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ABSTRACT 

This study deals with the regionalization of extreme precipitation in Wyoming. The basic 

methodological framework employed is an index-flood type approach in conjunction with the L 

moments. Based on the elevation of rain gauges and sample Gmoments of the annual ma~m 

precipitation for different durations, statistical chster analysis was applied to obtain an initial region 

delineation over the entire State of Wyoming. Adjustment to regions was then made according to 

the relationship between the mean annual precipitation and the Gmoments of annual maximum 

precipitation to obtain a region delineation with better defined boundaries. This report describes the 

procedures and presents some results of region delineation. 

Another issue addressed in this study is the selection of the underlying regional distribution 

for extreme storms in a regional analysis. Here the choice of a probability model for extreme data 

is discussed. Several selection techniques were proposed and their performance examined. 
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CHAPTER 1 

INTRODUCTION AND METHODS 

1.1 Problem Statement 

The estimate of the largest amount of precipitation that can occur, known as the 

probable maximum precipitation (PMP), is of great concern in the design and maintenance 

of major hydrologic structures such as spillways. The PMP is used by engineers to estimate 

the probable maximum flood (PMF), that might be produced from a watershed. The PMF 

is often used to determine the necessary capacity in spillway design. Major hydrologic 

structures such as dams are typically designed to withstand a PMP or PMF event or some 

percentage of such an event . Designs based on PMPPMF, however, do not provide any 

measure of design safety or risk of failure. 

It may be more usefid to assess the maximum amount of precipitation expected to 

occur over a given time. This given time is called the return period for that event. A 

probability distribution is used to model the characteristics of the largest expected event for 

a given return period. This method has the advantage that a risk-based design which 

incorporates the risk of failure and cost of a design can be considered. It may not be 

economically feasible to build all structures for the largest flood that could ever occur. A 

reasonable approach is to design a structure so that there is a tolerably small risldcost of 

failure. Furthermore, any estimate of the PMP or PMJ? is subject to error, so it is appropriate 

to consider risk-based design. This chapter will review some of the methods which are 

commonly used in this type of analysis. 
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1.2 Hydrologic Frequency Analysis 

Prediction of extreme hydrologic events presents a difficulty due to a lack of data for 

very rare events. Statistical estimates require a certain amount of data in order to obtain a 

desired accuracy. For fi-equently occumng events the data is easy to obtain and therefore 

predictions can be quite accurate. In the case of extreme events, data is by definition very 

rare, and accuracy of predictions will suffer. In addition, extreme events may be generated 

by unusual circumstances and hence follow a different distribution fiom that of common 

events. An example of this would be the precipitation fiom a large thunderstorm as compared 

to that of a slow moving storm system. 

The data used in this analysis consists of the largest precipitation depth that occurred 

in a year (called annual maximum precipitation depth) for storm durations of 2, 6, 24 hours, 

or one 'day' as recorded by an observer. Events that are much larger than the average event 

are common in this type of data. These extremes cannot be treated as outliers, because they 

are the events that are of the greatest interest and importance in this analysis. Estimation of 

distribution parameters fiom this type of data will have several problems: product moment 

and maximum likelihood estimators are greatly influenced by the presence of extreme values, 

and log-transforms of the data give too much weight to the smaller values. 

- 

1.3 L-moment Estimation 

An alternative approach to estimation by product moments is to use L-moments. L- 

moments are defined as linear combinations of order statistics (Hosking, 1986). L-moments 

are analogous to conventional product moments and are estimated by linear combinations of 
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the observed order statistics. They can (in theory) characterize a wider range of distributions 

and are more robust to the presence of outliers in the data. L-moment estimators tend to be 

less biased, approximate their asymptotic normal distribution more closely in finite samples, 

and often give more accurate estimates of the parameters of a fitted distribution. The 

parameter estimates from L-moments are sometimes more accurate in small samples than are 

the maximum likelihood estimates (Hosking, 1986). In this analysis L-moments and the L- 

moment ratios (L-cv, L-skew, and L-kurtosis) are used. L-moment ratios are analogous in 

interpretation to their product moment ratio equivalents and have favorable small sample 

qualities. 

Hosking (1986, 1989) presents a unified approach to the use of probability weighted 

moments and L-moments in statistical estimation. He also demonstrates that L-moments are 

competitive with the conventional product moments and maximum likelihood techniques. A 

brief description is given herein to provide the basic definitions. Readers are referred to 

Hosking (1986) for more details. 

L-moments are a subset of probability weighted moments which are defined to include 

order statistics as 

where Iv$~,~ is thep* order probability weighted moment of the order statistic with r values 

less than p and s values greater than p .  Here F(X) represents the cumulative distribution 

fbnction. Let 
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where pr is also a probability weighted moment having an unbiased estimator 

r = O , l ,  ... ,n-1 1 s, = b,  = -c , - 1 X t f i  

( r ) 

where 5, is the j* order statistic. In the case of k less than r, let k choose r be equal to zero. 

The r~ L-moment is defined as 

where E[&J is the expectation of the (1-4)' order statistic out of a sample of r observations. 

In terms of pr and b, the first four L-moments and their corresponding estimators are, 

repectively , 

and 
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i, = b, 

A2 = b,-b,  

A, = 6b2-6b,+bo 

K, = 20b3-30b2+12bl-bo 

The iterative form of these estimators are more intuitive. In this form the first four 

unbiased L-moments estimators can be expressed as 

n 

i d  
n 1-1 

1 - 
i, = e, = x = - C x r ,  

. *  
n 1-1 1-1 

. .  
n i-1 f l  k-1 

where p, is an unbiased estimator of Ar. 

The L-moments ratios for L-coefficient of variation (TJ, L-skew coefficient (q), and 

L-kurtosis coefficient (TJ are estimated respectively by 
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e4 3,  = t ,  = - 
p2 

The asymptotic covariance of the L-moment estimators for the generalized extreme value 

distribution are given by Hosking ( 1  986). 

1.4 Hydrologic Regionalization 

The limited amount of extreme precipitation data in Wyoming presents a difficulty for 

statistical estimation. A small number of gauge sites make it necessary to combine machine 

gauged data and manual observations from weather bureau volunteers. Furthermore, for a 

given rain-gauge location the available record length is typically short. In Wyoming the 

average at-site precipitation data available is 30 years. It may be required to predict 

maximum precipitation depths for return periods of 1000 years or more. This corresponds 

to the extreme right-hand tail of a distribution. Predictions based on short record lengths will 

clearly be highly unreliable, and for these short record lengths maximum likelihood estimates 

do not always perform well. 
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A solution to the problem of short record lengths is to use a regionahzation procedure. 

The first step is to identi& an homogeneous region for a subset of the data, and then 

determine a statistical distribution which will adequately model the combined data for the 

region. For compatibility, data from each station is scaled by dividing by the average at-site 

annual maximum. This is a commonly utilized technique in hydrologic analysis and is know 

as the index event procedure (Stedinger et al., 1993). Using index event methodology a 

frequency analysis on the combined data is performed, resulting in a much longer effective 

record length. Regional analysis, therefore, will yield better parameter estimates and the 

results are more robust to the presence (or absence) of extreme values than the at-site 

analysis, even when correlations are present in the data (Hosking and Wallis, 1986). 

Some assumptions are necessary for region delineation. The region should be 

climatically homogenous; All storms in the region being analyzed must have originated from 

the same type of storm (i.e., storm front, thunderstorm, hurricane). For a more extensive 

discussion of regional analysis, readers are referred to Schaefer ( 1982). 

1.5 Scope and Objectives of Research 

There are two primwy objectives of this study. The first is to define suitable regions 

for analyzing extreme precipitation in Wyoming. Accompanying this is a the development of 

regression models to aid in the prediction of precipitation characteristics at a location where 

no data is available. The second primary objective is the choice of a distribution to describe 

the random nature of extreme precipitations for a region. This choice is critical in frequency 

analysis of hydrological extremes. 
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The generalized extreme value (GEV) distribution (a reparameterized reverse Weibull 

distribution) has been suggested for use in the State of Washington (Schaefer, 1990) and also 

for general use (Vogel et al., 1993). However, due to the large amount of local variation in 

precipitation amounts within the Rocky Mountains region, it is not certain that results from 

other areas can be correctly applied to the WyomingRocky Mountain region. Figure 1.1 

illustrates how 6 hour maximum precipitation changes in the vicinity of the rocky mountain 

zone. This study considers several different distributions for modeling the regional 

precipitation data, and will address the choice of an appropriate distribution (See Chapter 3). 

In reality the annual extreme precipitation amounts could be generated by some 

mixture of distributions representing different types of events. However, the problem of 

selecting a mixture of distributions for a region is much more difficult than the case of a single 

distribution. 

1.6 Organization of the Thesis 
- 

This thesis is organized into four chapters. The first is a discussion of the problem and 

an introduction to the tools that will be applied in the second and third chapters. Chapter two 

deals with regionalization of the Wyoming precipitation data and with proposed regional 

models. Chapter three addresses the issue of how to choose a regional distribution to best 

represent extreme precipitation data. Several methods are proposed and compared by 

numerical simulation. Chapter four contains an overall summary and suggestions for fbrther 

research. 
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CHAPTER 2 

REGIONAL ANALYSIS OF EXTREME PRECIPITATION EVENTS IN WYOMING 

Hydrologic and regional analysis techniques and L-moment estimation as outlined in 

Sections 1.2 and 1.3 were used in combination with cluster analysis to define homogenous 

regions in Wyoming. Regional equations for the average annual maximum precipitation, T, 

(L-cv) and T, (L-skewness) were developed using regression analysis. Also presented here 

is a description of the seasonality and elevation effects in the data. 

2.1 Precipitation Data 

In this study, statistical characteristics of annual maximum precipitation depths for 2, 

6, and 24-hour records are examined using data from 45 recording-gauge stations. Also 

included are daily observational data from 150 non-recording stations. There are only 180 

separate data sites as 15 of these stations have both types of data available. Most of the 

recording-gage data record were hmished by the National Climatic Data Center (NCDC) for 

the period from about 1948 through 1992. Some of the data were flawed and could not be 

used. To this was added National Weather Bureau data for periods between 1940-1963. 

Latitude, longitude, and elevation data were obtained fiom the Water Resources Data System 

(WRDS) database at the Wyoming Water Research Center (WWRC). There were several 

cases where precipitation gauges had been moved from their original location to nearby 

locations. In these cases the latitude, longitude, and elevation used is the location for which 

the gauge was located for the longest period of time. 

10 



2.1.1 Data Ouality Checking 

The 180 gauge sites used in this study have been screened by a two step process, 

checking for validity of data values and removal of data containing too many missing values. 

The observational (daily) data were examined for errors by the WRDS staff Maxima at each 

site were cross-checked with stream-flow data. Sites with a high correspondence between 

precipitation maxima and stream-flow peaks were deemed to be of good quality. Gauges 

found to have unreliable data were removed from consideration. The hourly data contained 

a number of unexpected errors. Many of the total annual precipitation values were zero or 

much less than the totals available from other sources (apparently due to a database error). 

Data years which were obviously flawed were eliminated or replaced by National Weather 

Bureau data where available. Tabulated annual maxima fi-om the NCDC were compared with 

the precipitation per hour records for several sites. It was found that missing data often 

resulted in the tabulated maximum being less than the true recorded maximum. Missing 

values were not indicated in the NCDC data unless 30 or more days were missing out of the 

entire year. A computer routine was developed to scan for and remove all data years with 

more than 30 missing days indicated. 

2.1.2 Missing Data 

The non-recording gauge data, of which much more is available, was obtained from 

the WRDS database. A computer routine was written to extract the annual daily maxima 

fiom the available non-recording stations. Data years with more than 24 days missing, or 

more than 2 missing days in any single month, were not used in the analysis. Allowing two 

11 



missing days per month increases the usable data years by 658 station-years, an increase of 

up to 14% in usable data years with minimal effect on the average annual maximum (see 

Table 2.1). Gauges with less than 12 years of data were discarded fiom the analysis. The 

computer routine also tabulates the annual maxima by elevation, month, and region. The 

WWRC also provided data on latitude, longitude, elevation, and mean annual precipitation 

(MAP) for the 180 gauged sites. 

The method of this analysis allows that missing data in these datasets does not always 

imply flawed data. A data year is only incorrect if the largest storm occurred in an interval 

of missing data. All things being equal, the hourly (recording-gauge) data should be expected 

to be of better quality than the observational data. Hourly data is originally recorded as 

precipitation per hour and gives a good measure of the intensity and duration of a storm. 

However, an unknown number of missing days (up to 30) in a year means that the accuracy 

of this data is not exactly known. The daily (observational) data is subject to imprecise 

measurements and irregular intervals due to the human observer. The daily data includes a 

record of missing days and accumulated values, which allowed a more carefbl screening of 

the dataset. See Table 2.2 for number and of sites, type of gauge, and gauge density within 

the state of Wyoming. 

- 
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Table 2 . 1  - Effect of Missing Data on 
Mean Annual Daily Maximum Precipitation 

# of missing Mean Annual Total # of 
days allowed Daily Maxima' station-years 

0 1 .3925  4418 

2 
~~ 

1 . 3 9 5 7  5132 
~ ~~ 

7 1 .3954  5317 

* For 145 stations. 

Table 2 . 2  - Number of Gauges and Gauge Density by Duration 

Number of Station Density 
Duration Stat ions (sq. mi./sta.) 

2 hours 40  2425 
6 / 2 4  hours 45 2155 
Daily 1 5 0  646 
Daily & 24  hours 1 8 0  539 
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2.1.3 Considerations for Data Validity 

Examination of the location of the precipitation gauges in Wyoming shows that there 

are large regions for which there is little or no data available. The available data come 

primarily fi-om towns and agricultural areas. Very little data is available for high mountain 

areas. Therefore, conclusions fi-om this analysis may not apply for all areas of the state. Since 

most mountain precipitation is in the form of snow, it would be more usefbl to concentrate 

on the snowmelt and stream-flow characteristics in these areas. Data for the Great Divide 

Basin and nearby areas is also scarce, but there is good reason to believe that this area will 

be fairly homogenous. 

2.2 Delineation of Homogeneous Regions by Cluster Analysis 

In this regionalization study, the first step is to divide the study area into regions that 

are relatively homogeneous with respect to certain precipitation characteristics. Delineation 

of homogeneous regions allows for the development of better prediction equations than 

would be possible had no regionalization been done. Application of cluster analysis 

techniques to the data will result in homogenous groups, which are the basis for determining 

climatically homogenous geographical regions. The precipitation region-map for the State 

of Wyoming will partially describe precipitation characteristics and help in establishing 

precipitation-fi-equency relation. Statistical characteristics of annual maximum precipitation 

used in the cluster analysis were the mean (mean annual maximum or XBAR) ,  L-cv, L-skew. 

Elevation data was also used in the cluster analysis to represent geographical factors. 

- 
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2.2.1 Methodolow and Combininp Information 

In the cluster analyses, it was unknown how many groups were present in the data. 

Graphical comparison of the data shows at least two apparent groups (see Figure 2.1). 

Several trials with different numbers of clusters were used in the cluster analysis to determine 

how many regions are representative. The number of clusters was varied from 2 to 9, and the 

results compared for constancy between separate analyses and geographic correspondence. 

It was determined that four clusters are sufficient to represent climatically relatively 

homogeneous regions in Wyoming. The four regions correspond fairly well to definable 

geographic areas of Wyoming. 

Cluster analysis was performed for the daily data because it is the largest single dataset 

(150 stations). The cluster analysis with four regions were also made for 2, 6, and 24 hour 

data for the purpose of checking the consistency or inconsistency of region classification 

among different durations. The results indicated that region classifications by the cluster 

analysis are generally consistent over the datasets. By consistency, it is meant that the 

assignment of a station to a region by the cluster analysis does not change with the duration 

of the data considered. Such consistency is expected because storm characteristics of 

different durations should be correlated as indicated in Figure 2.2, especially for the lower 

order moments. For this reason, and due to the fact that the data for 2, 6, and 24 hour 

durations are very sparse (see Table 2.2), it is felt that it would be advantageous to combine 

data with different durations together in region delineation. Combining storm characteristics 

of different durations in the cluster analysis has three advantages: (1) it reduces some of the 

inconsistency in region assignment, (2) it expands the size of the usable database leading to 
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(a) Mean: 

/ 

INDIVIDUAL 95% CONFIDENCE INTERVALS 
FOR MEAN ANNUAL MAXIMUM BASED ON 
POOLED STDEV 

DURATION N MEAN STDEV - - - - - - - - + - - - - - - - - - + - - - - - - - - - + - - - - - - - -  

2 -hour 40 0.6469 0.1975 ( - - * - - )  
6 -hour 45 0.8440 0.2227 ( - - * - - )  
24 -hour 45 1.2217 0.2886 ( - - * - -  1 
Daily 150 1.3969 0.2764 ( - * - I  

1.25 1.00 0.75 

(b) LCV: 

INDIVIDUAL 95% CONFIDENCE INTERVALS 
FOR MEAN LCV BASED ON POOLED STDEV 

DURATION N MEAN STDEV - - - - - - - - - + - - - - - - - - - + - - - - - - - - -  + - - - - - - - 
) 2 -hour 40 0.25529 0.04266 ( - - - - -  * - - - - -  

1 6 -hour 45 0.22318 0.03909 ( - - - - -  * - - - -  
) 45 0.22015 0.04315 ( - - - - -  * - - - - -  24 -hour 

Daily 150 0.20877 0.03702 ( - - * - - -  1 
- - - _ _ - - - -  + - - - - - - - - - + - - - - - - - - - + - - - - - - -  

POOLED STDEV = 0.03921 0.220 0.240 0.260 

(c) LSKEW 

INDIVIDUAL 95% CONFIDENCE INTERVALS 
FOR MEAN LSKEW BASED ON POOLED 
STDEV 

STDEV - - - - - - - - - + - - - - - - - - - + - - - - - - - - - + - - - - - - -  DURATION N MEAN 
1 2 -hour 40 0.2563 0.1434 ( - - - - - - - - - - * - - - - - - - - - - -  

) 6 -hour 45 0.2300 0.1075 ( - - - - - - - - - , * , - - - - - - - - -  

1 24-hour 45 0.2177 0.100g (----,------*----,---,, 

:) Daily 150 0.2125 0.1101 ( - - - - -  * - - _ _  
- - - - - - - - - + - - - - - - - - - + - - - - - - - - - + - - - - - - -  

POOLED STDEV = 0.1137 0.210 0.240 0.270 

Figure 2.2 - Summary of Statistical Characteristics of 
Annual Maximum Precipitation by Duration 
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a more reliable region delineation, and (3) from a practical viewpoint one region-map for all 

durations is preferable to four region-maps, one for each duration. 

To combine data, stations with data available for different durations (2, 6, 24 hour, 

and daily) are treated as four separate records. Since the L-moment estimates from different 

durations are not directly comparable, some standardization was necessary. The L-moments 

ratio estimates of annual maximum storms were first standardized (separately by duration) by 

subtracting the respective means, then dividing by the standard deviations, and then the data 

were combined. Because elevation is a constant for each station, the standardization 

procedure was done for the overall data set. Standardization of involved variables in the 

cluster analysis is necessary to remove any scale effect among the variables. Initial region 

designations were found using a partitioning algorithm, FASTCLUS, in the SAS (Statistical 

Analysis System) statistical package (ref???) based on estimates of mean annual maximum, 

7, T ~ ,  and elevation. Record lengths for each station (and duration) were used as weighting 

factors in the cluster analysis. 

2.2.2 Results of Region Classification 

Table 2.3 gives the regional values of the cluster analysis factors, with the exception 

of regional elevation, which is found in Table 2.4. The means of these factors represent the 

'center' of each region. Standard deviations, range of data, and number of sites within each 

region are also given. 

After the cluster analysis, there remained several cases of stations which were assigned 

to a region that does not 'fit' well with its neighboring stations. Although data combination 
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Table 2.3: Summary of Factors by Region 

1 

2 

3 

4 

L-SKEW 49 

89 

50 

92 

0.244 

0.196 

L-KURT 

0.256 0.083 0.045 0.402 

0.201 0.092 -0.08 0.392 

0.163 

0.176 

10 I 10.24 I 2.97 I 4.92 I 15.14 

0.177 0.104 -0.1 0.379 

0.176 0.084 -0.02 0.361 

13.93 I 13.38 I 1.858 I 11.42 I 22.78 

1 

2 

3 

4 

10.88 I 10.66 I 3.252 I 5.46 I 23.15 

49 

89 

50 

92 

12.56 I 11.33 I 4.822 I 5.96 I 31.67 

0.144 

0.23 

0.141 

1.043 I 1.116 I 0.332 I 0.391 I 1.512 

0.149 0.075 -0.02 0.3 16 

0.218 0.095 0.056 0.447 

0.139 0.074 -0.12 0.28 1 

1.468 I 1.533 I 0.33 I 0.727 I 2.169 

1.069 I 1.098 I 0.404 I 0.42 I 1.764 

1.011 I 1.044 I 0.294 I 0.399 I 1.641 

0.213 I 0.217 I 0.032 I 0.127 I 0.289 

0.216 I 0.215 I 0.031 I 0.131 I 0.289 
I 

0.275 0.271 0.033 0.2 15 0.355 

0.195 0.196 0.03 0.098 0.276 

0.354 I 0.342 I 0.077 I 0.215 I 0.533 
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Table 2 . 4  - Summary Statistics of Elevation By Region 

Region Number of Mean Standard Range 
Number Stations Elevation Deviation Min Max 

1 49 4592 .9  4 9 0 . 0  3 8 4 0 . 0  5700.  
2 89  4612 .7  571 .6  3 5 3 0 . 0  6120.  
3 50 6080 .0  952.0  3 8 3 0 . 0  7390.  
4 92 6 7 3 1 . 1  710 .2  5 2 8 0 . 0  9060 .  
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removes some of the inconsistency in region designation in the cluster analysis, the 

inconsistency that a station having data with more than one duration can be assigned to more 

than one region cannot be totally eliminated. In practical application, the presence of 

'misfitted' stations and inconsistency in region classification due to durations could create 

difliculties. Therefore, it is necessary to adjust and reassign some stations so that the regions 

can have better geographic definition. The issue of regional reclassification is described in the 

next section (Section 2.3). 

2.3 Region Adjustment 

As mentioned previously, two problems in the initial region classification from the 

cluster analysis are: (1) some stations do not 'fit' well with their neighboring stations in an 

otherwise homogeneous area, and (2) the same station may be assigned to a different region 

for different durations. Comparison of record length to identi@ less reliable values can often 

provide an easy solution to both problems, as the disagreeing value is often associated with 

a very short record length. To solve other conflicts, the following procedure was used to 

resolve the final region assignment. 

For a station in question, it was determined whether the change of region assignment 

was acceptable. Because the determination of region assignment for a station depends on the 

relative magnitude of its statistical properties, the effect of moving a station to a different 

region must be examined with respect to the general relation of attributes within the region. 

This exercise, to a large extent, is subjective. To facilitate the task, a computer routine has 

been developed to show graphically the relation between the first three L-moment estimators 
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and MAP. In those graphs the data points of different durations and region assignments are 

indicated by different colors and symbols. The station under consideration for changing 

region assignment is selected and highlighted on the monitor. This visual display allows one 

to judge how well the statistical properties of the station under question fit with those of the 

remaining stations in the region to which it is to be reassigned. 

Note that the objective of hydrologic regionalization is to delineate climatically 

homogenous regions within which a more accurate precipitation frequency relationship can 

be defined. The purpose of region adjustment is to obtaining a better defined geographical 

region. For some stations this may be in conflict with the regionalization objective indicated 

above because not all attributes will simultaneously fit well with those in the 'new' region. In 

view of uncertainty in sample data, more weight is given to lower order L-moments than 

higher-order moments. In addition, from the viewpoint of engineering design under 

uncertainty, conservatism was used as a justification if a station is to be reassigned to a 

different region. Conservatism ensures that the reassignment of a station to a different region 

will not lead to an under-estimation of precipitation potential. The proposed region 

delineation for Wyoming is shown in Figure 2.3. 

See Appendix D for a listing of stations and the adjusted region numbers, as well as 

the original region assignments from cluster analysis. 
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2.4 Seasonal and Elevation Effects on Extreme Storm Occurrences 

The seasonal, elevation, and regional effects on the occurrences of annual maximum 

precipitation are usefiil descriptors of the results thus far. Figures 2.4 and 2.5, respectively, 

illustrate the fiequency and relative percentage of annual maximum storm occurrences by 

region and month. From Figure 2.5 it is clear that the vast majority of annual maximum storm 

events occur between April and October. For a given region, May and June are the two 

months during which the annual maximum precipitation occurs most frequently. Figure 2.5 

shows the relative percentage of storm occurrences by region and month. During the months 

of May and June, a great majority of the annual maximum storm events occur in region 2, 

whereas during the winter months region 4 has most of the annual maximum storms. 

Figures 2.6 and 2.7 show the seasonal variation of the occurrence of annual maximum 

storm events as affected by elevation. A large proportion of the annual maximum storm 

events comes from the 3500'-5000' elevation range, which is not surprising. The highest 

fiequency of storm occurrence for this range occurs in June. The 5000'-6000' elevation range 

is similar in percentages to the lower range, but has the highest peak in May. It should b2 

noted (see Table 2.4) that there are some systematic differences in elevation among regions. 

2.5 Development of Regional Equations 

Regression models for each region were explored for relationships which would be 

useful in prediction of storm characteristics at ungauged sites. Equations were developed to 

predict the average annual maximum precipitation (referred to as XBAR) ,  L-cv, L-skew, and 

L-kurtosis based on independent variables of storm duration (DJ and MAP. It was found 
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that inclusion of storm duration as a dummy variable (for 2, 6, 24 hours or Daily) preserved 

the overall relationships and generally improved the predictions for the hourly durations. 

Measured values of MAP are obviously not available for ungauged sites, but good estimates 

of MAP can be obtained from the Wyoming Climate Atlas (Martner 1986) as shown in Figure 

2.8. Elevation was also considered as a predictor variable, but is not used because the effects 

of elevation appear to be highly dependent on local geography and are too complex for a 

simple model. Furthermore, elevation is important in the designation of regions by cluster 

analysis, and the effects of elevation are partially accounted for by the region designation. 

It is assumed that an ungauged site can be classified into a region for prediction 

purposes. In practice there may be borderline cases which do not clearly belong to one 

region. Experience with the region adjustment procedure suggests that for borderline cases, 

the prediction error for a misclassified site will not be much greater than the error for a 

correct classification. Region was considered as a dummy variable in an overall model, but 

due to interaction effects it was decided that separate models for each region would be more 

usehl. No interactions between MAP and storm duration should exist because storm 

duration is merely an indicator of the length (time) of measurement and has no relation to 

MAP. In any case, there is no meaningfbl interpretation to such an interaction, so it is not 

considered. 

2.5.1 Methodolow 

This section deals with regression models and transforms used, as well as a discussion 

of how outliers and high-leverage observations were dealt with. 
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hean annual precipitation rmp for Uyoming. 

Figure 2.8 
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Regression analysis was conducted using the Minitab (?REF?) statistical package. 

Two transforms were used in the analysis. The log-transform was used on some the 

dependent variables and on the independent variable MAP. The standardizing transform z(x) 

was also used on Log(MAP) 

x -  h g x  

01% x 

z(x) = 

where plOg is the mean of log(MAP) and a,, is the standard deviation of log(MAP). 

Note that this standardization transform is not necessary for any of the final models 

presented here; it was utilized to reduce multicolinearity when testing for quadratic and 

interaction effects. The log transform is also used on the dependent variables X B A R  and t,. 

However, it is not appropriate to use this transform on variables t, and t, because they may 

take on negative values. The duration of the data is represented by dummy variable Di (i  = 

1, 2, 3), with 

D ,  = { 1, fff 2 4 - h o r ~  &a 

0, else 
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The model form for XBAR and t2 are then 

where X = z(1og MAP), Y = log(XBAR) for B A R ;  Y = log(t,) for L-cv; Y = t, for L- 

skewness; Y = t, for L-kurtosis. The Po term is the y-intercept for the daily data; PI is the 

linear coefficient; and Pa, i = 1,2,3, is the change in intercept corresponding to the 2, 6, and 

24 hour data, respectively. 

Appendix A contains Tables describing the developed regression models and the 

meadstandard deviation of the MAP by region. Using an estimate of M A P  fiom Figure 2.8 

and a region designation fiom Figure 2.3, the regression equation may be used to obtain 

estimated values of XBAR, L-cv, L-skewness, and L-kurtosis of a specified duration for any 

location within Wyoming. 

2.5.2 Regression Modelling Results 

Several overall results are worth noting. The strength of the relationships between 

MAP and the L-moment ratios decreases as the order of the moment increases. The mean 

annual maximum (XBAR), not surprisingly, shows a strong relation to the MAP. L-cv 

decreases mildly as MAP increases. Relationships of L-skew-and L-kurtosis to MAP are 

weak and vary by region. Some non-linear relationships with respect to MAP are suspected 

to exist. It is expected that as MAP increases the mean values of L-cv and L-skewness will 

decrease (similar t oy  = I / x )  to some constant and that the variance of these estimates will 
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also decrease. Due to the very low-end range of MAP in Wyoming, the non-linear effects are 

negligible and cannot be reliably detected. 
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CHAPTER 3 

SELECTION OF REGIONAL PROBABILITY MODELS 

FOR EXTREME STORMS 

3.1 Problem Statement 

To make accurate predictions about the return period for a storm event of a given 

depth, it is necessary to make certain assumptions. The first assumption is that a climatically 

homogeneous region can be defined. The advantages of this technique have been discussed 

previously (See Section 1.4). Within a climatically homogenous region all extreme storm 

events will have similar characteristics that can be described by a single probability model. 

Parameters may be adjusted for local variation within the scope of the model. 

The available data record length is clearly not sufficient in itself to predict 10,000 year 

(or rarer) events. It will be necessary to make some distributional assumption if the model 

is to be used to make predictions about such extreme events. Using characteristics from the 

available data, a model which best fits these characteristics can be selected. The Generalized 

Extreme Value (GEV) distribution is of particular interest here because it has been proposed 

for use in the state of Washington (Schaefer 1980) and other locations. It is not known if the 

GEV model will be appropriate in an arid mountainous area such as Wyoming. 

- 

The probability models considered in this study are the GEV, Generalized Pareto 

(GPA), and Generalized Logistic (GLO) distributions. These are all three-parameter 

distributions with location, scale, and shape parameters t, a, and k. By first defining the 

variable y to be 
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-k -'log(l -k(x- €)/a)), k i 0, 
= c x-€ ) /a ,  k =  0, 

the GEV, GPA, and GLO cumulative density fimctions are then given, respectively, by 

Fw,(x) = 1 - e  Y (3 -2) 

respectively. Hosking (1 986) gives details of L-moments for these distributions. The sample 

L-moments were compared to the theoretical relationships corresponding to the various 

probability models. Figure 3.1 shows an L-moment ratio diagram (See Section 1.3) of daily 

annual maximum data in Wyoming and the three distributional relationships. If one of the 

probability models under consideration is correct, then the sample (t3,tq) points from the at- 

site estimates would be expected to fall about one of the curved lines representing the 

particular model. By visual inspection, no single probability model stands out as being very 

much better than the others due to the great amount of variation in the at-site estimates of 

(t3A 1 * 

Although the GEV model may indeed be the best choice in this case, a more rigorous 

and less subjective method involving L-moments and the regionalization procedure is 
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desirable. A 'good' method should select the correct model with high reliability. In practice 

only a limited amount of data is available, so an efficient selection method will also be useful. 

Refer to Figures 3.2 and 3.3, showing at-site estimates of L-skewness and L-kurtosis for 

simulated GEV data at 30 sites. Note that as L-skewness increases the GEV and GLO 

models rapidly converge, and variation and correlation for sample L-skewness and L-kurtosis 

of the at-site estimates greatly increases. It is apparent that the L-skewness of a distribution 

will have a significant effect on the accuracy of a model selection. 

3.2 Methods of Model Selection 

Ten methods for selecting regional probability models were considered. Each method 

selects a single probability model based on the sample L-moment ratios within a region. The 

model so selected will be referred to as the estimated correct model for the data. Selection 

errors are of course possible and worthy of consideration. The examination of these 

selection errors is in fact the main point of this study, and they will be more fully discussed 

in Section 3.3.  

The methods consider herein may be classified into three general types. The first type 

utilizes linear 

weights for a 

programming and quadratic programming techniques to determine optimal 

'mixture' model. The model with the greatest weight is then selected as the 

estimated correct model. Four different objective functions, namely the minimize the sum of 

absolute deviations (MSAD), minimize the largest absolute deviation (MLAD), minimize the 

largest range of error (MRNG), and minimize the sum of squared deviations (MSSD) are 

considered here. The second type of methods are based on two reliability indices suggested 
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by Leggett and W&ams (1 98 1). A probability model which is determined to be most reliable 

(smallest index value) by these methods is selected as the estimated correct model. The third 

type of method will be called 'region-based' methods because all the data are used to 

determine a single 'regional solution'. This regional solution is then used to select the 

estimated correct model. 

Two important issues arise in the region-based methods: (1) how to arrive at a 

regional solution; and (2) how to choose the estimated correct model. These problems will 

be described in Sections 3.2.4 and 3.2.5. The various methods for regional probability model 

selection are described below, with some discussion of their advantages and disadvantages. 

Since the observed values of (t3,t4) will be based on the amount of available data at 

each site, all methods presented here include a weight corresponding to the amount of data 

available. Methods presented below will have a weight factor ri representing at site record 

length. In order to simp@ the simulation procedure the same record length will be used for 

all sites (see Section 3.3), and so all weights ri are equal. 
. 

3.2.1 Linear Programming Based Methods 

Linear programming (LP) methods were used to determine the optimal weights for 

a mixture model. The mixture model L ( x )  is defined as 
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where wJ is the weight corresponding to distributionx and d is the number of distributions 

considered. For each distribution the sample value of L-skewness (t3) is used to calculate a 

predicted value of L-kurtosis (7,). Let 7, = gj(s,) represent the fhctional relation between 

7, and T, for distributionj ( gj(r,) is predicted 2, given z, and distribution 4.). Zhao and 

Tung (1994) formulate three different LP models which can be applied here. 

Method 1 - Minimization of the sum of absolute deviations @CUD). The problem 

can be cast as 

subject to 

where w = (wl, w2, ..., wd); E; 2 0 and E: 2 0 each represent negative and positive errors, 

respectively, for the ith observation and m is the number of observed (t3,t4) pairs. Note that 

at least one of these values E; and must equal zero. This method selects the best 

distributionj associated with the largest weight w,. The method can be very computationally 

demanding when the number of observations (number of stations) is large. 

Method 2 - Minimization of the largest error MUD). This LP model has the 

following objective hnction 
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subject to 

where 

distribution is chosen by the largest weight in the same manner as method 1. 

= MAX [ E~ &+I will minimize the largest absolute deviation. The best 

Method 3 - Minimization of the largest range of error (MNVG). The objective 

fhction of the LP model is 

subject to 

(3.10) 

(3.11) 
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where E, = E,& + ern=+, = MAX(€,,;), E-+ = MAX(E~,,+) will minimize the largest 

range of error (MRNG). The best distribution is choosen by the largest weight in the same 

manner as method 1. 

The optimal solutions described in this study were calculated using the Ip.m fhnction 

in the MATLAB Optimization Toolbox (Grace, 1990). 

3.2.2 Quadratic Programming Method 

The forth method is very similar to method 1 (MSAD). The 

constraint (Eq. 3.7) are again used, with the objective function 

(3.12) 

defines the minimum sum of squared deviations (MSSD). The best regional probability model 

is selected in the same manner as the LP methods described in Section 3.2.1. This method 

shares many of the characteristics of method 1 (MSAD) and gives similar results. The q.m 

fhction in the MATLAB Optimization Toolbox (Grace, 1990) was used for this method. 

3.2.3 Reliability Indices 

Leggett and Williams (1 98 1) proposed two reliability indices for the purpose of 

environmental model selection. Brief descriptions of these two indices are given below. 

Consider a graph of observed versus predicted values. A perfect model would result 

in a 45 degree line because the predictions exactly match the observations. Imperfect 
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predictions will plot points somewhere off of the 45 degree line. A prediction error may be 

measured by a hnction of the tangent of the angle of the line to the plotted point. Let x, be 

the theoretical value of L-kurtosis predicted fkom L-skewness for a particular distribution, and 

yi be values of observed L-kurtosis (note: tan(Bi) = y,/x,). Let the reliability index kg be 

defined as 

(3.13) 

and statistical reliability index k, be defined as 

(3.14) 

where m is the number of stations in the region. For both kg and k, an index value of one 

indicates a perfect model fit, and larger values are the result of errors in the model. The 

values of kg and k, are calculated for each of the distributions under consideration, and the 

model with the smallest value of kp or k, is then selected as the correct model. The fifth and 

sixth selection methods are kg and k,, respectively. 
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The k, index gives unusual results when the values of an observation and the 

corresponding prediction differ in sign. Using log(-1) = i a complex value for k, may be 

determined. The smallest k, value is then found by using the absolute value of k,, defined 

using the real and imaginary components of k, as 

(3.15) 

Unfortunately, lk,1 may now be less than one. The interpretation of k, in the presence of 

differing signs for yi and 5 is uncertain. Calculations using k, were carried through for 

completeness. 

3.2.4 Regional Estimates Based on Averaged Station Estimates 

The L-moment estimates of (t3,t4) at all sites in the region is first calculated. The 

regional estimate (T3,T4) is then determined by taking a weighted average of the at-site (t3,t4) 

values as 

. m  . m  
1 1 

T , = - E r t  , T 4 = - z r t  
m 1-1 ' 3~ m 1-1 ' 4~ 

(3.16) = 

Two distance criteria for identiQing the correct model are considered, as shown in 

Figure 3.4. The first way is to choose the model with the smallest vertical distance from 

(T3,T4) to the theoretical ( T ~ , T ~ )  curve associated with each distribution. The second uses the 

shortest distance fiom (T,,T,) to the theoretical ( y c 4 )  curve. Method 7 selects the model 
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with the smallest vertical distance as the estimated correct model, and method 8 selects the 

L =  

model with the shortest distance as the estimated model. These methods will be referred to 

as vertical distance to average (VDA)and shortest distance to average (SDA), respectively. 

r -  

Ql 

Q3 
Q2 = c x  

3.2.5 Regional Estimate by L-Moments 

The regional estimates for (T,,T,) are calculated using L-moment solutions for the 

combined data from all stations in the region. This can be a very computationally intensive 

calculation. Fortunately, a method exists which allows for efficient computation and 

extensive simulation. 

Let x be the column vector of n order statistics and C be a 4 by n matrix containing 

the appropriate coefficients in each row for the first four L-moments estimators. The L- 

moment estimators are now easily found in vector form. 

(3.17) 

The matrix C needs only to be calculated once for a region-of a give size, thus greatly 

reducing time required for repeated simulations. 

The estimated correct model can then be selected based on the two distance criteria 

described in the previous section. Method 9 selects the model with the smallest vertical 
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distance to the regional estimate (VDL). Method 10 selects the model with the shortest 

distance to the regional solution (SDL). 

3.3 

3.3.1 

Evaluation of Regional Probability Model Selection Methods 

Factors Influencing the Performance of Selection Methods 

Monte Carlo simulation was conducted in order to study how each method will work. 

Four factors are considered that have potential effect on the accuracy of selection. These 

factors are: 1) The number of sites within a region (NS); 2) The number of years of data 

available at each site (NY); 3) L-cv or T ~ ;  4) L-skewness or z,. 

Note that the factors NS and NY both deal with the amount of data available, and that 

it is the methods which cause them to be considered separately. The methods using the 

regional L-moment estimate will combine NS and N Y  into a single factor of 'total years' or 

sample size. 

3.3.2 Experiment bv Simulation 

Computer simulation techniques were used to evaluate the performance of the 10 

selection methods for regional probability models. Simulation routines were written in 

MATLAB. The Technical 

Information Processing System (TIPS) lab at the University of Wyoming provided use of a 

Silicon Graphics IRIMndigo computer for the final simulation runs. 

Development and testing was done on a 486 computer. 

The simulation procedure may be briefly described as the following steps: 

One probability distribution among GEV, GLO, and GPA is chosen as the 'true' 1)  
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model. 

Parameters for the distribution are determined from the given values of 2, and 7,. 

Random data was generated , given NS and NY, with no spatial correlation fiom the 

'true' distribution. Each selection method was then applied to the data, resulting in a 

single model choice for each method. Selection results are recorded for later analysis. 

Repeat steps 2 and 3 a large number of times in order to estimate the probability that 

each method correctly selects the 'true' model under a given set of conditions. 

Repeat steps 2 through 4 for various combinations of with NS, NY, z,, and 2,. 

Repeat steps 1 through 5 for each of the distributions under consideration. 

Results for each method are then tabulated and analyzed (see Section 3.3.3) .  

The objective of this experiment is to understand the behavior of the selection 

methods, and to determine which are usefbl enough to be worthy of hrther study. Once a 

successfbl method(s) is found a more extensive simulation study can be conducted. 

Determining the precise behavior of each selection method under a wide variety of conditions 

could be an extremely laborious process and it will not be attempted here. 

The consideration of four factors leads to a practical problem in implementing the 

intended numerical simulation. In order to study the effects of a factor at different levels in 

combination with other factors, a large number of different simulations is necessary. Also, 

10,000 repetitions of a simulation are generally suggested. If 4 levels of L-skewness and NY 

are desired, and 3 levels of L-cv and NS are desired, then there will be 144 combinations each 

to be simulated 10,000 times. Due to the computational intensive nature of the optimization 

algorithms for methods 1 and 4, 10 seconds or longer for a single simulation on a fast 486 
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computer is not unusual. All together this would require approximately 4000 hours of 

computer time. Clearly some compromise is necessary, at least so that an. initial study of 

these methods can be made. 

Three things were done in order to make this numerical simulation investigation 

feasible. First, a faster computer was used to reduce the time required by a factor of 2 to 3 ,  

which was useful but not sufficient. Considering only two levels of each factor resulted in a 

large reduction in the number of combinations, but non-linear effects caused by a factor now 

cannot be observed. Finally, statistical experimental design techniques were applied to reduce 

the total number of required simulation runs. The findings presented in this study are based 

on the result of 420 simulations. 

The two levels of each factor are as follows: 

NS is considered at region sizes of 15 and 30 data-sites to represent regions with 

small to moderate amounts of data available. This factor is useful in determining how 

many stations are needed to provide good regional estimates. Large regions were not 

considered due to extremely long computation times for methods 1 and 4. 

NY is considered for record lengths of 20 and 60 years. 20 years may be considered 

a minimum length for reliable at-site results whereas 60 years represents a fairly long 

record (In fact, double the average record length available in Wyoming.). 

7, is considered at .2 and .4, representing low-average and high end values of L-cv. 

2, is considered at . 1 and .3, representing low-average and high-average values of L- 

skewness. 

47 



3.3.3 Factorial Design for Binomial Proportions 

Consider a set of simulated of data from a given model. Define a correct selection to 

be the event that a selection method indicates the true model, and an incorrect selection to be 

the indication of any other model. Let this simulation be repeated n times and Y be the total 

number of times the correct model is selected. The variable Y will follow a binomial 

distribution with a parameter n and p, where p indicates the probability of a correct selection. 

Point estimates and inference on p is easily done. Note that for moderately large sample sizes 

the normal approximation to the binomial may be used. 

Using the four factors, a 24 ( 2 x 2 ~ 2 ~ 2 )  factorial design with a sample size of n = 420 

in each cell is used. Detailed description of experimental design methods can be found in 

many textbooks on the subject (see Montgomery, 1985). This design allows tests of 

simcance on the effects of the four factors on the probability of correct selection p .  A more 

useful aspect of this analysis is that it enables tests on interaction effects between factors to 

be conducted. This is usehl because the effect of a factor may potentially depend on anther 

factor. Utilizing this design aids in determining which selection method(s) will work best in 

a variety of situations. 

Recall that for methods 8 and 9 which use the regional L-moment solution, N Y  and 

NS are not separate factors and the Total Years of record should be used here instead. The 

24 factorial design is therefore not appropriate for these two methods. The z3 ( 2 ~ 2 x 2 )  design 

could be used here, but this is not usefbl. Such a design would conduct a statistical test to 

determine if the estimates become more accurate as the sample size increases. The effect of 

z, and z, on these methods can be more clearly and effectively shown by the use of graphs. 
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To allow comparison of methods these results are also presented in the form of the z4 design, 

even though this is not the best way to interpret this data. 

The experimental design may be viewed as 16 cells representing the combinations of 

factors. Table 3.1  illustrates the design layout used in this study. For each experiment 15 

separate tests will be conducted. There will be four main effects tests, six 2-way interaction 

tests, four 3-way interaction tests, and one 4-way interaction test. A Bonferroni adjustment 

will be used to maintain overall type I error level for each experiment. 
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Table 3-1: Z 4  Factorial Design Layout 

NS=15 
T2=. 2 

T2= . 4  

NS=3 0 
T,= .2 

T2= . 4  

NY = 20 
T3=. 1, T,= .3 

NY = 20 

NY = 60 
T3=. 1, T3=. 3 

I,=. 2 

NS=15 %' i 
1 7  

T2= . 4  I" 

1 w = 6 0  T3-.1, T3-.3 

NS=3 0 
T2= .2 

T2= . 4  
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3.3 .4  Interpretation of ExDerimental Results 

Results are presented in appendix B with Tables B. l(a,b,c) through B. lO(a,b,c), each 

table represents a separate test using the 24 factorial design. Table B. 1 1 is included as key to 

aid in reading the test results. This section will discuss how to read and interpret the results 

in general. Specific results will be given in the next section. 

The top line of each table (Tables B. 1 through B. 10) gives the method being tested 

and the probability distribution it is being tested for. The shaded column (containing two sub- 

columns) lists all the information about the method correctly selecting the true probability 

model. Located at the top of this column is a number p which is an estimate of overall 

average probability of selecting the true probability model by that method. The unshaded 

columns list the information about incorrect selection of the other distributions. Some usefid 

information about bias in the selection methods is contained here. The results for incorrect 

selections are presented in full and may be considered as a separate statistical tests. The 

results will of course be strongly negatively correlated to the results in the true distribution 

column. 

The left-hand column contains a four digit combination of 0's and 1's representing a 

test of a particular combination of factors. The digits represent NS, NY, T,, and T, in that 

order. A "1" indicates that the factor is present at different levels in the test, and a "0" means 

that factor is averaged over the levels in the test. A line with more than a single '1' is an 

interaction tests between those factors. A line with a single one is a main effects test. 

The 'A =I sub-column of the true distribution column is an average percentage change 

between levels in the probability of correct selection as the factor increases. This is most 
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easily interpreted in the case of a main effect as the average percentage increase in p between 

levels of that factor. It is important to note that it may not be possible to directly interpret 

main effects in the presence of significant interactions involving that factor. However, note 

that for a large main effect a very small interaction effect may not be practically meaningful. 

- The "Z =I' sub-column gives the value of the test statistic 

16 

1-1 
c hip, 

Z =  (3.18) 

which has a standard normal distribution since the normal approximation to the binomial will 

be very accurate with a sample size of P I ,  = 420. The values h, are the contrasts for the tests, 

and are given in Table 3.2. The statistics are marked with one or more asterisk if the value 

exceeds a certain critical value. These critical values are calculated for a two-tailed test with 

a Bonferroni adjustment for 15 simultaneous tests (critical value = 2&,). One, two, and three 

asterisk correspond to type I error levels of a = 0.15, a = 0.05, and oc = 0.01 respectively. 

For the discussion a type I error lever of a = 0.05 will be assumed. 

Interaction effects between two factors occur when the effect caused by one factor 

changes in response to another factor. Interactions can occur in any combination of two or 

more variables. A main effect is the change in response due to the change in the level of one 

factor. However, if this factor interacts significantly with any other factors, then the main 
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Table 3-2: Coefficients hi for Tests 

m t * .  i - - 2 3 4 5 6  7 8 9 1 0  11 12 13 14 15 16 
1111 : 
0111 : 
1011 : 
1101 : 
1110 : 
0011 : 
0101 : 
1001: 
0110 : 
1010 : 
1100: 
0001 : 
0010 : 
0100 : 
1000: 

1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 
1 
1 
-1 
-1 
-1 
-1 

-1 -1 
1 1  
1 -1 
1 1  
-1 1 
-1 -1 
-1 1 
-1 1 
1 -1 
1 -1 
1 1  
1 -1 
-1 1 
-1 -1 
-1 -1 

1 
-1 
1 
-1 
1 
1 
-1 
-1 
-1 
-1 
1 
1 
1 
-1 
-1 

-1 
1 
1 
-1 
1 
1 
-1 
1 
-1 
1 
-1 
-1 
-1 
1 
-1 

1 
-1 
-1 
1 
1 
-1 
1 
-1 
-1 
1 
-1 
1 
-1 
1 
-1 

1 
-1 
1 
1 
-1 
-1 
-1 
1 
1 
-1 
-1 
-1 
1 
1 
-1 

-1 
1 
-1 
-1 
-1 
1 
1 
-1 
1 
-1 
-1 
1 
1 
1 
-1 

-1 
-1 
1 
1 
1 
1 
1 
-1 
1 
-1 
-1 
-1 
-1 
-1 
1 

1 
1 
-1 
-1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
-1 
-1 
1 

1 
1 
1 
-1 
-1 
-1 
1 
-1 
-1 
1 
-1 
-1 
1 
-1 
1 

-1 
-1 
-1 
1 
-1 
1 
-1 
1 
-1 
1 
-1 
1 
1 
-1 
1 

1 
1 
-1 
1 
-1 
1 
-1 
-1 
-1 
-1 
1 
-1 
-1 
1 
1 

-1 
-1 
1 
-1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
1 
1 

1 

-1 
-1 
-1 
-1 
1 
-1 
-1 
-1 
1 
1 
1 
-1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

* Refer to Table B.11 f o r  meaning of tests. 
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effect is not so easily interpreted. It is possible to interpret two-way interactions given that 

no higher order interactions exist. Similarly, higher-order interactions may be interpreted, but 

it becomes increasingly difficult to do so in a meaningfbl manner. 

Several two-way and three-way interactions were anticipated in this study. NS and 

NY both represent the amount of information available in regional analysis. A two-way 

interaction can be expected here, because doubling the amount of data generally does not 

double the accuracy of a statistic. Many of the methods considered do not respond in the 

same way to each factor. NS and NY may both interact with L-skewness (q) to cause a two- 

way or three-way interaction. This may be due to the increasing variability of the L-moment 

ratio estimates as 2, and z, increase. Initial testing gave little evidence to suggest any 

interactions between 2, and any other factor, and the experimental results tend to support 

this. Sample values oft, and t, may be correlated, but this does not seem to significantly 

affect the results of most selection methods. No significant four-way interactions were 

anticipated or found in the experimental results. 
- 

Marginal plots are a usefbl for displaying the effects and interactions of factors. The 

marginal plots for each experiment are given in Figures C .  l(a,b,c) through C .  lO(a,b,c) (see 

Appendix C). Methods 7 through 10 have additional marginal plots (d, e, f ) .  The selection 

method and the true regional probability model are displayed is given at the top. The 

percentage each model selected is shown on the vertical axis and NY is on the horizontal axis. 

These Figures show the selection of all three probability models on each plot, with the point 

type indicating the probability model. For the 'true' model the plot shows the probability of 

a correct selection, for the other models it is the probability of selecting that model 
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incorrectly. Line type show the levels of NS and 2,. Since 2, had almost no effect on the 

results it has been averaged in with the other factors, and is not shown on these plots. 

Interaction effects can be seen within the lines for the 'true' probability model. If no 

interaction exists then the lines can be expected to be parallel, as a factor will have equal 

response at all levels of other factors. Interactions will show as non-parallel, converging, or 

crossig lines. Note that lines resulting from different models cannot be interpreted this way. 

3.3.5 Performance Assessment Based on Simulations 

Method 1 LPMSAD): The overall accuracy is 59% for GEV data, and 57% for GLO 

data. Strong interactions exist between NS and z,, and between N Y  and z,. This method 

exhibits a strong bias towards the GEV model at the high level of z,, especially in the case 

of GLO data. This method is more reliable with GPA data, See Table B. l(a,b,c) and Figure 

C. l(a,b,c). 

Method 2 (LP/MLAD): This method does well when the true model 0s GPA, but it 

cannot reliably distinguish between GEV and GLO models. See Table B.2(a7b,c) and Figure 

C.2(a7 b,c). 

- 

Method 3 (ILP/MRNG); This selection method gives very poor results under all 

circumstances. For GEV and GLO models the probability of correct selection is less than 

50%. See Table B.3(a,b,c) and Figure C.3(a7b,c). 

Method 4 (OP/MSSD): Results here are generally similar to method 2, with greater 

sensitivity to T ~ .  See Table B.4(a,b,c) and Figure C.4(a,b,c). 

Method 5 (kJ: Y This method is extremely sensitive to NY and 7,. Interactions between 
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NS, NY and T, are strong, and it seems to be biased against the GLO model. This method 

can only give good results when all at-site estimates are very accurate and z, is low. See 

Table BS(a,b,c) and Figure C.S(a,b,c). 

Method 6 (k,L Exhibits similar behavior to method 5 ,  but even these results may be 

suspect (see Section 3.2.3). See Table B.6(a,b7c) and Figure C.6(a,b7c). 

Method 7 (VDA): The overall accuracy is 67% for the GLO model, 84% for GEV, 

and 98% for GPA. This method is not at high T,, but does not appear to be biased towards 

the GEV model as occurs with some other methods. Two and three way interactions exist 

between NS, NY, and 2,. This method is the worst of all the region-based methods 

considered, but it is still considerably better than the earlier methods. See Tables B.7(a,b7c) 

and Figures C .  7( a, b, c,d,e, f ) .  

Method 8 (SDA): The overall accuracy is 82% for the GLO model, 90% for GEV, 

and 99.5% for GPA. The use of the shortest distance rather than the vertical distance greatly 

reduces the sensitivity to T,. Some interactions exist like those of method 7, but they tend 

to be much smaller. See Tables B.8(a,b,c) and Figures C.8(a,b7c,d,e,f). 
- 

Method 9 (VDL): Results are somewhat similar to method 8, but is very sensitive to 

2,. The use of the regional L-moment solution gives better results at shorter record lengths. 

This indicates that this method may converge more quickly to 100% probability of correct 

model selection. See Tables B.9(a,b7c) and Figures C.9(a,b,c7d,e,f). 

Method 10 (SDL): This method exhibits much less sensitivity to 2, and more rapid 

convergence always selecting the true model than all other methods. It is near perfect with 

GPA data, and is much more accurate even in the worse case (of those examined) for GEV 
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and GLO data. See Tables B. lO(a,b,c) and Figures C. lO(a,b,c,d,e,f). 

3.3.6 Summary and Conclusions 

L-skewness is the single most important factor determining the accuracy of the 

selection methods. All methods considered show significant decreases in accuracy or at high 

7,. L-skewness also interacts very strongly with other factors. The GEV and GLO 

distribution can be very hard to distinguish at high levels of L-skewness. It should be noted 

that these two distributions converge quickly as L-skewness increases, and selection errors 

may become less meaningfbl in this case. The effects of 7, are likely to be non-linear, but this 

could not be examined due to the limited scope of this study. 

L-cv has no effect on model selection by these methods. Future examinations of 

selection methods may ignore T* or only consider reduced number of interaction effects (by 

use of partial factorial design). 

The GPA distribution is easy to distinguish fiom the GEV and GLO. 

perform very well in this case (LPMSAD, QPMSSD, and kJ. This is an 

comparison to distinguishing between GEV and GLO data. 

- 
Several methods 

'easy' problem in 

The linear programming based methods do poorly with GEV and GLO data. These 

method (perhaps modified) may still be useful for estimating mixture distributions. Also, this 

approach may have some advantage in the case that two probability models have the same 

regional values of 2, and T,. It may be possible to improve upon the results of these methods 

by use of discriminant analysis, but this would be a topic for hrther research. 

The kg reliability is highly sensitive to the accuracy of at-site estimates and L- 
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skewness. This method is not suggested because better methods are available. A multivariate 

version ofthis index can be defined using 2, and 2,. This might improve the results greatly. 

The index is not appropriate for this type of data encountered in this problem. 

The method(s) based on the regional L-moment solution and shortest distance are 

superior to those based on at-site averages and vertical errors. The use of shortest distance 

in selection greatly reduces sensitivity of model selection to 2,. Use of the regional L- 

moment solution results in faster convergence to the true regional values of (T~, z,). When 

combined there is little interaction effects between factors. The SDL method is the best of 

all methods examined. 

In the real world of spatially correlated data none of these methods would actually 

perform as well as is shown in these simulation experiments. These results are useful though 

as an indication of which methods are worth pursuing for further study. 
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CHAPTER 4 

SUMMARY AND PROPOSED FUTURE RESEARCH 

4.1 

4.1.1 Other Studies 

Comments on Extreme Precipitation Studies 

This study has emphasized the use of statistical properties in the analysis of extreme 

precipitation data. There are concurrent studies in the regionahtion of extreme precipitation 

also sponsored by the Association of State Dam Safety OEcials, such as the recently 

concluded Montana study (Parrett, 1995). In that, regionalization of the State of Montana 

was done primarily on the basis of geography. The regions in the Montana study determined 

on a physical basis match up well with the regions in Wyoming determined by cluster analysis 

(Schaefer, 1995). This common result supports the use of physical and statistical properties 

in the regionalization process. Physical properties should be used when there are clearly 

understood patterns of precipitation. Statistical properties can then be examined to help find 

firther patterns in the data that might otherwise be overlooked. 

4.1.2 Usehlness of this Studv 

The regionalization procedure as described in Section 1.4 clearly leads to improved 

parameter estimation. The results from Chapter 3 indicate that regionalization also greatly 

improves the model selection process as well. The regions (see Figure 2.3) and regional 

prediction equations determined by this study (see Section 2.5.2) can be used for parameter 

estimation within Wyoming. However, it should be noted that for the higher-order L- 
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L-moments ratios such as L-skewness and L-kurtosis, the prediction equations may be of little 

value due to large prediction errors. In this case it is recommended that the regional values 

of the L-moment ratios (see Table 2.3) be used in place of the prediction equations . 

Examination of the question of probability models for extreme precipitation has led 

toanew methods for model selection. These methods tend to support the use of the GEV 

distribution in Wyoming. Exactly how well these methods perform has yet to be determined, 

but results to this point are promising. Further study of these methods and application to 

model selection in other situations would be a logical next step. 

4.2 Regionalization Revisited 

Regionalization is a dacult and subjective process which results in improved overall 

estimation at the cost of possible large errors at a given location. This is not intended as a 

criticism of regionalization, but rather to point out that some compromises are necessary to 

reach a solution to the difficult problem of predicting extreme precipitation events. There are 

several potential ways that the regionalization process might be improved, such as including 
- 

dew-point and seasonal information. This is a topic which needs combined knowledge in 

hydrology, meteorology, and statistics in order for improvements and refinements to be made. 

4.3 Model Selection Revisited 

4.3.1 Unsuccessfbl Methods 

Model selection methods based on linear and quadratic programming techniques 

performed poorly. Theses selection methods fail because it is very difficult to distinguish 
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between a single distribution and a 'similar loolung' mixture of two (or more) other 

distributions. It is possible that the use of discriminant analysis methods might offer a 

solution to this difficulty. 

Likewise, the two reliability indices did not perform well. It is possible that these 

methods were poorly formulated. These methods utilize the tangent of predicted over 

observed values, and choosing a different point of origin might change the accuracy of these 

methods. It is not apparent, however, that a different form of selection these selection 

methods work any better. A multivariate form of these indices can be defined which should 

not suffer fi-om the difficulties found in the univariate form, and this is possibly a topic of 

fbrther research. 

4.3.2 Successfil Methods 

The so called regron basedmethods work well for model selection. The strength and 

weakness here is the reliance on the assumption of a climaticaliy homogenous region. The 

accuracy of the region based methods clearly depends on good results from the 

regionalization process. Since regionalization results in better overall estimates, the region 

based model selection methods should also give better overall results. 

- 

4.3.3 Further Research in Model Selection 

Further research possibilities in model selection methods include study of L-moments 

and conventional product moments. It is planned to examine the small sample properties of 

L-moments ratio estimators, it is of interest to know in what situation L-moment based 
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? 

estim tion will o itperform product mom nts. A rison to maximum-likelihood 

estimation, in statistical efficiency and computational requirements, would be usehl. 

Selection methods, whether based on L-moments or product moments can be applied to the 

problem of model selection in general. In this last case, and extensive study of the power of 

selection methods and the probability of a model selection error could be conducted. 
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APPENDIX A: REGRESSION MODELS 

I Table A.1: Mean and Standard Deviatiion of MAP by Region* I 

* Based on regression dataset with outliers removed 
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Table A.2: Model Parameters for Region 1 

ln XBAR In T, = 3  = 4  Y =  

P o  

P1 

Dl 

P-hat P-hat I ' q, 

.346* .0142 -1.5" I .0136 I .241* I .241 I .183* I .0085 I 

.205* .0120 -.005 I .0115 .003 .003 I .0053 I .0072 I 

.689* .0415 .173* I .04 I .039 I .039 I .0106 I .0249 I 

.339* .0343 .079* I .0329 .010 I .010 I -.018 I . O 2 0 6 1  

.0098 .0316 
~ 

.072* I .0304 I .008 I .008 I - .03 

160. * I I 6.12" I I *98 I 
2.21 I I ,1037 I I ,1377 I 62.6 

* Significant at a = 0.05 
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I Table A.3: Model Parameters for Region 2 I 

F 

MSE 

1 Po I .324* 1 .0284 I -1.7" I .0206 1 .083* I .0120 1 .096* I .0109 1 

87.4" .855* 3.14* 2.52 

49.7 2.85 0.321 .214 

I PI I .206* I .0219 I -.017 I .0159 I .027* I .0092 1 .021* I .0084 I 
I D, I -.68* I .0559 I .112* I .0406 I .058* I .0237 I ,018 I .0216 I 
I D, I -.47* I .0530 I .0618 I .0385 I .0330 I .0224 I .05* I .02.05 I 
I D3 I -.078 I ,0620 I .0174 I .0450 I .0387 I .0262 I .018 1 .0239 I 

* Significant at Q = 0.05 

I 
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Table A.4:  Model Parameters for Region 3 I 
I Y =  I T3 I T4 i In XBAR I In T2 

P-hat P-hat p-hat P-hat 

.112* . 0 2  - 1 . 6 *  .0173 .205* .0125 .166* , 0 1 1 8  P o  

P1 

Dl 

D2 

D3 

F 

MSE 

.075* . 0 1 3 9  - .08*  .0120 . 0087  - .012 .0082 - .  0035 

- . 6 7 *  . 0 5 1 5  .217* 
~ 

.056* . 0 3 2 1  - . 0 2 9  .0305 .0445 

- . 4 3 *  .0424 - .  0004 .0166 .0264 - . 0 1 5  . 0 2 5  

- .069  .0406 . 0 2 1 5  . 0 3 5 1  .0029 .0253 - . 0 1 7  . 0 2 4  

3 6 . 9 "  . 9 6  . 6 9  

7 7 . 4  6 . 9 9  . 1 7 7 1  .1152 
~~ 

* Significant at a = 0 .05  
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b 

Table A.5: Model Parameters for Region 4 

I Y = I In XBAR 

P o  .369* .027 1 :: I .137* I .0227 
-.83* .0587 

F 

I D, I -.65* I .0532 

43.6" 

I D, I -.22* I .0676 

MSE I 99.1 I 

In T, 

P-hat I ' q, 

-1.3" 1-1.33 

-.04* I -.039 
I 
.161* I .161 

-.05 I -.047 
-.04 I -.043 
8.02" I 
1.53 I 

=3 

.338* I .0146 *235* 1x7 

.0017 I .0124 .014 I .0160 

.062* I .0322 .027 I .0413 

.0092 I .0292 I .016 I .0374 

.0160 I .0371 I .064 I .0476 
.92 I I -65 I 

.1224 I I .1429 I 
* Significant at OL = 0.05 
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APPENDIX B: Results of Simulation Experiments 

Table B.la: Experimental Results for Method 1 on GEV Data 

Method 1 - MSAD, for simulated GEV data 

Significant at a = .15 with Bonferroni adjustment, 121 > 2.58 
Significant at a = .05 with Bonferroni adjustment, 121 > 2.94 
Significant at C( = .01 with Bonferroni adjustment, I z l  > 3.4 

0.  

.*. 
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Table B.lb: Experimental Results for Method 1 on GPA Data 

Method 1 - MSAD, for simulated GPA data 

Significant at a = .15 with Bonferroni adjustment, I z I  > 2.58 
Significant at a = .05 with Bonferroni adjustment, I z l  > 2.94 
Significant at a = .01 with Bonferroni adjustment, 121 > 3.4 

.. 

.*. 
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Table B.lc: Experimental Results for Method 1 on GLO Data 

I Method 1 - MSAD, for simulated GLO data I 

* Significant at (r = .15 with Bonferroni adjustment, 121 > 2.58 . 
**  Significant at a = .05 with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, 121 > 3.4 . tt. 
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Table B.2a: Experimental Results for Method 2 on GEV Data 

Method 2 - MLAD, for simulated GEV data - 
11 
- 
P 

~ ~~ 

z =  

- 0.914 

1 . 0 0 1  

-0.827 

0.217 

-1.437 

0.566 

- 5 . 5 3  

-1.437 

0.478 

0.217 

1.785 

7.271 

0.566 

-18.94 

-5.268 

Significant at a = .15 with Bonferroni adjustment, I z l  > 2.58 . 
*" Significant at a = .05 with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z l  > 3.4 . .tt 
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Table B.2b: Experimental Results f o r  Method 2 on GPA Data 

Method 2 - MLAD, for simulated GPA data 

Significant at a = .15 with Bonferroni adjustment, l z l  > 2.58 . 
** Significant at a = .05 with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z I  > 3.4 . ***  
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Table B.2c: Experimental Results f o r  Method 2 on GLO Data 

1010 

1100 

0001 

0 0 1 0  

0100 

Method 2 - MLAD, for simulated GLO data I 
GEV, overall p = 
0.2280 

0.00892 0.919 

-0.02262 -2.328 

0.2458 25.3 

0.0'0595 0.6127 

-0.08155 -8.394 

I TEST I A = 1 2  = 

-0.00892 

11111 I 0.01369 I 1.409 

-0.919 

10111 I 0.00357 I 0.3676 

11011 I 0.00119 I 0.1225 1 ,tl: 1 -0.03631 1 -3.737 
-0.01071 -1.103 

-0,00416 -0.4289 

10101 1-0.00238 1-0.2451 

11001 I 0.01667 I 1.716 

10110 I 0.00059 I 0.0612 

Significant at a = .15 with Bonferroni adjustment, I z l  > 2.58 . 
**  Significant at a = .05 with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z l  > 3.4 . *** 
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Table B.3a: Experimental Results for Method 3 o n ' G E V  Data 

Method 3 - MRNG, for simulated GEV data 

Significant at a = -15 with Bonferroni adjustment, I z l  > 2.58 . 
* *  Significant at a = . 0 5  with Bonferroni adjustment, l z l  > 2.94 . 

Significant at CI = .01 with Bonferroni adjustment, I z l  > 3.4 . **t 
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Table B.3b: Experimental Results for Method 3 on GPA D a t a  

I Method 3 - MRNG, for simulated GPA data I 

Significant at a = .15 with Bonferroni adjustment, 121 > 2.58 . 
**  Significant at ff = .05  with Bonferroni adjustment, 121 > 2.94 . 

Significant at a = .01 with Bonferroni adjus-tment, 121 > 3.4 . ***  

77 



Table B.3c: Experimental Results for Method 3 on 'GLO Data 

1 Method 3 - MRNG, for simulated GLO data I 

Significant at CL = .15 with Bonferroni adjustment, I z I  > 2.58 . 
" *  Significant at CL = . 0 5  with Bonferroni adjustment, Izl > 2.94 . 
*** Significant at CL = .01 with Bonferroni adjustment, I z l  =. 3.4 . 
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Table B.4a: Experimental Results for Method 4 on GEV Data 

I Method 4 - MSSD, for simulated GEV data 

Significant at OL = .15 with Bonferroni adjustment, l z l  =. 2.58 . 
**  Significant at a = .05  with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z l  > 3.4 . *** 
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Table B.4b: Experimental Results for Method 4 on GPA Data 

Method 4 - MSSD, for simulated GPA data I 

TEST Probabilities very close to zero and one, test is not useful. I 
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Table B.4c: Experimental Results for Method 4 on'GLO D a t a  

I Method 4 - MSSD, for simulated GLO data I 

Significant at a = .15 with Bonferroni adjustment, I z l  > 2.58 . 
**  Significant at a = . 0 5  with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z l  > 3.4 . ttt 
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Table B . 5 a :  Experimental Results for Method 5 on GEV Data 

I Method 5 - Geometric Reliability Index k,, for simulated GEV data I 

Significant at a = .15 with Bonferroni adjustment, I z l  > 2.58 . 
* *  Significant at a = . 0 5  with Bonferroni adjustment, 121 > 2.94 . 

Significant at Q = .01 with Bonferroni adjustment, I z l  > 3.4 . ..t 
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Table B.5b: Experimental Results f o r  Method 5 on GPA D a t a  

Method 5 - Geometric Reliability Index k,, for simulated GPA data 

Significant at a = .15 with Bonferroni adjustment, I z l  > 2.58 . 
**  Significant at a = .05  with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z l  3.4 . tt. 
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Table B.5c: Experimental Results f o r  Method 5 on GLO Data 

I Method 5 - Geometric Reliability Index k,, f o r  simulated GLO data I 

Significant at a = .15 with Bonferroni adjustment, Izl > 2.58 . 
**  Significant at a = .05 with Bonferroni adjustment, Izl > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z I  > 3.4 . .** 
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Table B.6a: Experimental Results f o r  Method 6 on GEV Data 

I Method 6 - Statistical Reliability Index k,, for simulated GEV data I 

* Significant at ~1 = .15 with Bonferroni adjustment, I z l  > 2.58 . 
**  Significant at o[ = . 0 5  with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z l  > 3.4 . ***  
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Table B.6b: Experimental Results for Method 6 on GPA Data 

I Method 6 - Statistical Reliability Index k,, for simulated GPA d a t a  I 

Significant at a = .15 with Bonferroni adjustment, I z I  > 2.58 . 
** Significant at a = .05  with Bonferroni adjustment, l z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z l  > 3.4 . ***  
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Table B.6c: Experimental Results for Method 6 on GLO Data 

I Method 6 - Statistical Reliability Index k,, for simulated GLO data I 

Significant at a = .15 with Bonferroni adjustment, I z I  > 2.58 . 
* *  Significant at a = .05 with Bonferroni adjustment, I z I  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z l  > 3.4 . *** 
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Table B.7a: Experimental Results for Method 7 on GEV Data 

Method 7 - Vertical Distance to Station Average for simulated GEV data 

Significant at a = .15 with Bonferroni adjustment, I z l  > 2.58 . 
** Significant at u = .05 with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z l  > 3.4 . *.* 
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Table B.7b: Experimental Results for Method 7 on GPA Data 

I Method 7 - Vertical Distance to Station Average for simulated GPA data 

TEST 

1111 

0111 

1011 

1101 

1110 

0011 

0101 

1001 

0110 

1010 

I- 
.. 
* * *  

Significant at a = .15 with Bonferroni adjustment, I z l  > 2.58 , 

Significant at (r = - 0 5  with Bonferroni adjustment, I z l  > 2.94 . 
Significant at a = .01 with Bonferroni adjustment, I z l  > 3.4 . 
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Table B.7c: Experimental Results for Method 7 on GLO Data 

Significant at a = .15 with Bonferroni adjustment, I z l  > 2.58 . 
** Significant at a = .05 with Bonferroni adjustment, 121 > 2.94 . 

Significant at c( = .01 with Bonferroni adjustment, l z l  > 3.4 . **t 
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Table B.8a: Experimental Results for Method 8 on GEV Data 

I Method 8 - Shortest Distance to station Average for simulated GEV data I 

* Significant at a = .15 with Bonferroni adjustment, l z l  > 2.58 . 
.* Significant at a = .05 with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z I  > 3.4 . ... 
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Table B.8b: Experimental Results for Method 8 on GPA Data 

Method 8 - Shortest Distance to station Average f o r  simulated GPA data 

Probabilities very  close to zero and one, test is not u s e f u l .  1 
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Table B.8c: Experimental Results for Method 8 on GLO Data 

Method 8 - Shortest Distance to station Average for simulated GLO data 
c 

TEST 

1111 

0111 

1011 

1101 

1110 

0011 

0101 

1001 

0110 

1010 

1100 

0001 

0 0 1 0  

0 1 0 0  

1000 

. 
** 

**t 

Significant at a = .15 with Bonferroni adjustment, I z l  > 2.58 . 
Significant at = .05 with Bonferroni adjustment, I z l  > 2.94 . 
Significant at a = .Ol, with Bonferroni adjustment, I z l  > 3.4 . 
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Table B.9a: Experimental Results for Method 9 on GEV Data 

I Method 9 - Vertical Distance to L-moment solution, simulated GEV data I 

Significant at a = -15 with Bonferroni adjustment, I z l  > 2.58 . 
* *  Significant at a = .05 with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z l  > 3.4 . . f f  
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Table B.9b: Experimental Results for Method 9 on GPA Data 
~~~~~ ~~ ~~ 

Method 9 - Vertical Distance to L-moment solution, simulated GPA data 

Significant at a = .15 with Bonferroni adjustment, I z l  =. 2.58 . 
* *  Significant at a = .05 with Bonferroni adjustment, I z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjustment, I z I  > 3.4 . * * *  
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Table B.9c: Experimental Results for Method 9 on GLO Data 

I Method 9 - Vertical Distance to L-moment solution, simulated GLO data I 

* Significant at (x = .15 with Bonferroni adjustment, > 2.58 . 
**  Significant at (x = . 0 5  with Bonferroni adjustment, I z l  > 2.94 . 
*** Significant at (x = .01 with Bonferroni adjustment, I z (  > 3.4 . 
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Table B.lOa: Experimental Results for Method 10 on GEV Data 

I Method 10 - Shortest Distance to L-moment solution, simulated GEV data I 

Significant at a = .15 with Bonferroni adjustment, I z l  > 2.58 . 
** Significant at a = . 0 5  with Bonferroni adjustment, l z l  > 2.94 . 

Significant at a = .01 with Bonferroni adjus-tment, I z l  > 3.4 . t.. 
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Table B.lOb: Experimental Results for Method 10 on GPA Data 

Method 10 - Shortest Distance to L-moment solution, simulated GPA data 

I TEST 1 Probabilities very close to zero and one, test is not u s e f u l .  I 
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Table B.lOc: Experimental Results for Method 10 on GLO Data 
~ 

Method 10 - Shortest Distance to L-moment 

GEV, overall p = 

0.1330 

TEST A = z =  

1111 0.00059 0.0761 

0111 0.01071 1.369 

1011 -0.00178 - 0.2282 

1101 -0.01071 -1.369 

1110 -0.00416 -0.5325 

0011 0.00357 0.4564 

0101 -0.04464 -5.705 

1001 -0.02143 -2 -73.9 

0110 0.0131 1.673 

1010 -0.00416 -0.5325 

1100 0.00357 0.4564 

0001 0.1804 23.05 

1.065 

-0.1065 -13.62 

-6.998 
~~ 

Significant at a = .15 with Bonferroni adjustment, l z l  > 2.58 . 
* *  Significant at a = .05 with Bonferroni adjustment, I z l  > 2.94 . 
*** Significant at a = .01 with Bonferroni adjustment, I z l  > 3.4 . 
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T a b l e  B.11: K e y  f o r  reading tests 

0111 

1011 

1101 

1110 

0011 

0101 

1001 

0110 

1010 

1100 

0001 

0010 

0100 

1000 

Method # - Method Name, for Simulated GEV Data 

3 way interaction: NY# L-cv# L-SkewneSS 

3 way interaction: NS, L-cv, L-skewness 

3 way interaction: NS, NY8 L- skewnes a 

3 way interaction: NS, N Y 8  L-cv 

2 way interaction: L-cv, L-skewness 

L- skewness 

2 way interaction: NS, L- skewness 

2 way interaction: N Y 8  

2 way interaction: NY, L-cv 

2 way interaction: NS, L-cv 

2 way interaction: NS, NY 

Main effect of L-skewness 

Main effect of L-cv 

Main effect of At-Site Record Length (NY) 

Main effect of Number of Sites (NS) 

1111 1 4  way interaction: NS, N Y 8  L-cv, L-skewness 

GLO, overall p = % 
Wrong selection 2 

A =  I z  = 

Significant at a = .15 with Bonferroni adjustment, I z l  > 2 . 5 8  
** Significant at a = .05 with Bonferroni adjustment, 121 > 2 . 9 4  

Significant at a = .01 with Bonferroni adjustment, 121 > 3 . 4  *** 

These are two-tailed tests, critical value = Zq,30. 
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Figure C. lb: Method 1 - Selection by 
MSAD (LP) for GPA Data 
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Figure C.2b: Method 2 - Selection by 
MLAD (LP) for GPA Data 
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Figure C.2c: Method 2 - Selection by 
MLAD (LP) for GLO Data 
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Figure C.5b - Selection by Geometric 
Reliability Index kg for GPA Data 
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Figure C.6a - Selection by Statistical 
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Figure C.6b - Selection by Statistical 
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Figure C.6c - Selection by Statistical 
Reliability Index k, for GLO Data 
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VDA for GEV Data 
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Appendix D: Station Data, At-Site Values, and Region Numbers 

ORIGINAL ADJ 
OBS 48-#### DURA REGION RGN ELEV 
NUM NWSID TION NUMBER NUM NYRS LAT LON ATION MAP XBAR L-CV --SKEW -KURT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

27 
80 

14 0 
200 
270 
380 
443 
470 
470 
54 0 
552 
605 
695 
695 
695 
695 
725 
74 0 
761 
778 
865 
915 

1000 
1000 
1000 
1000 
1160 

4 
4 
4 
4 
4 
4 
4 
2 
3 
4 
4 
4 
4 
1 
2 
3 
4 
4 
4 
4 
4 
4 
1 
2 
3 
4 
4 

4 
2 
4 
2 
4 
2 
4 
4 
4 
1 
3 
4 
3 
4 
4 
4 
2 
1 
4 
1 
4 
4 
1 
1 
1 
1 
1 

4 
2 
4 
2 
2 
2 
4 
1 
1 
1 
3 
4 
4 
4 
4 
4 
2 
1 
4 
1 
4 
4 
1 
1 
1 
1 
1 

27 
36 
43 
37 
42 
21 
13 
18 
18 
37 
22 
38 
16 
21 
31 
31 
18 
29 
13 
20 
28 
81 
24 
29 
29 
37 
13 

42.73 
41.41 
43.78 
44.65 
41.15 
44.69 
42.53 
43.35 
43.35 
44.38 
42.63 
42.86 
42.55 
42.55 
42.55 
42.55 
43.18 
44.13 
41.58 
43.65 
43.23 
42.25 
43.41 
43.41 
43.41 
43.41 
44.36 

-110.93 
-104.10 
-111.03 
-104.35 
-104.65 
-106.10 
-108.76 
-107.41 
-107.41 
-108.05 
-106.38 
-110.90 
-110.11 
-110.11 
-110.11 
-110.11 
-105.25 
-106.73 
-108.51 
-107.73 
-110.43 
-111.03 
-108.18 
-108.18 
-108.18 
-108.18 
-106.80 

111 

6210 
5350 
6430 
4390 
6010 
3680 
8200 
6260 
6260 
3840 
6010 
6330 
6880 
6880 
6880 
6880 
4750 
4950 
6720 
5640 
6500 
6120 
4640 
4640 
4640 
4640 
5240 

18.55 
17.89 
22.08 
22.78 
15.62 
11.59 
15.54 
7.90 
7.90 
6.62 

12.35 
20.49 
8.24 
8.24 
8.24 
8.24 

11.42 
12.30 
6.87 

13.57 
22.49 
13.59 
9.16 
9.16 
9.16 
9.16 

13.23 

1.193 
2.012 
1.249 
2.003 
1.579 
1.497 
1.540 
0.711 
1.009 
0.984 
1.493 
1.224 
0.941 
0.441 
0.616 
0.922 
1.494 
1.314 
1.160 
1.364 
1.247 
1.124 
0.460 
0.683 
1.116 
1.190 
1.421 

0.1717 
0.1649 
0.1392 
0.2464 
0.1665 
0.2572 
0.1943 
0.2199 
0.1894 
0.1928 
0.2541 
0.1602 
0.2447 
0.2006 
0.1992 
0.2057 
0.1961 
0.1998 
0.2208 
0.1758 
0.1478 
0.1956 
0.2109 
0.1932 
0.2577 
0.2321 
0.2211 

0.2111 
0.1165 
0.1427 
0.2872 
0.0281 
0.2528 
0.0457 
0.1138 
0.0266 
0.1881 
0.2484 
0.2027 
0.3323 
0.3790 
0.2835 
0.1050 
0.1044 
0.1603 
0.1300 
0.2904 
0.2223 
0.2356 
0.3767 
0.3569 
0.3036 
0.3508 
0.2169 

0.0396 
0.2224 
0.1382 
0.1491 
0.2166 
0.1234 
0.0343 
0.1550 
0.0654 
0.1476 
0.0831 
0.1642 
0.0714 
0.2535 
0.1011 
0.0573 
0.1593 
0.0679 
0.1717 
0.2292 
0.1804 
0.2063 
0.2804 
0.1808 
0.2054 
0.2763 
0.1972 



28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

1165 
1165 
1165 
1165 
1175 
1220 
1284 
1547 
1565 
1570 
1570 
1570 
1570 
1610 
1675 
1675 
1675 
1675 
1730 
1736 
1775 
1816 
1840 
1850 
1855 
1905 
2135 
2175 
2175 
2175 
2410 
2415 
2466 
2580 

1 
2 
3 
4 
4 
4 
4 
4 
4 
4 
3 
1 
2 
4 
1 
2 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 ;  
4 
1 
2 
3 
4 
4 
4 
4 

1 
2 
2 
2 
3 
4 
4 
2 
2 
1 
2 
3 
3 
4 
2 
2 
2 
3 
2 
4 
1 
2 
1 
1 
3 
2 
3 
3 
3 
4 
3 
3 
2 
2 

2 
2 
2 
2 
3 
3 
4 
2 
2 
3 
3 
3 
3 
4 
2 
2 
2 
2 
2 
4 
1 
2 
1 
1 
3 
2 
3 
4 
4 
4 
3 
3 
2 
2 

21 44.35 -106.68 4670 12.71 0.664 0.2617 0.2554 
32 44.35 -106.68 4670 12.71 0.881 0.1746 0.0281 
32 ,44.35 -106.68 4670 12.71 1.367 0.1947 0.0996 
21 44.35 -106.68 4670 12.71 1.581 0.2441 0.2582 
36 44.50 -109.18 5160 11.23 1.377 0.2831 0.3015 
18 ' 44.76 -107.53 8040 20.45 1.522 0.2146 0.2432 
19 43.36 -109.28 6140 9.07 1.248 0.2004 0.3115 
40 41.05 -104.35 5390 13.96 1.702 0.1983 0.2005 
26 42.85 -106.26 5200 12.50 1.624 0.2158 0.3389 
35 42.91 -106.46 5340 11.92 1.276 0.2382 0.2212 
38 42.91 -106.46 5340 11.92 1.314 0.2702 0.1690 
28 42.91 -106.46 5340 11.92 0.760 0.3222 0.2834 
38 42.91 -106.46 5340 11.92 0.947 0.2532 0.2777 
31 41.30 -106.13 8070 14.30 1.095 0.1871 0.2201 
13 41.15 -104.81 6120 15.18 0.867 0.2234 0.1248 
24 41.15 -104.81 6120 15.18 1.112 0.2028 0.2705 
24 41.15 -104.81 6120 15.18 1.503 0.1688 0.1943 
78 41.15 -104.81 6120 15.18 1.567 0.2294 0.3170 
70 41.75 -104.81 5280 16.53 1.820 0.2370 0.2714 
25 41.40 -110.08 7080 8.49 1.061 0.2081 0.0845 
21 44.98 -109.08 4030 7.52 1.182 0.2331 0.1928 
43 44.58 -106.45 4060 13.88 1.538 0.2130 0.3489 
71 44.55 -109.06 4990 9.69 1.143 0.2098 0.2469 
27 44.40 -108.90 5250 11.22 1.457 0.2222 0.2881 
24 44.33 -109.38 5840 12.93 1.409 0.2333 0.2779 
74 44.93 -104.20 3550 15.22 1.713 0.1945 0.1854 
25 44.90 -109.66 6600 15.18 1.356 0.2636 0.4328 
14 41.73 -108.73 7040 6.32 0.493 0,3098 0.3280 
25 41.73 -108.73 7040 6.32 0.475 0.2418 0.4078 
26 41.73 -108.73 7040 6.32 0.713 0.1544 0.0404 
17 44.18 -105.90 4440 11.19 1.590 0.2724 0,3799 
35 44.88 -108.60 4100 5.46 1.089 0.2929 0.3680 
32 44.58 -104.70 3860 17.17 1.858 0.1906 0.1976 
39 44.11 -105.11 4310 13.49 1.487 0.1745 0,1064 

0.1721 
0.0761 
0.1513 
0.1866 
0.1750 
0.0115 
0.1752 
0.1242 
0.2749 
0.0516 
0.0235 
0.2237 
0.1506 
0.1868 
0.0064 
0.0780 
0.0548 
0.3081 
0.1736 
0.1457 
0.1234 
0.2428 
0.1847 
0.2640 
0.1496 
0.1383 
0.3260 
0.1924 
0.1712 
0.1012 
0.2105 
0.2373 
0.1046 
0.0660 
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62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

2595 
2610 
2680 
2685 
2693 
2693 
2693 
2693 
2715 
2725 
2725 
2725 
2725 
2881 
2995 
3031 
3045 
3050 
3050 
3050 
3170 
3396 
3430 
3430 
3490 
3570 
3630 
3770 
3770 
3770 
3801 
3855 
3860 
3860 

4 
4 
4 
4 
4 
1 
2 
3 
4 
4 
1 
2 
3 
4 
4 
4 
4 
1 
2 
3 
4 
4 
2 
3 
4 
4 '  
4 
1 
2 
3 
4 
4 
2 
3 

3 
4 
3 
2 
1 
2 
2 
3 
4 
1 
2 
2 
2 
2 
4 
1 
3 
4 
4 
4 
4 
4 
3 
4 
3 
2 
4 
1 
1 
1 
3 
2 
2 
2 

1 
4 
3 
2 
2 
2 
2 
2 
4 
2 
2 
2 
2 
2 
4 
1 
4 
4 
4 
4 
4 
4 
4 
4 
3 
2 
4 
1 
1 
1 
3 
2 
2 
2 

30 43.23 -108.93 5580 9.17 1.296 0.2376 0.3466 
42 41.03 -107.53 6360 12.03 1.193 0.2071 0.2730 
35 42.18 -105.39 6200 14.08 1.481 0.2672 0.3195 
38 42.76 -105.38 4820 13.89 1.404 0.1956 0.0485 
15 42.75 -105.38 4810 11.60 1.324 0.2039 0.2380 
12 I 42.75 -105.38 4810 11.60 0.789 0.2048 0.1766 
12 42.75 -105.38 4810 11.60 1.010 0.2333 0.2532 
12 42.75 -105.38 4810 11.60 1.633 0.3432 0.3870 
28 43.55 -109.61 6920 8.60 1.004 0.1983 0.0243 
28 43.41 -104.95 4420 11.75 1.512 0.1967 0.3622 
27 43.41 -104.95 4420 11.75 0.894 0.2354 0.2709 
40 43.41 -104.95 4420 11.75 1.074 0.2137 0.1997 
40 43.41 -104.95 4420 11.75 1.417 0.2390 0.2718 
14 44.48 -105.90 4000 13.78 1.631 0.2117 0.2178 
35 41.68 -106.41 7270 12.29 1.325 0.2227 0.2437 
38 44.50 -108.39 4450 7.38 1.020 0.2224 0.2268 
38 41.18 -106.61 7390 14.28 1.297 0.2154 0.3255 
13 41.19 -106.78 7360 11.79 0.573 0.2370 0.1307 
26 41.19 -106.78 7360 11.79 0.708 0.2152 0.2655 
26 41.19 -106.78 7360 11.79 0.943 0.2286 0.2933 
45 42.11 -109.45 6590 7.70 0.906 0.2146 0.2023 
24 41.98 -110.06 6480 7.52 0.958 0.1931 0.2552 
20 41.40 -110.41 7020 10.14 0.590 0.2721 0.4418 
20 41.40 -110.41 7020 10.14 0.959 0.2394 0.1976 
28 42.38 -104.53 4760 11.65 1.513 0.2419 0.2929 
24 42.98 -108.86 5580 11.97 1.802 0,1839 -0.0114 
24 41.08 -106.14 9060 15.89 1.269 0.1955 0.0388 
12 44.78 -108.66 4250 4.92 0.391 0.2191 0,1448 
24 44.78 -108.66 4250 4.92 0.566 0.1870 0.0458 
24 44.78 -108.66 4250 4.92 0.781 0.2037 0.2042 
15 42.83 -107.48 6470 9.29 1.564 0.3168 0.2752 
62 44.28 -105.46 4560 15.24 1.695 0.2240 0.2455 
24 44.21 -105.63 4850 13.38 1.058 0.2886 0.1856 
24 44.21 -105.63 4850 13.38 1.501 0.2866 0.2509 

0.2044 
0.1876 
0.1979 
0.1018 
0.2851 
0.1285 

-0.0152 
0.2054 
0.0949 
0.2106 
0.2216 
0.0924 
0.1769 
0.1123 
0.2343 
0.2224 
0.2131 
0.0204 
0.1543 
0.2168 
0.1669 
0.2729 
0.4466 
0.1214 
0.1209 
0 .lo22 

-0.1245 
-0.0248 
0.0618 
0.1077 

. O .  1228 
0.1872 
0.0690 
0.1377 
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96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 

3860 
3865 
3950 
3960 
4036 
4065 
4080 
4125 
4126 
4300 
4303 
4411 
4440 
4442 
4700 
4760 
4910 
4910 
4910 
4910 
4920 
4930 
4930 
4930 
5055 
5065 
5085 
5105 
5115 
5170 
5252 
5260 
5345 
5345 

1 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
1 
2 
3 
4 
4 
1 
2 
3 
4 
4 '  
4 
4 
4 
4 
4 
4 
1 
2 

3 
2 
2 
3 
3 
4 
3 
1 
2 
2 
2 
1 
4 
3 
4 
2 
3 
4 
4 
4 
2 
4 
4 
4 
1 
1 
3 
4 
4 
1 
3 
2 
4 
4 

2 
2 
2 
3 
3 
4 
3 
2 
2 
2 
2 
1 
2 
2 
4 
2 
4 
4 
4 
4 
2 
4 
4 
4 
1 
1 
3 
4 
4 
2 
4 
2 
4 
4 

13 44.21 -105.63 
31 44.08 -105.71 
26 142.83 -105.78 
32 42.66 -105.81 
19 43.95 -108.65 
67 41.53 -109.48 
33 44.48 -108.05 
13 42.30 -104.76 
26 42.30 -104.76 
17 42.93 -104.36 
14 42.93 -104.31 
38 44.68 -108.95 
28 41.15 -105.18 
12 41.15 -105.16 
20 41.45 -105.23 
23 44.68 -104.60 
22 43.48 -110.76 
33 43.48 -110.76 
33 43.48 -110.76 
33 43.48 -110.76 
18 42.46 -104.36 
21 41.10 -106.00 
27 41.10 -106.00 
27 41.10 -106.00 
41 43.71 -106.63 
16 43.35 -106.76 
29 42.75 -104.74 
35 41.80 -110.53 
31 43.19 -109.98 
15 42.83 -104.11 
13 42.28 -110.25 
37 41.63 -104.16 
20 44.55 -110.39 
3'2 44.55 -110.39 

4850 
4900 
4950 
6430 
5580 
6090 
3830 
4500 
4360 
4500 
4380 
4790 
6800 
6690 
6310 
3760 
6230 
6230 
6230 
6230 
4610 
7640 
7640 
7640 
4660 
544 0 
5280 
6950 
7670 
5070 
6830 
4590 
7760 
7760 

13.38 0.882 
16.23 1.848 
13.48 1.657 
14.98 1.677 
10.56 1.702 
7.98 0.920 
6.99 1.110 

13.37 1.506 
13.11 1.724 
13.03 1.533 
16.55 2.169 
8.26 1.152 

15.13 1.580 
16.34 1.764 
15.23 1.456 
16.59 1.782 
15.47 0.501 
15.47 0.632 
15.47 0.957 
15.47 1.084 
13.22 1.528 
12.27 0.564 
12.27 0.720 
12.27 1.064 
12.05 1.311 
10.13 1.173 
14.19 1.556 
10.33 1.032 
15.26 1.121 
15.14 1.413 
8.12 1.243 

15.74 1.947 
19.47 0.399 
19.47 0.651 

0.3282 
0.1956 
0.2464 
0.2797 
0.2825 
0.2052 
0.3418 
0.1822 
0.2291 
0.1806 
0.2228 
0.1787 
0.1945 
0.2369 
0.1475 
0.2627 
0.2863 
0.2057 
0.1764 
0.1527 
0.1442 
0.2497 
0.1771 
0.1621 
0.2314 
0.2300 
0.2615 
0.1536 
0.1895 
0.1278 
0.2671 
0.1974 
0.1913 - 
0.1511 

0.3398 
0.0789 
0.2965 
0.4368 
0.2782 
0.1779 
0.4264 
0.3392 
0.2218 
0.0557 
0.0347 
0.2320 
0.0333 
0.3676 
0.0670 
0.3026 
0.5334 
0.3094 
0.1508 
0.0627 
0.0952 
0.2571 
0.1589 
0.0870 
0.2598 
0.2848 
0.3509 
0.0858 
0.2212 
0.2511 
0.3548 
0.1848 
0.0325 
0.1284 

0.2750 
0.0712 
0.2139 
0.2650 
0.3058 
0.0818 
0.3983 
0.1747 
0.2201 
0.0171 
0.0784 
0.2602 
0.1249 
0.1600 
0.0571 
0.1640 
0.4060 
0.2266 
0.1240 
0.1147 
0.0237 
0.1232 
0.1414 
0.0944 
0.1941 
0.2431 
0.2109 
0.2210 
0.1952 
0.1055 
0.2470 
0.0719 
0.0744 
0.0723 
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130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
14 0 
141 
142 
143 
144 
14 5 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 

5345 
5355 
5377 
5390 
5390 
5390 
5390 
5410 
5411 
5415 
5420 
5420 
5420 
5467 
5506 
5525 
5612 
5685 
5685 
5734 
5770 
5830 
6120 
6120 
6120 
6120 
6140 
6140 
6140 
6165 
6175 
6195 
6395 
6395 

3 
4 
4 
1 
2 
3 
4 
4 
4 
4 
2 
1 
3 
4 
4 
4 
4 
2 
3 
4 
4 
4 
1 
2 
3 
4 
1 
2 
3 
4 
4 
4 
4 
2 

4 
4 
2 
1 
1 
2 
2 
4 
4 
4 
3 
4 
4 
2 
2 
4 
2 
3 
3 
4 
1 
2 
3 
3 
4 
4 
4 
4 
4 
4 
4 
2 
1 
2 

4 
4 
2 
2 
2 
2 
2 
4 
4 
4 
4 
4 
4 
2 
2 
3 
2 
3 
3 
1 
3 
2 
4 
4 
4 
4 
1 
1 
1 
4 
1 
2 
2 
2 

32 44.55 -110.39 7760 19.47 1.010 0.1311 0.2256 0.2184 
16 44.90 -110.23 6470 13.54 1.007 0.1678 0.1337 0.1644 
19 43.30 -104.66 4120 13.19 1.489 0.1578 0.1391 0.1512 
29 42.81 -108.73 5370 13.26 0.582 0.2892 0.2860 0.1590 
39 42.81 -108.73 5370 13.26 0.876 0.1711 0.2771 0.2404 
39 I 42.81 -108.73 5370 13.26 1.646 0.1796 0.2239 0.1779 
32 42.81 -108.73 5370 13.26 1.552 0.1895 0.1532 0.0985 
47 41.31 -105.58 7200 11.53 1.176 0.2064 0.2638 0.2160 
13 41.31 -105.58 7170 10.92 1.155 0.1746 0.0545 0.0768 
41 41.31 -105.68 7270 10.90 1.261 0.2078 0.2657 0.2208 
32 41.30 -105.63 7180 10.17 0.958 0.2678 0.2493 0.1201 
20 41.30 -105.63 7180 10.17 0.827 0.2761 0.0111 0.0310 
32 41.30 -105.63 7180 10.17 1.148 0.2344 0.2120 0.1631 
20 43.76 -105.38 4900 11.85 1.549 0.2096 0.2680 0.2165 
24 44.85 -106.28 4200 14.80 1.449 0.1691 -0.0842 0.0949 
37 42.19 -106.85 6040 10.69 1.243 0.2001 0.2395 0.1310 
27 42.10 -104.35 4150 13.02 1.807 0.2867 0.2824 0.2224 
21 42.43 -106.03 7340 10.76 0.991 0.3547 0.5091 0.3574 
21 42.43 -106.03 7340 10.76 1.200 0.2812 0.4766 0.3561 
13 43.28 -107.63 5420 8.76 1.418 0.1950 -0,0715 0.1387 
38 44.83 -108.39 3840 6.72 0.929 0.2172 0.3098 0.1799 
64 42.76 -104.43 5010 15.36 1.711 0.2155 0.1714 0.1486 
19 41.90 -106.20 6570 9.95 0.589 0,3442 0.5088 0.3718 
30 41.90 -106.20 6570 9.95 0.654 0.2477 0.3450 0.2747 
30 41.90 -106.20 6570 9.95 0.876 0.2273 0.2515 0.2386 
23 41.90 -106.20 6570 9.95 1.022 0.2271 0.1779 0.2267 
12 44.15 -108.85 5830 10.82 0.636 0.2034 -0.0977 0.1782 
24 44.15 -108.85 5830 10.82 0.835 0.2179 0.1392 0.1097 
24 44.15 -108.85 5830 10.82 1.238 0.2091 0.1865 0.0792 
24 42.95 -110.36 7700 15.32 1.157 0.1704 0.0711 0.1248 
13 44.21 -106.74 5280 11.09 1.118 0.1779 -0.0344 0.0346 
33 43.40 -106.28 4820 13.22 1.589 0.2250 0.1495 0.1249 
24 44.26 -104.95 4280 12.50 1.348 0.2256 0.2964 0.1560 
21 44.26 -104.95 4280 12.50 1.086 0.2067 0.1431 0.0115 
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164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 

6395 
6428 
6440 
6440 
6440 
6440 
6450 
6470 
6555 
6555 
6555 
6595 
6597 
6597 
6597 
6600 
6600 
6600 
6660 
6660 
6660 
6660 
6875 
6875 
6875 
6935 
6935 
6935 
7079 
7105 
7105 
7105 
7105 
7115 

3 
4 
1 
2 
3 
4 
4 
4 
1 
2 
3 
4 
1 
2 
3 
1 
2 
3 
1 
2 
3 
4 
1 
2 
3 
1 :  
2 
3 
4 
3 
4 
1 
2 
4 

2 
4 
3 
4 
4 
4 
1 
4 
4 
4 
4 
4 
3 
4 
4 
2 
2 
2 
2 
2 
2 
2 
4 
4 
4 
2 
2 
2 
2 
3 
3 
4 
4 
4 

2 
4 
4 
4 
4 
4 
2 
1 
4 
4 
4 
4 
4 
4 
4 
2 
2 
2 
2 
2 
2 
2 
4 
4 
4 
2 
2 
2 
2 
3 
3 
3 
3 
1 

21 44.26 -104.95 4280 12.50 1.526 0.2488 
24 43.66 -110.71 6470 20.86 1.283 0.1854 
12 '43.85 -110.58 6790 23.15 0.420 0.3162 
21 43.85 -110.58 6790 23.15 0.619 0.1659 
22 43.85 -110.58 6790 23.15 1,075 0.0982 - 
78 43.85 -110.58 6790 23.15 1.292 0.1833 
20 43.51 -104.33 4100 12.05 1.477 0.2046 
18 43.21 -108.80 5460 8.87 1.269 0,1760 
23 41.26 -110.35 6800 8.55 0.549 0,2483 
35 41.26 -110.35 6800 8.55 0.796 0.2271 
36 41.26 -110.35 6800 8.55 1.093 0,2377 
29 42.35 -107.46 6310 9.76 1.337 0,2091 
29 41.31 -108.91 6740 8.06 0.498 0.2828 
29 41.31 -108.91 6740 8.06 0.615 0.2262 
29 41.31 -108.91 6740 8.06 0.856 0.1994 
24 43.35 -104.11 4130 14.59 1.096 0.2295 
24 43.35 -104.11 4130 14.59 1.500 0.2124 
24 43.35 -104.11 4130 14.59 1.966 0.2353 
12 43.85 -104.20 4480 14.65 0.727 0.2541 
12 43.85 -104.20 4480 14.65 0.975 0.2181 
12 43.85 -104.20 4480 14.65 1.327 0.2190 
65 43.85 -104.20 4480 14.65 1.507 0.1956 
26 42.55 -108.18 6540 7.55 0.506 0.2071 
34 42.55 -108.18 6540 7.55 0.652 0.1943 
34 42.55 -108.18 6540 7.55 1.000 0.2240 
35 43.98 -104.41 4320 12.31 0.891 0.2644 
35 43.98 -104.41 4320 12.31 1.041 0.2166 
35 43.98 -104.41 4320 12.31 1.382 0.2049 
20 44.98 -107.43 4200 19.23 2.030 0.2291 
50 42.46 -106.85 5930 9.40 1.020 0.2391 
28 42.46 -106.85 5930 9.40 1.278 0.2778 
41 42.46 -106.85 5930 9.40 0.441 0.2117 
50 42.46 -106.85 5930 9.40 0.647 0.2039 
29 43.25 -108.68 5440 7.79 1.178 0.2020 

0.2006 
0.2604 
0.5191 
0.2034 

. O .  0401 
0.3239 
0.2665 
0.0690 
0.1727 
0.2458 
0.2199 
0.0199 
0.3067 
0.1337 
0.0180 
0.1496 
0.2190 
0.2505 
0.3924 
0.1097 
0.1453 
0.2063 
0.0775 
0.2417 
0.2328 
0.2429 
0.1383 
0.2013 
0.2441 
0.2716 
0.3600 
0.1512 
0.1015 
0.1069 

0.0491 
0.1270 
0.2784 
0.2756 
0.1069 
0.2272 
0.1697 
0.1154 
0.0423 
0.0854 
0.0691 
0.1027 
0.1415 
0.1018 
0.0498 
0.1632 
0.2215 
0.1187 
0.3131 
0.0838 
0.1333 
0.1291 
0.0510 
0.2671 
0.2646 
0.1966 
0.2169 
0.1714 
0.2318 
0.2471 
'0.2127 
0.1241 
0.1516 
0.1512 

116 



198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 

7200 
7200 
7200 
7200 
7235 
7260 
7270 
7270 
7270 
7376 
7380 
7473 
7533 
7533 
7533 
7545 
7545 
7545 
7760 
7760 
7760 
7810 
7840 
7840 
7840 
7955 
7980 
7990 
7995 
7995 
7995 
8070 
8070 
8070 

1 
2 
3 
4 
4 
4 
1 
2 
3 
4 
4 
4 
2 
3 
1 
1 
2 
3 
1 
2 
3 
4 
1 
2 
3 
4 '  
4 
4 
1 
2 
3 
2 
3 
4 

2 
2 
2 
2 
2 
4 
2 
2 
2 
4 
1 
1 
3 
3 
4 
2 
2 
2 
1 
1 
1 
2 
3 
3 
3 
4 
3 
4 
3 
3 
4 
3 
3 
3 

2 
2 
2 
2 
2 
4 
2 
2 
2 
1 
1 
1 
4 
4 
4 
2 
2 
2 
1 
1 
1 
2 
4 
4 
4 
4 
3 
4 
4 
4 
4 
3 
3 
3 

39 
47 
47 
32 
53 
32 I 

30 
30 
30 
12 
62 
36 
33 
33 
33 
36 
45 
45 
26 
26 
26 
40 
20 
20 
20 
21 
21 
39 
27 
36 
36 
43 
44 
19 

41.63 
41.63 
m41.63 
41.63 
41.18 
42.86 
43.71 
43.71 
43.71 
43.01 
44.75 
44.18 
41.80 
41.80 
41.80 
44.75 
44.75 
44.75 
43.01 
43.01 
43.01 
43.60 
41.58 
41.58 
41.58 
41.86 
42.76 
41.45 
41.50 
41.50 

-104.48 
-104.48 
-104.48 
-104.48 
-104.06 
-109.86 
-105.63 
-105.63 
-105.63 
-107.00 
-108.76 
-107.95 
-107.20 
-107.20 
-107.20 
-105.70 
-105.70 
-105.70 
-108.38 
-108.38 
-108.38 
-104.90 
-109.21 
-109.21 
-109.21 
-111.00 
-108.18 
-106.81 
-106.80 
-106.80 

4980 
4980 
4980 
4980 
5050 
7180 
5110 
5110 
5110 
5960 
4380 
4020 
6740 
6740 
6740 
4150 
4150 
4150 
4950 
4950 
4950 
4500 
6270 
6270 
6270 
6210 
6060 
6790 
6800 
6800 

41.50 -106.80 6800 
42.13 -106.88 6840 
42.13 -106.88 6840 
42.13 -106.88 6840 

14.89 1.038 0,2679 
14.89 1.230 0.2335 
14.89 1.633 0.2299 
14.89 1.664 0.2055 
15.04 1.726 0.2410 
11.13 0.928 0.1874 
12.31 1.034 0.2329 
12.31 1.241 0.2242 
12.31 1.662 0.2504 
12.63 1.193 0.1927 
6.07 0.913 0.2257 
6.80 1.035 0.2408 
8.25 0.585 0.2568 
8.25 0.855 0.2405 
8.25 0.456 0.2664 

13.25 0.874 0.2023 
13.25 1.053 0.1822 
13.25 1.362 0.1847 
7.68 0.517 0.2849 
7.68 0.743 0.2537 
7.68 1.194 0.2212 

12.72 1.462 0.2061 
7.91 0.486 0.2854 
7.91 0.689 0.2569 
7.91 1.107 0.2468 

10.62 1.014 0.1448 
9.70 1.514 0.2474 
9.51 1.056 0.2125 
8.56 0.552 0.3242 
8.56 0.678 0.2700 
8.56 0.872 0.2278 

12.49 0.820 0.2571 
12.49 1.229 0.2615 
12.49 1.417 0.2743 

0.3746 
0.2836 
0.3009 
0.2930 
0.3268 
0.2345 
0.0974 
0.1964 
0.2554 
0.0394 
0.1374 
0.2563 
0.3010 
0.3177 
0.3631 
0.2199 
0.2012 
0.2118 
0.2916 
0.1280 
0.1161 
0.1340 
0.3115 
0.3113 
0.2288 
0.2177 
0.2150 
0.2997 
0.4654 
0.3768 
0.2844 
0.3633 
0.3883 
0.4368 

0.2504 
0.2370 
0.2118 
0.1430 
0.2584 
0.1770 
0.0830 
0.1435 
0.2293 
0.1950 
0.0934 
0.1532 
0.2546 
0.2944 
0.2727 
0.1505 
0.2306 
0.1751 
0.3614 
0.0866 
0.0032 
0.0447 
0.1216 
0.0605 
0.0563 
0.1820 
0.1641 
0.1658 
0.3424 
0.3213 
0.2510 
0.2655 
0.3253 
0.3352 
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232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
24 9 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 

8070 
8124 
8155 
8155 
8155 
8155 
8160 
8209 
8315 
8385 
8475 
8705 
8758 
8808 
8820 
8820 
8845 
8852 
8852 
8852 
8852 
8858 
8875 
8875 
8875 
8875 
8880 
8888 
8888 
8888 
8888 
8995 
9000 
9000 

1 
4 
1 
4 
2 
3 
4 
4 
4 
4 
4 
4 
4 
4 
2 
3 
4 
2 
3 
4 
1 
4 
1 
2 
4 
3 
4 
1 
2 
3 
4 
4 
1 
2 

4 
1 
1 
1 
2 
2 
2 
1 
4 
4 
2 
2 
4 
2 
4 
4 
2 
2 
2 
2 
3 
1 
1 
1 
1 
3 
1 
1 
4 
4 
4 
2 
2 
2 

3 
3 
2 
2 
2 
2 
2 
1 
4 
4 
2 
2 
3 
2 
4 
4 
2 
3 
3 
3 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 

35 42.13 -106.88 
17 44.55 -107.80 
41 144.76 -106.96 
34 44.76 -106.96 
50 44.76 -106.96 
50 I 44.76 -106.96 
68 44.85 -106.86 
37 43.23 -108.11 
19 44.13 -110.66 
57 42.46 -108.80 
18 43.43 -104.16 
66 44.40 -104.35 
17 44.05 -108.98 
26 41.76 -105.38 
15 43.71 -109.63 
15 43.71 -109.63 
26 41.35 -104.38 
21 44.06 -107.41 
21 44.06 -107.41 
21 44.06 -107.41 
21 44.06 -107.41 
33 43.81 -107.36 
27 43.65 -108.20 
27 43.65 -108.20 
13 43.65 -108.20 
27 43.65 -108.20 
23 43.65 -108.21 
26 43.71 -108.68 
26 43.71 -108.68 
26 43.71 -108.68 
22 43.71 -108.68 
66 42.08 -104.21 
28 42.05 -104.18 
36 42.05 -104.18 

6840 
4230 
3940 
3940 
3940 
3940 
3800 
4830 
6880 
7880 
3800 
4750 
6440 
6100 
7840 
7840 
5620 
4800 
4800 
4800 
4800 
4680 
4310 
4310 
4310 
4310 
4400 
5700 
5700 
5700 
5700 
4100 
4090 
4090 

12.49 
10.24 
14.67 
14.67 
14.67 
14.67 
15.32 
6.53 

31.67 
12.96 
13.78 
17.54 
14.67 
16.11 
17.63 
17.63 
16.28 
13.14 
13.14 
13.14 
13.14 
13.01 
10.93 
10.93 
10.93 
10.93 
12.26 
11.72 
11.72 
11.72 
11.72 
13.79 
12.85 
12.85 

0.582 
1.282 
0.665 
1.425 
0.992 
1.626 
1.759 
0.931 
1.452 
1.126 
1.567 
1.645 
1.641 
1.665 
0.815 
1.371 
1.887 
0.974 
1.414 
1.591 
0.695 
1.239 
0.520 
0.731 
1.253 
1.173 
1.396 
0.615 
0.766 
1.220 
1.346 
1.662 
0.962 
1.218 

0.2466 
0.1523 
0.1732 
0.2305 
0.2043 
0.2198 
0.2333 
0.1897 
0.1731 
0.1793 
0.1313 
0.1913 
0.1296 
0.1795 
0.1699 
0.1697 
0.2316 
0.2574 
0.2395 
0.2016 
0.3143 
0.1723 
0.2594 
0.2036 
0.1822 
0.2751 
0.1846 
0.2366 
0.1884 
0.1882 
0.1756 
0.2242 
0.2504 
0.2436 

0.2918 
0.3671 
0 .la18 
0.1955 
0.2872 
0.2844 
0.2181 
0.0688 
0.1559 
0.1907 

-0.0793 
0.1699 
0.1041 
0.0268 
0.1245 
0.2898 
0.2590 
0.2490 
0.2559 
0.1741 
0.3950 
0.4023 
0.1609 
0.0544 
0.2776 
0.3161 
0.2717 
0.3001 
0.1062 
0.1449 
0.1877 
0.2448 
0.1889 
0.2690 

0.1126 
0.1652 
0.1545 
0.1571 
0.2035 
0.1690 
0.1570 
0.0876 
0.0719 
0.1684 
0.0185 
0.1047 
0.1227 
0.0509 
0.1397 
0.1957 
0.1539 
0.0705 
0.0308 
0.1573 
0.1101 
0.3574 
0.0745 
0.2210 
0.2045 
0.2756 
0.3219 
0.1828 
0.1084 
0.1083 
0.1006 
0.2250 
0.1943 
0.3162 
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266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 

9000 
9025 
9205 
9207 
9459 
9580 
9604 
9615 
9770 
9775 
9775 
9775 
9785 
9905 
9925 

3 
4 
4 
4 
4 
4 
4 
4 
4 
1 
3 
2 
4 
4 
4 

2 
4 
1 
2 
4 
2 
2 
2 
1 
1 
1 
3 
1 
4 
2 

2 
4 
2 
2 
4 
2 
2 
2 
1 
1 
1 
1 
1 
4 
2 

36 
25 
38 
44 
32 
34 ' 

38 
71 
72 
15 
24 
24 
30 
29 
35 

42.05 -104.18 4090 12.85 1.684 
44.91 -110.41 6270 16.55 1.186 
44.10 -104.61 4260 14.19 1.485 
43.93 -104.76 4780 12.71 1.576 
41.68 -107.98 6800 5.96 0.900 
44.63 -105.31 3530 12.30 1.569 
42.25 -104.63 4290 12.68 1.711 
42.11 -104.95 4640 12.82 1.756 
44.01 -107.96 4060 7.62 1.078 
43.95 -108.03 4150 5.65 0.439 
43.95 -108.03 4150 5.65 1.014 
43.95 -108.03 4150 5.65 0.768 
43.96 -107.96 4170 7.49 1.039 
44.96 -110.70 6200 15.55 1.133 
41.93 -104.30 4230 14.02 1.773 

0.2294 
0.1807 
0.1832 
0.2054 
0.2038 
0.2134 
0.2451 
0.2024 
0.2407 
0.2598 
0.2331 
0.2828 
0.1974 
0.2082 
0.1819 

0.3060 0.2008 
0.2538 0.2807 
0.2579 0.2932 
0.0708 0.0828 
0.2494 0.2391 
0.2182 0.2711 
0.2328 0.2182 
0.1837 0.2330 
0.1847 0.1715 
0.3218 0.0727 
0.2391 0.1762 
0.3135 0.1800 
0.3104 0.1949 
0.3045 0.1717 
0.1576 0.0717 
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