected by this program to identify conveyance losses.
- Prepare a final design and plans and specifications for all elements of selected alternative.
- Prepare a financing plan for the entire project including costs to agriculture, municipalities, and industry.
- Prepare and operation plan for the entire system.

As always, legal and protests and federal restraints can be anticipated as the process begins to unfold. The actual delays resulting from such action are difficult to predict, however, it is anticipated that the before mentioned items could be completed by the end of the 1984 calendar year.