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ABSTRACT 

This study contains two mjor tasks. The first task is concemed with the identification 

of representative sipficant storm patterns in Wyoming. Significant storms refer to those 

events with the total depth equal to or greater than that of a 10-year storm. The method 

employed was chster analysis. Contingency tests were performed to examine the dependency 

of the occurrence of storm patterns on the climatic region, storm duration, and seasonality. 

Parametric models were used to fit storm patterns. The second task is the development of 

procedures to stochastically generate storm patterns. Three methods based on the 

multivariate Johnson system are proposed. An additional issue addressed under this task is 

the selection of alternative n o d  trdomations with fkvorable small sample qualities. Four 

such procedures are proposed and their performance is examined. 
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CHAPTER 1 

INTRODUCTION 

1.1 PROBLEM STATEMENT 

To design a hydraulic structure or to evhate  the performance of a hydraulic 

structure, information about the storm event under consideration is oRen required. For 

example, in dam safety eva€uation, the inflow design flood of a specified return period is often 

computed fiom a synthetic (design) storm in conjunction with the use of an appropriate 

r a - r u n o f f  model. In this process, the complete description of a design storm involves the 

specification of storm depth, duration, and its temporal pattern. To use an appropriate 

temporal pattern for a design storm is of great importance in the design and evaluation of 

hydrologic safety for hydraulic structures. 

To assess the reliability of hydraulic structures, the general engineering practice is to 

pre-select the duration and the return period of the design storm fiom which the 

corresponding storm depth is determined by fiequency analysis. For each storm type, there 

exists intrinsic randomness m the amount of precipitation within the design storm. Therefore, 

the actual time distribution of precipitation amount within a design storm is subject to 

uncertainty. One should evaluate the performance of hydraulic structures for a given design 

storm under several possible storm distributions. Procedures to generate temporal 

distributions for design storms are essential in this process. 
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Generating temporal distributions for design storms requires Monte Carlo simulation 

invoking n o n - n o d  randomvariables. In such an exercise, a common practice to derive the 

distribution representation for a given sample is to fit a parametric distribution by matching 

their moments. In general, the &iution will be better described Xthe number of statistical 

moments used increases. However, the higher order moments such as skewness and kurtosis 

generally are associated with large standard errors, especially when the sample size is not 

large, and the extent of sample error increases rapidly as the order of moments gets large. 

Therefore, it is desirable to h d  n o d  transformations with fkvorable small sample qualities. 

1.2 OBJECTIVES AND SCOPE OF THE RESEARCH 

There are two primary objectives in this study. The first is to ident@ representative 

significant storm patterns in Wyoming. Accompanying this is the selection of parametric 

models to describe the representative storm patterns. The second primary objective is the 

development of statistical procedures to generate temporal distributions for a given storm 

pattern. Efforts have also been made to find appropriate alternative normal transformations 

for generating storm patterns. 

Various methods have been developed to identify storm patterns for general storms, 

while this study concentrates on the identification of storm patterns for significant storms 

having a total depth no less than that of a 10-year event. The storm pattern identified in this 

study is the average storm patterns for complete storms but not intense bursts of individual 
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rainfall. The Monte Carlo simulation procedure developed in this study to generate storm 

patterns (Chapter 3) is not a fdl multivariate simulation procedure but preserves partial 

information such as the marginal density functions, moments and correlation structure of a 

given storm pattern. 

1.3 ORGANIZATION OF THE THESE3 

The remainder of this thesis consists of four chapters. Chapter 2 describes the 

procedure for the identification of representative storm patterns in Wyoming. Parametric 

models are selected to describe representative storm patterns. In Chapter 3, the procedure 

for generating the representative storm patterns are developed based on the multivariate 

Johnson system. Chapter 4 focuses on finding the appropriate alternatives for n o d  

transformation with favorable small sample properties. Performance evaluation of several 

alternative methods are made. A summary and some recommendations for fbture research 

are given in Chapter 5.  
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CHAPTER 2 

IDENTIFICATION OF STORM PATTERNS IN WYOMING 

2.1 INTRODUCTION 

To design a hydraulic structure or to evaluate its performance, information about the 

storm event under consideration is often required. The essential characteristics of a storm 

event include its total depth, duration, and the temporal variation of precipitation amount 

within the storm duration. For example, in dam safety evaluation, the inflow design flood of 

a specified return period is often computed fiom a synthetic (design) storm in conjunction 

with the use of an appropriate r a - r u n o f f  model. In this process, the depth, duration, and 

temporal pattern of the design storm are required. 

Various methods have been developed to generate synthetic (design) storms. Chen 

(1976) categorized these methods into four general types. One typical way to formulate the 

synthetic storm is to derive it fiom the intensity-duration-frequency (IDF) relationshtp (e.g. 

Bandyopadhyay, 1972; Chen, 1976; Raudkivi and Lawgun, 1970). As Pilgrim and Cordery 

(1975) pointed out, the rainfall represented by the IDF formulas only depicts intense bursts 

within storms. It is important to develop a complete storm pattern rather than intense bursts 

of individual rainfall. The approach taken in this study follows those which develop the 

average storm patterns for complete storms, rather than intense bursts of individualmidill, 

using observed precipitation records. 
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In general, temporal patterns for complete storms were sought empirically. In the 

study of storm patterns m Illinois urban areas, Huff( 1967) divided all storms into four groups 

called the fist-quartile, second quartile, third quartile, and fourth quartile storms, according 

to whether the heaviest rainfall occurs in the first, second, third, or fourth quarter of the 

storm Pilgrim and Cordery (1975) developed a procedure based on the rank of the rainfall 

depth m particxdar time periods. In this paper, cluster analysis is applied for identi@ng storm 

patterns. 

The main concern of this chapter is the identification of representative storm patterns 

m Wyoming for design and safety evaluation of major hydraulic structures such as dams and 

bridges. Tyrrell(l982) developed design storm patterns in Wyoming for use in predicting 

floods and design storm patterns were constructed fiom all the observed rainfalls. However, 

the focus of this study is placed on the sigdicant storms which can be region and location 

specific. A significant storm event m a dry region may be considered as insignificant in a wet 

region. Therefore, a significant storm in this study was defined as a storm event having the 

total depth equal to or greater than the storm depth of a 10-year event at a particular location. 

2.2 CHARACTERIZATION OF STORM TEMPORAL PATTERN 

During a storm event, the precipitation amounts vary with respect to time at a given 

location. To idente  the distinctly Werent storm patterns for the observed storm events, 

temporal patterns about storm events should be characterized. Due to the variation of storm 
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duration and storm depth from one event to another, characterization of similarity or 

dissimilarity of different storm temporal patterns can best be achieved by using a 

dimensionless scale. 

The dimensionless storm pattern can be obtained by dividing the storm depths at 

different times (dJ by the total storm depth (D) as P , = W  and the time by the storm duration 

(T) as t'=t/T. Three example dimensionless rainfall mass curves and their corresponding 

dimensionless rainfall hyetographs using six time increments are shown in Figs. 2.l(a) and 

2.1(b), respectively. Using the dimensionless measures of time and raiddl depth, storm 

events with Werent depths and durations can be combined to identi@ the typical family of 

storm patterns. 

The dimensionless mass curve shows the cumulahe percentages of storm depth, X,P,, 

over the non-dimensionalized time (t'). To characterize the storm temporal pattern using the 

rainfall mass curve, the selection of the number of time points over the storm duration is 

subjective. Too few points may not accurately describe the underlying variation of storm 

pattern. On the other hand, too many points would capture unwanted sample noises masking 

the essential feature of the storm pattern. For this study, the entire storm duration was 

divided into six equal intervals in this study and the cumulated percentages at T/6,2T/6,3T/6, 

4T/6, and 5T/6 were used in the statistical chster analysis for identifjbg representative storm 

patterns. 

Since the vertical axis ofthe dimensionless rainfhll mass curve ranges fiom 0 to 1 and 

it is non-decreasing, these storm patterns can be viewed as a cumulative distribution function 

for the dimensionless time. As an alternative to the rainfhll mass curve, statistical moments 
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Fig. 2.1. Illustrations of Dimesionless Rainfall Mass Curves and the Corresponding 
Dimensionless Rainfall Hyetographs 
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ofthe dimensionless time for each storm event can be calculated and used to characterize the 

temporal pattern of a storm event. In this study, the first four central moments of the 

dimensionless time (t/T) were adopted to characterize the storm temporal pattern. 

Note that the original data are the hourly precipitations and the continuous variation 

of precipitation within one hour is not known. As a result, the contmuous raiddl hyetograph 

can be discretely approximated as Fig. 2 4 b )  fiom which the statistical moments of 

dimensionless time can be calculated as 

T 
p = q P t  

t=l  

I 
o3 

where p, 0, y, and K are the mean, standard deviation, skew coefficient, and kurtosis of the 

dimensionless time, respectively. 
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2.3 DATABASE FOR WYOMING STORMS 

Sigtllscant storms were extracted fiom NCDC HOURLY AND 15 MINUTE 

PRECIPITATION which is commercially available fiom EartbItlfo, Inc.. A total of 379 storm 

events were extracted based on the thredold value approximately equal to the depth of a 10- 

year event for each precipitation gage station. The threshold precipitation depths were 

determined fiom the at-site fiequency analysis on the annual m a x i m .  depth of different 

durations (Eastwood, 1995). The Gmoments method (Hosking, 1986) was used in the 

fiequency analysis. According to the regional analysis of annual maximum storm statistics 

(Eastwood, et al., 1994), the entire State of Wyoming was divided mto four climatically 

homogeneous regions. This idionnation was combmed with state code, station identification, 

date of storm occurrence, storm duration, and hourly precipitation depth to generate the data 

file of significant storms. Table 2.1 lists the  oma at ion for Wyoming stations analyzed in the 

study. 

Based on the compiled hourly precipitation data file, storm patterns for two database 

types were generated: duration-based database and event-based database. The former is 

needed for establishing storm patterns whose storm duration is specified whereas the latter 

is u se l l  for generating storm patterns with variable storm duration and storm depth. 

Duration-based storm patterns are usefid in design practice where the duration of a design 

storm is specified in advance whereas the event-based storm patterns are usefid for 

synthesizing and simulating storm events. 
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Table 2.1 Information about Precipitation Stations Analyzed in Wyoming 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I-I 
O I  

I 
I 
I 

I 

Stat ion I Station! 
Name I ID I 

ALADDIN I 50 I 
ALADDIN 6 S I 56 I 
ANTELOPE SPRINGS I 237 I 
ARAPAHOE RANCH I 250 I 
BADWA'IZR 2 N I 470 I 
BAR"M 1 N I 528 I 

I 540 I 
I 640 I 

BIG PINEY I 695 I 
I 697 I 

BILL 15 SW I 735 I 
BOYSEN DAM I 1000 I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

BAS IN 
BEULAH 8 WSW 

BUFFALO I 1165 I 
BURLINGTON I 1240 I 
BURRIS I 1284 1 
CASPER WSO AP I 1570 I 
CHEYENNE WSFO AP I 1675 I 
CIRCLE H RANCH I 1743 I 
CLARETON 3 NE I 1750 I 
CODY I 1840 I 
CODY 1 SSE I 1845 1 
CRESTON I 2175 I 
CROWHEART I 2223 I 
CROWHEART 2 E I 2228 I 
DIVERSION DAM I 2595 I 
DIVERSION DAM 1 E I 2596 I 
DOUGLAS I 2685 I 
DOUGLAS AIRPORT CAA 1 S I 2690 1 
DOUGLAS AVIATION I 2693 I 
DOUGLAS 17 NE I 2696 I 
DUB0 I S I 2715 I 
DULL CENTER 1 SE I 2725 I 
EMBLEM I 3031 I 
ENCAMPMENT I 3050 I 
EVANSTON 1 E I 3100 I 
FORT BRIDGER CAA AIRPOR I 3430 I 
GARLAND I 3770 I 
GARRETT I 3784 I 
GARRETT 3 WNW I 3787 I 

Begin 
Date 

. - - - - - - - - - - -  
04/01/1951 
04/01/1952 
08/01/1950 
08/01/1948 
08/01/1948 
11/01/1949 
08/01/1949 
08/01/1952 
08/01/1948 
11/01/1992 
08/01/1950 
08/01/1948 
08/01/1948 
02/01/1950 
11/01/1951 
08/01/1948 
08/01/1948 
03/01/1951 
11/01/1949 
09/01/1948 
08/01/1949 
08/01/1948 
09/01/1949 
06/01/1950 
08/01/1949 
04/01/1955 
02/01/1960 
08/01/1948 
08/01/1962 
09/01/1957 
08/01/1949 
08/01/1948 
11/01/1957 
08/01/1948 
08/01/1948 
08/01/1948 
08/01/1948 
09/01/1951 
05/01/1956 

I End 
I Date 

I 04/30/1952 
I 08/31/1952 
I 09/30/1950 
I 04/07/1950 
I 03/31/1960 
I 06/24/1958 
I 06/23/1958 
I 06/22/1958 
I 08/31/1992 
I 12/15/1992 
I 10/31/1972 
I 12/15/1992 
I 12/29/1992 
I 11/30/1957 
I 04/30/1952 
I 12/30/1992 
I 12/18/1992 
I 10/31/1957 
I 07/31/1955 
I 09/25/1951 
I 12/31/1959 
I 02/29/1984 
I 02/11/1950 
I 11/30/1951 
I 03/31/1955 
I 06/25/1958 
I 08/31/1962 
I 02/29/1960 
I 12/15/1992 
I 12/31/1992 
I 12/29/1992 
I 12/30/1992 
I 06/24/1958 
I 12/30/1992 
I 12/30/1992 
I 03/31/1966 
I 08/31/1966 
I 04/30/1956 
I 06/25/1958 

- - - - - - - - - - - - -  
I Rec I 
IYearsl Latitude 

I 2 I N44:38:00 
I 1 I N44:33:00 
I 1 I N43:26:00 
I 3 I N43:43:00 
I 13 I N43:21:00 
I 10 I N43:42:00 
I 10 1 N44:23:00 
I 7 I N44:31:00 
I 45 I N42:33:00 

I 21 I N43:07:00 
I 45 I N43:25:00 
I 45 I N44:21:00 
I 8 I N44:27:00 
I 2 I N43:22:00 
I 45 I N42:55:00 
I 45 I N41:09:00 
I 7 I N44:30:00 
I 7 I N43:44:00 
I 4 I N44:31:00 
I 11 I N44:31:00 
I 35 I N41:44:00 
I 2 I N43:18:00 
I 2 I N43:18:00 
I 7 I N43:14:00 
I 4 I N43:14:00 
1 3 I N42:46:00 
I 13 I N42:45:00 
I 31 I N42:45:00 
I 36 I N42:57:00 
I 33 I N43:34:00 
I 45 I N43:25:00 
I 2 I N44:30:00 
I 42 I N41:12:00 
I 45 I N41:16:00 
I 16 I N41:24:00 
I 19 I N44:47:00 
I 6 1 N42:07:00 
I 3 I N42:08:00 

- - - - - - - - - - - - - - - - - -  

I 1 I N--:--:-- 

I I I Threshold I I #.  of I 
I Longitude I Elev. I (inch) I Region I event I 

I W104:ll:OO I 3740 I 2.5 I 2 I 0 I 
I W104:12:00 I 3850 I 2.5 1 2 I 0 I 
I W106:35:00 I 5180 I 1.9 I 2 I 0 I 
I W107:25:00 I 6260 I 1.7 I 1 I 0 I 
I W106:55:00 I 5150 I 1.7 I 1 I 0 I 
I W108:03:00 I 3840 I 1.2 I 1 I 0 I 
I W104:16:00 I 4170 I 2.5 I 2 I 0 I 
I W110:07:00 I 6820 I 1.2 I 4 I 5 1 
I W105:30:00 I 5410 I 1.9 I 2 I 5 I 
I W108:ll:OO I 4640 I 1.5 I 1 I 7 I 
I W106:41:00 I 4670 I 1.8 I 3 I 4 I 
I W108:25:00 I 4430 I 1.2 I 1 I 0 I 
I W109:17:00 I 6120 I 1.5 I 4 I 0 I 
I W106:28:00 I 5340 I 2.0 I 3 I 9 I 
I W104:49:00 I 6120 I 1.9 I 2 I 10 I 
1 W109:32:00 I 6310 I 1.3 I 3 I 2 I 
I W104:40:00 I 4220 I 1.9 I 2 I 2 I 
I W109:04:00 I 5050 I 1.3 I 1 I 0 I 
I W109:03:00 I 5050 I 1.3 I 1 I 2 I 
I W107:44:00 I 7040 I 1.1 I 4 I 1 I 
I W109:ll:OO I 6070 I 1.5 I 4 I 0 I 
I W109:08:00 I 5960 I 1.5 I 4 I 2 I 
I W108:56:00 I 5580 I 1.7 I 1 I 1 I 
I W108:56:00 I 5560 I 1.7 I 1 I 0 I 
1 W105:23:00 I 4800 I 1.7 I 2 I 1 I 
I W105:22:00 I 4880 I 1.7 I 2 I 0 I 
I W105:23:00 I 4810 I 1.7 I 2 I 8 I 
I W105:09:00 I 4930 I 1.7 I 2 I 14 I 
I W109:38:00 I 6960 I 1.2 I 4 I 4 I 
I W104:57:00 I 4420 I 1.9 I 2 I 5 I 
1 W108:24:00 I 4450 I 1.3 I 1 I 0 I 
I W106:47:00 I 7290 I 1.6 I 4 I 3 I 
I W110:57:00 I 6810 I 1.1 I 4 I 6 I 
I W110:25:00 I 7020 I 1.1 I 4 I 1 I 
I W108:40:00 I 4250 I 1.2 I 1 I 2 I 
I W105:36:00 1 6820 I 1.3 I 3 I 0 I 
I W105:39:00 I 7120 I 1.3 I 3 I 0 I 

- - - - -_ - - - - - - - -_ - - -__ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

I W108:32:00 I - - -  I 1-4 I 1 I 0 1  

I I w---.--.-- I - - -  I - - -  I - I - - -  . .  



Table 2.1 (continued) 

- -  

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

r l  
'I 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Station 
Name 

. . . . . . . . . . . . . . . . . . . . . . .  
GILLETTE 9 SW 
GILLETTE 18 SW 
HAMILTON DOME 
HAT CREEK 14 N 
HILAND 
HORSE CREEK RANGER STN 
HYATTVILLE 
JACKSON 
JELM 2 S 
K A N E l N  
KANE 2 sw 
KEYHOLE DAM 
KIRWIN 
LAKE YELLOWSTONE 
LANCE CREEK 
LANDER WSO AP 
LARAMIE FAA AIRPORT 
LARAMIE 2 WSW 
LITTLE MEDICINE 4 NNW 
LYMAN 
LYSITE 12 NNW 
MAIL CAMP 
MAYOWORTH 
MEDICINE BOW 
MEETEETSE 
MEETEETSE 2 
MIDDLE FORK 
MIDWEST 6 N 

MONETA 2 "E 
MONETA 21 SSE 
MONETA 25 S 
MOORCROFT CAA 
MOORCROFT 2 
MOORCROFT 16 S 
M O M  5 WNW 
MORTON 28 NW 
MOUNTAIN VIEW 
MUD SPRINGS 

I Station1 
I ID I - - - - - - - - - - -  
I 3860 I 
I 3865 I 
I 4205 I 
I 4310 I 
I 4546 I 
I 4710 I 
I 4796 I 
I 4910 I 
I 4930 I 
I 5021 I 
I 5026 I 
I 5137 I 
I 5186 I 

I 5371 I 
I 5390 I 
1 5415 I 
I 5420 I 
I 5685 1 
I 5836 I 
I 5850 I 
I 5878 I 
I 6075 I 
I 6120 I 
I 6140 I 
I 6145 I 
I 6185 I 
I 6200 I 
I 6210 I 
I 6381 I 
I 6382 I 
I 6383 I 
I 6395 I 
I 6410 I 
I 6415 I 
I 6440 I 
I 6465 I 
I 6555 I 
I 6597 I 

I 5345 I 

Begin I End 
Date I Date 

. . . . . . . . . . . . . . . . . . . . . . . .  
08/01/1948 I 05/31/1960 
05/01/1960 I 05/31/1986 
06/01/1950 I 06/25/1958 
08/01/1950 I 01/31/1984 
06/01/1950 I 06/24/1958 
08/01/1968 I 04/30/1983 
08/01/1949 I 06/24/1958 
08/01/1948 I 12/31/1992 
08/01/1948 I 12/13/1992 
08/01/1949 I 06/24/1958 
11/01/1951 I 03/31/1958 
10/01/1949 I 12/31/1958 
01/01/1969 I 08/31/1975 
08/01/1948 I 12/30/1992 
08/01/1950 I 12/31/1992 
08/01/1948 I 12/15/1992 
09/01/1948 I 09/21/1951 
08/01/1948 I 12/30/1992 
08/01/1948 I 06/30/1961 
10/01/1956 I 03/31/1960 
08/01/1950 I 10/31/1954 
06/01/1950 I 03/31/1954 
11/01/1949 I 06/24/1958 
08/01/1948 I 12/31/1992 
08/01/1948 I 11/30/1976 
10/01/1976 I 01/31/1982 
08/01/1948 I 12/31/1955 
08/01/1948 I 10/31/1958 
03/01/1987 I 03/20/1987 
06/01/1950 I 07/29/1950 
08/01/1953 I 09/30/1955 
08/01/1950 I 08/31/1953 
11/01/1948 I 12/31/1992 
08/01/1948 I 10/29/1948 
12/01/1949 I 04/29/1950 
08/01/1948 I 12/31/1992 
06/01/1950 I 06/24/1958 
03/01/1966 I 12/30/1992 
05/01/1953 I 12/30/1992 

I Rec I 
]Years1 Latitude 

I 13 I N44:13:00 
I 27 I N44:05:00 
I 9 I N43:47:00 
I 35 I N43:08:00 
I 9 I N43:07:00 
I 12 I N43:40:00 
I 10 I N44:15:00 
I 45 I N43:29:00 
I 45 I N41:05:00 
I 4 I N44:51:00 
I 8 I N44:50:00 
I 10 I N44:23:00 
I 5 I N43:54:00 
I 45 I N44:33:00 
I 43 I N43:03:00 
I 45 I N42:49:00 
I 4 I N41:19:00 
I 45 I N41:18:00 
I 14 I N42:26:00 
I 5 I N41:20:00 
I 5 I N43:26:00 
I 5 I N43:35:00 
I 10 I N43:50:00 
I 44 I N41:54:00 
I 29 I N44:09:00 
I 7 I N44:09:00 
I 8 I N42:45:00 
I 11 I N43:30:00 

I 1 I N43:10:00 
I 3 I N42:52:00 
I 4 I N42:48:00 
I 39 I N44:16:00 
I 1 I N44:16:00 
I 2 I N44:02:00 
I 45 I N43:51:00 
I 9 I N43:31:00 
I 27 I N41:16:00 
I 40 I N41:19:00 

- - - - - - - - - - - - - - - - - -  

I 1 I N--:--:-- 

I I 
I Longitude I 

I W105:38:00 I 
I W105:43:00 I 
I W108:33:00 I 
I W104:22:00 I 
I W107:20:00 I 
I W109:38:00 I 
I W107:35:00 I 
I W110:46:00 I 
I W106:OO:OO I 
I W108:12:00 I 
I W108:14:00 I 
I W104:46:00 I 
I W109:17:00 I 
I W110:24:00 I 
I W104:39:00 I 
I W108:44:00 I 
I W105:41:00 I 
I W105:38:00 I 
I W106:02:00 I 
I W110:18:00 I 
I W107:43:00 I 
I W108:51:00 I 
I W106:47:00 I 
I W106:12:00 I 
I W108:51:00 I 
I W108:53:00 I 
I W108:48:00 I 
I W106:16:00 I 

I W107:42:00 I 
I W107:36:00 I 
I W107:43:00 I 
I W104:57:00 I 
I W104:56:00 I 
I W104:58:00 I 
I W110:35:00 I 
I W109:04:00 I 

I W108:55:00 I 

- - - - - - - - - - - - - - - -  

I I w---.--.-- . .  

I w110:21:00 I 

I Threshold I I # .  of I 
Elev. I (inch) I Region I event I 

. - - - - - -  
4850 
4910 
5600 
4320 
6000 
7810 
4470 
6230 
7580 
3640 
3770 
4190 
9190 
7770 
4410 
5560 
7270 
7180 
7350 
6710 
5600 
6460 
5220 
6570 
5830 
5750 
6280 
- - -  
- - -  
5520 
- - -  
- - -  
4210 
4220 
4350 
6790 
7150 
6800 
6740 



Table 2.1 (continued) 
Station I Station( Begin I 
Name I ID I Date I 

I 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I MULE CREEK I 6600 I 12/01/1949 I 
I NEWCASTLE I 6660 I 08/01/1948 I 
I OREGON TRAIL CROSSING I 6875 I 08/01/1948 I 
I OSAGE I 6935 I 03/01/1950 1 
I PATHFINDER DAM I 7105 I 08/01/1948 I 
I PAVILLION I 7115 I 07/01/1949 I 
I PHILLIPS I 7200 I 08/01/1948 I 
I PINE BLUFFS I 7235 I 05/01/1979 I 
I PINE BLUFFS 5 W I 7240 I 08/01/1948 I 
I PINE TREE 9 NE I 7270 I 12/01/1949 I 
I POWDER RIVER SCHOOL I 7375 I 10/01/1958 I 
I POWELL FIELD STN I 7388 I 08/01/1966 I 
I RAVEN I 7518 I 10/17/1950 I 
I RAWLINS FAA AIRPORT I 7533 I 03/01/1951 I 
I RECLUSE I 7545 I 08/01/1948 I 
I RIVERTON USBR I 7760 I 09/01/1955 I 

+ I RIVERTON USBR 1 7765 1 08/01/1949 I 
f3 I RIVERTON 19 N I 7780 I 10/01/1951 I 

I ROCK SPRINGS I 7840 I 04/01/1954 I 
I ROCK SPRINGS FAA AP I 7845 I 08/01/1948 I 
I SAND DRAW 21 ENE I 7982 I 07/01/1949 I 
I SARATOGA 4 N I 7995 I 08/01/1948 I 

I 7997 I 10/01/1967 I 
I 7998 I 06/01/1967 I 
I 8070 I 08/01/1948 I I SEMINOE DAM 

I SHAWNEE 14 N I 8099 I 11/01/1949 I 
I SHELL I 8124 I 08/01/1953 I 
I SHELL 5 N I 8127 I 09/01/1949 I 
I SHERIDAN WSO AP I 8155 1 08/01/1948 I 
I SHIRLEY BASIN STN I 8192 I 06/01/1961 I 
I SINCLAIR AIRPORT CAA 2 I 8285 I 08/01/1948 I 
I STORY I 8626 I 04/01/1950 I 
I SUSSEX 3 W I 8801 I 11/01/1949 I 
I T CROSS RANCH I 8820 I 08/01/1948 I 
I TECKLA 3 E I 8830 I 08/01/1950 I 
I TEN SLEEP 4 NE I 8852 I 05/01/1964 I 
I TEN SLEEP I 8855 I 08/01/1948 I 
I TEN SLEEP 16 SSE I 8858 I 09/01/1979 I 
I THERMOPOLIS I 8875 I 08/01/1949 I 

I 
I 

End I Rec I 
Date I Years I 

02/29/1984 I 34 I 
12/30/1992 I 45 I 
12/31/1992 I 45 I 
12/28/1992 I 43 I 
12/28/1992 I 45 I 
06/25/1958 I 10 I 
12/16/1992 I 45 I 
03/31/1988 I 10 I 
12/05/1992 I 37 I 
03/31/1984 I 36 I 
12/30/1992 I 35 I 
12/12/1992 I 27 I 
06/22/1958 I 9 I 
12/16/1992 I 42 I 
12/31/1992 I 45 I 
12/15/1992 I 38 I 
09/30/1955 I 7 I 
11/30/1953 I 3 I 
05/31/1979 I 26 I 
12/30/1992 I 21 I 
11/30/1949 I 1 I 
12/30/1992 I 45 I 
10/29/1967 I 1 I 
06/28/1967 I 1 I 
12/30/1992 I 45 I 
09/30/1957 I 9 I 
06/24/1958 I 6 I 
08/31/1953 I 5 I 
12/30/1992 I 45 I 
12/28/1992 I 32 I 
02/19/1951 I 4 I 
12/31/1992 I 43 I 
06/24/1958 I 10 I 
09/30/1968 I 20 I 
04/30/1957 I 8 I 
12/31/1992 I 29 I 
05/31/1964 I 17 I 
12/31/1992 I 14 I 
12/12/1992 I 44 I 

_ _ - - - _ _ _ - - - - - _ _ - _ _ _  
Latitude 

N43 : 21 : 00 
N43 : 51: 00 
N42 : 33 : 00 
N4 3 : 5 9 : 00 
N42 : 28 : 00 
N43: 15: 00 
N41:38:00 
N4 1 : 11 : 00 
N41: 10 : 00 
N43 :43: 00 
N43 : 02 : 00 
N44:47:00 
N43 : 55: 00 
N41:48:00 
N44 :45: 00 
N4 3 : 01 : 0 0 
N43 : 02 : 00 
N43 : 18 : 00 
N41: 35 : 00 
N41: 36 : 00 
N42 :47: 00 
N41: 3 0 : 00 

. - - - - - - - - - -  

N-----.-- . .  
N--:--.-- 
N42 : 08 : 00 
N4 2 : 56 : 0 0 
N44 : 32 : 00 
N44 : 36 : 00 
N44:46:00 
N4 2 : 21 : 00 
N41: 48 : 00 
N44 : 34 : 00 
N43 :42 : 00 
N43 :43 : 00 
N43 : 35 : 00 
N44 : 04 : 00 
N44 : 02 : 00 
N43 :49: 00 
N43 : 39 : 00 

I 
I Longitude 

I W104 : 07 : 00 
I W104 : 13 : 00 
I W108:ll:OO 
I W104:25:00 
I W106:51:00 
I W108:41:00 
I W104:29:00 
I W104:04:00 
I W104 : 09 : 00 
I W105:38:00 
I W106 :59: 00 
I W108:45:00 
I W104:55:00 
I W107:12:00 
I W105:42:00 
I W108:23:00 
I W108:22:00 
I W108:22:00 
I W109:13:00 
I W109 : 04 : 00 
I W107:51:00 
I W106:48:00 

- - - - - - - - - - - - -  

I w---:--:-- 
I w---.--.-- . .  
I W106:53:00 
I W105:Ol:OO 
I W107:46:00 
I W107:46:00 
I W106:58:00 
I W106:lO:OO 
I W107:03:00 
I W106 : 54 : 00 
I W106:21:00 
I W109:38:00 
I W105:17:00 
I W107:25:00 
I W107:27:00 
I W107:22:00 
I W108:12:00 

- - -  

I 

Elev. 

4120 
4410 
6540 
4320 
5930 
544 0 
4980 
5070 
5180 
5110 
5690 
4370 
4950 
6740 
4150 
4950 
4940 
5000 
6370 
674 0 

- - - - _ _  

- - -  
6800 
- - -  
- - -  
6840 
4890 
4280 
4210 
3960 
7170 
6560 
5080 
4500 
7840 
4780 
4800 
4510 
4680 
4310 



Table 2.1 (concluded) 
Station 
Name 

I 
I 
I TKERMOPOLIS 25 WNW 
I TKERMOPOLIS 27 WNW 
I TOLTEC 
I TORRINGTON EXP FARM 
I TORRINGTON 1 S 
I VALLEY 3 NE 
I WAMSUTTER 8 W 
I WAPITI 2 E 
I WAPITI 9 W 
I WHEATLAND 4 N 
I WHEATLAND 2 
I WORLAND 
I WORLAND 5 SW 
1 WORLAND 18 W 
I WORLAND 21 W 
I WRIGHT 

I Station1 Begin I 
I ID I Date I 

I 8888 I 05/01/1951 I 
I 8889 I 09/01/1949 I 
I 8983 I 05/01/1950 I 
I 8995 I 08/01/1979 I 
I 9000 I 08/01/1948 I 
I 9231 I 08/01/1949 I 
I 9460 I 08/01/1948 I 
I 9467 I 06/01/1950 I 
I 9471 I 08/01/1949 I 
I 9615 I 08/01/1948 I 
I 9621 I 03/01/1967 I 
I 9770 I 03/01/1964 I 
I 9775 I 08/01/1948 I 
I 9780 I 11/01/1950 I 
I 9782 I 08/01/1949 I 
I 9800 I 07/01/1982 I 

_ _ _ _ _ _ _ _ _ _ _ _ _ - - _ - - - - - - - - - - -  

End 
Date 

. - - - - - - - - - - -  
12/30/1992 
05/31/1951 
09/13/1951 
12/16/1992 
07/31/1979 
06/25/1958 
06/20/1951 
10/31/1950 
02/28/1950 
12/13/1992 
06/30/1970 
08/31/1979 
03/31/1964 
12/08/1950 
09/30/1950 
09/30/1984 

I Re= I 
lyearsl Latitude 

I 42 I N43:43:00 
I 3 I N43:43:00 
I 2 I N42:18:00 
I 14 I N42:05:00 
I 32 I N42:03:00 
I 10 I N44:12:00 
I 4 I N41:39:00 
I 1 I N44:28:00 
I 2 I N44:29:00 
I 43 I N42:07:00 
I 4 I N42:03:00 
I 16 I N44:01:00 
I 17 I N43:57:00 
I 1 I N44:00:00 
I 2 I N44:00:00 
I 3 I N43:42:00 

I 
Longitude I 
W108:41:00 I 
W108:45:00 I 
W105:39:00 I 
W104:13:00 I 
W104 :I1 : 00 I 
W109:33:00 I 
W108:07:00 I 
W109:25:00 I 
W109:36:00 I 
W104:57:00 I 
W104:57:00 I 
W107:58:00 I 
W108:02:00 I 
W108:19:00 I 
W108:24:00 I 
W105:25:00 I 

- - - - - - - - - - - - - - -  



2.3.1 Duration-Based Data Set 

For duration-based storms, the maximum storm depths for a specified storm duration 

were searched fiom the compiled significant storms. Specifically, the maximum depth for 

storm durations of 6-hr, 12-hr, lS-hr, and 24-hr were obtained. Through the data 

compilation, there are 439 6-hr cases, 410 12-hr cases, 394 18-hr cases, and 368 24-hr cases 

obtained in the duration-based database. Non-dimensionalization of all storm cases for all 

four durations results in a total of 161 1 dimensionless rainfall mass curves. 

Based on the maximum depth for the four durations mentioned above, the cumulative 

percentage of rainfall in the mass curve at T/6,2T/6,3T/6,4T/6, and 5T/6 were used as the 

attributes in cluster analysis. These cumulative percentages can be easily calculated for the 

durations considered herein. To compute the statistical moments of the dimensionless time, 

the dimensionless rainfhll hyetograph representing the storm depth percentages at t' = 1/6,2/6, 

3/6,4/6, 5/6, 6/6 were used, rather than the hourly percentages. 

2.3.2 Event-Based Data Set 

The first four statistical moments of the dimensionless time for event-based storm 

cases were calculated using Eqs. (2.1)-(2.4) based on hourly storm depth percentages. As 

for the cumulative Percentages at T/6,2T/6,3T/6,4T/6, and 5T/6, these values generally are 

not directly available because the storm duration may not necessarily be a multiple of 6. 

Therefore, to compute these cumdative percentages, the assumption of d o r m  rainfall 

mtensity within each hour was made. Then, the calculation of cumulative percentages can be 

easily made by dividing storm duration into 6 equal parts and Summing up all the percentages 
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sequentially. Alternatively, an mterpolation method can be applied to calculate the cumulative 

percentages. The assumption of d o r m  intensity within each hour is appropriate when the 

stom duration is long enough. However, ifthe storm duration is very short, say, less than 

3 hours, this asamption may not be appropriate. Hence, storm events with duration less than 

3 hours were dropped fiom the database. Originally, there were 379 events in the event- 

based database extracted fiom the compiled significant storms. M e r  removing 4 events with 

storm duration equal to 1-hr and 13 events with storm duration equal to 2-h, a total of 362 

cases were used in the cluster analysis. 

2.4 CLUSTER ANALYSIS 

Statistical Analysis Systems (SAS) procedure, CLUSTER, was used to perform the 

cluster analysis to identi@ representative temporal patterns for both duration-based and event- 

based storms. To remove the scale effects in the cluster analysis, all attribute variables were 

standardized resulting in zero mean and unit standard deviation for al l  attributes. There are 

alternative ways to remove scale effect. However, the difference between the classification 

results using different standardization procedures was found negligible. In SAS, several 

methods can be used to conduct cluster analysis and Merent methods define similarity matrix 

and the distance measurement differently. A preliminary investigation indicated that their 

effects on the final classification result for the data m hand were nil and, therefore, the average 

linkage method was adopted. 
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In the cluster analysis, two different charact-tions of temporal distribution of storm 

were used: (1) cumulative percentages of storm depth and (2) statistical moments of the 

dimensionless time. The use of the two characterizations resulted in somewhat different 

classifications of storm patterns. Since the number of representative storm patterns is not 

known in advance and, therefore, they can only be determined subjectively through a trial- 

and-error process. 

When the statistical moments of dimensionless time were used, the concerns were how 

many and which moments should be used in the cluster analysis. Because there is no 

guideline as to how many moments &odd be used in the cluster analysis, selection was made 

by trial-and-error. It was found that the results of cluster analysis are extremely sensitive to 

the skew coefficient and kurtosis. It appears that the use of the first two moments, that is, 

mean and standard deviation, of dimensionless time would yield reasonable storm 

classification. 

Once the storm patterns were obtained using the two methods, the patterns were 

compared so as to descriie storm patterns typically occurring in Wyoming for both duration- 

based and event-based storms. It turns out using cumulative percentages leads to better 

clusters than those obtained using the first two central moments. The suggested storm 

patterns are shown in Figs. 2.2 and 2.3, respectively. 

It should be noticed that some patterns only have a few cases (see Table 2.2). For 

example, for duration-based storm patterns, patterns 5-8 have 12, 7, 4 and 7 cases, 

respectively, while pattern 1 has 1000 cases. Generally, while performing cluster analysis, if 

some clusters have much fewer cases than others, these clusters should be combined into 
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Fig. 2.2. Eight Representative Duration-Based Storm Patterns in Wyoming 
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Fig. 2.3. Five Representative Event-Based Storm Patterns in Wyoming 
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others or cluster analysis should be performed again so that there will not be significant 

differences m the frequency of each cluster. The reason these clusters were not combined in 

the study is that each of these clusters presents a distinctly unique storm pattern which is of 

interest. 

Tables 2.2 and 2.3 show the statistical moments (in upper portion) and the 

correlations between dimensionless rainfall hyetograph ordinates (the lower portion) for the 

duration-based and event-based storm patterns, respectively. Furthermore, Tables 2.4 and 

2.5 show the sample properties of mean, standard deviation, skewness and kurtiosis for the 

duration-based and event-based storm patterns, respectively. Information presented in these 

tables can be used to perform uncertainty analysis and Monte Carlo simulation. 

2.5 FACTORS AFFECTING THE OCCURRENCE OF STORM PATTERNS 

It should be noted that the suggested patterns presented in Figs 2.2 and 2.3 are 

derived from conibhhg rainfhll mass a w e s  and hyetographs of different durations that have 

occurred in different months over the entire State of Wyoming. It is important to examine 

whether a particular storm pattern would occur in a certain season or climatic region, or 

whether it is dependent on storm duration. Such information is essential to avoid erroneous 

selection of storm patterns in the design and performance evaluation of hydraulic structures. 

To test the existence of possible relation or dependence between storm pattern and 

climatic region, storm duration, or season, chi-square tests were performed using SAS 
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Table 2.2 S q l e  Properties of Dimensionless Rainfall Hyetograph Ordinates for 
Duration-Based Storm Patterns 

(a) Pattern 1 (1000 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 
Stdev 

Skewness 
Kurtosis 
Minimum 
Maximum 

P1 
P2 
P3 
P4 
P5 
P6 

0.15891 0.16380 
0.07720 0.07149 
0.65027 0.32196 
3.72483 3.54807 
0.00327 0.00000 
0.50000 0.46087 
1.00000 -0.14052 

-0.14052 1.00000 
-0.40608 -0,06842 
-0.29759 -0.29414 
-0.21022 -0,24383 
0.14590 -0.13720 

0.18268 
0.09110 
1.19350 
5.92435 
0.00000 
0.65625 

-0.40608 
-0.06842 
1.00000 
0.01874 

-0.30635 
-0.42604 

0.18560 
0.08548 
0.83840 
4.58673 
0.00000 
0.56250 

-0.29759 
-0.29414 
0.01874 
1.00000 
-0.12957 
-0.42887 

0.16873 
0.07633 
0.41000 
3.6146 
0.00000 
0.47619 

-0.21022 
-0.24383 
-0.30635 
-0.12957 
1.00000 

-0.04748 

0.14029 
0.07764 
0.37661 
3.24666 
0.00000 
0.45455 
0.14590 

-0.13720 
- 0.42604 
-0.42887 
-0.04748 
1.00000 

(b) Pattern 2 (234 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 
S t dev 

Skewness 
Kurt 0s i s 
Minimum 
Maximum 

P1 
P2 
P3 
P4 
P5 
P6 

0.78651 
0.16531 

-0.31510 
1.76890 
0.46667 
1.00000 
1.00000 
-0.78978 
-0.49540 
-0.37907 
-0.38247 
-0.38770 

0.12099 
0.11856 
0.96983 
3.26556 
0.00000 
0.48837 

-0.78978 
1.00000 
0.15683 

-0.01416 
0.06031 
0.05855 

0.03599 
0.05320 
1.88161 
6.85497 
0.00000 
0.27273 

-0.49540 
0.15683 
1.00000 
0.15858 
0.00892 
0.06477 

0.02318 
0.04585 
2.72222 
10.8720 
0.00000 
0.25806 

-0.37907 
-0.01416 
0.15858 
1.00000 
0.20376 
0.08254 

0.01495 
0.03353 
3.32915 
16.4610 
0.00000 
0.22222 

-0.38247 
0.06031 
0.00892 
0.20376 
1.00000 
0.32649 

0.01837 
0.03897 
2.51301 
9.16871 
0.00000 
0.21586 

-0.38770 
0.05855 
0.06477 
0.08254 
0.32649 
1.00000 

( c )  Pattern 3 (312 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 
Stdev 

Skewness 
Kurtosis 
Minimum 
Maximum 

P1 
P2 
P3 
P4 
P5 
P6 

0.27244 
0.11982 

2.25020 
0.00459 
0.54472 
1.00000 
-0.58518 
-0.24033 
-0.00591 
0.11171 
0.23906 

-0.20223 

0.34217 
0.18609 
0.92652 
3.74566 
0.00000 
0.91781 

-0.58518 
1.00000 

-0.38447 
-0.49986 
-0.34521 
-0.31032 

0.18809 
0.11601 
0.72358 
4.20065 
0.00000 
0.65728 

-0.24033 
-0.38447 
1.00000 
0.10841 

-0.22726 
-0.24411 

0.10093 
0.07592 
0.49444 
2.83959 
0.00000 
0.38000 

-0.00591 
-0.49986 
0.10841 
1.00000 
0.14363 

-0.05326 

0.05525 
0.05408 
1.05751 
3 .a973 
0.00000 
0.28571 
0.11171 

-0.34521 
-0.22726 
0.14363 
1.00000 
0.25728 

0.04112 
0.04755 
1.14574 
3.64115 
0.00000 
0.21121 
0.23906 

-0.31032 
-0.24411 
-0.05326 
0.25728 
1.00000 



Table 2.2 (continued) 

(d) Pattern 4 (35 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 
Stdev 

Skewness 
Kurt 0s i s 
Minimum 
Maximum 

P1 
P2 
P3 
P4 
P5 
P6 

0.08905 
0.05518 
1.20110 
5.39192 
0.00697 
0.26667 
1.00000 
0.02820 
0.04855 

- 0.26675 
- 0.14499 
0.04135 

0.03574 
0.04753 
1.28648 
3.80568 
0.00000 
0.15789 
0.02820 
1.00000 
0.43316 

-0.03172 
-0.58846 
0.52553 

0.06910 
0.05747 
0.03695 
4.59169 
0.00000 
0.15789 
0.04855 
0.43316 
1.00000 
0.12460 

-0,65960 
0.49328 

0.12008 
0 .lo606 
1.07608 
4.79366 
0.00000 
0.46182 

-0.26675 
-0.03172 
0.12460 
1.00000 

-0.46272 
0.14482 

0.39072 
0.25797 
0.63363 
2.61060 
0.05000 
0.98266 

0.29532 
0.15449 

-0.45040 
2.25763 
0.00000 
0.55833 

- 0.144 99 
- 0.58846 
-0.65960 
-0.46272 
1.00000 
-0.87397 

0.04135 
0.52553 
0.49328 
0.14482 

- 0.87397 
1.00000 

(e) Pattern 5 (12 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 
Stdev 

Skewness 
Kurt 0 s  i s 
Minimum 
Maximum 

P1 
P2 
P3 
P4 
P5 
P6 

0.05530 
0.02504 

-0.08185 
2.09089 
0.01168 
0.09091 
1.00000 

-0.30999 
- 0.24833 
0.00147 
0.19588 

-0.40238 

0.01067 
0.02208 
1.95680 
5.46921 
0.00000 
0.06135 

-0.30999 
1.00000 
0.27904 

-0.28870 
-0.07158 
0.45035 

0.06895 
0.06303 
0.38498 
4.02956 
0.00000 
0.17290 

-0.24833 
0.27904 
1.00000 

-0.68684 
0.31714 
0.35147 

0.62493 0.17323 
0.18865 0.13135 
0.82074 -0.00196 
2.45352 1.54660 
0.41818 0 , 0 0 0 0 0  
0.95082 0,36970 

0.06693 
0.07096 
0.56396 
1.88735 
0.00000 
0.19626 

0.00147 0.19588 
-0.28870 -0.07158 
-0.68684 0.31714 
1.00000 -0.80598 

-0.80598 1.00000 
-0.46717 -0.03694 

-0,40238 
0.45035 
0.35147 

-0.46717 
-0.03694 
1.00000 

( f )  Pattern 6 (7 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 
S t dev 

Skewness 
Kurtosis 
Minimum 
Maximum 

P1 
P2 
P3 
P4 
P5 
P6 

0.03908 
0.02592 
0.72680 
2.74339 
0.00952 
0.08333 
1.00000 

-0.26724 
-0.02530 
-0.12788 
-0.66489 
0.08663 

0.02842 
0.03823 
0.95586 
2.58520 
0.00000 
0.09496 

-0.26724 
1.00000 
-0.37432 
0.03327 

-0,37975 
0.19310 

0.85065 
0.09577 

4.19136 
0.70205 
0.96667 

-0.43525 

-0.02530 
-0.37432 
1.00000 

-0.88487 
0.32388 

-0.23069 

0.06624 
0.08835 
1.17866 
2.61770 
0.00000 
0.21575 

0.00416 
0.00546 
0.74256 
1.53860 
0.00000 
0.01274 

0.01145 
0.01904 
2.19780 
8.00390 
0.00000 
0.05263 

-0.12788 
0.03327 

-0.88487 
1.00000 

-0.04026 
-0.07062 

- 0.6 6489 
-0.37975 
0.32388 

-0.04026 
1.00000 

-0.06139 

0.08663 
0.19310 

-0.23069 
-0.07062 
-0.06139 
1.00000 
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Table 2.2 (concluded) 

(g) Pattern 7 (4 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 
Stdev 

Skewness 
Kurt o s i s 
Minimum 
Maximum 

0.55210 
0.17159 

-1.20293 
3.58836 
0.31556 
0.68994 

0.10910 
0.16343 
1.66397 
5.64049 
0.00000 
0.34667 

0.02526 
0.02967 
1.45878 
5.28694 
0.00000 
0.06763 

0.00725 
0.01449 
2.00000 
7.00000 
0.00000 
0.02899 

P1 
P2 
P3 
P4 
P5 
P6 

1.00000 
-0.98650 
-0.31357 
-0.06165 
0.35828 

-0.34320 

-0.98650 
1.00000 
0.17827 

-0.09034 
-0.44530 
0.49136 

-0.31357 
0.17827 
1.00000 
0.95211 

-0.04436 
-0.69395 

-0.06165 
-0.09034 
0.95211 
1.00000 
0.21278 

-0.88086 

0.02132 
0.02402 
0.69370 
1.1250 
0.00000 
0.05185 
0.35828 

-0.44530 
-0.04436 
0.21278 
1.00000 
-0.56679 

0.28497 
0.02555 

-0.77118 
3.42907 
0.25121 
0.31111 

- 0.34320 
0.49136 

-0.69395 
-0.88086 
-0.56679 
1.00000 

(h) Pattern 8 (7 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 0.15109 0.01202 0.01335 0.01068 0.07952 0.73335 

Stdev 0.11393 0.03179 0.03532 0.02826 0.11559 0.11576 
Skewness 0.73517 2.64575 2.64575 2.64575 1.29237 1.34272 
Kurtosis 1.73058 10.0000 10.0000 10.0000 2.92060 4.55754 
Minimum 0.04545 0.00000 0.00000 0.00000 0.00000 0.61624 
Maximum 0.32895 0.08411 0.09346 0.07477 0.28044 0.95455 

P1 1.00000 -0.36776 -0.36776 -0.36776 -0.39868 -0.28307 
P2 -0.36776 1.00000 1.00000 1.00000 -0.16073 -0.30146 
P3 -0.36776 1.00000 1.00000 1.00000 -0.16073 -0.30146 
P4 -0.36776 1.00000 1.00000 1.00000 -0.16073 -0.30146 
P5 -0.39868 -0.16073 -0.16073 -0,16073 1.00000 -0.47375 
P6 -0.28307 -0.30146 -0.30146 -0.30146 -0.47375 1.00000 
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Table 2.3 Sample Properties of Dimensionless Rainfall Hyetograph Ordinates for Event- 
Based Storm Patterns 

(a) Pattern 1 (20 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 0.56493 0.30213 0.04621 0.03766 0.02743 0.02165 
Stdev 

Skewness 
Kurt o s i s 
Minimum 
Maximun 

0.12254 
-0.01237 
3.12578 
0.2890 
0.7972 

P1 
P2 
P3 
P4 
P5 
P6 

1.00000 
-0.86691 
0.19867 
0.14112 
0.07639 

-0.08632 

0.15697 
0.42394 
2.60604 
0.0355 
0.6438 

-0.86691 
1.00000 
-0.45572 
-0.47658 
-0.37371 
-0.13090 

0.04115 
1.74489 
7.74625 
0.0000 
0.1785 

0.19867 
-0.45572 
1.00000 
0.34893 

-0.04688 
-0.24813 

0.039019 
2.16138 
9.05658 
0.0000 
0.1684 

0.14112 
-0.47658 
0.34893 
1.00000 
0.19569 

-0.04451 

0.026941 
1.20082 
3.16847 
0.0020 
0.0869 

0.025426 
2.89517 
13.2654 
0.0021 
0.1159 

0.07639 
-0.37371 
-0.04688 
0.19569 
1.00000 
0.65500 

-0.08632 
-0.13090 
-0.24813 
-0.04451 
0.65500 
1.00000 

(b) Pattern 2 (279 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 0.13578 0.17851 0.20742 0.19640 0.17133 0.11056 
Stdev 0.08672 0.08777 0.10285 0.087786 0.083845 0.073142 

Skewness 1.23863 0.67008 0.87836 0.56786 0.42606 0.98966 
Kurt o s i s 5.35083 3.52969 4.81377 3.48551 3.29527 4.1294 

0.0160 0.0000 0.0014 Minimum 0.0043 0.0000 0.0184 
Maximun 0.5315 0.4697 0.7020 0.5101 0.4935 0.3939 

P1 1.00000 -0.04580 -0.32750 -0.37773 -0.17672 -0.01418 
P2 -0.04580 1.00000 -0.11001 -0.38976 -0.27246 -0.21083 
P3 -0.32750 -0.11001 1.00000 0.17198 -0,56140 -0.44879 
P4 -0.37773 -0.38976 0.17198 1.00000 -0.11883 -0.39030 
P5 -0.17672 -0.27246 -0.56140 -0.11883 1.00000 0.32219 
P6 -0.01418 -0.21083 -0.44879 -0.39030 0.32219 1.00000 

( c )  Pattern 3 (60 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 0.28764 0.34115 0 ~ 7 6 8 9  0.09749 0.05713 0.03971 
Stdev 0.11810 0.16059 0.08436 0.055440 0.040917 0.027855 

Skewness -0.84471 1.51805 0.27345 0.59713 1.12658 0.93793 
Kurt 0s i s 3.50826 5.04292 3.73628 3.32028 4.67760 3.2905 
Minimum 0.0038 0.1182 0.0154 0.0032 0.0000 0.0023 
Maximun 0.4902 0.8227 0.3544 0.2442 0.2000 0.1218 

P1 1.00000 -0,82883 -0.18864 0.28921 0.19269 0.25092 
P2 -0.82883 1.00000 -0.23674 -0.54647 -0.13153 -0.25304 
P3 -0.18864 -0.23674 1.00000 0.09701 -0.51400 -0.30187 
P4 0.28921 -0.54647 0.09701 1,00000 -0.16808 -0.11302 
P5 0.19269 -0.13153 -0.51400 -0.16808 1.00000 0.36354 
P6 0.25092 -0.25304 -0,30187 -0.11302 0.36354 1.00000 
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Table 2.3 (concluded) 

(d) Pattern 4 (2 Cases) 

P1 P2 P3 P4 P5 P6 
Mean 
Stdev 

Skewness 
Kurt 0s i s 
Minimum 
Maximun 

P1 
P2 
P3 
P4 
P5 
P6 

0.03700 
0.03338 

0.0134 
0.0606 

1.00000 
1.00000 

-1.00000 
1.00000 

-1.00000 
1.00000 

0.02180 0.02375 
0.01202 0.03359 

0.0133 0.0000 
0.0303 0.0475 

1.00000 -1.00000 
1.00000 -1.00000 

-1.00000 1.00000 
1.00000 -1.00000 

-1.00000 1.00000 
1.00000 -1.00000 

0.05405 
0.009263 

0.0475 
0.0606 

1.00000 
1.00000 

-1.00000 
1.00000 

- 1 . 0 0 0 0 0  
1.00000 

0.37105 0.49235 
0.096237 0.075165 

0.3030 0.4392 
0.4391 0.5455 

-1.00000 1.00000 
-1.00000 1.00000 
1.00000 -1.00000 

-1.00000 1.00000 
1.00000 -1.00000 
-1.00000 1.00000 

(e) Pattern 5 (1 Case) 

P1 P2 P3 P4 P5 P6 
Mean 0.95900 0.00820 0.00490 0.00820 0.00990 0.00980 
Stdev 

Skewness 
Kurt o s i s 
Minimum 0.9590 0.0082 0.0049 0.0082 0.0099 0.0098 
Maximun 0.9590 0.0082 0.0049 0.0082 0.0099 0.0098 

P1 
P2 
P3 
P4 
P5 
P6 
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Table 2.4 Sample Properties of Statistical Moments for Duration-Based Storm Patterns 

(a) Pattern 1 (1000 Cases) 

STDEV SKEW KURT MEAN 
Mean 0.57705 0.26626 -0 .01908  1.9590 
Stdev 0.054679 0.036976 0.31146 0.4107 

Skewness 0.17866 -0.59779 -0 ,14946  1 . 7 7 9 7 1  
Kurt 0s is -2 ,42668 3 . 79799 3 . 1 2 0 0 1  8.4008 
Minimum 0.44414 0.13878 -1 .29837  1.23769 
Maximum 0.72827 0.37602 1 . 0 7 6 5  4.480 

MEAN 1.00000 0.07587 -0 .72854  -0 .01149  
STDEV 0,07587 1.00000 0.14208 -0.82320 
SKEW -0 .72854 0.14208 1.00000 -0 .10573 
KURT -0 .01149  -0 .82320  -0 .10573  1.00000 

(b) Pattern 2 (234 Cases) 

MEAN STDEV SKEW KURT 
Mean 0.23570 0.12743 4.23433 42.0917 

0.087048 4.71162 84.4262 
Skewness 0 . 9 9 8 2 1  0.48078 1.93793 2.38442 
Kurt o s i s 3.27128 2.41723 5 . 5 1 2 6 1  7.0029 
Minimum 0.16667 0.00000 0.19768 1 .03908  
Maximum 0.42424 0.34285 1 6 . 8 2 2 7  284.004 

Stdev 0.063458 

MEAN 1.00000 0.91985 -0.57754 -0.46472 
STDEV 0.91985 1 , 00000 -0.62268 -0.56335 
SKEW -0 .57754  -0.62268 1 . 00000 0.97627 
KURT -0 .46472 -0 .56335  0.97627 1 .00000  

(c) Pattern 3 (3 12 Cases) 

MEAN STDEV SKEW KURT 
Mean 0.40796 0 . 2 0 9 0 1  0.68893 3.2699 
Stdev 0.055127 0.061823 0 .63204  2 . 5 0 5 1  

S kewne s s -0 .54604 -0.43880 0.95708 3.93602 
Kurt o s i s 2 ,40771  2.55564 8.43210 23.0126 
Minimum 0.26923 0.04690 -1.86734 1 .35099  
Maximum 0.50407 0.32457 4.3070 23.263 

MEAN 1 .00000  0.69284 -0 .15383  -0.39848 
STDEV 0.69284 1.00000 0.10856 -0.44215 
SKEW -0 .15383 0.10856 1.00000 0.64248 
KURT -0 .39848 -0.44215 0.64248 1.00000 
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Table 2.4 (continued) 

(d) Pattern 4 (35 Cases) 

MEAN STDEV SKEW KURT 
Mean 0.76227 0.23932 -1.54164 6.4713 
Stdev 0.046296 0.058490 1.41015 10.3372 

Kurt o s i s 2.72160 3.51287 12.80108 19.5816 
Minimum 0.64444 0.08703 -7.39488 1.51958 
Maximum 0.84375 0.32646 -0.3930 55.684 

MEAN 1.00000 -0.69069 -0.56293 0.46550 

Skewness -0.21892 -0.75946 -2.97586 3.94545 

STDEV -0.69069 1.00000 0.80948 -0.75003 
SKEW -0.56293 0.80948 1.00000 -0.97288 
KURT 0.46550 -0.75003 -0.97288 1.00000 

(e) Pattern 5 (12 Cases) 

MEAN STDEV SKEW KURT 
8.3641 

Stdev 0.030318 0.036024 1.38092 7.9096 
Skewness -0.72510 -1.47604 -1.16709 2.04950 
Kurt 0s i s 4.56000 4.17932 3.56410 6.1809 
Minimum 0.60606 0.08760 -4.39406 2.86498 
Maximum 0.71729 0.19849 0.0149 27.830 

Mean 0.67515 0.16453 -1.64648 

MEAN 1.00000 0.49392 0.59880 -0.39164 
STDEV 0.49392 1.00000 0.94100 -0.95162 
SKEW 0.59880 0.94100 1.00000 -0.92384 
KURT -0.39164 -0.95162 -0.92384 1.00000 

( f )  Pattern 6 (7 Cases) 

STDEV SKEW KURT MEAN 
Mean 0.50039 0.09631 -0.21800 14.8512 
Stdev 0.019770 0.028299 2.29034 12.5256 

S kewne s s -0.51342 0.73657 -0.14673 2.20576 
Kurt 0s is 2.40126 4.36486 1.30581 7.9995 
Minimum 0.47222 0.05963 -3.01511 6.93485 
Maximum 0.52740 0.14783 2.8154 41.946 

0.00221 MEAN 1.00000 0.40460 0.67233 
STDEV 0.40460 1.00000 0.10347 -0.63734 
SKEW 0.67233 0.10347 1.00000 0.61578 
KURT 0.00221 -0.63734 0.61578 1.00000 

26 



Table 2.4 (concluded) 

(g) Pattern 7 (4 Cases) 

MEAN STDEV SKEW KURT 
Mean 0.44858 0 . 3 6 6 8 1  0.74479 1 .6700  
Stdev 0.032639 0.016322 0.09263 0.1018 

Skewness 1 .19444  -0.03630 0 .94059  -0.04790 
Kurt o s i s 4.86485 -5.50742 4 .99697  -4.2730 
Minimum 0.41760 0 . 3 5 0 6 1  0.64842 1.56107 
Maximum 0.49407 0 . 3 8 2 2 1  0.8713 1 .776  

MEAN 1.00000 -0 .81623 -0.89288 -0.48233 
STDEV -0 .81623 1 .00000  0.69183 -0.02318 

1.00000 0 . 6 9 8 2 1  SKEW -0 .89288  0.69183 
KURT -0 .48233 -0 .02318  0 . 6 9 8 2 1  1.00000 

(h) Pattern 8 (7 Cases) 

MEAN STDEV SKEW KURT 
Mean 0.84259 0.28432 - 2 . 0 0 9 9 1  6 . 7 9 8 1  
Stdev 0.081159 0.081805 1 .29577  6 .7107  

Skewness 0.01637 0.00817 -1 .09530  1 .5838  
Kurt o s i s 2.39073 1 .52930  3 .54376  5.1438 
Minimum 0.72588 0.17358 -4.36436 1 .53020  
Maximum 0.96212 0.39153 - 0 . 7 2 8 1  20.048 

MEAN 1 .00000  -0 .95967  -0 .94895  0.89762 
STDEV -0 .95967  1.00000 0.90873 -0.86897 
SKEW -0 .94895  0.90873 1 .00000  -0.98704 
KURT 0.89762 -0.86897 -0.98704 1 .00000  
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Table 2.5 Sample Properties of Statistical Moments for Event-Based Storm Patterns 

(a) Pattern 1 (20 Cases) 

MEAN STDEV SKEW KURT 
Mean 0.29735 0.16761 3.10274 16.9518 
Stdev 0.054786 0.059110 2.09915 20.9944 

Skewness 0.68563 -0.01909 1.62745 2.14652 
Kurt 0s is 2.49417 3.00826 5.00027 6.7679 
Minimum 0.2189 0.0654 1.0840 2.8614 
Maximum 0.4048 0.2925 8.5520 76.3027 

MEAN 1.00000 0.00306 0.31801 0.30265 
STDEV 0.00306 1.00000 -0.84073 -0.79998 
SKEW 0.31801 -0.84073 1.00000 0.98030 
KURT 0.30265 -0.79998 0.98030 1.00000 

(b) Pattern 2 (279 Cases) 

MEAN STDEV SKEW KURT 
Mean 0.52457 0.24517 0.01443 2.3165 
Stdev 0.077808 0.043023 0.41913 0.9115 

Skewness 0.35766 -0.53805 -0.38058 4.21279 
Kurt 0s i s 2.67511 3.50386 3.39458 29.9452 
Minimum 0.3683 0.1032 -1.5307 1.3232 
Maximum 0.7424 0.3499 1.0432 10.2557 

MEAN 1.00000 -0.19982 -0.75502 0.20466 
STDEV -0.19982 1.00000 0.07760 -0.75273 
SKEW -0.75502 0.07760 1.00000 -0.10134 
KURT 0.20466 -0.75273 -0.10134 1.00000 

(c) Pattern 3 (60 Cases) 

MEAN STDEV SKEW KURT 
Mean 0.38729 0.21364 1.14061 4.2796 
Stdev 0.057627 0.044941 0.68187 3.8131 

Skewness 0.56961 -0.79310 2.35609 3.53906 
Kurt o s i s 2.49536 3.20065 10.8362 16.6867 
Minimum 0.2874 0.0992 0.2416 1.7521 
Maximum 0.5168 0.2878 4.3070 23.2626 

MEAN 1.00000 -0.00034 -0.06693 -0.10527 
STDEV -0.00034 1.00000 -0.64458 -0.74620 
SKEW -0.06693 -0.64458 1 . 00000 0.92430 
KURT -0.10527 -0.74620 0.92430 1.00000 
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Table 2.5 (concluded) 

(d) Pattern 4 (2 Cases) 

MEAN STDEV SKEW KURT 
Mean 0.92980 0.18080 -2.68290 9.2991 
Stdev 0.029274 0.055861 0.38650 2.7914 

Skewness 
K u r t  o s i s 
Minimum 0.9091 0.1413 -2.9562 7.3253 
Maximum 0.9505 0.2203 -2.4096 11.2729 

MEAN 1.00000 -1 . 00000 -1.00000 1.00000 
STDEV -1.00000 1.00000 1.00000 -1.00000 
SKEW -1.00000 1.00000 1.00000 -1.00000 
KURT 1.00000 -1.00000 -1.00000 1.00000 

(e) Pattern 5 (1 Case) 

MEAN STDEV SKEW KURT 
Mean 0.13440 0.12110 5.60300 33.9496 
Stdev 

Skewness 
K u r t  0s i s 
Minimum 0.1344 0.1211 5.6030 33.9496 
Maximum 0.1344 0.1211 5.6030 33.9496 

MEAN 
STDEV 
SKEW 
KURT 
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procedure FREQ. The null hypothesis that two variables are independent can be tested by 

the statistic, ~ 2 ,  given by 

r c  x2=c c 
[ qJ-q 2 

N,. Nj 

n 

where r = number of rows in the contingency table; c = number of columns in the 

contingency table; Ng = number of occurrences in the zth row and@ column; Ni. = number 

of occurrences in the zth row; N, = number of occurrences in theJth column; and n = total 

number of occurrence. The statistic x2 has a chi-square dktriiution with (r- 1) x (c- 1) degrees 

offieedom, provided that the two variables are independent. Acceptance or rejection of the 

hypothesis is based on the probability of the obtained x2 value (See Everitt, 1992, for a more 

detailed discussion of tests about contingency table). 

The contingency tables and the corresponding tests for the duration-based storm 

patterns are shown m Tables 2.6 - 2.9. Tables 2.10 - 2.13 are the results for the event-based 

storm patterns. It should be noticed that m these tables, some cells have expected counts less 

than 5.  It might be argued that the chi-square test is not appropriate for contingency tables. 

However, Cochran (1952) pointed out that 5, sometimes even 2, is too conservative. 

Although literature exists for finding the exact p-value for the Contingency table (Mehta and 

Patel, 1983), its calculation is not implemented herein. 
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Table 2.6 Contingency Tables for Duration-Based Storm Patterns (All 8 Patterns 
Included) 

(a) By Region 
CLUSTER REGION 

F r e q u e n c y  I 
E x p e c t e d  I 

I 
C o l  P c t  I 11 

C e l l  C h i  - Square I 
Row P c t  

2 
- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - -  

1 I 267 I 444 
I 232.77 I 471.14 
I 5.0322 I 1 .5629 

3 4 1  
s--------+ - - - - - - -  

1 1 5  
1 0 9  - 8 7  
0.2396 

1 7 4  
186.22  
0.8019 

I 26.70 I 44.40 I 11 .50  I 17.40 
I 71.20 I 58.50 I 64.97 I 58.00 

2 I 28 I 1 3 4  
I 54.469 I 110.25 
I 12 .863 I 5.1182 
I 11 .97  I 57.26 
I 7.47 I 17 .65  

3 1 6 5  I 1 5 2  
I 72.626 I 146.99  
I 0.8007 I 0.1705 
I 20.83 I 48.72 
I 17.33 I 20.03 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - -  

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - -  

1 4  
16 .49  

0.3759 
40.00 

1 .84  

4 
5.6536 
0 - 4 8 3 7  

- - - - - - - - 

I 33.33 1 33 .33  
I 1 . 0 7  I 0 .53  

1 7  
25.709 
2.9505 

7 .26  
9.60 

- - - - - -__  
4 0  

34.279 
0.9547 

1 2  - 8 2  
22.60 

- - - - - - - -  
3 

3.8454 
0.1859 

8 .57  
1 .69  

1 
1.3184 
0.0769 

8 - 3 3  
0.56 

- - - - - - - -  

5 5  
43.575 
2.9953 

23.50 
18 .33  

- - - - - - - -  
5 5  I 

5 8 . 1 0 1  I 
0.1655 I 

17.63  I 
18.33 I 

- - - - - - - -  
9 1  

6.5177 I 
0.9454 I 

2 5 . 7 1  I 
3 .00  I 

3 1  

_ _ _ _ _ _ - -  

2.2346 I 
0 .2621 I 

25.00 I 
1 .00  I 

- - - - - - - -  
2 

0 . 0 0 7 1  
50 .00  

0.26 

4 
3.298 

0.1494 
57.14 

0.53 

1. a845 

- - - - - - - -  

- - - - - - - - + - - - - - - - - +  

0 1  11 
0.4395 I 0.7449 I 
0.4395 I 0.0874 I 

0.00 I 25.00 I 
0.00 I 0.33 I 

11 2 1  

- - - - - - - - + - - - - - - - - +  

0 .7691 I 1.3035 I 
0.0693 I 0 . 3 7 2 1  I 

14 .29  I 28.57 I 
0.56 I 0.67 I 

T o t a l  

1 0 0 0  

234 

312 

35 

1 2  

7 

4 

7 

1 6 1 1  
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Table 2.6 (continued) 

(b) By Duration 

CLUSTER DURATION 
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Table 2.6 (concluded) 

(c) By Season 

CLUSTER SEASON 

Total 

1000 

234 

312 

35 

7 

4 

7 

1611 
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Table 2.7 Statistical Tests of Contingency Table for Duration-Based Storm Patterns 
(All 8 Patterns Included) 

(a) By Region 

Statistic DF Value Prob 

Chi-square 21 41.316 0.005 

0.056 Mantel-Haenszel Chi-square 1 3.651 
0.160 Phi Coefficient 
0.158 Contingency Coefficient 

Cramer's V 0.092 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Likelihood Ratio Chi-square 21 46.356 0.001 

Sample Size = 1611 
WARNING: 50% of the cells have expected counts less 

than 5. Chi-square may not be a valid test. 

(b) By Duration 

Statistic DF Value Prob 

0.000 Chi -Square 21 74.693 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Likelihood Ratio Chi-square 21 77.310 0.000 
Mantel-Haenszel Chi-square 1 30.503 0.000 

Contingency Coefficient 0.210 
Phi Coefficient 0.215 

Cramer's V 0.124 

Sample Size = 1611 
WARNING: 50% of the cells have expected counts less 

than 5. Chi-square may not be a valid test. 

(c)  By Season 

Statistic DF Value Prob 

21 149.064 0.000 Chi-square 

0.011 Mantel-Haenszel Chi-square 1 6.521 
Phi Coefficient 0.304 
Contingency Coefficient 0.291 
Cramer's V 0.176 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Likelihood Ratio Chi-square 21 163.197 0.000 

Sample Size = 1611 
WARNING: 53% of the cells have expected counts less 

than 5. Chi-square may not be a valid test. 



Table 2.8 Contingency Tables for Duration-Based Storm Patterns (Without Patterns 
6 , 7  and 8) 

(a) By Region 

CLUSTER REGION 

Frequency I 
Expected I 

Percent I 
Row Pct I 

Cell Chi-square I 

41 Total 

1 I 267 I 444 I 115 I 174 I 1000 

Col Pct I 11 21 3 1  
- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

I 234.15 I 469.55 I 110.48 I 185.81 I 
I 4.6089 I 1.3907 I 0.1846 I 0.751 I 
I 16.76 I 27.87 I 7.22 I 10.92 I 62.77 
I 26.70 I 44.40 I 11.50 I 17.40 I 
I 71.58 I 59.36 I 65.34 I 58.78 I 

- - - - - - - - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - -  + - - - - - - - - +  

2 1  28 I 134 I 17 I 55 I 234 
I 54.791 I 109.88 I 25.853 I 43.48 I 
I 13.1 I 5.2967 I 3.0316 I 3.0521 I 
I 1.76 I 8.41 I 1.07 I 3.45 I 14.69 
I 11.97 I 57.26 I 7.26 I 23.50 I 
I 7.51 I 17.91 I 9.66 I 18.58 I 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

3 1  65 I 152 I 40 I 55 I 312 
I 73.055 I 146.5 I 34.471 I 57.974 I 
I 0.8881 I 0.2064 I 0.8869 I 0.1525 I 
I 4.08 I 9.54 I 2.51 I 3.45 I 19.59 
I 20.83 I 48.72 I 12.82 I 17.63 I 
I 17.43 I 20.32 I 22.73 I 18.58 I 

4 1  9 1  14 I 3 1  9 1  35 
I 8.1952 I 16.434 I 3.8669 I 6.5035 I 
I 0.079 I 0.3606 I 0.1944 I 0.9584 I 
I 0.56 I 0.88 I 0.19 I 0.56 I 2.20 
I 25.71 I 40.00 I 8.57 I 25.71 I 
I 2.41 I 1.87 I 1.70 I 3.04 I 

5 1  4 1  4 1  11 3 1  12 
I 2.8098 I 5.6347 I 1.3258 I 2.2298 I 
I 0.5042 I 0.4742 I 0.0801 I 0.2661 I 
I 0.25 I 0.25 I 0.06 I 0.19 I 0.75 
I 33.33 I 33.33 I 8.33 I 25.00 I 
I 1.07 I 0.53 I 0.57 I 1.01 I 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

Total 373 74 8 176 296 1593 
46.96 11.05 18.58 100.00 23.41 
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Table 2.8 (continued) 

(b) By Duration 

CLUSTER DURATION 

Frequency I 
Expected I 

Row Pct I 
Col Pct I 12 I 18 I 61 

Cell Chi-square/ 

241 Total 

1 I 311 I 271 I 237 I 181 I 1000 

+ - - - - - - - - + - - - - - - - - +  + - - - - - - - - - - - - - - - - - - - - - - -  + - - - - - - - - 

I 273.07 I 255.49 I 244.82 I 226.62 I 
I 5.2687 I 0.9412 I 0.2499 I 9.1823 I 
I 31.10 I 27.10 I 23.70 I 18.10 I 
I 71.49 I 66.58 I 60.77 I 50.14 I 

234 

312 

35 

12 
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Table 2.8 (concluded) 

(c) By Season 

CLUSTER SEASON 

Frequency I 
Expected I 

Percent I 
Cell Chi-square1 

Row Pct I Spring I Summer I Fall I Winter I 
Col Pct I (3-5) I (6-8) I (9-11) I (12-2) I Total 
- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - +  

1 I 505 I 308 I 145 I 42 I 1000 
I 453.23 I 392.97 I 127.43 I 26.365 I 
I 5.9127 I 18.372 I 2.4218 I 9.2713 I 
I 31.70 I 19.33 I 9.10 I 2.64 I 62.77 
I 50.50 I 30.80 I 14.50 I 4.20 I 
I 69.94 I 49.20 I 71.43 I 100.00 I 

- - - - - - - - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - + - - - - - - -  -+  

I 106.06 I 91.955 I 29.819 I 6.1695 I 
I 20.879 I 54.89 I 10.648 I 6.1695 I 
I 3.70 I 10.23 I 0.75 I 0.00 I 14.69 
I 25.21 I 69.66 I 5.13 I 0.00 I 
I 8.17 I 26.04 I 5.91 I 0.00 I 

- - - - - - - - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

I 141.41 I 122.61 I 39.759 I 8.226 I 
I 0.2904 I 1.9327 I 0.0145 I 8.226 I 
I 8.47 I 8.66 I 2.45 I 0.00 I 19.59 
I 43.27 I 44.23 I 12.50 I 0.00 I 
I 18.70 I 22.04 I 19.21 I 0.00 I 

- - - - - - - - - - - - - - -  + - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - +  

I 15.863 I 13.754 I 4.4601 I 0.9228 I 
I 0.2878 I 0.2237 I 0.0653 I 0.9228 I 
I 1.13 I 0.75 I 0.31 I 0.00 I 2.20 
I 51.43 I 34.29 I 14.29 I 0.00 I 
I 2.49 I 1.92 I 2.46 I 0.00 I 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - +  

I 5.4388 I 4.7156 1 1.5292 I 0.3164 I 
I 0.0354 I 0.0171 I 0.145 I 0.3164 I 
I 0.31 I 0.31 I 0.13 I 0.00 I 0.75 
I 41.67 I 41.67 I 16.67 I 0.00 I 
I 0.69 I 0.80 I 0.99 I 0.00 I 

2 1  59 I 163 I 12 I 0 I 234 

3 I 135 I 138 I 39 I 0 I 312 

4 1  18 I 12 I 5 1  0 1  35 

5 1  5 1  5 1  2 1  0 1  12 

Total 722 626 203 42 1593 
39.30 12.74 2.64 100.00 45.32 
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Table 2.9 Statistical Tests of Contingency Table for Duration-Based Storm Patterns 
(Without Patterns 6 , 7  and 8) 

(a) By Region 

Statistic DF Value Prob 
_ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Chi-square 12 36.466 0.000 

38.922 0.000 Likelihood Ratio Chi-square 12 
Mantel-Haenszel Chi-square 1 3.178 0.075 
Phi Coefficient 0.151 
Contingency Coefficient 0.150 
Cramer's V 0.087 

Sample Size = 1593 

(b) By Duration 

Stat istic DF Value Prob 
_ _ _ - - _ _ _ - - - - - - _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Chi-square 12 51.847 0.000 
Likelihood Ratio Chi-square 12 54.168 0.000 
Mantel-Haenszel Chi-square 1 30.014 0.000 
Phi Coefficient 0.180 
Contingency Coefficient 0.178 
Cramer's V 0.104 

Sample Size = 1593 

(c) By Season 

Statistic DF Value Prob 
_ _ _ _ _ - - _ _ _ _ - _ _ _ - - - - _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Chi-square 12 141.042 0.000 
Likelihood Ratio Chi-square 12 153.150 0.000 
Mantel-Haenszel Chi-square 1 5.130 0.024 
Phi Coefficient 0.298 
Contingency Coefficient 0.285 
Cramer's V 0.172 

Sample Size = 1593 
WARNING: 25% of the cells have expected counts less 

than 5. Chi-square may not be a valid test. 
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Table 2.10 Contingency Tables for Event-Based Storm Patterns (All 5 Patterns Included) 

(a) By Region 

CLUSTER REGION 

Frequency I 
Expected I 

Percent I 
Row Pct I 
Col Pct I 11 21 

Cell Chi-square( 

41 Total 3 1  
+ - - - - - - - - +  - - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - -  

11 11 1 4  I 11 4 1  2 0  
I 4 . 2 5 4 1  I 9 .6685 I 2.2652 I 3 . 8 1 2 2  I 
I 2 .4892  I 1 . 9 4 0 5  I 0 .7067  I 0 .0093 I 
I 0 .28  I 3 . 8 7  I 0 .28  I 1 . 1 0  I 5 . 5 2  
I 5 . 0 0  I 7 0 . 0 0  I 5 . 0 0  I 2 0 . 0 0  I 
I 1 . 3 0  I 8 . 0 0  I 2 . 4 4  I 5 . 8 0  I 

- - - - - - - - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

2 1  67  I 1 3 1  I 3 1  I SO I 279  
I 59 .345  I 1 3 4 . 8 8  I 31 .599  I 5 3 . 1 8  I 
I 0 .9873 I 0 .1114 I 0 .0114  I 0 . 1 9 0 1  I 
I 1 8 . 5 1  I 3 6 . 1 9  I 8 . 5 6  I 1 3 . 8 1  I 77 .07  
I 2 4 . 0 1  I 46 .95  I 11.11 I 1 7 . 9 2  I 
I 8 7 . 0 1  I 7 4 . 8 6  I 7 5 . 6 1  I 72 .46  I 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

3 1  9 1  28 I 9 1  1 4  I 60  
I 1 2 . 7 6 2  I 29 .006 I 6 .7956  I 1 1 . 4 3 6  I 
I 1 . 1 0 9 2  I 0 .0349  I 0 . 7 1 5 1  I 0 .5746  I 
I 2 . 4 9  I 7 .73  I 2 . 4 9  I 3 . 8 7  I 1 6 . 5 7  
I 1 5 . 0 0  I 4 6 . 6 7  I 1 5 . 0 0  I 23 .33  I 
I 1 1 . 6 9  I 1 6 . 0 0  I 21 .95  I 2 0 . 2 9  I 

4 1  0 1  11 0 1  11 2 
I 0 .4254 I 0 .9669 I 0 .2265 I 0 .3812 I 
I 0 .4254 I 0 . 0 0 1 1  I 0 .2265  I 1 . 0 0 4 4  I 
I 0 . 0 0  I 0 .28  I 0 . 0 0  I 0 .28  I 0 .55  
I 0 . 0 0  I 50 .00  I 0 . 0 0  I 5 0 . 0 0  I 
I 0 . 0 0  I 0 .57  I 0 . 0 0  I 1 . 4 5  I 

5 1  0 1  11 0 1  0 1  1 
I 0 .2127  I 0 .4834 I 0 .1133 I 0 .1906 I 
I 0 .2127  I 0 .552 I 0.1133 I 0 .1906  I 
I 0 . 0 0  I 0 .28  I 0 . 0 0  I 0 . 0 0  I 0 .28  
I 0 . 0 0  I 100.00 I 0 . 0 0  I 0 . 0 0  I 
I 0 . 0 0  I 0 .57  I 0 . 0 0  I 0 . 0 0  I 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

Total 77 1 7 5  4 1  69  362 
2 1 . 2 7  48 .34  1 1 . 3 3  1 9 . 0 6  1 0 0 . 0 0  
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Table 2.10 (continued) 

(b) By Duration 

CLUSTER DURATION 

Frequency I 
Expected I 

Percent I 
Row Pct I 
Cell Chi-square1 

Col Pct I < =  6 hr 17-12 hr 113-18 h 119-24 h I >  24 hr I Total 
- - - - - - - - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

I 3.6464 I 3.3702 I 3.7569 I 4.1436 I 5.0829 I 
I 14.83 I 2.0521 I 2.0231 I 1.109 I 5.0829 I 
I 3.04 I 1.66 I 0.28 I 0.55 I 0.00 I 5.52 
I 55.00 I 30.00 I 5.00 I 10.00 I 0.00 I 
I 16.67 I 9.84 I 1.47 I 2.67 I 0.00 I 

11 11 I 6 1  11 2 1  0 1  20 

2 1  29 I 43 I 61 I 63 I 83 I 279 
I 50.867 I 47.014 I 52.409 I 57.804 I 70.906 I 
I 9.4006 I 0.3427 I 1.4083 I 0.4671 I 2.0628 I 
I 8.01 I 11.88 I 16.85 I 17.40 I 22.93 I 77.07 
I 10.39 I 15.41 I 21.86 I 22.58 I 29.75 I 
I 43.94 I 70.49 I 89.71 I 84.00 I 90.22 I 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - +  

I 10.939 I 10.11 I 11.271 I 12.431 I 15.249 I 
I 15.594 I 0.0783 I 2.4648 I 0.4754 I 2.5606 I 
I 6.63 I 3.04 I 1.66 I 2.76 I 2.49 1 16.57 
I 40.00 I 18.33 I 10.00 I 16.67 I 15.00 I 
I 36.36 I 18.03 I 8.82 I 13.33 I 9.78 I 

3 1  24 I 11 I 6 1  1 0  I 9 1  60 
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Table 2.10 (concluded) 

( c )  By Season 

CLUSTER SEASON 

Frequency I 
Expected I 

I 
Cell Chi-square I 
Percent 
Row Pct I Spring I Summer I Fall I Winter I 
Col Pct I (3-5) I (6-8) I (9-11) I (12-2) I Total 

11 4 1  14 I 2 1  0 1  20 
I 8.3978 I 8.7845 I 2.3757 I 0.442 I 
I 2.3031 I 3.0965 I 0.0594 I 0.442 I 
I 1.10 I 3.87 I 0.55 I 0.00 I 5.52 
I 20.00 I 70.00 I 10.00 I 0.00 I 
I 2.63 I 8.81 I 4.65 I 0.00 I 

- - - - - - - - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

8 I 279 2 I 129 I 107 I 35 I 
I 117.15 I 122.54 I 33.141 I 6.1657 I 
I 1.1988 I 1.9717 I 0.1043 I 0.5457 I 
I 35.64 I 29.56 I 9.67 I 2.21 I 77.07 
I 46.24 I 38.35 1 12.54 I 2.87 I 
I 84.87 I 67.30 I 81.40 I 100.00 I 

- - - - - - - - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

3 1  18 I 36 I 6 1  0 1  60 
I 25.193 I 26.354 I 7.1271 I 1.326 I 
I 2.0539 I 3.5309 I 0.1782 I 1.326 I 
I 4.97 I 9.94 I 1.66 I 0.00 I 16.57 
I 30.00 I 60.00 I 10.00 I 0.00 I 
I 11.84 I 22.64 1 13.95 I 0.00 I 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - +  

4 1  0 1  2 1  0 1  0 1  2 

I 0.00 1 0.55 I 0.00 I 0.00 I 0.55 
I 0.00 I 100.00 I 0 . 0 0  I 0 . 0 0  I 

I 0.8398 I 0.8785 I 0.2376 I 0.0442 I 
I 0.8398 I 1.4319 I 0.2376 I 0.0442 I 

1 0.00 I 1.26 I 0.00 I 0 . 0 0  I 
- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - +  

5 1  11 0 1  0 1  0 1  1 
I 0.4199 I 0.4392 I 0.1188 I 0.0221 I 
I 0.8015 I 0.4392 I 0.1188 I 0.0221 I 
I 0.28 I 0.00 I 0 .00  I 0.00 I 0.28 

I 0.66 I 0.00 I 0 . 0 0  I 0 .00  I 
I 100.00 I 0 . 0 0  I 0 .00  I 0 . 0 0  I 

Total 152 159 43 8 362 
41.99 43.92 11.88 2.21 100.00 



Table 2.11 Statistical Tests of Contingency Table for Event-Based Storm Patterns 
(All 5 Patterns Included) 

(a) By Region 

Statistic DF Value Prob 

Chi-square 12 11.606 0.478 
Likelihood Ratio Chi-square 12 13.391 0.341 
Mantel-Haenszel Chi-square 1 1.258 0.262 
Phi Coefficient 0.179 
Contingency Coefficient 0.176 
Cramer’s V 0.103 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Sample Size = 362 
WARNING: 55% of the cells have expected counts less 

than 5. Chi-square may not be a valid test. 

(b) By Duration 

Statistic DF Value Prob 

0.000 Chi-square 16 73.855 
0.000 Likelihood Ratio Chi-square 16 69.423 

Mantel-Haenszel Chi-square 1 0.728 0.393 
Phi Coefficient 0.452 
Contingency Coefficient 0.412 
Cramer’s V 0.226 

_ _ ^ _ _ _ _ _ _ _ _ _ _ - - - - - - _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Sample Size = 362 
WARNING: 56% of the cells have expected counts less 

than 5. Chi-square may not be a valid test. 

(c) By Season 

Statistic DF Value Prob 

Chi-square 12 20.746 0.054 
Likelihood Ratio Chi-square 12 23.565 0.023 

Phi Coefficient 0.239 
Contingency Coefficient 0.233 

0.138 Cramer’s V 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Mantel-Haenszel Chi-square 1 0.505 0.477 

Sample Size = 362 
WARNING: 55% of the cells have expected counts less 

than 5. Chi-square may not be a valid test. 
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Table 2.12 Contigency Tables for Event-Based Storm Patterns (Without Pattern 4 and 
Pattern 5) 

(a) By Region 
CLUSTER REGION 
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Table 2.12 (continued) 

(b) By Duration 

CLUSTER DURATION 

Frequency I 
Expected I 

Percent I 
Row Pct I 

11 

Cell Chi-square1 

Col Pct I < =  6 hr 17-12 hr 113-18 h 119-24 h I >  24 hr I 
- - - - - - - - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - +  

I 3.5655 I 3.3426 I 3.7883 I 4.1783 I 5.1253 I 
I 15.502 I 2.1126 I 2.0523 I 1.1356 I 5.1253 I 
I 3.06 I 1.67 I 0.28 I 0.56 I 0.00 I 5.57 
I 55.00 I 30.00 I 5.00 I 10.00 I 0.00 I 
I 17.19 I 10.00 I 1.47 I 2.67 I 0.00 I 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - +  

I 49.738 I 46.63 I 52.847 I 58.287 I 71.499 I 
I 8.6467 I 0.2825 I 1.2579 I 0.3811 I 1.8501 I 
I 8.08 I 11.98 I 16.99 I 17.55 I 23.12 I 77.72 
I 10.39 I 15.41 I 21.86 I 22.58 I 29.75 I 
I 45.31 I 71.67 I 89.71 I 84.00 I 90.22 I 

- - - _ - _ _ - - - _ _ _ - -  + - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

I 10.696 I 10.028 I 11.365 I 12.535 I 15.376 I 
I 16.546 I 0.0942 I 2.5325 I 0.5126 I 2.644 I 
I 6.69 I 3.06 I 1.67 I 2.79 I 2.51 I 16.71 
I 40.00 I 18.33 I 10.00 I 16.67 I 15.00 I 
I 37.50 I 18.33 I 8.82 I 13.33 I 9.78 I 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

T o t a l  

Total 

11 I 6 1  11 2 1  0 1  20 

2 1  29 I 43 I 61 I 63 I 83 I 279 

11 I 6 1  10 I 9 1  60 3 1  24 I 

64 60 68 75 92 359 
17.83 16.71 18.94 20.89 25.63 100.00 

44 



Table 2.12 (concluded) 

(c) By Season 

CLUSTER SEASON 

Frequency I 
Expected I 

Percent I 
Cell Chi-square1 

Row Pct I Spring I Summer I Fall I Winter I 
Col Pct I (3-5) I (6-8) I (9-11) I (12-2) I Total 
- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - +  

I 8.4123 I 8.7465 I 2.3955 I 0.4457 I 
I 2.3142 I 3.1554 I 0.0653 I 0.4457 I 
I 1.11 I 3.90 I 0.56 I 0.00 I 5.57 
I 20.00 I 70.00 I 10.00 I 0.00 I 
I 2.65 I 8.92 I 4.65 I 0.00 I 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - +  

I 117.35 I 122.01 I 33.418 I 6.2173 I 
I 1.1564 I 1.8475 I 0.0749 I 0.5112 I 
1 35.93 I 29.81 I 9.75 I 2.23 I 77.72 
I 46.24 I 38.35 I 12.54 I 2.87 I 
I 85.43 I 68.15 I 81.40 I 100.00 I 

- - - - - - - - - - - - - - - + - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - +  

I 25.237 1 26.24 I 7.1866 I 1.337 I 
I 2.0752 I 3.6306 I 0.1959 I 1.337 I 
I 5.01 I 10.03 I 1.67 I 0.00 I 16.71 
I 30.00 I 60.00 I 10.00 I 0.00 I 
I 11.92 I 22.93 I 13.95 I 0.00 I 

- - - - - - - - - - - - - - - + - - - - - - - -  + - - - - - - - - + - - - - - - - - + - - - - - - - - +  

11 4 1  14 I 2 1  0 1  20 

2 I 129 I 107 I 35 I 8 I 279 

3 1  18 I 36 I 6 1  0 1  60 

Total 151 157 43 8 359 
42.06 43.73 11.98 2.23 100.00 
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Table 2.13 Statistical Tests of Contingency Table for Event-Based Storm Patterns 
(Without Pattern 4 and Pattern 5) 

(a) By Region 

Statistic DF Value Prob 

0.183 Chi-square 6 8.829 
0.128 Likelihood Ratio Chi-square 6 9.929 

Mantel-Haenszel Chi-square 1 1.027 0.311 
Phi Coefficient 0.157 
Contingency Coefficient 0.155 

0 * 111 Cramerls V 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Sample Size = 359 
WARNING: 25% of the cells have expected counts less 

than 5. Chi-square may not be a valid test. 

(b) By Duration 

Statistic DF Value Prob 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Chi-square 8 60.676 0.000 

0.000 Likelihood Ratio Chi-square 8 59.001 
Mantel-Haenszel Chi-square 1 0.482 0.488 
Phi Coefficient 0.411 
Contingency Coefficient 0.380 
Cramer's V 0.291 

Sample Size = 359 
WARNING: 27% of the cells have expected counts less 

than 5. Chi-square may not be a valid test. 

(c) By Season 

Statistic DF Value Prob 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Chi-square 6 16.809 0.010 
Likelihood Ratio Chi-square 6 18.532 0.005 
Mantel-Haenszel Chi-square 1 0.317 0.574 
Phi Coefficient 

Cramerls V 0.153 

0.216 
Contingency Coefficient 0.211 

Sample Size = 359 
WARNING: 25% of the cells have expected counts less 

than 5. Chi-square may not be a valid test. 
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2.5.1 Duration-Based Storm Patterns 

Figures 2.4 and 2.5 show the relative frequency of the occurrence of the duration- 

based storm patterns in four different climatic regions in Wyoming. Note that in regions 2 

and 4 all storm patterns occur. On the other hand, storms of pattern 8 were not found in 

region 1 and storm patterns 6 and 7 do not occur in region 3. 

Figures 2.6 and 2.7 show the relationship between the duration-based storms and the 

four selected storm durations. Pattern 8 does not contain storms with 12-hr duration and 18- 

hr duration. Pattern 7 and pattern 5 do not contain storms with 18-hr duration. Pattern 6 

does not have 24-hr duration. All storm patterns contain 6-hr duration. 

As shown in Figs 2.8 and 2.9, the duration-based storms of different patterns all 

happen m Spring (March-May) and Summer (June-August). In Fall (September-November), 

storms with patterns 6,7 and 8 are not observed. Only storms with pattern 1 occur in Winter 

(December-February) indicating that Winter storms have d o r m  intensity. 

Tables 2.7 and 2.9 suggest that, for the duration-based storms, storm patterns are 

dependent on climatic region, storm duration, and seasonality. Storm patterns should be 

adopted according to different regions, durations and seasons. 

2.5.2 Event-Based Storm Patterns 

The relationship between the event-based storm pattems and climatic regions is shown 

m Figs. 2.10 and 2.11. Only region 2 was observed with al l  five types of storms. Pattern 5 

only occurred m region 2 and pattern 4 only occurred in regions 2 and 4. This is most likely 

due to the scarcity of storm cases found in these two storm patterns. As can be seen in Fig. 
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Fig. 2.4 Relation of Storm Pattern by Region, for Duration-Based Strom Patterns, Shown 
in Relative Percentage 
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Fig. 2.5 Relation of Region by Storm Pattern, for Duration-Based Strom Patterns, Shown 
in Relative Percentage 
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Fig. 2.8 Relation of Storm Pattern by Season, for Duration-Based Storm Patterns, Shown 
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Fig. 2.10 Relation of Storm Pattern by Region, for Event-Based Storm Patterns, Shown 
in Relative Percentage 
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Fig. 2.1 1 Relation of Region by Storm Pattern, for Event-Based Storm Patterns, Shown 
in Relative Percentage 
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2.11, the heights of relative percentage for the different regions are almost the same in each 

pattern. This suggests that there is not much dependence between the event-based storm 

patterns and climatic regions. 

The storm duration was artiiicially divided into fwe categories for the event-based 

storm patterns. The relationship between event-based storm patterns and durations are shown 

m Figs. 2.12 and 2.13. The storm durations for pattern 4 and pattern 5 are relatively short. 

Pattern 4 only contains storms with a duration less than or equal to 6-hr. Pattern 5 only 

contains storms with duration between 6-hr and 12-hr. Pattern 1 does not have any storm 

longer than 24-hr. Pattern 2 and pattern 4 have storms with all durations. 

From Figs. 2.14 and 2.15, the relationshjp between the event-based storm patterns and 

seasons of occurrence are shown and it is observed that storms with pattern 2 occur in all 

seasons. Storms of pattern 1 and pattern 3 occur in all seasons but Winter. Only storms of 

pattern 2, those with uniform intensity, occur in Winter. 

Table 2.11 and 2.13 suggest that for the event-based storms, storm patterns are not 

dependent on climatic region and the relation between storm patterns and seasonality is not 

very strong. These five representative event-based storm patterns can be used for the entire 

State of Wyoming. 
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Fig. 2.14 Relation of Storm Pattern by Season, for Event-Based Storm Patterns, Shown 
in Relative Percentage 
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Fig. 2.15 Relation of Season by Storm Pattern, for Event-Based Storm Patterns, Shown 
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2.6 FTITING PARAMETRIC MODELS TO STORM PATTERNS 

For modeling convenience, parametric models can be used to describe the temporal 

variation of storm patterns obtained fiom the cluster analysis. Since the dimensionless rainfdl 

hyetographs are bounded between 0 and 1 for the dimensionless time, probability distributions 

for bounded random variables might be appropriate. Specifically, two distribution models, 

namely, the Beta distribution and Johnson's S, distribution, were considered m this study. 

The following subsections describe the procedure for fitting the two models to the storm 

patterns. 

2.6.1 Fitting Storm Patterns by Beta Distribution 

The beta distribution is appropriate for describing a random variable having both 

lower and upper bounds. The non-standard Beta PDF is 

in which a and b are the lower bound and upper bound, respectively. By using a standard 

random variable Y=(X-a)/@-a), the standard Beta PDF is obtained as 

f,olla,P) = B(a,P) y a-1 (1 -y)P-', osys 1 

The mean and variance of the standard beta random variable Y are, respectively, 
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a - 
P y  - - 

a + P  
a; = aP 

(a  + p + 1 )(a + p)2 

(2.8a) 

(2.8b) 

From the above two equations, the parameters aand p in the standard Beta PDF can be 

easily obtained as 

(2.9a) 

(2.9b) 
a; 

In the present problem context, the random variable Y is the dimensionless time having 

a CDF represented by the dimensionless rainfall mass curve. The two parameters in the Beta 

PDF can be calculated using the fist two moments of Y. The means of the first two moments 

for each storm pattern (see Tables 2.4 and 2.5) were used in this study. 

Differences between the observed storm patterns (solid lines) and those fitted by the 

Beta distribution (dash lines) are shown in Figs. 2.16 and 2.17. These figures indicate that 

the Beta distribution cannot represent the storm patterns under consideration. 

2.6.2 Fitting Storm Patterns by Johnson SB Distribution 

Johnson (1949) demied a system of frequency curves consisting of a four-parameter 

bounded system S,: 
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Fig. 2.16 Comparison of 8 Representative Duration-Based Storm Patterns with Those 
Fitted by the Beta Distribution (Dash Lines) 
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Fig. 2.17 Comparison of 5 Representative Event-Based Storm Patterns with Those 
Fitted by the Beta Distribution (Dash Lines) 
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(2.10) 

where 2 is the standardized normal variable. 

Hill et al. (1976) provided an algorithm to estimate y, 6, A and 6 by matching the 

first four central moments ofX. However, the algorithm they developed does not fit the 

bounded system S, only. Instead, it chooses the best fitted Johnson's curves which also 

include the lognormal system S,, the unbounded system S,, and the normal system. This 

algorithm is not suitable for the problem at hand because, in our case, only bounded 

systems are desired. 

Equation (2.10) for the S, curve can be reduced to a 2-parameter S, as 

2 = y+6h[Y/(l-Y)], O<Y<l (2.11) 

in which Y is the reduced randomvariable defined as 

Y = (x-tya, E<x<~+A (2.12) 

Bacon-Shone (1985) generalizes the above two-parameter S, model to a three-parameter S, 

model through the introduction of a new parameter, a , as 

2 = y+6JJl[Ya/(l-Ya)], O<Y<l (2.13) 

where Y is defined as Eq. (2.12). Furthermore, he also developed an algorithm to compute y , 6 

and a by matching the fist three moments or to match the first two moments for the special 

case when a = 1 . Since the dimensionless storm patterns are bounded between 0 and 1, 
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A = 1 and 4 = 0 m Eq. (2.12). In this study, both Bacon-Shone's three-parameter Johnson S, 

model (2.13) and the two-parameter S, model (2.11) were used to fit the various storm 

patterns in Figs. 2.2 and 2.3. 

Model Fitting Using Moments - Using the means of the statistical moments with 

respect to dimensionless time, the parameters in Eqs. (2.11) and (2.13) were found. The 

results are show m rows M-3 and M-2, respectively, in Tables 2.16 and 2.17, in which M-3 

and M-2, respectively, stand for fitting the reduced 3-parameter and 2-parameter S, curves 

by the moments. 

While using the first three moments (M-3) to fit the Johnson S, curve, there are some 

patterns, e.g., pattern 3 of the event-based storm, whose fitted parameters are out of bounds 

according to Bacon-Shone's algorithm. The lack of accurate skewness may be the cause of 

this problem 

Model Fitting Using CDF and Quantiles - Since the ordinates of a dimensionless 

mass curve represent the cumulative percentages at different time points, it is reasonable to 

treat these ordinates as the CDF values: 

(2.14) 

in which yi=i/6 is the dimensionless time point; andR is the cumulative percentage at the 

corresponding time point. 

Using the three-parameter Johnson S, distribution to fit the dimensionless rainfall 

mass curve, the cumulative percentage pi at yi can be calculated as: 
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p i  = P{Ysy,)  = P { Z s  y+6ln(y;l(l-y;)) 
= P ( Z < Z i )  (2.15) 
= WzilY,',a) 

where @(zi) is the standard normal CDF, and zi = y +6lnbiOL/(1 -$)]is the normal 

quantile corresponding to the dimensionless time, yl, defined by Eq. (2.13). 

Two approaches can be applied to fit the 3-parameter reduced Johnson S, model. 

One approach focuses on the fitting of the CDF ordinates in which the least square method 

can be applied to find the three parameters by s o k g  the following optimization problem, 

5 5 

Minimize s2(y,6,a) = C ( ~ ~ - 9 ~ ) ~  = C [pi-qfil y,6,a)12 (2.16) 
i = l  i = l  

Alternatively, the model parameters can be obtained by focusing on the quantiles in which the 

following optimization problem is solved, 

5 5 

Minimize Sl (y, 6 ,  a )  = C (zi -Ti)' = [@-'('pi) - f i (  y, 6 ,  a)I2 (2.17) 
i= 1 i = l  

where is the inverse standard normal CDF. 

According to the above two types of objective functions, four cases were considered 

in this study: 

(a) LS- 1 a: fitting Eq. (2.1 1) using S, ( y ,6,1.0). 

(b) LS-2a: fitting Eq. (2.1 1) using S2 ( y ,6,1.0). 

(c) LS-lb: fitting Eq. (2.13) using S, (y,6, a) .  
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(d)LS-2b: fitting Eq. (2.13)uSing S2(y,8,a). 

The optimization problem for Eq. (2.17) can be sobed based on the necessary 

condition for the minimum of Sl as 

= o  

-@-ypi) = 0 1 
(2.18a) 

(2.18b) 

(2.18~) 

For the special case with a = 1 ,  the above equations can be written as 

(2.19a) 

in which @(z) and @-'(p) can be calculated accurately by the approximation methods 

suggested by Abramowitz and S t e w  (1972). 

Press et al. (1989) pointed out "there are no good, general methods for s o h g  

systems of more than one nonlinear equation". However, kding a minimum of a hc t ion  

is relatively easier and "there are efficient general techniques for finding a minimum of a 

function of many variables". The Newton-Ralphson method for s o h g  the nonlinear system 

of equations, Eqs. (2.18), Med because ofthe problems with fiequent divergence. Hence, 

the downhill multidimensional simplex method in multidimension was used (Press et al., 
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1989). The basic idea of this method is to evaluate the objective functions at the (N+1) 

vertices of a general simplex and to move towards the (at least local) optimum point. 

Reflection, contraction, and expansion are the three basic operations to achieve this goal. In 

this study, the corresponding objective functions for the 3-parameter Johnson S, curve and 

2-parameter Johnson S& curve are S2( y, 6, a) and S2( y, 6,1.0)? respectively. The objective 

functions Sl ( y, 6, a) and S, ( y, 6,1.0) were also considered for the purpose of comparison. 

The downhill simplex method requires (N+1) points to define an initial simplex. After 

making a guess of the optimum point X,, one can generate the other N points as 

xi = X,+k,Ei (2.20) 

where the e,ls are N unit vectors and hi's are the characteristic length scales for each vector 

direction. Although the Taylor expansion can be applied to Eqs. (2.18) to find the starting 

point X, ( y, 8, a), a preliminary investigation shows that ( y, 6,1 .O) is a good initial guess 

of &. By assigning a = 1 as the starhg point, ( y, 6) can be obtained by solving Eqs. (2.19a) 

and (2.19b). 

Tables 2.14 and 2.15 show the comparisons of the different methods in that FbF5 are 

the percentiles at dimensionless time points yi = 216 (I <i<5), respectively. These percentiles 

were calculated fiom Eqs. (2.11) or (2.13) depending on how many parameters are involved 

m the method. SSE, is the sum of square error of z, according to Eq. (2.17) and SSE, is the 

sum of square mor ofp, according to Eq. (2.16). Obviously, the SSE, is a good criterion for 

evaluation of different methods. 
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Table 2.14 Comparison of Observed and Fitted Duration-Based Dimensionless Mass Curves by Different Methods 
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1.848085E-03 

79.96690 
11.71 11 1 

0,1026327 
2.47271 1E-02 

1.012226E-03 
1.626376E-03 

2 

4 
0 

26.1 8395 
6.851894 

' 0.2579558 
l 7.597065E-02 

3.3024 1 6E-04 
17.89773OE-04 

3 

0.7046286 
0.7951576 
0.4643858 
0.6003290 
0.6591238 
0.63683 14 
0.6685585 

4 

~~ 

2.566042 
0.7768636 
0.2302683 
0.6808506 
0.1 151340 
0.2265502 

I F1 
observed 
M-3 
M-2 
LS-1 a 
LS-2a 
LS-1 b 
LS-2b 
observed 
M-3 
M-2 
LS-1 a 
LS-2a 
LS-1 b 
LS-2b 

0.1589220 

0.107981 0 
0.15293 13 
0.1493081 
0.1566494 
0.1546778 
0.7865214 
1 .ooooooo 
0.2479784 
0.8125654 
0.7910784 
0.7892132 
0.7870376 

7.06741 9E-05 

observed 
M-3 
M-2 
LS-1 a 
LS-2a 
LS-1 b 
LS-2b 
observed 
M-3 * 
M-2 
LS- 1 a 
LS-2a 
LS- 1 b 
LS-2b 

0.2724423 
1.974693E-05 
0.1 74 1 536 
0.3239965 
0.2893649 
0.2715205 
0.2718428 

0.1209881 
8.9057143-01 

2.904795E-02 
5.733 583E-02 
1.76 1 542E-02 

~ 

F2 
0.3227310 

0.2393163 
0.3350765 
0.33 16787 
0.33 173 12 
0.3 3003 3 7 
0.9075214 
1 .ooooooo 

0.3 840427 
0.8944928 
0.8958389 
0.9033656 
0.9046549 

2.73 95 5 7E-04 

03146058 
5.3 3 787OE-03 
0.2691694 
0.5834599 
0.5931666 
0.6 1 84798 
0.6161817 
0.1248286 
0.3553683 

0.1454583 

0.1335280 

8.364068E-02 

8.2 3 3 2 70E-02 

9.83 5 3 74E-02 

0.5053900 

0.3788680 
0.5 105445 
0.5086638 
0.5051008 
0.5049496 
0.94351 28 
1 .ooooooo 

0.4988455 
0.9364548 
0.9448793 
0.9453796 
0.9465743 

7.036851E-04 

0.8026891 
0.1083543 
0.3551971 
0.7628654 
0.7978653 
0.803 1062 
0.80 16383 
0.1938857 
0.541 71 47 
0.1605545 
0.2540914 
0.1982718 
0.23 14368 
0.1983666 

F4 
0.6909720 

0.5364891 
0.683 9620 
0.6839314 
0.6815003 
0.6833488 
0.9666837 
1 .ooooooo 
0.61 37442 
0.9641 149 
0.9735678 
0.9670237 
0.9673036 
0.9036154 
0.5769964 
0.4493409 
0.8888333 
0.9239770 
0.9013757 
0.90 17442 
0.314oooO 
0.6799692 
0.273 13 1 1 
0.3 946475 
0.3797759 
0.3827890 
0.3700007 

1.688145E-03 

F5 I SSE, 

0.9588782 
0.9865474 
0.577391 0 
0.9704638 
0.986901 6 
0.9594066 
0.9610731 

SSE, 
~ _ _ _  

1 S89804 
6.560345E-02 
2.64245 5E-04 
2.335 1 3 35-04 
1.835123E-04 
1.632566E-04 

5.876466E-02 
0.9399074 
9.144622E-04 
3.032478E-04 
2.814941E-05 
1 .93 0242E-05 

1.034968 
0.681 1338 

5.56655 33-03 
1.969 1 92E-03 
2.132724E-05 
1 -226594E-05 
_ _ ~ ~  

0.3 1 7282 1 
6.579536E-02 
2.243 896E-02 
1.33262OE-02 
1.137458E-02 
7.669579E-03 



Table 2.14 (concluded) 

Pattern F1 F2 F3 F4 F5 SSE, 

61 .Of3558 
8.66801 6 
1.06901 3 
17.15207 
7.21 0498 
11.78410 

21.61 1 18 
194.5228 
2.5 1 3547 
27.56500 
8.655032 
27.48769 

SSE, 
%25000E-z 
1.368663E-07 
6.77791 9E-02 
1.750361E-02 
1 .O 1 1407E-07 
1.005473E-04 
8.432589E-06 

6.583333342 
3.3 853 3 OE-06 
9.468696E-02 
0.1279803 
2.168072E-03 
3.368941 E-02 
4.45541 1E-03 
6.7571 433-02 
6.3 968 14E-03 
2.3 00032E-06 
0.3067996 

0.1154411 
6.754816E-02 

6.753879E-02 

0.1349167 

0.1 197594 
0.3443987 
0.1403 544 
0.3443987 
0.1423098 

t .082234E-05 
0.7599167 

0.149 1822 
0.63 1 1932 
0.7565243 
0.8480632 
0.7572291 
0.9842857 
0.5022397 

0.9369914 
0.9999906 
0.9868971 
0.999991 1 

4.570983E-04 

1.903639E-08 

0.9330834 

0.1949376 
0.9044441 
0.9988175 
0.9982314 
0.9995 108 
0.9884286 
0.891 61 51 

0.9979799 
1 .oooooo 
0.9999964 
1 .oooooo 

7.80465OE-03 

1.903639E-08 

observed 
M-3 
M-2 
LS-1 a 
LS-2a 
LS-1 b 
LS-2b 
observed 
M-3 
M-2 
LS-1 a 
LS-2a 
LS-1 b 
LS-2b 

1.458497 
0.9190750 
6.655 97OE-02 
1.146787E-02 
5.997 1 49E-02 
1.129336E-02 

0.8661 972 
3.70585 1 

0.1090190 
1 .923 906E-03 
5.3 3 643 8E-02 
1.923 92OE-03 

5 

3.9285713-02 
1.328572E-06 

0.9945288 
3.2 1 5 922E-02 
5.464003E-08 
2.707343E-04 
6.001007E-08 

0.9181429 
0.13 1269 1 

0.6958591 
0.91 8 1724 
0.6958591 
0.9181771 

1.903639E-08 
6 

4 
c1 

observed 
M-3 
M-2 
LS-1 a 
LS-2a 
LS-1 b 
LS-2b 

0.5522500 

0.3775516 
0.5872116 
0.583 8977 
0.5685298 
0.566471 5 

2.621 578E-03 
0.66 12500 

0.4583041 
0.6311018 
0.6298900 
0.6378459 
0.6374129 

1.0026OOE-02 
0.6865000 

0.5207521 
0.6632354 
0.6635245 
0.6765396 
0.676981 8 

2.81 3572E-02 
0.6937500 

0.5826938 
0.6942194 
0.6958987 
0.7029094 
0.7039192 

7.486584E-02 
0.71 52500 
0.2235812 
0.661295 1 
0.7331084 
0.7364136 
0.7227842 
0.7240878 

27.34234 
0.7663215 

2.1 5 1026E-02 
2.1 7 1 822E-02 
7.647642E-03 
7.67641 7E-03 

1.784384 
0.1144236 

2.991 606E-03 
2.9654 1 5E-03 
1.052651E-03 
1.042570E-03 

7 

8 

~~ 

observed 
M-3 * 
M-2 
LS-1 a 
LS-2a 
LS-1 b 
LS-2b 

0.1511429 
0.9999862 
0.9 142575 
0.1400837 
0.1359489 
0.1423666 
0.140 1350 

0.1 631 429 
1 .ooooooo 
0.8363219 
0.1655081 
0.1633635 
0.16241 32 
0.1608606 

0.1765714 
1 .ooooooo 
0.7536268 
0.1866080 
0.1863350 
0.1826846 
0.1820813 

0.1871429 
1 .ooooooo 
0.6526333 
0.2092973 
0.21 12074 
0.208021 0 
0.2088588 

0.2667143 
1 .ooooooo 
0.50 17734 
0.2416555 
0.2469044 
0.2492032 
0.2527730 

188.9185 
14.24036 
1.6361 52E-02 
1.71 1297E-02 
1.06 1679E-Oi 
1.080447E-02 

~~ 

3.297344 
1.640441 
1.347395E-03 
1.297763E-03 
8.57461 1E-04 
8.22681 7E-04 

*: Fitted parameters out of bounds (Bacon-Shone, 1985) 



Table 2.15 Comparison of Observed and Fitted Event-Based Dimensionless Mass Curves by Different Methods 

observed 
M-3 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
observed 
M-3 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
observed 
M-3* 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
observed 
M-3* 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
observed 
M-3 
M-2 
LS-la 
LS-2a 
LS-Ib 
LS-2b 

F1 
0 .5649250  
0 -9996665 
0.2034837 
0.6481918 
0.5765975 
0.5885988 
0.5717461 
0 .1357792  
5.22149213-02 
0.1262800 
0.1317761 
0.1283264 
0 -1336315 
0.1311883 
0 .2876383  
0.9996189 
0.1946028 
0.3388027 
0 -3055009 
0.2876649 
0.2880281 
3 .70000003-02  
0.9999995 
0.8286012 
2.21886673-02 
5.03465243-04 
2.52350353-02 
3.64369993-03 
0 . 9 5 9 0 0 0 0  
1 . oooooo  
0.1414966 
0.9542153 
0.9572713 
0.9561274 
0.9581161 

Led parameters out of bounds (Bacon- 

F2 
0 . 8 6 7 0 5 5 0  
1.000000 
0.2617125 
0.8112803 
0.8309220 
0.8330464 
0.8413734 
0 3 1 4 2 8 8 2  
0.1388108 
0.2615949 
0.3261614 
0.3230919 
0.3242763 
0.3223347 
0 .6287833  
0.9999987 
0.2896057 
0.5950288 
0.6045747 
0.6277539 
0.6278328 
5 .88000013-02  
0.9999972 
0.6990954 
6.32239213-02 
9.25588983-03 
5.69141993-02 
1.76056833-02 
0 . 9 6 7 2 0 0 0  
1.000000 
8.54121823-02 
0.9680323 
0.9685016 
0.9667584 
0.9672843 

Lone, 1985) 

F3 
0 . 9 1 3 2 6 0 0  
1.000000 
0.3108431 
0.8966171 
0.9377584 
0.9195151 
0.9304803 
0 .5217115  
0.2542078 
0.3990238 
0.5216936 
0 -5206363 
0 -5186056 
0.5187761 
0 .8056734  
1.000000 
0.3734757 
0.7694151 
0.8025045 
0.8067851 
0.8066850 
8 .25499973-02  
0.9999928 
0.5788293 
0.1223225 
4.95604313-02 
0.1093429 
5.87025103-02 
0 .9721000  
1.000000 
5.55318113-02 
0.9760238 
0.9752715 
0.9746870 
0.9743191 

F4 
0 .9509200  
1.000000 
0.3636013 
0.9497458 
0.9827696 
0.9571854 
0.9655883 
0 .7181115  
0.4116257 
0.5504055 
0.7120376 
0.7131366 
0.7106542 
0.7131366 
0 .9031583  
1.000000 
0.4638309 
0.8912761 
0.9244982 
0.9029337 
0.9027805 
0 .1366000  
0.9999863 
0.4506570 
0.2122468 
0.1728296 
0.2054266 
0.1737232 
0 .9803000  
1 . oooooo  
3.458543-02 
0.9822649 
0.9807760 
0.9818327 
0.9808576 

F5 
0 .9783500  
1.000000 
0.4373535 
0.9840066 
0 -9980069 
0.9773445 
0.9816087 
0 .8894387  
0.6446325 
0.7364386 
0.8900593 
0.8921120 
0 -8915178 
0 -8947338 
0 .9602917  
1 . oooooo  
0.5854027 
0.9705927. 
0.9864421 
0.9603418 
0.9602096 
0 . 5 0 7 6 5 0 0  
0 -9999777 
0.2908670 
0.3758487 
0.4961525 
0.4144396 
0.4963721 
0 . 9 9 0 2 0 0 0  
1.000000 
1.7293-02 
0.9883476 
0.9864266 
0.9892473 
0.9879456 

SSE, 

73.76490 
16.24998 
0.1252447 
1.003648 
3.13264283-02 
5.87362203-02 

2.517427 
0.6745498 
1.73389113-03 
2.21080433-03 
1.49967643-03 
2.00622723-03 

87.43625 
6.574976 
6.67918773-02 
0.2325978 
2.51698823-05 
2.70772583-05 

159.1814 
15.62826 
0.3027585 
2.971009 
0.1839481 
1.152534 

62.24333 
65.33846 
1.32224003-02 
1.90710373-02 
5.13015363-03 
7.72761743-03 

SSE, 

0.2170759 
1.497606 
1.03545383-02 
3.44280553-03 
1.79642633-03 
1.22839193-03 

0.2631972 
6.94533883-02 
1.94275983-04 
1.66101703-04 
1.73954963-04 
1.47227873-04 

0.6934350 
0.6440423 
5.31912133-03 
2.05440703-03 
2 -34948243-06 
2.22842643-06 

3.642744 
1.428531 
2.49148353-02 
6.31970213-03 
1.42851153-02 
4.88364093-03 

4.01938103-03 
4.126889 
4.62736433-05 
2.92062293-05 
1.83957893-05 
1.11061363-05 



From these tables, some notable observations can be made: 

LS-2b appears to be the best method and M-3 is the worst method. 

The least-squares method is better than the moments method. 

Basicdy, M-3 is worse than M-2 because the moments are calculated fiom samples. 

The skewness and higher-order moments are not so reliable. According to Johnson 

and Kitchen (1971), the two moment method is expected to be superior when using 

sample moments. Ifthe exact moments are known., the four moments method appears 

to be the best. 

The 5-parameter Johnson S, curves (LS-lb, LS-2b) provide a better fit than the 4- 

parameter Johnson S, curves (LS-la, LS-2a). 

Using Sr as the objective fhction (LS-2a, LS-2b) leads to a better fit than using 4 

as the objective function (LS- la, LS- lb). 

Using LS-2b, except for pattern 5 of the duration-based storms, every SSE,, the sum 

of squared errors ofp, is less than This indicates that Johnson's reduced three- 

parameter model is good enough to descrie the sigdicant storm patterns. 

Figures. 2.18 - 2.25 show the comparison of the fitted storm patterns with the original 

storm patterns. These figures also indicate that LS-2b provides the best fit. The fitted 

parameters are shown in Tables 2.16 and 2.17. The fitted parameters obtained fiom the 

moments and least square method are very different. Using the least square method, there 

are substantial differences between the parameters fitted by different methods whereas the 

differences m parameters fitted by the same model with different objective functions are not 

so great. 

(1) 

(2) 

(3) 

(4) 

( 5 )  

(6 )  
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+a- pattern 1 + pattern 2 --.t pattern 3 + pattern 4 

+ pattern 5 --a+ pattern 6 + pattern 7 +a- pattern 8 

0 1 2 3 4 5 6 
Dimensionless Time (in no. of T/6) 

Fitted by the 4-Parameter Johnson SB Curves Using 15-1 a (Dash Lines) 
Fig. 2.18 Comparison of 8 Representative Duration-Based Storm Patterns with Those 
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--m- pattern 1 -m- pattern 2 -pp- pattern 3 -+a- pattern 4 

-+- pattern 5 pattern 6 -m- pattern 7 --a- pattern 8 

3 1 

0.8 
Y B 
8 8 0.6 

pc 
d) + +a 
3 

u 

5 0.4 

5 
0.2 

0 
0 1 2 3 4 5 6 

Dimensionless Time (in no. of T/6) 

Fig. 2.19 Comparison of 8 Representative Duration-Based Storm Patterns With Those 
Fitted by the 4-Parameter Johnson SB Curves Using 15-2a (Dash Lines) 
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-RS- pattern 1 + pattern 2 -m- pattern 3 -ti+- pattern 4 

+ pattern5 -EL+ pattern6 +a- pattern7 pattern8 

3 

0 1 2 3 4 5 6 
Dmensionless Time (in no. of T/6) 

Fig. 2.20 Comparison of 8 Representative Duration-Based Storm Patterns with Those 
Fitted by the 5-Parameter Johnson SB Curves Using LS-lb (Dash Lines) 
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+is+ pattern 1 +zz- pattern 2 -t- pattern 3 - ~ a -  pattern 4 

--st pattern 5 -a- pattern 6 -m- pattern 7 -a- pattern 8 

1 

0.8 

f 0.6 

c, 6 

PI 
a * -a 9 0.4 

5 
0 
0.2 

0 
0 1 2 3 4 5 6 

Dmensionless Time (in no. of T/6) 

a 

Fig. 2.21 Comparison of 8 Representative Duration-Based Storm Patterns with Those 
Fitted by the 5-Parameter Johnson SB Curves Using 15-2b (Dash Lines) 
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I --It pattern 1 --mi- pattern 2 -t- pattern 3 + pattern 4 pattern 5 

1 

0.8 

3 
8 0.6 
b 

6 
E c, 

pc 
+ a2 
.rl c, 

0.4 

5 
0 

0.2 

0 

9 

0 1 2 3 4 5 6 
Dimensionless Time (in no. of T/6) 

Fig. 2.22 Comparison of 5 Representative Event-Based Storm Patterns with Those 
Fitted by the 4-Parameter Johnson SB Curves Using 15-1 a (Dash Lines) 
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+ pattern 1 -+a- pattern 2 --~t pattern 3 * pattern 4 pattern 5 

a 1 

0.8 

+-, Q 
d 

0.6 
& 
a3 + 3 0.4 

u 5 
0.2 

0 
0 1 2 3 4 5 6 

Dimensionless Time (in no. of T/6) 

Fig. 2.23 Comparison of 5 Representative Event-Based Storm Patterns with Those 
Fitted by the 4-Parameter Johnson SB Curves Using 15-2a (Dash Lines) 
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1 

0.8 

c, Q 
r: 
8 0.6 
8 

PI 
P 
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0.4 
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0.2 
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-1 + pattern 2 --It pattern 3 -m- pattern 4 ++- pattern 5 I 

0 1 2 3 4 5 6 
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Fig. 2.24 Comparison of 5 Representative Event-Based Storm Patterns with Those 
Fitted by the 5-Parameter Johnson SB Cuwes Using LS-lb (Dash Lines) 
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I + pattern 1 -+a- pattern 2 + pattern 3 + pattern 4 ++- pattern 5 

1 
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b 
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3 
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Fig. 2.25 Comparison of 5 Representative Event-Based Storm Patterns with Those 
Fitted by the 5-Parameter Johnson SB Curves Using LS-2b (Dash Lines) 
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Table 2.16 Coml 
Pattern 

1 

2 

4 

5 

6 

7 

8 

GAMMA 
M-3 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
M- 3 
M- 2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
M-3 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
M-3* 
M- 2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
M-3 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
M-3 
M-2 
LS-la 
LS-2a 
LS-Ib 
LS-2b 
M-3 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
M-3* 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 

-3.176377 
-0.3084555 
2.64342243-02 
2.17190163-02 
-0.1741563 
-0.1978749 
-46.82421 

-2.89440163-03 
1.525677 
1.597109 
2.081609 
2.118697 
-3.733794 

-0.3713269 
0.7155499 
0.8340201 
1.727899 
1.703555 

0.8917136 
-0.9921815 
-0.6616698 
-0.8478103 
-4.186930 
-5.791852 
-5.609155 
-1.176191 

-0.4004879 
-1.078729 

-0.4004879 
-9.341406 
0.9164577 
-9.973822 
0.5125276 
1.392883 
0.5125276 
1.237072 
-3.463716 
5.20413523-02 
0.4213098 
0.4221014 
0.6381189 
0.6434295 
9.571754 

0.6859467 
-0.8904653 
-0.8914829 
-1.527301 
-1.901894 

ltorm Patterns bv Different Methods 
DELTA 

0.3748699 
0.5771469 
0.6526355 
0.6593139 
0.6927671 
0.7042847 
23.76490 
0.4212467 
0.3965901 
0.4889533 
0.1894013 
0.1526248 
2.378902 
0.3520177 
0.7282682 
0.8631964 
0.3543890 
0.3807528 
0.2509194 
0.5609356 
0.5690613 
0.7815669 
0.8086880 
0.9594789 
1.080621 

0.1965573 
1.061107 
2.559188 
2.061107 
3.204761 
1.036888 

-7.778093 
1.467899 
4.165331 
2.467899 
4.207398 
0.8272812 
0.2261405 
0 ~ 2 4 8 4 5 8  
0.1306208 
1.32726693-02 
8.87406433-03 
5.49896663-02 

-0.4234407 
0.1177295 
0.1287528 
0.1696783 
0.1807582 

ALPHA 
1.032660 
1.000000 
1.000000 
1 * 0 0 0 0 0 0  

0.8184373 
0.8006407 
3.54216733-02 
1.000000 
1.000000 
1.000000 
3.766300 
4.836195 
0.4327956 
1.000000 
1.000000 
1.000000 
3.679811 
3.388486 
4.586080 
1.000000 
1.000000 
1.000000 

2.00389183-02 
8.31608853-03 
0.2789566 
1.000000 
1.000000 
1.000000 
1 . 0 0 0 0 0 0  

0.1052760 
3.023376 
1.000000 
1.000000 
1.000000 
1.000000 

0.9735287 
0.2049949 
1.000000 
1.000000 
1.000000 
19.57352 
29.93872 
54.59815 
1.000000 
1.000000 
1.000000 

3.64214143-02 
5.87543573-03 

*:Fitted parameters out of bounds (Bacon-Shone, 1985) 
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Table 2.17 Comparison of Fitted Parameters for Event-Based Dimensionless Mass 
Curves by Different Methods 

Pattern 

1 

2 

3 

4 

5 

M-3 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
M-3 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
M-3* 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
M-3* 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 
M-3 
M-2 
LS-la 
LS-2a 
LS-lb 
LS-2b 

GAMMA 
31.23171 

1.262509 
1.536226 
2.142601 
2.298673 

-0.4934621 

-0.8949274 
-0.2558750 
5.44045313-02 
5.17503773-02 
-5.19607143-02 
-6.84542583-02 
6.800911 

0.7369217 
0.8506008 
1.710739 
1.709685 

-0.3226620 

3.990792 
0.1988993 
-1.163455 
-1.649131 
-4.561883 
-6.269476 
-56.94051 
- 1.593431 
1.977788 
1.964630 
0.9116608 
0.8321146 

DELTA 
14.20623 
0.2086318 
0.5480583 
0.8344707 
0.1581534 
7.76581393-02 
0.6688797 
0.5519188 
0.7284777 
0.7369583 
0.7505643 
0.7631938 
0.2907065 
0.3345249 
0.7161849 
0.8445463 
0.3642182 
0.3635737 
-9.19394203-03 
-0.4658477 
0.5263035 
1.018670 
0.7566571 
1.160113 
40.73217 
-0.3229766 
0.1805672 
0.1520830 
0.2566459 
0.2293521 

ALPHA 
4.67315093-02 
1.000000 
1.000000 
1.000000 
6.770798 
15.22049 
0.7699425 
1.0000000 
1.0000000 
1.0000000 
0.9083347 
0.8949277 
6.594133 
1.000000 
1.000000 
1.000000 
3.481001 
3.483911 
54.59815 
1.000000 
1.000000 
1.000000 
1.75455143-02 
2.48069803-02 
1.77851413-02 
1.000000 
1.000000 
1.000000 
2.45784413-02 
1.10575443-02 

*: Fitted parameters out of bounds (Bacon-Shone, 1985) 
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2.7 SUMMARY AND CONCLUSION 

A temporal pattern of the design storm is often the required input to rainfall-runoff 

models to produce a flow hydrograph for design and performance evaluation of hydraulic 

structures. In this study, average storm patterns for complete storms were of interest. 

'Significant storms' for each station with depth exceeding that of a 10-year return period at 

that particular station were extracted. Both duration-based and event-based storm data sets 

were established. Through the non-dimensionalization, rainfall mass curves and statistical 

moments of time were used as the attributes in statistical cluster analysis. Eight duration- 

based storm patterns and fwe event-based storm patterns were identified in Wyoming. The 

duration-based storm patterns are usefid for constructing design rainfall hyetographs whereas 

the event-based storm patterns can be used in stochastic generation of typical storms. 

Contingency tests were performed to fhd out whether the occurrence of various 

stonn patterns were affected by climatic region, storm duration, and seasonality. It was found 

that the event-based storm patterns are independent of climatic region in Wyoming and, 

therefore, these storm patterns can be used throughout the entire State of Wyoming. On the 

other hand, the occurrence of duration-based storm patterns are dependent on climatic 

regions, storm durations, and seasons. One should be cautious when a duration-based storm 

pattern is to be selected for hydraulic design. 

The representative storm patterns were fitted to the Beta and Johnson S, distributions 

by various methods. It was found that the Beta distribution is not appropriate for describing 

the storm patterns under consideration despite its versatility in having different shapes. To 
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fit the Johnson S, distribution, moments and quantiles of dimensionless time are used. The 

method that fits the moments does not yield desirable results because of the lack of accurate 

skewness. The least-squares method using quantiles resulted in a good fit. Therefore, the 3- 

parameter reduced Johnson S ,  distribution is recommended. 
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CHAPTER 3 

GENERATING TEMPORAL DISTRIBUTION OF DESIGN STORMS 

3.1 INTRODUCTION 

As stated previously, the complete description of a design storm involves the 

specxcation of storm depth, duration, and its temporal pattern. The general engineering 

practice is to preselect the duration and the return period of the design storm fiom which the 

corresponding storm depth is determined by fiequency analysis. The temporal variation of 

the precipitation amount within a storm can be established fiom the established dimensionless 

storm patterns such as those presented in Chapter 2. 

Note that the representative storm patterns as shown in Figs 2.2 and 2.3 are the 

averaged values. For each storm type, there exist intrinsic randomness in precipitation 

amount within each time increment. Therefore, the actual time distribution of precipitation 

amount within a design storm is subject to uncertainty. To assess the reliability of a hydraulic 

structure under a specified design storm condition, one should evaluate its performance under 

several storm distributions that are stochastically possible. 

The objective of this chapter is to develop algorithms allowing one to statistically 

generate the temporal distribution of a design storm satisfjhg the following two constraints, 

(Unit -sum): p ,  +-.* +Po = 1 
(Non -negativity): Pi 2 0, i = 1,*-p 

(3. la) 
(3. lb) 
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where Pi is the random precipitation percentage in the zth time increment; and D is the total 

number of time increments within the storm (D = 6 in this study). 

The random vector P = (P,, P2, --,Po) satkfjhg the constraint eqyations (3. la) and 

(3.lb) is called compositional data. Aitchison (1986) described many examples of 

compositional data and presented various problems related to compositional data analysis in 

different disciplines. To generate compositional data with prescribed statistical properties 

such as their statistical moments and correlations is not a trivial task due to the presence of 

the constraints. 

Literature about the constrained multivariate Monte Carlo simulation is available. 

Borgman and Faucette (1993) proposed a practical method to convert the constrained 

multivariate Gaussian simulation mto a conditional multivariate Gaussian simulation (See also 

Borgman, 1990, for detailed discussions of Gaussian unconditional and conditional 

simulations). Zhao (1992) applied this method to generate random unit hydrographs. 

Rubinstein (1981) developed several algorithms for generating random vectors uniformly 

distributed inside or on the d a c e  of simplex, hypersphere, and hyper-ellipsoid. The basic 

idea of those algorithms is the acceptance-rejection method as stated in “Alg~rithm 1” by 

Rubmstein (1981, p. 205). Unfortunately, the methods mentioned above are not applicable 

directly to stochastically generate storm events of a selected storm pattern due to the non- 

normality and non-dormity. 

Since the constrained Monte Carlo simulation invohes unconstrained Monte Carlo 

simulations with non-normal random variables, the procedure to generate unconstrained non- 

normal random variates is developed first. Based on this procedure, three constrained 
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simulation methods, namely, the acceptance-rejection (AR) method, the cumulative 

distribution fiuzction (CDF) method, and the log-ratio method, are developed for generating 

storm events of a storm pattern. Using the storm data collected m this study, the performance 

of the three proposed methods is examined. 

3.2 GENERATING UNCONSTRAINED MULTIVARIATE NON-NORMAL 

RANDOM VARIATES 

The common approach to simulate unconstrained multivariate non-normal random 

variables often involves the following three steps: (1) transformation to the normal space; (2) 

generation of mubmiate normal random variates; (3) inverse transformation to the original 

space. The transformation to normal space in step (1) is often made through pre-defined 

marginal disbiutions (Liu and Kiureghm, 1985; Chang et aL, 1994). However, the marginal 

distributions of the random variables are often unknown in practice. The normal 

transformation must be found fiom the statistical properties of the random variable. In this 

study, the Johnson distribution system was adopted due to its flexibility of covering various 

distribution types. Three approaches to fit the Johnson system were reviewed to provide a 

guideline for selecting the distriiution type and estimating parameters. To obtain the 

correlation structure m normal space as required in step (2), the Johnson distribution system 

was extended to the multivariate setting using the Nataf bivariate model. Formulas were 

derived which relate the correlation coefficient in the normal space to the correlation 
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coefficient in the original parameter space, the distribution parameters, and the first two 

moments of the Johnson distniutions. Based on these results, a procedure to simulate 

unconstrained correlated non-normal variables was proposed. 

3.2.1 Univariate Johnson System for Normal Transformation 

Johnson (1949a) described his system of fiequency curves by the method of 

translation. Like the Pearson system (Johnson and Kotz, 1976), Johnson introduced four 

parameters in his distribution system, 

= yiw( T )  x- F 

where Z is standard normal randomvariable; f(.)is a monotonic hc t ion  of another random 

variable X, 4 is the location parameter; and A is the scale parameter. By introducing 

Y = (X- C)/A, Eq. (3.2) can be reduced to the standardized form as 

The first four moments of X and those of Y satisfjr the following relationshqs, 

CLX = h y + E  

ax = Aay 
Yx = Y y  
Kx = Ky 

(3.4a) 
(3.4b) 

(3.4d) 
(3.4c) 
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The Johnson system consists of three types of fiequency curves: 

( 1) Lognormal system ( S,): 2 = y + 6 In (X- E ) ,  6 <X; 

(2) Unbounded system (Su): 2 = y + 6 sinh-l [(X- [)/A] ; 

(3) Bounded system ( S,): 2 = y + 6ln [(X- E ) / (  4 + A -a], E <X< E + A. 

These three curves cover all the feasi'ble area of the moment-ratio diagram (or p - p2 plane), 

which suggests every distribution is just a special case of the Johnson system (Johnson, 

1949a; Tadikamalla, 1980). 

Mer Johnson mtroduced his system of fiequency curves, numerous efforts have been 

made to fit data to the Johnson system. Typically, there are three approaches to selecting the 

Johnson distribution type and estimating its parameters. 

hn n S m - Based on the work of Leslie (1959), 

Johnson (1965) constructed a table for fitting S, curves by their moments. Johnson (1971) 

provided another table for fitting S, curves by their moments. These tables involve entries 

for the skewness ,/& and kurtosis p, to find the corresponding parameters. However, one 

has to know the type of Johnson distribution in advance and these tables are not desirable 

when a high accuracy is required. 

Fitting the Johnson Syste m by Moments - Hill et al. (1976) developed an algorithm 

to fit Johnson system using the first four moments. They include the normal curve and a 

special case of S, curves on the p2 = p1 + 1 boundary for the sake of completeness. 

The S, curves lie on a line in the p1 - p2 plane and the line is described by 

p1 = (0-1)(0+2)2 
p, = m4 +2m3 +3u2 -3 

(3.5a) 
(3.5b) 
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where o = exp (6 -2). Solving Eq. (3.5a) for o and evaluating Eq. (3.5b), the distribution 

type of the Johnson system can be determined. If the actual value of pz is greater than the 

evaluated one, S, is appropriate; otherwise, S, is chosen (Johnson, 1949a). 

Based on the iterative method proposed by Leslie (1959)’ the parameters of S, are 

fitted. Using Draper’s (1952) form of Goodwin’s mtegral, the parameters of S, are solved 

iteratively. The tolerance of 0.01 is used by Hill et al. (1976) to select S, curves. When the 

difference between the skewness and 0, the kurtosis and 3 are tolerably small, say 0.01, the 

normal curve is chosen. 

Slifker and Shapiro’s Method - The procedure of fitting the Johnson system by 

moments is not h a y s  desirable because the sample estimates of higher-order moments tend 

to have large sampling errors, especially when the sample size is small. Based on the 

relationshtp concerning the distances in the tails versus distances in the central portion of the 

Johnson distributions, Slifker and Shapiro (1980) developed an algorithm to distinguish 

Johnson distributions and to estimate the parameters. 

Suppose x,,, x,, x-, and x,~, are the values corresponding to 32, z, -2, and -32 under 

Johnson’s transformation. Let 

SWer and Shapiro (1980) proved the following criterion: (i) mdp2 > 1 suggests a S, 

distribution; (ii) m d p 2 <  1 suggests a S, distribution; and (iii) m d p 2 =  1 suggests a S, 

distribution. They also provided formulas for parameter estimation. 
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Using the order statistics and certain interpolation of the data, Slifker and Shapiro’s 

method is very easy to implement. However, there is no general rule for selecting the z value. 

Slifker and Shapiro offered an empirical choice of z = 0.524. In fact, the choice of z v h e  

has great influence on the determination of the type of Johnson distributions as well as the 

parameter estimation. Shayib (1989) investigated this problem by conducting sjmulations of 

an exponential distribution. He concluded that “the choice of S, or S, fi-om the Johnson 

family highly depends on the procedure of normalizing used”. 

Owen (1988) described a method, called STARSHIP, which is able to solve the 

problem of selecting z value. The basic idea of STARSHIP is to choose the optimum normal 

transformation based on the measure of normality of the transformed data. Owen and Li 

(1988) gave an example of applying Slifker and Shapiro’s method and the idea of the 

STARSHIP to fit Johnson distrr’butions. Instead of using a predefined single z value, different 

z values, z = 0.05(0.05)5, were tried. The Shapiro-Wilk test of normality was then applied 

to select the optimum z value for the Johnson transformation. 

3.2.2 Bivariate Johnson System 

The univariate Johnson system has been shown to be use l l  in many situations. To 

extend it to a bivariate case, Johnson (1949b) described a method of using median regression 

to do such an extension. However, the correlation coefficient in the normal space must be 

estimated fiom the data at hand. Scheuder and Hafley (1977) gave an example of using SB,B 

to descnie the stand structure of tree heights and diameters. A practical alternative to extend 

Johnson system to a bivariate case is to use the Nataf bivariate model (Liu and Kiureghian, 
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1986) as described below. 

Suppose that standard multivariate normal variates 2 = (Z,,---, Zn) are obtained 

through a marginal transformation of X =  (Xl,**=,Xn) and satis9 

where @(-)is the standard normal CDF; and Fx$*) is the CDF of Xi .  The Natafmodel for 

X is obtained by assuming that 2 is jointly normal. The joint probability density function 

(PDF) of X is 

where @(-) is the standard normal PDF, and @n(2y Rz) is the n-dimensional joint standard 

normal PDF with the correlation matrix R, . The element p z  , ,z ,  of the correlation matrix R, 

is related to the original correlation coefficient px, x,through the following integral equation, 

J J  

J' J 

Using the Nataf model, Liu and Kiureghmn (1986) derived a series of empirical 

equations of calculating the correlation coefficient in the standard normal space based on the 

parameters and the correlation coefficient of the original random variables for 10 commonly 

used marginal distributions in engineering applications. They also proved several lemmas 
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which are usefid for constructing a bivariate distrr’bution using the Nataf model. Some of their 

results are: 

Lemma 1. 

Lemma2. pz=O for p,=O. 

Lemma 3. 

px is a strictly increasing function of pz . 

I pxl I I pzl where the equality holds when px= 0 or when both marginals are 

normal. 

The Nataf model is valid provided the mappings in Eq. (3.6) are one-to-one and the 

correlation matrix R, is positive definite. For the Johnson distribution system, gx$) are 

continuous and strictly increasing, which satisfies the monotonic condition. However, due to 

the sampling error in calculated correlation coefficients, the correlation matrix R, obtained 

fiom Eq. (3.8) may not necessarily be positive-definite. As a matter of fact, the elements in 

R, may not necessarily exist. According to Lemma 3, there are cases, when the absolute 

v h e  of the original correhtion coefficient is sufficiently large that the correlation coefficient 

m the n o d  space may be out of the bounds [-1,1]. The original correlation coefficient must 

be bounded within a certain range is the limitation of the Nataf model. The correlation 

coefficient in the normal space will always exist if it is estimated fiom the data as Johnson 

(1949b) suggested. Obviously, this method may lead to violation with the above discussion 

in certain situations. 

Table 3.1 lists the formulas of the correlation coefficient pz in terms ofpx and the 

parameters and the first two moments of Johnson distributions. The derivation is @en in 

Appendix A. As can be seen, the formulas of SBB, SB,U, SB,LN are not analytically tractable. 

The attempt to establkh the empirical equations for these cases failed due to the complexities 
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Table 3.1 Formulas of Correlation Coefficient in Normal Space for Bivar 

N 

LN 

N 

PX 

LN 

@(l +o;)-ln(l +w;) 

where 
0, = q p , ,  oj = (J j /P j  

6i6jln(w + $2 + 1 ) + tijyi 

where 
Px(Ji (Jj  + Pi Pj o =  
1 /2a; + 1 126; - y jMj  e 

Not Analytically Tractable 

Ite Johonson Svtems 

s u  

ln[(B + $I2 +AC)/A] 
",aj 

where 
A = cosh(oi+oj) 
c = cosh(oi-oj) 

a; +a; 
B = pxo,ojexp(- ) 2 

+ Sinh(0,) Sinh(Wj) 

0, = -y,/6, , a, = 116, 
0. J = -y j /6 j  , aj = mj 

Not Analytically Tractable Not Analytically 
Tractable 

Note: px is the correlation coefficient in the original space. p and (J are the mean and standard deviation of the standardized 
Johnson variates. y and 6 are parameters for corresponding Johnson system. 



of the forms of Johnson distributions. Nevertheless, the value of p, ,+on the right-hand side 

of Eq. (3.8) can be solved by using an appropriate root-iinding procedure in conjunction with 

a proper numerical integration technique. The bracket points are easily determined fiom 

Lemmas 1 and 3. If px< 0, the search interval is (- 1, px] whereas for px> 0, the search can 

be made m [ px, 11. As stated before, due to the sampling error in the estimate ofpx and/or 

the limitation of the Nataf model, solving Eq. (3.8) for feasible pz may not always be 

possible. 

' J  

3.2.3 Procedure to Generate Unconstrained Multivariate Non-normal Random 

Varia tes 

Based on the multivariate Johnson system, a procedure to generate unconstrained 

multivariate non-normal random variates is developed herein. The procedure involves the 

following steps: 

Step [ 11 - Fit Johnson distriiutions to each variable and calculate the correlation matrix 

for the randomvariables in the original space. Ifthe sample size is large, the 

procedure by Hill et al. (1976) is recommended. Ifthe sample size is small, 

Owen's procedure (1988), the STARSHIP, is recommended. 

Construct a multivariate distribution model with the Natafmodel. Use Table 

3.1 to find the correlation matrix RE Numerical solutions are necessary to 

solve Eq. (3.8) to obtain the correlation coefficient in the normal space for 

Step [2] - 

SB,LN, SB,U, and sB,B- 
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Step 131 - Use orthogonal transformation to generate multivariate standard normal 

random variates z = ( zl,*--,zn) having the correlation matrix R,. (For detailed 

discussion of Gaussian unconditional s;innllatirm. see Borgman, 1990; Borgman 

and Faucette, 1993) 

Tran&om the generated multivariate standard normal variates to the original 

parameter space using the parameters and Johnson distribution types identified 

in Step [l]. 

Step [4] - 

The above procedure is not exactly a fidI multivariate simulation due to the lack of the 

information about the marginal PDFs. In fact, this procedure tries to preserve the partial 

information such as the moments and correlation structure of the given sample. 

3.3 GENERATING TEMPORAL STORM PATTERNS 

Using the procedure of unconstrained multivariate non-normal simulation, three 

methods were developed to generate temporal storm patterns as described in Eqs. (3. la) and 

(3.lb). They are the acceptance-rejection method, the CDF method, and the log-ratio 

method. The acceptancerejection method is intuitively straightforward which deals with the 

unit-sutn constraint explicitly. On the other hand, the CDF method and the log-ratio method 

are motivated by converting the problem of constrained simulation into a problem of 

unconstrained simulation. 
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3.3.1 Acceptance-Rejection (AR) Method 

Compositional data can be viewed as random vectors distributed on the d a c e  of a 

unit simplex. Although the compositional data has its prescribed moments and correlation 

structure and are not distributed d o r m l y  on the d a c e  of the unit simplex, the idea of the 

AR method is still applicable. Since the D-dimensional compositional data are in effect (D- 1) 

dimensional, only (D- 1) random variables need to be generated. 

The steps of the AR method are as follows: 

Step [l] - 

Step [2] - 

step [31- 

Step [4] - 

Step [5] - 

Fit the Johnson distriiution system to each randomvariable representing storm 

percentage, Pp 

Construct the correlation matrix Rz fiom the original correlation matrix RF 

Find the optimum (D-1) x (D- 1) submatrix R j .  The optimum submatrix is 

defined as the one with the minimal difference between the largest eigenvalue 

and the smallest eigenvalue. 

Generate a set of multivariate standard normal variates [ Z ~ , ~ - ~ , Z ~ - ~ ]  based on 

Rz’. Transform them back to obtain the original random storm percentages 

Ip,,--=,p,-,] using the parameters and Johnson distribution types obtained 

in step [l]. 

Ifthe following two conditions are satisfied, 

(i) 0 1 p , s  1, for 1ii iD-1 
(ii) p 1  + - 0 -  +pD-l I 1 

accept Ip,,*==,p,-,] and compute pD = 1 -pl  - * * -  - P , - ~ .  Otherwise, discard 
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the current simulated vector and repeat Step [4]. 

3.3.2 CDF Method 

Consider Pi as the random percentage precipitation duing the time interval [ti+ tJ 

where ti = z/D as &own m Fig. 2.l(b). Smce the dimensionless rainfall hyetograph is directly 

related to the dimensionless rainfhll mass curve, it is reasonable to generate Pi fiom the 

dimensionless rainfall mass curve which can be treated as a CDF. Let this CDF describing 

the dimensionless rainfall mass curve be F(t18) where 0 s  t i  1, Q is the vector of 

parameters. It follows that, 

The random precipitation percentages generated by Eq. (3.9) will automatically satisfy 

0<pii  1 and p1 +-  +pD = 1. 

After selecting the form of F(tI Q), each observation [pl,--,pJin a specified storm 

pattern can be fitted to this CDF using an appropriate method. The uncertainty of 

precipitation percentages P= (P,;-,P,) are transferred to the uncertainty of parameters in 

WI 9) 

The procedure of the CDF method involves the following steps: 
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Step [l] - Fit each non-dimensionalized rainfall mass curve in a storm pattern to 

WI Q).  

Step [2] - 

Step [3] - 

Step [4] - 

Calculate the sample moments and correlations of the parameters, 43. 

Fit a Johnson distribution to each of the parameters. 

Generate the random parameters Q using the procedures for simulating 

unconstrained non-normal random variables. 

Use Eq. (3.9) to calculate the components [PI, -*,pD]. Step [ 5 ]  - 

3.3.3 Log-ratio Method 

The log-ratio method is developed from the log-ratio transformation proposed by 

Aitchison ( 1986). Consider the following transformation, 

1 s i i D - 1  (3.10) 

wherep, can be any component ofthe compositional data. Since 0 <pi I 1 for i = 1,2, *-,D, 

the transformed variableyj can range fiom --oo to 00. Note that in the above transformation, 

neither pi nor pD can be 0. The inverse transformation of the log-ratio method yields, 

(3.1 la) 

(3.1 lb) 

It is obvious that O<pi< 1 and p1 + =-• +pD = 1 .  
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After perfiorming the log-ratio transformation, the problem of generating constrained 

multivariate non-normal variatesp,'s is converted to the problem of generating unconstrained 

multivariate non-normal randomvariatesy,'s. In Aitchison's approach (1986), a multivariate 

n o d  distriiution is assumed for Y;s resuEting in the logistic-normal distribution. However, 

the normality condition for the log-ratio, Yl, is not satisfied in this study. Therefore, the 

Johnson distribution system was selected to describe random vector Y. 

The computational steps of the log-ratio method are as follows: 

Step [ 11 - Choose Po and carry out the log-ratio transformation (The choice of p0 is 

arbitrary. A preliminary investigation recommends choosing the largest 

component as Po because it leads to small sample moments for the log-ratios). 

Calculate the sample moments and correlations of random log-ratio Yi, 

i = 1,2, -,D-1. 

Fit Yi, i = 1,2, =-,D-l, to the Johnson distribution system. 

Generate bl, --,y,-,] using the procedures for simulating unconstrained non- 

normal random variables. 

Obtain precipitation percentages[p,,--,pJ by Eqs. (3.1 la) and (3.1 lb). 

Step [2] - 

Step [3] - 
Step [4] - 

Step [5] - 

3.4 APPLICATIONS 

For the purpose of demonstration and performance evaluation, the three proposed 

procedures were applied to generate storm events. The performance evaluation is focused 
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on the computational efficiency and the ability of the simulated results to preserve the given 

statistical properties. 

Tables 3.2 - 3.4 give the detail sitnulation r e d s  for the duration-based storm patterns 

1, 2, and 3, respectively. The first table in each of them contains the sample statistical 

properties of the given storm pattern with the upper portion showing the first four moments 

of the six precipitation percentages and the lower portion showing the correlation coefficient 

among them. The sample sizes for all three storm patterns are sufliciently large so that the 

procedure of Hill et al. (1976a) were used to fit the data to Johnson distriiutions in the 

simulations. To calculate the correlation coefficient in the normal space for SB,LN, SB,U, and 

SB,B, the value of p,,,,,in the right-hand side of Eq. (3.8) was solved using a 48-point 

Gaussian-Legendre integration along with the Van-Wijngaarden-Delcker-Brent for root 

finding (Press et al., 1989). 

' J  

By the CDF method, the reduced 2-parameter Johnson S ,  distribution was selected 

as F( t l0 )  

Ft = F(t I y,6) = @(y + 6 h[tl( 1 -t)]), O<t< 1 (3.12) 

where @(*)is the standard normal CDF which can be evaluated using various highly accurate 

approximation methods (Abrmowitz and Stegun, 1972). The parameters y and 6 are fitted 

by the least square method with the following objective function, 

5 

s(y,6) = X {Fi - @(y + Q h[ti/( 1 -ti)])}2 
i=l  

(3.13) 
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Table 3.2 Results of Simulations of the Duration-Based Storm Pattern 1 (1000 cases) 

P1 P2 P3 P4 P5 P6 
Mean 0.15891 0.16380 0.18268 0.18560 0.16873 0.14029 
Stdev 0.07720 0.07149 0.09110 0.08548 0.07633 0.07764 

Skewness 0.65027 0.32196 1.19350 0.83840 0.41000 0.37661 
K u r t  o s i s 3.72483 3.54807 5.92435 4.58673 3.6146 3.24666 

P1 1.00000 -0.14052 -0.40608 -0.29759 -0.21022 0.14590 
P2 -0.14052 1.00000 -0.06842 -0.29414 -0.24383 -0.13720 
P3 -0.40608 -0.06842 1.00000 0.01874 -0.30635 -0.42604 
P4 -0.29759 -0.29414 0.01874 1.00000 -0.12957 -0.42887 
P5 -0.21022 -0.24383 -0.30635 -0.12957 1.00000 -0.04748 
P6 0.14590 -0.13720 -0.42604 -0.42887 -0.04748 1.00000 

(a) AR Method 

Step [ 11 - Parameters and types of the Johnson systems 
GAMMA DELTA LAMBDA XI TYPE 

P1 11.31988 4.10057 5.48644 -0.17558 S B  
S U  P2 -1.18047 3.35597 0.21531 0.08298 

S" P3 -2.88495 2.37821 0 .lo487 0.00703 

SU P4 -2.46973 2.80317 0.15635 0.01906 
P5 -1.64385 3.43394 0.22389 0.05259 S U  

P6 3 A8304 8.03829 1.00000 -0.48139 S L  

Step [2] - Correlation matrix R, 
z1 1.00000 -0.14279 -0.43118 -0.30866 -0.21425 0.14785 
22 -0.14279 1.00000 -0.07100 -0.30123 -0.24616 -0.13829 
23 -0.43118 -0.07100 1.00000 0.01968 -0.32028 -0.44620 
24 -0.30866 -0.30123 0.01968 1.00000 -0.13270 -0.44093 
z5 -0.21425 -0.24616 -0.32028 -0.13270 1.00000 -0,04791 
Z6 0.14785 -0.13829 -0.44620 -0.44093 -0.04791 1.00000 

Step [3] - The optimum 5 x 5 submatrix is the original one without row and column 3. 

Steps [4] & [5] - Simulation (10000 repetitions): C = 10798; Efficiency = 92.6% 
P1' P2 P3 I P4 I P5 P6 

Mean .156337 .163285 ,186824 .184535 .167039 .141980 
Stdev .073799 .069146 ,082345 .081636 .072564 .071884 

Skewness .556060 .421261 .093285 .726087 .464494 .437529 
K u r t  0s i s 3.287801 3.386889 2.722566 3.874025 3.414015 3.024581 

P1 1.000000 -.148723 -.359941 -.285539 -.237355 .092611 
P2 -.148723 1.000000 -.lo0999 -.294109 -.228009 -.129357 
P3 ' -.359941 -.lo0999 1.000000 -.008505 -.282676 -.383829 
P4 I -.285539 -.294109 -.008505 1.000000 -.138797 -.409750 
P5 I -.237355 -.228009 -.282676 -.138797 1.000000 -.065018 
P6 I .092611 -.129357 -.383829 -.409750 -.065018 1.000000 
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Table 3.2 (continued) 

@) CDF Method 

Step [ 11 - Fit the each set of data to 2-parameter Johnson S, 

Step [2] - Sample moments and correlations of the parameters for 2-parameter Johnson S, 

~ ~ 

GAMMA -0.55145 1.50179 0.27338 -0.09409 S" 
DELTA 4.48519 1.22089 8.07809 0.42759 S, 

Mean Stdev Skewness Kurtosis I Correlation Matrix 

1.00000 0.40361 
0.40361 1.00000 

I. 00000 0.35721 
0.35721 1.00000 I GAMMA 0.03404 0.24999 1.08434 8.62764 

DELTA 0.69664 0.23655 2.70697 15.89450 

Step [3] - Parameters and types of Johnson systems and correlation matrix R, 

Gamma Delta Lambda Xi Type I C o r r .  Matrix R, 

Steps [4] & [S] - Simulation (10000 repetitions) 
P1 P2 P3 I P4 P5 P6 

Mean .151750 .177728 .la1676 .174613 ,163839 .150395 
S t dev .071149 .041550 .058729 .045873 .033453 .086336 

Skewness .997318 1.411653 2.101315 1.556270 -1.221800 .408924 
Kurt o s i s 8.094628 9.028728 10.066878 6.742286 6.483229 3.176498 

P1' 1.00000 .124208 -.567360 -.774161 -.474709 ,097353 
P2 ' .124208 1.00000 .513142 .166481 -.581327 -.795887 
P3 -.567360 .513142 1.00000 .a54607 -.320634 -.789485 
P4 -.774161 .166481 .a54607 1.00000 .145051 -.611019 
P5 -.474709 -.581327 -.320634 .145051 1.00000 ,424533 
P6 .097353 -.795887 -.789485 -.611019 .424533 1.00000 
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Table 3.2 (concluded) 

(c) Log-ratio Method 

Step [l] - Selected PD = P4; Count = 919 

Step [2] - Sample moments and correlations of log-ratios. 
Y1 Y2 Y3 Y4 Y5 

Mean - 0.18454 -0.10389 -0.03001 -0.07334 -0.28841 
stdev 0.88102 0.80977 0.67594 0.74479 0.97044 

skewness -0.28884 - 0.29423 0.02207 - 0.74249 -0.67676 
kur t 0 s  i s 4.99647 6.06599 5.05152 8.32579 5.46737 

Y1 1.000000 0.546312 0.336809 0.434479 0.605829 
Y2 0.546312 1.000000 0.545094 0.435590 0.529433 
Y3 0.336809 0.545094 1.000000 0.343348 0.383661 
Y4 0.434479 0.435590 0.343348 1.000000 0.557576 
Y5 0.605829 0.529433 0.383661 0.557576 1.000000 

Stm r31- Parameters and t w e s  of Johnson svstem 
GAMMA DELTA LAMBDA XI TYPE 

Y1 0.24722 1.85791 1.39218 0.03022 S U  

0.03234 S" Y2 0.17109 1.61976 1.06401 
Y3 -0.01737 1.80598 1.03903 -0.04166 S U  

Y4 0.32310 1.44547 0.80663 0.15762 S" 
Y5 0.61851 1.87821 1.47930 0.28312 S,, 

Correlation matrix Rz 
0.44585 0.61384 21 1.00000 0.55423 0.34169 

22 0.55423 1.00000 0.55336 0.44857 0.53940 
23 0.34169 0.55336 1.00000 0.35362 0.39122 

0.44857 0.35362 1.00000 0.57094 24 0.44585 
0.57094 1.00000 25 0.61384 0.53940 0.39122 

Steps [4] & [5] - Simulation (10000 repetitions) 
P1' P2 P3 P4 P5 P6 

Mean .157393 .164472 ,178801 .la3208 .170499 .145627 
Stdev .089599 .081753 .088695 .087762 .081676 .081943 

Skewness 1.485353 1.576351 1.431104 1.178241 1.272852 1.185645 
Kurt o s i s 7.186072 8.530516 7.529385 5.689450 7.538825 5.780760 

P1 1.000000 -.129061 -.373678 -.293177 -.257292 .010248 
P2 -.129061 1.000000 -.078408 -.291364 -.283792 -.176766 
P3 -.373678 -.078408 1.000000 -.009406 -.266522 -.319854 
P4 -.293177 -.291364 -.009406 1.000000 -.063791 -.385996 
P5 ' -.257292 -.283792 -.266522 -.063791 1.000000 -.075476 
P6 .010248 -.176766 -.319854 -.385996 -.075476 1.000000 
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Table 3.3 Results of Simulations of the Duration-Based Storm Pattern 2 (234 cases) 

Mean 0.78651 0.12099 0.03599 0.02318 0.01495 0.01837 
Stdev 0.16531 0.11856 0.05320 0,04585 0.03353 0.03897 

Skewness -0.31510 0.96983 1.88161 2.72222 3.32915 2.51301 
Kurt o s i s 1.76890 3.26556 6.85497 10.8720 16.4610 9.16871 

P1 1.00000 -0.78978 -0.49540 -0.37907 -0.38247 -0.38770 
P2 -0.78978 1.00000 0,15683 -0.01416 0.06031 0.05855 
P3 -0.49540 0.15683 1.00000 0.15858 0.00892 0.06477 
P4 -0.37907 -0.01416 0,15858 1.00000 0.20376 0.08254 
P5 -0.38247 0.06031 0,00892 0.20376 1.00000 0.32649 
P6 -0.38770 0.05855 0.06477 0.08254 0.32649 1.00000 

(a) AR method 

Step [ 11 - Parameters and types of the Johnson systems 
GAMMA DELTA LAMBDA XI TYPE 

P1 -0.26934 0.51637 0.54351 0.47130 SB 
P2 1.07234 0.80823 0.59407 -0.03520 S B  
P3 1.78826 0.75398 0.36565 -0.01439 S B  
P4 1.72482 0.47710 0.28799 -0.00381 S B  

S B  

P6 1.55015 0.42056 0.21052 -0.00412 S B  
2.12910 0.56005 0.29542 -0.00448 P5 

Step [2] - Correlation matrix Rz 
21 1.00000 -0.82524 -0.56329 -0.48858 -0.50771 -0.49783 
22 -0,82524 1.00000 0.18002 -0.01899 0,08126 0.07689 
23 -0.56329 0.18002 1.00000 0.21102 0.01305 0.08979 
24 -0.48858 -0.01899 0.21102 1.00000 0,29113 0.12571 
25 -0.50771 0.08126 0.01305 0.29113 1.00000 0.43501 
Z6 -0.49783 0.07689 0.08979 0.12571 0.43501 1.00000 

Step [3] - The optimum 5 x 5 submatrix is the original one without row and column 1. 

Steps [4] & [5] - Simulation (10000 repetitions): C = 51838; Efficiency = 19.3% 
P1 P2 ' P3 I P4 P5 ' P6 I 

Mean .663453 ,152110 .057458 .047031 .036172 .043776 
Stdev .173254 .118114 .057821 ,058625 .045695 .050045 

Skewness -.711008 .a51555 1.565885 1.764444 2.121523 1.391674 
K u r t  o s i s 3.281164 2.986275 5.349764 5.607735 7.826441 4.022533 

P1 1.000000 -.724028 -.451602 -.403310 -.398644 -.394917 
P2 I - .724028 1.000000 .lo2136 - .034084 .041417 .030497 
P3 I -.451602 .lo2136 1.000000 .122072 -.017368 .039855 
P4 ' -.403310 -.034084 ,122072 1.000000 .139616 .036718 
P5 -.398644 .041417 -.017368 .139616 1.000000 .225777 
P6 I -.394917 .030497 .039855 .036718 .225777 1.000000 
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Table 3.3 (continued) 

GAMMA 2.85158 1.41037 0.07110 1.78565 
DELTA 0.84144 0.58485 -0.03114 1.58930 

@) CDF Method 

Step [ 13 - Fit the each set of data to 2-parameter Johnson S, 

Step [2] - Sample moments and correlations of parameters for 2-parameter Johnson S, 

1.00000 0.18726 
0 A8726 1.00000 

Mean Stdev Skewness Kurtosis I Correlation Matrix 

Step [3] - Parameters and types of Johnson systems and correlation matrix R, 

Gamma Delta Lambda Xi Type I Corr. Matrix R, 

1.00000 0.19923 I 0.19923 1.00000 
GAMMA 0.06822 0.62800 5.04390 0.42368 S, 
DELTA -0.02558 0.46856 1.80953 -0.07770 S, 

Steps [4] & [5] - Simulation (10000 repetitions) 

Mean .785698 .119758 
Stdev .278602 .158952 

Skewness -1.287751 1,207792 
Kurt o s i s 3.428676 3.137985 

P1 1.000000 -.911469 
P2 -.911469 1.000000 
P3 ' - .941785 .795460 
P4 I -.826079 -568683 
P5 I -.547708 ,283061 
P6 I - .  049884 - .166610 

.051132 

.092447 
2.197128 
7.217025 

.020422 .007832 .015157 

.041848 .017999 .044689 
2.699639 2.824335 4.038524 
10.586363 11.378494 20.872132 

- .941785 
.795460 

1.000000 
.go6336 
.524605 

- .086693 

-.826079 -.547708 -.049884 
.568683 .283061 -.166610 
.go6336 .524605 -.086693 

1.000000 .773346 .004450 
.773346 1.000000 .195565 
.004450 -195565 1.000000 
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Table 3.3 (continued) 

(c) Log-ratio Method 

Step [ 13 - Selected PD = P,; Count = 29 

Step [2] - Sample moments and correlations of log-ratios. 
Y1 Y2 Y3 Y4 Y5 

-2.76335 -2 .a6728 Mean -1.81122 -2.56081 -2.72805 
Stdev 1.42012 0.92034 1.03210 0.96135 1.26081 

Skewness -1.20849 -1.02459 -0.57984 -0.45977 -0.37763 
1.78462 

Y1 1.000000 0.404898 0.315404 0.170917 0.332036 
Y2 0.404898 1.000000 0.190569 0.228076 0.371045 
Y3 0.315404 0.190569 1.000000 0.219972 0.081788 
Y4 0.170917 0.228076 0.219972 1.000000 0.386972 
Y5 0.332036 0.371045 0.081788 0.386972 1.000000 

2.47782 K u r t  0s i s 3.31594 3.53497 2.52211 

Ster, r31 - Parameters and twes of Johnson svstem 
GAMMA DELTA LAMBDA X I  TYPE 

Y1 -0.90381 0.44834 5.27284 -5.82932 S B  

S B  
Y3 - 0.72054 0.89468 4.95180 -5.97569 S B  

S B  
S B  

Y2 -1.22947 0.88894 5.09380 -6.39571 

-6.03248 Y4 -0.66550 1.03769 5.01473 
Y5 -0.31328 0.48770 4.06407 -5 .la091 

Correlation matrix R, 
21 1.00000 0.44545 0.34875 0.19042 0.37562 
22 0.44545 1.00000 0.20198 0.23995 0.39871 
23 0.34875 0.20198 1.00000 0.22703 0.08726 
24 0.19042 0.23995 0.22703 1.00000 0.40579 
25 0.37562 0.39871 0.08726 0.40579 1.00000 

Steps [4] & [5] - Simulation (10000 cases) 
P1 P2 I P3 I P4 ' P5 I P6 I 

Mean .617640 .157595 .059589 .055804 .046609 .062763 
Stdev .134554 .098604 .034477 .041415 .034654 .051820 

Skewness .517087 -.264261 .223280 .763603 .936254 ,552549 
Kurtosis 2.334532 1.599887 2.127932 2.803674 3.310642 2.037398 

P1 1.000000 -.773753 -.387428 -.288440 -.249693 -.468989 
P2 -.773753 1.000000 .115930 .057473 -.125037 .066841 
P3 I - .387428 .115930 1.000000 -.043683 ,009346 .148729 
P4 I - .288440 .057473 -.043683 1.000000 ,042428 -.158922 
P5 -.249693 -.125037 .009346 .042428 1.000000 .177396 
P6 ' - .468989 .066841 .148729 -.158922 .177396 1.000000 
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Table 3.3 (concluded) 

Sample moments and correlations recalculated fiom 29 storm events 
P1 'I P2 'I P3 I1 P4 'I P5 P6 

Mean 0.61672 0.15555 0.06048 0.05690 0.04821 0.06214 
S t dev 0.13496 0.10410 0.03846 0.04650 0.04180 0.05143 

Skewness 1.05532 0.15530 0.54407 1.36175 1.93245 0.51166 
Kurtosis 2.98354 1.90722 2.53731 4.55380 7.56498 1.75386 

P1 I' 1.000000 -0.740549 -0.267119 -0.247343 -0.173148 -0.561143 
P2 -0.740549 1.000000 -0.065117 -0.017591 -0.172955 0.124434 
P3 I' -0.267119 -0.065117 1.000000 -0.066063 -0,064816 0.197290 
P4 -0.247343 -0.017591 -0.066063 1.000000 -0.132156 -0.062640 
P5 I' -0.173148 -0,172955 -0.064816 -0.132156 1.000000 0.159690 
P6 I' -0.561143 0.124434 0.197290 -0.062640 0.159690 1.000000 
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Table 3.4 Redts  of Simulations of the Duration-Based Storm Pattern 3 (3 12 cases) 

P 1  P2 P3 P4 P5  P6 
Mean 0 .27244  0 . 3 4 2 1 7  0 . 1 8 8 0 9  0 . 1 0 0 9 3  0 . 0 5 5 2 5  0 . 0 4 1 1 2  

Stdev 0 . 1 1 9 8 2  0 . 1 8 6 0 9  0 . 1 1 6 0 1  0 .07592  0 .05408  0 . 0 4 7 5 5  
Skewness - 0 . 2 0 2 2 3  0 .92652  0 . 7 2 3 5 8  0 .49444  1 . 0 5 7 5 1  1 . 1 4 5 7 4  
Kur t  o s i s 2 . 2 5 0 2 0  3 . 7 4 5 6 6  4 . 2 0 0 6 5  2 . 8 3 9 5 9  3 . 8 9 7 3  3 . 6 4 1 1 5  

P1  1 . 0 0 0 0 0  - 0 . 5 8 5 1 8  - 0 . 2 4 0 3 3  - 0 . 0 0 5 9 1  0 . 1 1 1 7 1  0 . 2 3 9 0 6  
P2 - 0 . 5 8 5 1 8  1 . 0 0 0 0 0  - 0 . 3 8 4 4 7  - 0 , 4 9 9 8 6  - 0 . 3 4 5 2 1  - 0 . 3 1 0 3 2  
P3 - 0 . 2 4 0 3 3  - 0 . 3 8 4 4 7  1 . 0 0 0 0 0  0 . 1 0 8 4 1  - 0 . 2 2 7 2 6  - 0 . 2 4 4 1 1  
P4 - 0 . 0 0 5 9 1  - 0 , 4 9 9 8 6  0 . 1 0 8 4 1  1 . 0 0 0 0 0  0 . 1 4 3 6 3  -0 .05326  
P5 0 . 1 1 1 7 1  - 0 . 3 4 5 2 1  - 0 . 2 2 7 2 6  0 . 1 4 3 6 3  1 . 0 0 0 0 0  0 .25728  
P6 0 . 2 3 9 0 6  - 0 . 3 1 0 3 2  - 0 . 2 4 4 1 1  - 0 . 0 5 3 2 6  0 . 2 5 7 2 8  1 . 0 0 0 0 0  

(a) AR method 

Step [ 11 - Parameters and types of the Johnson systems 
GAMMA DELTA LAMBDA X I  TYPE 

P 1  - 0 . 3 0 3 0 0  1 . 0 6 5 5 0  0 . 6 0 9 4 1  - 0 . 0 6 8 5 8  S B  
P2 1 . 7 9 7 8 9  1 . 3 4 1 8 8  1 . 4 9 5 8 5  - 0 . 0 0 3 3 7  513 
P3 - 2 . 6 3 0 8 8  3 . 1 0 8 8 7  0 . 2 4 4 9 7  - 0 . 0 5 7 2 3  S B  

S B  
S B  

P6 1 . 1 3 6 2 4  0 . 7 2 0 6 2  0 .23216  - 0 . 0 1 3 7 2  SB 

- 0 . 0 8 3 4 3  
P5 1 . 5 6 4 9 8  1 . 0 8 7 0 2  0 .36854  - 0 . 0 2 7 8 6  
P4 1 . 1 0 9 9 5  1 . 4 8 7 3 8  0 . 5 4 7 6 8  

Step [2] - Correlation matrix R, 
z1 1 . 0 0 0 0 0  - 0 . 6 0 1 5 9  - 0 . 2 4 4 9 9  - 0 . 0 0 6 0 2  0 . 1 1 7 5 5  0 . 2 5 8 1 9  
22  - 0 . 6 0 1 5 9  1 . 0 0 0 0 0  - 0 . 4 0 7 2 9  - 0 . 5 2 8 6 5  - 0 . 3 8 0 1 1  -0 .35074  
23 - 0 . 2 4 4 9 9  - 0 . 4 0 7 2 9  1 . 0 0 0 0 0  0 . 1 1 0 7 1  - 0 . 2 4 2 4 8  - 0 . 2 6 7 5 6  
24  - 0 . 0 0 6 0 2  - 0 . 5 2 8 6 5  0 . 1 1 0 7 1  1 . 0 0 0 0 0  0 . 1 5 0 3 0  - 0 . 0 5 7 5 1  
2 5  0 . 1 1 7 5 5  - 0 . 3 8 0 1 1  - 0 . 2 4 2 4 8  0 . 1 5 0 3 0  1 . 0 0 0 0 0  0 . 2 7 8 0 7  
Z6 0 . 2 5 8 1 9  -0 .35074  -0 .26756  - 0 . 0 5 7 5 1  0 . 2 7 8 0 7  1 . 0 0 0 0 0  

Step [3] - The optimum 5 x 5 submatrix is the original one without row and column 2. 

Steps [4] & [5] Simulation (10000 repetitions): C = 16144; Efficiency = 61.9% 
P 1  P2 P3 ' P4 P5 I P6 I 

Mean . 278386  .321580  .175999  . l o 7 6 4 2  .065039  .051354 
Stdev . 1 1 5 6 7 1  . 1 6 0 0 8 1  .099469  .067924  .050770  .045129  

Skewness - . 2 0 6 4 1 0  .199390  .757732  .605964  1 . 0 6 8 4 3 9  1 . 0 8 8 6 7 4  
K u r t  o s i s 2 . 2 3 3 0 6 6  2 . 4 8 3 2 4 5  3 . 7 7 5 1 2 6  2 . 8 9 2 8 9 2  3 . 8 6 2 5 5 8  3 . 4 8 0 4 8 1  

P1  1 . 0 0 0 0 0 0  - . 5 9 8 0 9 9  - . 2 6 1 9 4 5  - . 0 4 8 0 1 4  .031570  .172557  
P2 I - . 5 9 8 0 9 9  1 . 0 0 0 0 0 0  - . 3 3 6 8 0 9  - . 4 2 8 1 4 8  - .293030  - .297766  
P3 - . 2 6 1 9 4 5  - . 3 3 6 8 0 9  1 . 0 0 0 0 0 0  .054132  - .195940  - .199040  
P4 - . 0 4 8 0 1 4  - . 4 2 8 1 4 8  .054132  1 . 0 0 0 0 0 0  . 0 8 0 3 4 1  - . 0 7 3 0 0 6  
P5 .031570  - . 2 9 3 0 3 0  - . 1 9 5 9 4 0  . 0 8 0 3 4 1  1 . 0 0 0 0 0 0  .144482  
P6 I . 172557  - . 2 9 7 7 6 6  - . 1 9 9 0 4 0  - .073006  .144482  1 . 0 0 0 0 0 0  
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Table 3.4 (continued) 

GAMMA 1.23511 0.55335 3.43922 0.39205 S B  
DELTA 0.57304 0.37161 1.72760 0.48777 SB 

(b) CDF Method 

Step [ 11 - Fit the each set of data to 2-parameter Johnson S, 

Step [2] - Sample moments and correlations of the parameters for 2-parameter Johnson S, 

1.00000 0.84007 
0.84007 1.00000 

Mean Stdev Skewness Kurtosis I Correlation Matrix 

GAMMA 1.03229 0.73674 1.55057 4.73242 
DELTA 1.03265 0.56067 0.78745 2.18133 

1.00000 0.89502 
0.89502 1.00000 I 

Step [3] - Parameters and types of Johnson systems and correlation matrix R, 

Gamma Delta Lambda Xi Type I Corr. Matrix R, 

Steps [4] & [5] - Simulation (10000 repetitions) 
P1 P2 ’ P3 P4 P5 I P6 I 

Mean .286894 .319763 .191449 .lo1512 .061485 .038896 
S t dev .131974 .143732 .089358 .049158 .044355 .042299 

Skewness -.056818 ,891705 1.048341 -.524242 -.231013 .610520 
Kurt 0 s  i s 3.285165 2.624081 3.834022 2.883278 1.385447 1.779548 

P1 1.000000 -.504832 -.a85109 -.255640 .330526 .415732 
P2 I -.504832 1.000000 .296256 -.648906 -.a83653 -.768045 
P3 -.a85109 ,296256 1.000000 .392374 -.333630 -.463815 
P4 -.255640 -.648906 .392374 1.000000 .652252 .327578 
P5 I .330526 -.a83653 -.333630 .652252 1.000000 .a69595 
P6 I .415732 -.768045 -.463815 .327578 .a69595 1.000000 
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Table 3.4 (continued) 

(c) Log-ratio Method 

Step [l] - Selected PD = p2; Count = 173 

Step [2] - Sample moments and correlations of log-ratios. 
Y1 Y2 Y3 Y4 Y5 

Mean -0.01533 -0.55796 -1.02316 -1.53465 -1.74346 
1.17601 1.18992 S t dev 0.98553 1.07962 1.06322 

Skewness -1.20555 -0.96115 -0.54264 -0.73777 -0.40043 
Kurt o s i s 7.35613 4.99267 3.79177 3.54360 2.79601 

Y1 1.000000 0.466502 0.559266 0.581370 0.659808 
Y2 0.466502 1.000000 0.556200 0.291814 0 248605 
Y3 0.559266 0.556200 1.000000 0.489552 0.351432 
Y4 0.581370 0.291814 0.489552 1.000000 0.600812 
Y5 0.659808 0.248605 0.351432 0.600812 1.000000 

Step [3] - Parameters and types of Johnson system 
GAMMA DELTA LAMBDA X I  TYPE 

Y1 1.02050 1.75247 1.21214 0.86306 SU 
SU 

Y3 2.32167 3.41277 2.77972 1.10661 S" 
Y4 -2.38077 1.88120 12.79249 -11.35107 S B  
Y5 -1.07474 1.68616 9.34767 -7.75818 S, 

Y2 2.61711 2.64274 1.69658 1.55667 

Correlation matrix Rz 
z1 1.00000 0.48077 0.57190 0.59603 0.67652 
22 0.48077 1.00000 0.56477 0.29995 0.25444 
23 0.57190 0.56477 1.00000 0.49635 0.35509 

1.00000 0.60774 24 0.59603 0.29995 0.49635 
0.25444 0.35509 0.60774 1.00000 25 0.67652 

Steps [4] & [5] - Simulation (10000 repetitions) 
P1 P2 P3 P4 P5 P6 

Mean .282089 ,283687 .la2984 .113828 ,074826 ,062585 
Stdev .119238 .149237 ,111947 .074345 .055419 .050896 

Skewness .128745 1.195503 .775219 1.139609 1.235696 1.436138 
Kurt o s i s 2.825106 4.558992 3.310599 4.600213 4.955305 5.402026 

P1' 1.000000 -.560912 -.326912 -.153302 .006666 .237647 
P2 -.560912 1.000000 -.291245 -.322483 -.231198 -.254700 
P3 -.326912 -.291245 1.000000 .036577 -.281562 -.326489 
P4 ' -.153302 -.322483 .036577 1.000000 -.013742 -.221479 
P5 I .006666 -.231198 -.281562 -.013742 1.000000 .212796 
P6 I .237647 -.254700 -.326489 -.221479 .212796 1.000000 
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Table 3.4 (concluded) 

Sample moments and correlations recalculated fiom 173 storm events 
P1 P2 I1 P3 P4 P5 P6 I' 

Mean 0.28045 0.28627 0.18284 0.11257 0.07462 0.06326 
Stdev 0.10819 0.13769 0.10723 0.06160 0.04969 0.04716 

Skewness -0.25871 1.07890 0.95275 0.43355 0.70585 0.83016 
K u r t  0s is 2.41979 5.35910 5.07843 2.82434 3.10975 3.07150 

P1 II 1.000000 -0.601846 -0.391708 -0.083044 0,145984 0.308466 
P2 -0.601846 1.000000 -0.271456 -0.364738 -0,214682 -0.219130 
P3 -0.391708 -0.271456 1.000000 0.121808 -0.339822 -0.383813 
P4 I' -0.083044 -0.364738 0.121808 1.000000 -0,080431 -0.242980 
P5 I1 0.145984 -0.214682 -0.339822 -0.080431 1.000000 0.116094 
P6 0.308466 -0.219130 -0.383813 -0.242980 0.116094 1.000000 
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i 
where ti = i/6, i = 1,-, 5 ; and Fi = Z pi. The estimates of the parameters are obtained by 

using the multidimensional downhill simplex method (Press et al., 1989) to minimize the 
j =  1 

above objective function, Eq. (3.13). It should be noted that the objective function S( y, 6) 

is exactly the same as the objective function Sz( y, 6,1.0) in the previous chapter. 

As mentioned before, neither pi nor pD is allowed to be 0 when the log-ratio 

transformation is performed. Those storm events with at least one precipitation 

percentage being 0 were dropped fiom the computation of log-ratios for the given storm 

pattern. Sample moments and correlations of log-ratios were calculated fiom the 

reduced storm set. The number of cases of the reduced storm set was presented as 

‘Count’ in Tables 3.2 - 3.4. 
To generate 10000 storm events of storm pattern 1 using the AR method, it requires 

10798 runs of generating normal variates. The corresponding efficiency in this case is 92.6%. 

As can be seen m Table 3.2( a), the moments and correlations of simulated storm events using 

the AR method are very close to the observed ones. The maximum difference in the mean 

and the standard deviation between the simulated storm events and the observed ones is 

0.0088. The maximum difference in the correlation coefficient is 0.055. The simulation 

results using the CDF method are shown in Table 3.2(b). It is observed that the moments of 

the precipitation percentages are preserved well by the simulated storms. However, some 

comelation coefficients of the precipitation percentages differ significantly fiom the observed 

ones. This problem might be caused by the inefficiency of the downhill simplex method or by 

the improper choice of the 2-parameter Johnson S& as the CDF hction. After deleting those 

observations with zero precipitation percentages, the log-ratio transformation was performed 
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on 919 storm cases for storm pattern 1. The moments and the correlation matrix of simulated 

storms are preserved well although not as well as those obtained fiom the AR method. 

Table 3.3 contains the simulation results for the duration-based storm pattern 2. 

Unlike the previous case, the efficiency ofthe AR method (see Table 3.3(a)) is very low, only 

19.3%. In this case, the moments of simulated storm events cannot preserve what were 

specified. However, the correlation matrix of simulated precjpitation percentages is 

reasonable. Using the CDF method (Table 3.3(b)), the moments, especially the means and 

standard deviations, are almost identical to the &en values. Unfortunately, the correlation 

matrix are not preserved well. By the log-ratio method, only 29 observations were retained 

after deleting storm events with zero percentage. The performance of this method is not 

satidhctory. Since the great majority of storm cases were dropped due to the computational 

restriction of the log-ratio method, the retained storms might not capture the essential features 

of this storm pattern. In fact, there might be great changes in the storm moments and the 

correlation structure. This reason may be the cause of the poor performance. However, this 

does not imply the log-ratio method is not good. The moments and the correlation 

coefficients of the 29 storms were calculated and are shown at the end of Table 3.3. As can 

be seen, the moments and the correlation coefficients of the precipitation percentages were 

preserved very well by the log-ratio method. 

Table 3.4 contains the simulation r e d t s  for the duration-based storm pattern 3. The 

efficiency ofthe ARmethod is 61.9%. The moments and correlation matrix by the simulated 

storm events are not well preserved. The results are the same as simulations for the duration- 

based storm pattern 2 using the CDF method. The moments of the precipitation percentages 
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are preserved well while their correlation matrix is not. Using the log-ratio method, almost 

half of the storm events in pattern 3, 149 cases, were deleted. The correlation structure is 

preserved well while the simulated moments are not as good as those obtained fiom the AR 

method. Compared with the moments and correlation matrix recalculated for the retained 173 

storms, the performance of the log-ratio method is satisfactory. 

3.5 DISCUSSION 

From these three tables, it should be noted that the AR method can outperfom the 

other two methods when its efficiency is hi&. On the other hand, the performance of the AR 

method is the worst when its efficiency is low. In this application, the efficiency of the AR 

method can be expressed as 

1 - = P{OsPis l  f o r l s i s D - 1  and P1+"'+PD-1sl} 
C 

= P{P, +-• +PDV1s 1 10 sFis 1 for 1 s i sD- l }*P{OsPis  1 for 1 s isD-11 
= P{P1+ . -+PD- , s1  I0sP i s l  forlsisD-l}*P{g,(0)szisg,(l) f o r l s i s D - l }  

(3.14) 

where C is the number of trials to be successll; and gi-) is the corresponding Johnson 

transformations of Pi. The conditional probability in Eq. (3.14) can be evaluated 

approximately by the reliability index in the reliability analysis. Let the performance function 

be W(P) = PI + 0 - -  +Po-, - 1 = -Po, and the reliability index be p = pw/aw= -pPD/apD. The 

conditional probability is simply the CDF of Po, that is, 
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The second probability in Eq. (3.14) is the jomt probability of D-1 mdtivariate normal 

random variables bounded between g,(O) and g,(I). Unfortunately, this probability is not easy 

to calculate. The bounds of this probability can be approximated by Ditlevsen’s method 

(Ditlevsen, 1979) or Rackwitz’s method (Rackwitz, 1978). 

The CDF method can h a y s  preserve the moments of the precipitation percentages. 

However, its ability to preserve the correlation structure of precipitation percentages within 

a storm is limited. This may be due to the method selected to preserve the statistical 

properties of the parameters m the adopted CDF for desaiibmg the dimensionless rainfhll mass 

curve. Due to the nonlinear relationship between the distributional parameters and the 

incremental probabilities, the correlation matrix of the precipitation percentages may not be 

well preserved. Smce the selection of the CDF hc t ion  F(t I 9) is arbitrary, different choices 

will have direct impact on the performance of this method. 

The performance of the log-ratio method is satisfactory when only a few or no 

observations m a given storm pattern contain zero precipitation percentages. The requirement 

of a non-zero component may limit the performance of this method greatly. 

Computationally, the log-ratio method is direct and most efficient. The computation 

time of the AR method depends on its efficiency which is generally unknown in advance. 

When the efficiency is too low, this method is not a practical tool. The CDF method requires 
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an extra step of fitting each observation to the CDF which could be time conflltlljng. 

Based on the above discussions, a guideline for selecting a method to generate 

stochastic storm patterns is provided as the following: 

(1) If only a small portion of the observations in a given storm pattern contains zero 

precipitation percentages, the log-ratio method is the best choice; 

(2) Ifaconsiderable number of observations in a &en storm pattern have zero 

precipitation percentages, the AR method should be tried first; ifthe efficiency of the 

AR method is low, one can consider using the CDF method to generate the storm 

pattern. 

3.6 SUMMARY AND CONCLUSIONS 

Storm patterns are o&en required for assessing the reliability of a hydraulic structure 

under a specified design storm condition. In this study, the storm pattern in its dimensionless 

form were the same as compositional data. Generating compositional data requires a 

procedure of generating unconstrained multivariate non-normal random variables which, in 

turn, can be efficiently done in the multivariate standard normal space after normal 

transformation is made. In this study, the Johnson distribution system was adopted as the 

means for normal transformation due to its flexibility of covering a wide variety of distribution 

types. Different methods of selecting the Johnson distribution type and estimating its 

parameters were reviewed. 
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The Natafmodel was then studied based on which the Johnson system was extended 

to a multivariate setting. Using the Johnson distribution system coupled with the use of the 

bivariate Nataf model, the procedure of generating correlated non-normal random variables 

without constraint was developed. The developed procedure preserves only the marginal 

distribution and the correlated structure of the involved random variables. 

Three methods, namely, the AR method, the CDF method, and the log-ratio method 

were developed for generating temporal distn’butin of storm patterns. The log-ratio method 

requires the least amount of computer time to run while the AR method is the most accurate 

provided the efficiency of this method is high. A guideline as to which method to choose for 

generating stochastic storm patterns under different situations was provided. 

119 



CHAPTER 4 

ALTERNATIVE NORMAL TRANSFORMATIONS 

4.1 INTRODUCTION 

A common practice to derive the distniution representation for a &en sample is to 

fit a parametric distribution by matching their first four moments. Chapter 3 illustrates the 

using of the Johnson system to fit storm patterns. Although the Johnson system has the 

flemidity of covering various distribution types, it consists of three curves whose parameters 

are not very easy to estimate. Furthermore, fitting the Johnson system requires skewness and 

kurtosis whose sample estimators are associated with large standard errors when the sample 

size is small. The objective of this chapter is to explore appropriate normal transformations 

with favorable small sample qualities to serve as the alternative of using the Johnson system. 

In particular, the use of partial moments and Lmoments is considered. 

In the following sections, the statistical properties of the partial moments and the G 

moments are discussed first. Then, two typical normal transformations based on linear 

transformation and polynomial transformation are described. Using different combinations 

of moment types and trandormations, four procedures, namely, the linear transformation with 

partial moments (LTPM), the polynomial transformation with complete moments (PTCM), 

the polynomial transformation with partial moments (PTPM), and the polynomial 

transformation with Gmoments (PTLM), are proposed as the alternatives for the Johnson 

distribution systems in normal transformation. The performance of the different procedures 
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is examined by conducting a Monte Car10 simulation study under various conditions. The 

effect of sample size on the selection of different procedures were also studied by comparing 

the percentage errors of quautiles under nine generalized extreme-value (GEV) distributions. 

Finally, the extension of the altematbe normal transformations to deal with multivariate non- 

n o d  variables is described. 

4.2 PARTIAL MOMENTS AND L-MOMENTS 

In statistics, the nth partial moment of a random variable X about the origin is the 

partial expectation of X" over (--,z], that is, 

Z 

-m 

If the above integral is not finite, the partial moments do not exist. In practice, the 50% 

quantile is often chosen as the upper bound in Eq. (4. l), that is, z = xo s .  

The partial moments are widely used in statistical decision theory. Winkler et al. 

(1972) listed several applications using partial moments. They also discussed different 

methods for determining the partial moments. Buck and Askin (1986) discussed the use of 

partial mean in the economic risk analysis. Since the partial moments also capture some 

information of a dkttiiution, it is worth trying to use the first two partial moments to describe 

the behavior of random variable instead of using skewness and kurtosis. Therefore, the 
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impact of large sampling errors associated with the sample skewness and kurtosis can be 

reduced. 

The Gmoments are defined as linear combinations of order statistics (Hosking, 1986). 

They are analogous to the conventional product moments and are estimated by linear 

combinations of the observed order statistics. The Gmoments are a subset of probability 

weighted moments (PWM) which are defined as 

where q,r,s is the pth order probability weighted moment of the random variable Xwith r 

values less than Xand s values greater than X, and F m  represents the cumulative distribution 

bc t ion .  As can be seen, the conventional product moments are a special case of the 

probability weighted moments, that is, pp' =Mp,o,o. Consider the case of p = 1 ,  and s = 0, 

one has 

p, = M ~ , ~ , ~  = E[x{F(x)}'] r=0,1, ... (4.3) 

where pr is also a probability weighted moment. 

The rth Gmoment is defined as 

where E[X,,:,I is the expectation of the (r-k)th order statistic out of a sample of r 

observations. In terms of pr , the first four L-moments can be computed as, 
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The unbiased sample Gmoments can be estimated by the following equations, 

Similar to the product moment ratios, the Gmoment ratios such as L-coefficient of 

variation (TJ, Gskew coefficient (T~), and Gkurtosis coefficient (2,) are defined as 

3L3 

3L2 

T3 = - 

- 3L4 

3L2 

Ttq - - 

The L-moment ratios are analogous in interpretation to their product moment ratio 

equivalents and have favorable small sample qualities. The feasible region for possible 

distributions is defined by 
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-1  I T, I 1 
(5~ ,2 -1 ) /4  I T~ < 1 (4.7) 

Hosking (1986, 1989) presents a unified approach to probability weighted moments 

and L-moments in statistical estimation. He also demonstrates that the Gmoments are 

competitive with the conventional product moments and maximum likelihood techniques. 

Theoretically, the Gmoments can characterize a wider range of distributions and are more 

robust to the presence of outliers in the data. The Gmoment estimators tend to be less 

biased, approximate their asymptotic normal distribution more closely in fhite samples, and 

often give more accurate estimates of the parameters of a fitted distribution. The parameter 

estimates fkom the L-moments are sometimes more accurate in small samples than are the 

maximum likelihood estimates. Hoskhg (1986) also developed a series of FORTRAN 

programs to calculate the L-moments for different distributions, and to estimate Gmoments 

fiom samples. These programs were used m this study to assess the ability of the Gmoments 

to describe a distribution. 

4.3 LINEAR TRANSFORMATION WITH PARTIAL MOMENTS 

Let Y be a standardized random variable with a distribution h c t i o n  F@), and let 2 

be a standardized random variable with a symmetxic distribution with the distribution function 

G@). Shore (1986) suggested a four-parameter linear transformation of 2 to approximate Y 

by 
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A 

A2Z+B2, z>o 

Let the zth partial moment of Z be denoted by Mi. Since the distribution of G(z) is 

symmetric, Mi = z 'dG(z). Shore (1995) provided a set of equations to determine the 

coefficients in Eq. (4.8) using the first two complete moments and the first two partial 

1 

1 
1/2 

moments, 

where MI@) and M2(r) are the first and second partial moment of Y; p and a are the mean 

and the standard deviation of Y. 

Several candidate distriiutions may be used for G(z). Shore (1995) investigated two 

cases: the logistic distribution and the standard normal distribution. The transformation with 

the logistic variable covers a wider range in the moment-ratio diagram than that with the 

standard normal variable. However, it is impossible to extend this two-part hea r  

transfiormation to a bivariate case when the logistic variate is chosen for 2. Using the result 

of Kamat (1953,1958), the two-part hea r  transformation with the standard normal variable 

2 can be extended to a bivariate case. However, the formulas are so messy that they are of 

little practical value and, hence, are not presented here. When the standard normal variable 

is adopted for 2, the first six partial moments of 2 are 
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(4.10) 

4.4 POLYNOMIAL TRANSFORMATION 

Based on the notion that most distributions can be adequately characterized by their 

first four central moments, nameJy, mean, variance, skewness, and kurtosis, F l e i h  (1978) 

proposed a simple method for simulating non-normal distributions using the following 

polynomial transformation 

Y = a+bZ+cZ2+dZ3 (4.11) 

where 2 is a standard normal random variable; Y is the original non-normal random variable; 

a, b, c, d are the coefficients for polynomial transformation. In this section, three methods 

using different types of moments for finding the coefficients in Eq. (4.11) are presented. 

4.4.1 Polynomial Transformation with Complete Moments 

Using the standardized variable Ys = (Y - py)loy , Fleishman (1978) provided a set 

of non-linear equations which can be used to sohe the constants in Eq. (4.11) 
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O =  

1 =  

Y y  = 

KY - 
- 

a s  
b: + 6bsds + 2~ -s’ + 15d: 
2cs(b: +24bsds + 105d:+2) 
24[bsds +c;(l +b: +28bsds) +d:(12 +48bsds + 141~: +225d:)] + 3  

(4.12) 

where a, b, c, d, are the corresponding coefficients to the standardized Y. The polynomial 

constants in Eq. (4.11) are easy to obtain after sohring Eq. (4.12). 

a = oyas+py 
b = oYbs 
c = oycs 
d = oyds 

(4.13) 

The polynomial transformation is easy to implement. However, this method has some 

potentially severe drawbacks. One is that polynomial transformation is not necessarily 

monotonic, rendering the calculation of quantiles of certain distributions unreasonable. The 

necessary condition for the polynomial transformation to be monotonic is that 

Y’ = b + 2cZ + 3dZ2 is always either negative or positive, which requires, 

C’ - 3 bd< 0 (4.14) 

Another disadvantage is that this transformation does not cover the entire feasible area in the 

moment-ratio diagram. The relationship between skewness and kurtosis of the polynomial 

transformation can be described by the following parabola (Fleishman, 1978) 

K > 1 . 5 8 8 3 7 ~ ~  + 1.8683 (4.15) 
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Therefore, this method is unable to generate some extreme combinations of skewness and 

kurtosis, which makes it less attractive in certain conditions (Tadikamalla, 1980). 

4.4.2 Polynomial Transformation with Partial Moments 

It is also possible to fit a polynomial transformation using the first two complete 

moments and first two partial moments. Suppose the polynomial transformation is monotonic, 

i.e., Eq. (4.14) holds, the partial mean can be evaluated by 

1 

14 
m 

= ~ ( a + b ~ + c z ~ + & ~ ) @ ( z ) &  

= aMo + bMl +cM2 +dM, 
0 

Similarly, the second partial moment can be expressed as 

1 

in 
Q) 

= S(U +bz +cz2 + d ~ ~ ) ~ & ) d z  

= u2Mo+2ubMl +(b2+2ac)M2+(2bc+2ad)M,+(c2+2bd)M,+2cdM,+d2M, 
0 

(4.16) 

(4.17) 

In Eqs. (4.16) and (4.17), Mi is the zth partial moment of the standard normal variable and its 

value is given in Eq. (4.10). Together with the following two equations for the complete 

moments, 
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py = a + c  
uY = b2 +6bd+2c2 + 15d2 

(4.18a) 
(4.18b) 

the constant in Eq. (4.11) can be solved. 

4.4.3 Polynomial Transformation with LMoments 

Consider the probability weighted moments for the random variable Y in Eq. (4.11). 

Under the condition of monotonicity, the first four probability weighted moments can be 

expressed as, 

= [ ( a  + bz +cz2 +dZ3)W(z)4(z)& 
-m 

OD m 

m = 0,1,2,3 

(4.19) 

-m -m 

m m 

where C, (m = 0,1,2,3; n = 0,1,2,3) is a constant and can be evaluated numerically. These 

constants were evaluated using a 48-point Gaussian-Legendre integration and are presented 

in Table 4.1. 

, 

Since the unbiased estimator of the Lmoments can be calculated through Eq. (4.6) 

and the probabw weighted moments can be obtained from the L-moments using the inverse 
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Table 4.1 Cofficients Cm,n for Ploynomial Transformation with Gmoments 

m 
0 
1 
2 
3 

n 
0 1 2 3 

1.0 0.0 1.0 0.0 
0.5 0.28209621 0.5 0.70527822 
0.333336 10 0.28209621 0.42522901 0.70527822 
0.25000027 0.25734526 0.38783976 0.675 14771 
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form of Eq. (4.9,  the coefficients in Eq. (4.11) can be obtained by soMg the following 

system of linear equations 

‘0,O ‘0,l ‘0,2 ‘0,3 

‘1,O ‘1,l ‘1,2 ‘1,3 

‘2,O ‘2,l ‘2,2 ‘2,3 

‘3,O ‘3,l ‘3,2 ‘3,3 

(4.20) 

4.5 SIMULATIONS AND DISCUSSION 

To assess the ability of the partial moments and Gmoments to descriie a distributional 

property, four dBerent methods, namely, linear transformation with partial moments (LTPM), 

polynomial transformation with complete moments (PTCM), polynomial transformation with 

partial moments (PTPM), and polynomial transformation with Lmoments (PTLM), are 

considered m the simulation study. The performance of the above four methods are examined 

to select appropriate alternatives for n o d  transformation. The effects of sample size on the 

accuracy of those alternatives for normal transformation are also investigated. 

4.5.1 The Numerical Experiment 

The numerical experiment contains two phases. The objective of Phase-I is to identi@ 

the methods which can properly serve as the alternatives for normal transformation. Methods 

with poor accuracy are discarded fiom M e r  consideration. Phase-11 focuses on the 
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investigation of the effects of sample size and other fhctors on the accuracy of the qualified 

methods ftom the Phase I study. 

Phase-I - Three distributions were considered and they are (1) the exponential 

distribution with the parameter p = 1 ; (2) the GEV distribution with parameter (E, a, K)= 

(0.8,0.5,0.3); and (3) the GEV disbr’bution with parameters (t, a, K)= (0.3,0.8,1.1). The true 

quantiles and those approximated fiom the four candidate methods mentioned above were 

compared based on which the pedormance of these methods was examined. Under the 

condition of monotonicity, the pth order quantile of the random variable Y satisfies 

and it can be calculated as 

Yp = f ( z p )  (4.22) 

where f(*) is the transformation function corresponding to the LTPM, PTCM, PTPM, 

PTLM. 

Phase-I1 - In this phase, the GEV distributions with A, = 1 ; ‘ G ~  = 0.1,0.2,0.3 ; and 

T~ = 0.O7O.2,0.4were employed. Sample sizes were chosen at 20, 50, and 100. For each 

sample size, the GEV random variates were generated ftom which the sample complete 

moments and sample Gmoments were calculated. Using the methods selected fiom Phase-I, 

the coefficients in Eq. (4.11) were solved and the approximated quantiles were calculated. 

Three criteria were used for performance evaluation and they are: 

(1) Relative biasness (e,) 
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(2) Relative mean-absolute error (emm) 

1 

emae = [ 
0 

A 

Y P  

(3) Relative root-mean-squared error (erne) 

(4.23) 

(4.24) 

(4.25) 

where yp is the tmepth order quantile and yp is the quantile calculated fiom Eqs. (4.21) and 

(4.22). In this study, 29 p-values, 0.02, 0.05(0.05)0.95, 0.96(0.0 1)0.99, 0.992(0.02)0.998, 

0.999, were used to numerically calculate the above three error criteria. To examine the 

perfbrmance of the proposed methods in different parts of the sample space, the following 

three conditional relative errors were also calculated, 
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(4.28) 

Inthisstudy,fourprobabilityregionsinthesamplingspace,thatis,p=O- 0.3,0.3 - 0.8,0.8- 

0.95, 0.95 - 1.0, were selected. 

4.5.2 Results and Discussion of the Phase4 Experiment 

Table 4.2 Shows the coefficient values in the different transformations for the given 

three distributions. By the LTPW the coefficients were obtained directly fiom Eq. (4.9). The 

Newton-Raphson method (Press et al., 1989) was used to solve the nonlinear system of 

equations, Eqs. (4.12), to obtain the coefficient values for the PTCM, and to solve Eqs. (4.16) 

- (4.18) for the PTPM. By the P'I'LM, the coefficients in the polynomial transformation were 

obtained by solving the linear system of equations, Eq. (4.20), with Cm,n listed in Table 4.1. 

As can be seen in Table 4.2, the coefficients of the PTCM are very close to those of the 

PTLM while the coefficients of the PTPM differ greatly fiom those of the PTCM and the 

PTLM. 
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Table 4.2 Coefficients Fitted by Four Different Procedures 

A1 Bl A2 B2 

A1 B, A2 B2 

I LTPM I 1.658897 3 .O 16755 0.3280003 4.5 146435E-02 I 
l a  b C d 

I PTCM I 0.6862539 0.8263242 0.3137461 2.2707479E-02 I 
I PTPM I 0.6547011 -0.8612461 0.3452989 -3.7885467E-03 I 
1 PTLM 1 0.697746 0.799182 0.302254 0.034814 1 
(b) GEV distribution with ( E ,  a, K)= (0.8,0.5,0.3) 

A1 Bl A2 B2 

I LTPM I 0.3591964 1.678975 0.48939 14 0.1589089 1 
I I a b C d 1 
I PTCM I 0.9770508 0.5 149320 -6.1686193E-03 -6.9037438E-03 I 
I PTPM I 1.107523 -0.6554525 -0.1366406 6.3565090E-02 I 
I PTLM I 0.975493 0.515552 -0.004611 -0.007118 1 

I LTPM 1 0.3995391 1.143420 1.411512 - 1.4 18473 

l a  b C d 

I PTCM I ~ 0.5488653 
~ __ 

0.6368845 -0.2826732 

1 PTPM 1 0.3884259 -0.5197452 -0.1222338 -9.0115815E-02 1 
I PTLM I 0.539178 0.6 18 190 -0.272986 0.0405 84 1 
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The true quantiles and those approximated fiom the different methods are presented 

m Table 4.3. As can be seen, the quantiles obtained fiom the LTPM and PTPM differ greatly 

fiom the true quantiles. On the other hand, the PTCM and the PTLM approximate the true 

quantiles very weIL This suggests that the partial moments cannot capture the full feature of 

a &iution while both the Gmoments and complete moments can. Hence, the PTCM and 

the PTLM are the appropriate alternatives for normal trandormation and are used in the 

further investigation in Phase-11 experiment. 

4.5.3 Results and Discussion of Phase-II Experiment 

A total of 5000 simulation runs were made for each combination of the GEV 

dist;ributions and sample sizes. Due to the constraint in Eq. (4.15), the PTCM fails in some 

cases when (1) the sample product moments lie outside the feasible region; (2) the Newton- 

Raphson method fails to converge. However, the sample L-moments are always feasible 

according to Eq. (4.7) and corresponding polynomial coefficients can always be found using 

the PTLM. The percentages of infeasible cases for the PTCM are shown in Table 4.4. 

Basically, the percentage of ideasile cases for a given GEV distribution decreases when the 

sample size increases. When the GEV distribution becomes more skewed, i.e., as the value 

of z3 mcrease, the percentage of infeasible cases increases. When 7;3 = 0.4, the percentages 

of feasible cases for using product moments are less than 30% even for the sample size of 

100. 

Tables 4.5 - 4.13 show the percentage errors of the PTCM and PTLM for the nine 

GEV distributions. The first two columns are the averaged relative errors of the PTCM, 
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Table 4.3 Comparison of Exact and Approximated Quantiles Obtained by Four Procedures 
(a) Exponential distribution with p = 1 

P - V a l u e  Q u a n t i l e  Q-LTPM Q- PTCM Q- PTPM Q- PTLM 
0.105361 0.890499 0.094747 2.333829 0.096690 0.100 

0.200 0.223144 1.620865 0.199557 1.626148 0.218477 
0.356675 2.147490 0.336139 1.201352 0.356752 0.300 

0.400 0.510826 2.597165 0.496954 0.894691 0.514109 
0.697746 0.500 0.693147 0.045147 0.686254 0.654701 

0.600 0.916291 0.128109 0.915698 0.458893 0.920182 
0.700 1.203973 0.217019 1.208664 0.297673 1.204977 
0.800 1.609438 0.321145 1.617247 0.172231 1.605204 

2.291630 0.900 2.302585 0.465554 2.308622 0.110107 
2.984976 0.950 2.995732 0.584776 2.996074 0.155526 

0.309754 3.915516 0.980 3.912024 0.718921 3.904421 
0.990 4.605171 0.808333 4.593581 0.472466 4.630998 
0.995 5.298318 0.890153 5.285655 0.662896 5.356715 
0.999 6.907768 1.058840 6.907025 1.179235 7.081181 

(b) GEV distribution with (C,CZ,K)= (0.8,0.5,0.3) 
P - V a l u e  Quan t i l e  Q-LTPM Q-PTCM . Q- PTPM Q- PTLM 

0.322196 0.100 0.326175 -1.792794 0.321451 1.589311 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
0.950 
0.980 
0.990 
0.995 
0.999 

0.544235 -1.053588 
0.704554 -0.520590 
0.843143 -0.065472 
0.973541 0.489391 
1.104185 0.529585 
1.243374 0.572660 
1.403934 0.623106 
1.618166 0.693069 
1.782964 0.750830 
1.949689 0.815820 
2.047388 0.859138 
2.126364 0.898778 
2.256815 0.980503 

0.543503 
0.706525 
0.846524 
0.977051 
1.106788 
1.244189 
1.401863 
1.612383 
1.776783 
1.948947 
2.054824 
2.144653 
2.305753 

1.524438 
1.404317 
1.263538 
1.107523 
0.934024 
0.735692 
0.497111 
0.176780 

-0.057620 
-0.264497 
- 0.3 566 04 
-0.401095 
-0.346914 

0.542571 
0.704896 
0.844700 
0.975493 
1.105695 
1.243555 
1.401883 
1.613644 
1.779348 
1.953197 
2.060274 
2.151220 
2.314575 

(c) GEV distribution with (F,cz,K)= (0.3,0.8,1.1) 
P - V a l u e  Ouantile Q-LTPM Q- PTCM Q- PTPM Q- PTLM - 
0.100 -0.792992 -1.066015 -0.799117 1.043543 -0.786830 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
0.950 
0.980 
0.990 
0.995 
0.999 

.O .200277 
0.135251 
0.366680 
0.541307 
0.679899 
0.793283 
0.887591 
0.966088 
0.999555 
1.017327 
1.022659 
1.025126 
1.026908 

-0.562599 
-0.199615 
0.110330 
1.411512 
1.052733 
0.668230 
0.217928 

-0.406585 
-0.922176 
-1.502300 
-1.888971 
-2.242810 
-2.972316 

-0.206230 
0.132923 
0.369175 
0.548865 
0.692388 
0.809576 
0.903668 
0.968080 
0.973855 
0.941336 
0.902919 
0.859904 
0.760519 

0.792912 - 
0.640176 
0.513525 
0.388426 
0.247687 
0.069550 

-0 .la9155 
-0.668309 
-1.198815 
-1.976146 
-2.617870 
-3.302668 
-5.045460 

0.198661 
0.134076 
0.364380 
0.539178 
0.678933 
0.794140 
0.890291 
0.968496 
0.998042 
1.008919 
1.010881 
1.013890 
1.040281 
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Table 4.4 Percentages of Infeasible Cases by the PTCM in Simulation Study 

0.0 

0.3336 
0.1 

0.2 0.4 

0.0016 0.833 8 20 
50 
100 

0.0340 
0 

0.3340 
0.0346 

0 
0.2 

0.1820 0.8322 
0.0470 0.7442 

0.5478 0.8338 
0.0058 0.8320 
0.0472 0.7910 

0.3 
0.3336 
0.0350 

0 

20 
50 
100 

0.5474 0.8334 
0.23 12 0.8322 
0.0707 0.7958 

20 
50 
100 
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Table 4.5 Relative Errors of Different Methods Using GEV Distribution with ( T ~ ,  tj) = (0.1,O.O) 

Prob. Range 
0.00 - 1.00 

0.00 - 0.30 

Crit. 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

0.30 - 0.80 

Prob. Range Crit. 
0.00 - 1.00 BIAS 

0.80 - 0.95 

CM (5000) LM (5000) LM (5000) 
-0.4311733-02 -0.4206183-02 -0.4206183-02 

0.95 - 1.00 

Prob. Range Crit. 
0.00 - 1.00 BIAS 

BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

CM (5000) LM (5000) LM (5000) 
-0.4311733-02 -0.4206183-02 -0.4206183-02 

BIAS 
MAE 
RMSE 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

CM (3332) LM (3332) LM (5000) 

MAE 0.1720413-01 0.1756313-01 0.1756313-01 
RMSE 0.2117583-01 0.2195233-01 0.2195233-01 
BIAS -0.8969333-02 -0.7713103-02 -0.7713103-02 
MAE 0.2358513-01 0.2354973-01 0.2354973-01 
RMSE 0.4967363-01 0.5057553-01 0.5057553-01 
BIAS -0.2528983-02 -0.3476053-02 -0.3476053-02 

0.1388393-01 0.1388393-01 MAE 0.1363613-01 
RMSE 0.2059573-01 0.2103713-01 0.2103713-01 
BIAS -0.1151453-02 -0.1859733-02 -0.1859733-02 
MAE 0.1484083-01 0.1527623-01 0.1527623-01 
RMSE 0.3956613-01 0.4101613-01 0.410161E-01 
BIAS -0.3674853-02 0.2495273-02 0.2495273-02 
MAE 0.2168663-01 0.2529853-01 0.2529853-01 
RMSE 0.1052023+00 0.1271283+00 0.1271283+00 

0.1643853-01 0.1788873-01 0.1002463-01 
0.4542783-01 0.4856663-01 0.4943313-01 
0.5494583-01 0.5795613-01 0.5868243-01 
0.2713743-01 0.3581933-01 0.2106363-01 
0.5050793-01 0.5833013-01 0.5769613-01 
0.1150223+00 0.1249773+00 0.1246323+00 
0.1831763-01 0.1479923-01 0.8649223-02 
0.4245873-01 0.4384613-01 0.2921903-01 
0.6225993-01 0.6595873-01 0.6060463-01 
0,4718963-02 -0.5961523-02 -0.2851683-02 
0.4281683-01 0.4346203-01 0.3949253-01 
0.1140483+00 0.1151893+00 0.1051623+00 

-0.3138783-01 0.1275053-01 -0.3826083-02 
0.5247373-01 0.5250773-01 0.5174833-01 
0.2643993+00 0.2757593+00 0.2713983+00 

(b) Sample size = 
Prob. Range 
0.00 - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

0 
Crit . 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

CM (4830) LM (4830) LM (5000) 
-0.2053723-02 -0.1639143-02 -0.1573653-02 
0.2621103-01 0.2658173-01 0.2644563-01 
0.3213323-01 0.3281943-01 0.3267663-01 

-0.6411373-02 -0.4005303-02 -0.4109013-02 
0.3442273-01 0 .3421083-01 0.3436993-01 
0.7247603-01 0.7267783-01 0.7314033-01 
0.1648773-03 -0.8671983-03 -0.7074843-03 
0.2193093-01 0.2236673-01 0.2160623-01 
0.3300863-01 0.3361493-01 0.3387993-01 
0.2050213-02 -0.1019193-02 -0.4759913-03 
0.2244373-01 0.2278423-01 0.2323133-01 
0.6002183-01 0.6124293-01 0 -6239883-01 
-0.1040553-01 0.2978713-02 0.1684023-02 
0.3104453-01 0.3435093-01 0.3515523-01 
0.1558453+00 0.1766013+00 0.1813483+00 
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Prob. R a n g e  Crit. 
0.00 - 1-00 BIAS 

MAE 
RMSE 

0.00 - 0.30 BIAS 
MAE 
RMSE 

0.30 - 0.80 BIAS 
MAE 
RMSE 

0.80 - 0.95 BIAS 
MAE 
W E  

MAE 
RMSE 

0.95 - 1.00 BIAS 

CM (4992) LM (4992) LM (5000) 
-0.3197993-01 -0.3105313-01 -0.3100723-01 
0.3914873-01 0.3418683-01 0.3422983-01 
0.5179313-01 0.4544383-01 0.4548683-01 

-0.3296413-02 0.2409173-03 0.1965463-03 
0.2708303-01 0.100930E-01 0.1013443-01 
0.6464883-01 0.2356873-01 0.2364693-01 

-0.2895713-01 -0.2968083-01 -0.2962113-01 
0.2899943-01 0.2972593-01 0.2967843-01 
0.4122873-01 0.4439443-01 0.4440293-01 

-0.5986543-01 -0.6751893-01 -0.6737043-01 
0.5991963-01 0.6757053-01 0.6758423-01 
0.1621733+00 0.1779593+00 0.1780003+00 

0.1507033+00 0.1232173+00 0.1232353+00 
0.7178553+00 0.5688103+00 0.5689553+00 

-0.1506653+00 -0.1231653+00 -0.1230233+00 

Prob. Range 
0.00 - 1-00 

Crit. CM (4090) LM (4090) LM (5000) 
BIAS 0.3176753-02 0.4788253-02 0.3991343-02 
MAE 0 -3387163-01 0.3113483-01 0.2963683-01 
RMSE 0.4144423-01 0.3608343-01 0.3431113-01 
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0.00 - 0 . 3 0  

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

BIAS 0.4764013-02 0.9153693-02 0.7026733-02 
MAE 0.3068103-01 0.2497853-01 0.2404253-01 
RMSE 0.7140323-01 0.4979923-01 0.4924753-01 
BIAS 0.1363553-02 0.3563533-02 0.3092053-02 
MAE 0.2988803-01 0.2849883-01 0.2331203-01 
RMSE 0.4479433-01 0.4164433-01 0.4448483-01 
BIAS 0.1297453-01 0.1434433-02 0.2922093-02 
MAE 0.4229043-01 0.4123263-01 0.4254583-01 
RMSE 0.1126603+00 0.1097013+00 0.1127553+00 
BIAS -0.1760803-01 0.9049263-03 -0.2019763-02 
MAE 0.6759193-01 0.6412433-01 0.5956853-01 
RMSE 0.3266373+00 0.3048573+00 0.2861733+00 

Prob. R a n g e  
0.00 - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

Crit. CM (4765) LM (4765) LM (5000) 
BIAS 0.2196353-02 0.2763183-02 0.2698453-02 
MAE 0.2600173-01 0.2034503-01 0.2042193-01 
RMSE 0.3367413-01 0.2513983-01 0.2522353-01 
BIAS 0.8136063-02 0.3496133-02 0.3580913-02 
MAE 0.2829873-01 0.1790803-01 0.1816523-01 
RMSE 0.6407313-01 0.3642653-01 0.3709273-01 
BIAS -0.4865273-03 0.3491253-02 0.2883343-02 
MAE 0.2093463-01 0.1769453-01 0.1686283-01 
RMSE 0.3224753-01 0.2656653-01 0.2658393-01 
BIAS 0.5361443-02 0.2113413-02 0.2602353-02 
MAE 0.2979883-01 0.2507063-01 0.2547583-01 
RMSE 0.8091103-01 0.6822773-01 0.6937813-01 
BIAS -0.1610843-01 -0.6966063-02 -0.4156973-02 
MAE 0.5150253-01 0.4729723-01 0.4903863-01 
RMSE 0.2593803+00 0.2291193+00 0.2381143+00 



Table 4.7 Relative Errors of Different Methods Using GEV Distribution with ( z2, tg ) = (0.1,0.4) 

Prob. Range Crit. 
0.00 - 1.00 BIAS 

CM (831) LM (831) LM (5000) 
-0.6430923-02 -0.5508903-02 0.5193733-02 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

MAE 0.5186033-01 0.5221683-01 0.4864563-01 
RMSE 0.8104023-01 0.7724113-01 0.7787683-01 
BIAS 0 -5627733-04 0.6075713-02 0.1324003-01 
MAE 0.1772173-01 0.1876633-01 0.2891203-01 
RMSE 0.3928293-01 0.3923633-01 0.5995133-01 
BIAS 0.1654643-01 0.1527433-01 0.4280163-02 

0.4293743-01 0.4455933-01 0.7405763-02 MAE 
RMSE 0.6642703-01 0.7040813-01 0.5819913-01 
BIAS -0.2697223-01 -0.3720063-01 0.9543293-02 
MAE 0.9238073-01 0.9477413-01 0.810170E-01 
RMSE 0.2529453+00 0.2548423+00 0.2264173+00 

MAE 0.2243633+00 0.2018223+00 0.1889223+00 
0.1127293+01 0.9963573+00 0.9348613+00 RMSE 

BIAS -0.2135043+00 -0.1877743+00 -0.4699703-01 

(c) Sample size = 100 
Prob. Ranse I Crit. I CM (1279) LM (1279) LM (5000) 

Prob. Range 
0.00 - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

Crit. CM (839) LM (839) LM (5000) 
BIAS -0.1222473-01 -0.1083773-01 0.2403703-02 

0.2982113-01 0.2581473-01 0.2579603-01 MAE 
RMSE 0.5528363-01 0.4942943-01 0 -4985443-01 
BIAS 0.3198703-02 0.1095433-03 0.8640623-02 
MAE 0.2240483-01 0.1098703-01 0.2115753-01 
RMSE 0.5783883-01 0.2244053-01 0.4344853-01 
BIAS -0.2946313-02 0.3240193-02 -0.6432373-02 
MAE 0.1663163-01 0.1536413-01 0.2578093-02 
RMSE 0.2636253-01 0.2442223-01 0.3552513-01 
BIAS -0.2273543-01 -0.3035843-01 0.1894913-01 
MAE 0.4175793-01 0.4469373-01 0.5551513-01 
RMSE 0.1250773+00 0.1306403+00 0.1592633+00 

MAE 0.1704043+00 0.1626503+00 0.1457503+00 
RMSE 0.8825153+00 0.8294873+00 0.7222323+00 

BIAS -0.1660163+00 -0.1587383+00 0 -3706583-02 
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- 
0 . 0 0  - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

BIAS -0.9464283-02 -0.1147603-01 0.2529553-02 
MAE 0.6768233-01 0.1816703-01 0.1842603-01 
RMSE 0 -9973733-01 0.3748983-01 0.4025243-01 
BIAS 0.8251713-01 0.1129153-03 0.9798423-02 
MAE 0.9856973-01 0.6736823-02 0.1869393-01 
RMSE 0.2394693+00 0.1421293-01 0.3858083-01 
BIAS -0.3547593-01 -0.4004573-02 -0.1048643-01 
MAE 0.3988793-01 0.1037693-01 0.2654423-02 
RMSE 0.6264333-01 0.1635453-01 0.2730703-01 
BIAS -0.5801583-01 -0.2241993-01 0.2281963-01 
MAE 0.6901513-01 0.3189183-01 0.4658383-01 

0.1857203+00 0.9096073-01 0.1373063+00 RMSE 
BIAS -0.1555843+00 -0.1228913+00 0.2820593-01 
MAE 0.1563093+00 0.1234753+00 0.1327943+00 
RMSE 0.8019303+00 0.6587153+00 0.6688423+00 



Table 4.8 Relative Errors of Different Methods Using GEV Distribution with ( T ~ ,  T ~ )  = (0.2,O.O) 

d 

0.00 - 1.00 

0 . 0 0  - 0 . 3 0  

0 . 3 0  - 0 . 8 0  

0 . 8 0  - 0 . 9 5  

0 . 9 5  - 1 . 0 0  

(a) Sample size = 20 
Prob. Ranae I Crit. I CM (3330)  LM (3330)  LM (5000)  

BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

0.00 - 1.00 

0 . 0 0  - 0 . 3 0  

0 . 3 0  - 0 . 8 0  

0 .4254033-01  0 .4331603-01  0 .2610743-01  
0.1037933+00 0.1108953+00 0.112118E+00 
0.1484143+00 0.1524873+00 0.1519343+00 

0.1570543+00 0.1753273+00 0.1737433+00 
0.4080673+00 0.4207123+00 0.4221413+00 

0 .8571243-01  0 .9532903-01  0 .6117323-01  

0.3610413-01 0 .3053293-01  0 .1758223-01  
0 .8320473-01  0 .8611953-01  0 .5735563-01  
0.1219233+00 0.1297823+00 0.1198603+00 
0.8263293-02 -0 .1011173-01  -0.4737633-02 
0 .7284953-01  0 .7396833-01  0 .6717613-01  
0.1941413+00 ~ 0.1961883+00 0.1789373+00 

-0 .4929243-01  0 .1935943-01  -0 .6495193-02  
0 .8293903-01  0 -8284533-01  0 .8166723-01  
0.4149483+00 0.4314193+00 0 .4245743+00 

BIAS -0.4513103-02 -0.4398483-02 -0 .4038443-02  
MAE 0.6077283-01  0 .6146993-01  0 .6112743-01  
RMSE 0.8648903-01  0 .8809753-01  0 .8754123-01  
BIAS -0 .1391083-01  -0 .1163713-01  -0 .1112653-01  
MAE 0.1030443+00 0.1028383+00 0 .1034363+00 
RMSE 0.2423103+00 0.2449573+00 0 .2472133+00 
BIAS -0 .1337903-03  -0.1772593-02 -0 .1458673-02  
MAE 0.4336613-01 0.4418813-01 0 .4265923-01  
RMSE 0.6557883-01 0.6669813-01 0 .6719876-01  

(b) Sample size = 50 
Prob. R a n g e  I Crit. I CM (4827)  LM (4827)  LM (5000)  

BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

0.3560683-02 -0.1637533-02 -0.6411073-03 
0 .3816293-01  0.3874543-01 0 .3952903-01  
0.101938E+00 0.1040323+00 0.1060603+00 

-0 .1614133-01  0.4491433-02 0 .2500553-02  
0 .4904313-01  0 .5425233-01  0 .5551253-01  
0.2444723+00 0.2765273+00 0.2839113+00 

0 . 8 0  - 0 . 9 5  

Prob. R a n g e  
0.00 - 1.00 

0 . 0 0  - 0 . 3 0  

0 . 9 5  - 1 . 0 0  

Crit. CM (5000)  LM (5000)  LM (5000)  
BIAS 0.5476813-02 0.5605813-02 0 .5605813-02  
MAE 0.4778113-01 0 .4898703-01  0 .4898703-01  
RMSE 0.6649573-01 0 .6916443-01  0 .6916443-01  
BIAS 0.4880733-02 0.6321663-02 0 .6321663-02  
MAE 0.8164403-01  0 .8399753-01  0 .8399753-01  
RMSE 0.1876673+00 0.1950483+00 0.1950483+00 

0 . 3 0  - 0.80  

0 . 8 0  - 0 . 9 5  

0 . 9 5  - 1-00 

BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

0.8349863-02 0.7575483-02 0 .7575483-02  
0 .3529093-01  0 .3586973-01  0 .3586973-01  
0 .5306293-01  0 .5438473-01  0 .5438473-01  
0 .2294573-02  -0.3085153-03 -0 .3085153-03  
0 .2705443-01  0 .2772443-01  0 .2772443-01  
0 .7212513-01  0 .7413523-01  0 .7413523-01  

-0.1013083-01 -0 .6431373-03  -0.6431373-03 
0 .3168353-01  0 .3388083-01  0 .3388083-01  
0.1565843+00 0.1724043+00 0.1724043+00 
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Table 4.9 Relative Errors of Different Methods Using GEV Distribution with ( T ~ ,  tg ) = (0.2,0.2) 

BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

MAE 
RMSE 

MAE 
RMSE 

BIAS 

BIAS 

(a) Sample size = 20 
Prob. R a n q e  I Crit. I CM (2261) LM (2261) LM (5000) 

0.3990193-01 0.4299903-01 0.1734213-01 
0.1025013+00 0.107664E+00 0.1035343+00 
0.1227423+00 0.1253553+00 0.1228613+00 
0.4061923-01 0.6078953-01 0.3474143-01 
0.7977183-01 0.1025263+00 0.9922173-01 
0.1842353+00 0.2175483+00 0.2142163+00 
0.6230643-01 0.5724743-01 0.1789723-01 
0.1033413+00 0.103003E+00 0.4657823-01 
0.1525593+00 0.1541273+00 0.1218873+00 

0.1247183+00 0.1188693+00 0.1004633+00 
0.3332493+00 0.3161643+00 0.2695783+00 

0.1638303+00 0.1514863+00 0.1518523+00 
0.8024783+00 0.7179913+00 0.7293473+00 

0.1605043-01 -0.5759163-02 -0.1672693-02 

-0.1168953+00 -0.5994713-01 -0.3555613-01 

- 
0.00 - 1.00 

Prob. R a n g e  
0.00 - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

Crit. CM (4971) LM (4971) LM (5000) 
BIAS -0.2687033-01 -0.2564943-01 -0.2550323-01 
MAE 0.5819463-01 0.4061933-01 0.4066633-01 
RMSE 0.8105653-01 0.5180433-01 0.5186143-01 
BIAS -0.4754733-01 -0.4741973-01 -0.4702043-01 
MAE 0.9584443-01 0.5653683-01 0.5656413-01 
W E  0.2095773+00 0.1097273+00 0.1098893+00 
BIAS -0.1980063-01 -0.1627903-01 -0.1635043-01 
MAE 0.4010293-01 0.3268883-01 0.3249933-01 
RMSE 0.6749743-01 0.5025723-01 0.5039423-01 
BIAS 0.1108923-01 -0.3595163-02 -0.3474533-02 
MAE 0.2976363-01 0.1812873-01 0.1838183-01 
RMSE 0.8803043-01 0.6314613-01 0.6381713-01 
BIAS -0.8740523-01 -0.5487843-01 -0.5399823-01 
MAE 0.9848873-01 0.9195013-01 0.9229843-01 
RMSE 0.5195693+00 0.450114E+OO 0.4518223+00 

0.95 - 1-00 

- 
0.00 - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

BIAS 0.6800983-02 0.5900943-02 0.5685103-02 
MAE 0.5515483-01 0.4172293-01 0.4185713-01 
RMSE 0.7485343-01 0.5011803-01 0.5029433-01 
BIAS 0.2488103-01 0.8313083-02 0.8614493-02 
MAE 0.7593993-01 0.4663573-01 0.4732573-01 
RMSE 0.1820683+00 0.9713423-01 0.9904863-01 
BIAS -0.1707623-02 0.6812693-02 0.5544683-02 
MAE 0.4213833-01 0.3579143-01 0.3410203-01 
RMSE 0.6472573-01 0.5367703-01 0.5366143-01 
BIAS 0.9337983-02 0.3492303-02 0.4288823-02 
MAE 0.5006953-01 0.4227183-01 0.4291803-01 
RMSE 0.1352813+00 0.1143273+00 0.1161633+00 
BIAS -0.2420493-01 -0.1046353-01 -0.6298043-02 
MAE 0.7586203-01 0.6991223-01 0.7244673-01 
RMSE 0.3747613+00 0.3339753+00 0.3467423+00 

(c) Sample size = 100 
Prob. R a n c r e  I Crit. 1 CM (4764) LM (4764) LM (5000) 
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Table 4.10 Relative Errors of Different Methods Using GEV Distribution with ( t2, z3) = (0.2,0.4) 

BIAS 
MAE 
RMSE 

(a) Sample size = 20 
Prob. Range I Crit. I CM (831) LM (831) LM (5000) 

-0.3833523-02 -0.1769563-02 0.1358493-01 
0.9664543-01 0.9798883-01 0.8841173-01 
0.1322063+00 0.1293353+00 0.1246723+00 

- 

0.00 - 1.00 

BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

MAE 
RMSE 

BIAS 

0.1023243-02 0.1350423-01 0.3233063-01 
0.4439323-01 0.4638193-01 0.7131373-01 
0.100606E+00 0.9774803-01 0.1494303+00 
0.3422903-01 0.3281563-01 0.9065243-02 
0.8798173-01 0.9122933-01 0.1516233-01 
0.1338053+00 0.141811E+00 0.118511E+00 

0.1581233+00 0.1623723+00 0.1382633+00 
0.4288843+00 0.4332043+00 0.3813683+00 

-0.4311573-01 -0.6126303-01 0.1662943-01 

0.00 - 0.30 

0.30 - 0.80 

0.95 - 1.00 

0.80 - 0.95 

BIAS -0.2957513+00 -0.2607843+00 -0.628239E-01 
MAE 0.3123593+00 0.2820773+00 0.2645453+00 
RMSE 0.1519353+01 0.1352113+01 0.1275643+01 

Prob. Range 
0.00 - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

Crit. CM (840) LM (840) LM (5000) 
BIAS -0.1673863-01 -0.1446563-01 0.4945153-02 
MAE 0.5679333-01 0.4658093-01 0.4634873-01 
RMSE 0.9149633-01 0.7425143-01 0.7436633-01 
BIAS 0.1136213-01 0.5641673-03 0.2118503-01 
MAE 0.5722093-01 0.2724003-01 0.5255253-01 
RMSE 0.1523893+00 0.5615503-01 0.1089773+00 
BIAS -0.6517603-02 0.7566933-02 -0.1359013-01 
MAE 0.3467053-01 0.3175173-01 0.5334293-02 
RMSE 0.5459403-01 0.4970133-01 0-7277463-01 
BIAS -0.3645633-01 -0.4975943-01 0.3248143-01 
MAE 0.7015933-01 0.7512113-01 0.9430843-01 
RMSE 0.2059423+00 0.2152713+00 0.2659953+00 

MAE 0.2353563+00 0.2252973+00 0.2055333+00 
RMSE 0.1173423+01 0.1107783+01 0.9926003+00 

BIAS -0.2283993+00 -0.2190883+00 0.1024893-01 

Prob. Range 
0.00 - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

Crit. CM (1045) LM (1045) LM (5000) 
BIAS 0.7250393-02 0.1259043-03 0.1010703-01 
MAE 0.9796423-01 0.4222673-01 0.3804023-01 
RMSE 0.1523593+00 0.6107313-01 0.5771903-01 
BIAS 0.1242083+00 0.8315653-02 0.2721033-01 
MAE 0.1549583+00 0.2953593-01 0.4585393-01 
RMSE 0.4031353+00 0.6012633-01 0.9387353-01 
BIAS -0-3424783-01 0.1348853-01 -0.6212853-02 
MAE 0.6298673-01 0.3414153-01 0.7135583-02 
RMSE 0.9753533-01 0.5152213-01 0.5489573-01 
BIAS -0.3294123-01 -0.1161133-01 0.3241923-01 
MAE 0.7720823-01 0.5556543-01 0.7047073-01 
RMSE 0.213100E+00 0.1567253+00 0.1984873+00 

MAE 0.1680443+00 0.1592073+00 0.1549733+00 
RMSE 0.8726343+00 0.8247313+00 0.7764343+00 

BIAS -0.1589373+00 -0.1474273+00 0.3746293-02 
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Table 4.1 1 Relative Errors of Different Methods Using GEV Distribution with ( T ~ ,  T ~ )  = (0.3,O.O) 

BIAS 
MAE 
RMSE 

MAE 
RMSE 

BIAS 

BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

MAE 
RMSE 

BIAS 

(a) Sample size = 20 
Prob. Ranse I Crit. I CM (3332) LM (3332) LM (5000) 

0.2289273-01 0.8979793-01 0.3176473-01 
0.2669183+00 0.2773353+00 0.2784713+00 
0.6523943+00 0.6327573+00 0.6263923+00 

0.6182593+00 0.6444173+00 0.6410523+00 
0.2122663+01 0.2058093+01 0.2083593+01 

-0.1059353-01 0.220942E+00 0.6403493-01 

0.5476083-01 0.4849443-01 0.2767963-01 
0.1238973+00 0.1286283+00 0.8571763-01 
0.1820533+00 O.l94980E+OO 0.1806713+00 
0.1147813-01 -0.1281493-01 -0.5835203-02 
0.9563053-01 0.9705483-01 0.8805333-01 
0.2549923+00 0.2576253+00 0.2346293+00 

0.1029263+00 O.l02762E+OO 0.101168E+00 
0.5127783+00 0.5324843+00 0.5232903+00 

-0.6062453-01 0.2381776-01 -0.8199263-02 

- 
0.00 - 1.00 

4 

0.00 - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

0.00 - 0.30 

BIAS -0.2679123-01 -0.7158913-02 -0.9690343-02 
MAE 0.1557793+00 0.1580393+00 0.1569843+00 
RMSE 0.3638363+00 0.3727793+00 0.3696263+00 

MAE 0.3761463+00 0.3802073+00 0.3823763+00 
RMSE 0.118400E+01 0.1211923+01 0.1224213+01 

BIAS -0.8702723-01 -0.1928233-01 -0.2845223-01 

BIAS -0.8092963-03 -0.2670583-02 -0.2352803-02 
MAE 0.6485093-01 0.6606473-01 0.6375253-01 
RMSE 0.9899763-01 0.1006023+00 0.1012873+00 
BIAS 0.4762613-02 -0.2084363-02 -0.829595E-03 
MAE 0.4979083-01 0.5054323-01 0.5156633-01 
RMSE 0.132950E+00 0.1356483+00 0.1383043+00 
BIAS -0.1985503-01 0.5474843-02 0.2925083-02 
MAE 0.6081683-01 0.6726393-01 0.6886963-01 
RMSE 0.3019063+00 0.3411193+00 0.3504123+00 

0.30 - 0.80 

Prob. Range 
0.00 - 1-00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

0.80 - 0.95 

Crit. CM (5000) LM (5000) LM (5000) 

MAE 0.121810E+00 0.1249283+00 0.1249283+00 
RMSE 0.2753553+00 0.2859353+00 0.2859353+00 

MAE 0.2935343+00 0.3015673+00 0.3015673+00 
RMSE 0.8959023+00 0.9294293+00 0.9294293+00 

BIAS -0.4526193-03 0.8801063-02 0.8801063-02 

BIAS -0.2150713-01 0.1053933-01 0.1053933-01 

BIAS 0.1239393-01 0.1154073-01 0.1154073-01 
MAE 0.5298433-01 0.5387303-01 0.5387303-01 
RMSE 0.8061983-01 0.8264823-01 0.8264823-01 
BIAS 0.2943333-02 -0.4652023-03 -0.4652023-03 
MAE 0.3527933-01 0.3617283-01 0.3617283-01 
RMSE 0.9406903-01 0.9671283-01 0.9671283-01 
BIAS -0.1277983-01 -0.1225873-02 -0.1225873-02 
MAE 0.3930603-01 0.4190713-01 0.4190713-01 
RMSE 0.1935953+00 0.2122333+00 0.2122333+00 

0.95 - 1.00 

(b) Sample size = 50 
Prob. Rancre I Crit. I CM (4825) LM (4825) LM (5000) 
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Table 4.12 Relative Errors of Different Methods Using GEV Distribution with ( ‘G~,  z3) = (0.3,0.2) 

(a) Sample size = 20 
Prob. Range I Crit. I CM (2263) LM (2263) LM (5000) 
0.00 - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

0.7452873-01 0.7319093-01 0.3542783-01 
0.1703453+00 0.1823493+00 0.1740353+00 
0.2219923+00 0.2316473+00 0.2275863+00 

0.1929833+00 0.2383473+00 0.2339473+00 
0.5075813+00 0.5664073+00 0.5681113+00 

0.1033783+00 0.1107663+00 0.8032513-01 

0.9453403-01 0.8941553-01 0.2770913-01 
0.1564183+00 0.1569433+00 0.7103223-01 
0.2294333+00 0.2346193+00 0.1858293+00 

0.1629463+00 0.1552683+00 0.130911E+00 
0.4351753+00 0.4126543+00 0.3505313+00 

0.196010E+00 0.1816823+00 0.1812393+00 
0.9521583+00 0.8562673+00 0.8642733+00 

0.2135663-01 -0.7577623-02 -0.2426393-02 

-0.1391093+00 -0.7220083-01 -0.4321753-01 

(b) Sample size = 50 
Prob. Range - 
0.00 - 1.00 

Or00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1-00 

C r i t  . 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

(c) Sample size = 100 
Prob. Ranqe - 
0.00 - 1.00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

C r i t  . 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

CM (3844) LM (3844) LM (5000) 
0.7416976-02 -0.9630433-03 -0.3065983-02 
0.112610E+00 0.9030813-01 0.9122923-01 
0.1868523+00 0.1243893+00 0.1261363+00 
0.3897973-01 -0.3380333-02 -0.4546723-02 
0.1929893+00 0.1331303+00 0.1369783+00 
0.5425513+00 0.3213363+00 0.3250073+00 

-0.7444163-02 0.4313053-02 -0.5070953-02 
0.7461613-01 0.6732113-01 0.5175643-01 
0.1148553+00 0.101164E+00 0.1059523+00 
0.1331023-01 -0.5068283-02 0.5349703-02 
0.7549863-01 0.7334493-01 0.7931893-01 
0.2048573+00 0.1978053+00 0.2150953+00 
-0.5102823-01 -0.2690463-01 0.6213973-03 
0.1215973+00 0.114141E+00 0.1305393+00 
0.5892213+00 0.5419633+00 0.6192663+00 

CM (4765) LM (4765) LM (5000) 
0.2591313-01 0.1036413-01 0.1016633-01 
0.1059843+00 0.7229703-01 0.7251693-01 
0.1816653+00 0.9566003-01 0.9589723-01 
0.9049933-01 0.1629133-01 0.1744583-01 
0.1962413+00 0.107911E+00 0.1097723+00 
0.5426763+00 0.2470653+00 0.2529933+00 

-0.2276553-02 0.1077743-01 0.8853473-02 
0.6452893-01 0.5497373-01 0.5238993-01 
0.9954493-01 0.8274973-01 0.8267203-01 
0.1014493-01 0.4743603-02 0.5847803-02 
0.6741043-01 0.5503973-01 0.5598463-01 
0.1814593+00 0.1483113+00 0.1509513+00 
-0.3240623-01 -0.1247013-01 -0.7426383-02 
0.9469853-01 0.8361183-01 0.8671813-01 
0.4623053+00 0.3966743+00 0.4120273+00 
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Table 4.13 Relative Errors of Different Methods using GEV Distribution with ( z2, z3) = (0.3,0.4) 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

(a) Samde size = 20 

BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

RMSE 

Crit . 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 
BIAS 
MAE 
RMSE 

MAE 
RMSE 

MAE 
RMSE 

BIAS 

BIAS 

CM (840) LM (840) LM (5000) 
-0.1677243-01 -0.1650373-01 0.8257073-02 
0.8997863-01 0.6830633-01 0.6769843-01 
0.1440973+00 0.9684683-01 0.9616053-01 
0.3145883-01 -0.4507963-03 0.4054043-01 
O.l18413E+OO 0.5345433-01 0.1049053+00 
0.3329943+00 0.1124993+00 0.2222093+00 
-0.1203993-01 0.1191783-01 -0.2186533-01 
0.5429693-01 0.4908083-01 0.8245583-02 
0.8545843-01 0.7604523-01 0.1128953+00 

0.9148043-01 0.9803323-01 0.1232753+00 
0.2648753+00 0.2772273+00 0.3439643+00 

0.2716833+00 0.2604943+00 0.2388313+00 
0.1331443+01 O.l26024E+Ol 0.1141263+01 

-0.4677103-01 -0.6445393-01 0.4212323-01 

-0.2634893+00 -0.2531863+00 0.1418213-01 

CM (833) LM (833) LM (5000) 

0.1444633+00 0.1467143+00 0.1294243+00 
0.1827483+00 0.1805673+00 0.1676933+00 

0.8964883-01 0.9168273-01 0.1421213+00 
0.2133573+00 0.1972533+00 0.3047893+00 

0.3563473-02 0.6733923-02 0.2606453-01 

0.6727733-02 0.2296123-01 0.6345633-01 

0.5339913-01 0.5337953-01 0.1443743-01 
0.1363313+00 0.1413203+00 0.2354383-01 
0.2042533+00 0.2166456+00 0.1833523+00 

0.2088613+00 0.2146293+00 0.1817623+00 
0.5634883+00 0.5703313+00 0.4977573+00 

0.3614853+00 0.3271073+00 0.307525E+OO 
0.1733853+01 0.1548813+01 0.1467153+01 

-0.5396703-01 -0.7855593-01 0.2228923-01 

-0.3411883+00 -0.3012143+00 -0.7068383-01 

0.00 - 1-00 

0.00 - 0.30 

0.30 - 0.80 

0.80 - 0.95 

(b) Sample size = 
Prob. Range 

BIAS 0.3801043-01 0.6464433-02 0.1740113-01 
MAE 0.1667023+00 0.6470093-01 0.5708013-01 
RMSE 0.2888473+00 0.8367283-01 0.7711613-01 
BIAS 0.2581913+00 0.1619953-01 0.5215423-01 
MAE 0.3165843+00 0.5915603-01 0.9137273-01 
RMSE 0.8626433+00 0.1219383+00 0.1905673+00 
BIAS -0.4967453-01 0.2300943-01 -0.9898523-02 
MAE 0.9481313-01 0.5437443-01 0.1110333-01 
RMSE 0.1464283+00 0.8156933-01 0.8582893-01 
BIAS -0.3735463-01 -0.1085933-01 0.4239073-01 
MAE 0.9830333-01 0.717080E-01 0.9241123-01 
RMSE 0.2711713+00 0.2006503+00 0.2576333+00 

_ _ _ ~  

0.00 - 1.00 

BIAS 
MAE 
RMSE 

0.00 - 0.30 

-0.1801293+00 -0.1654253+00 0.6908633-02 
0.1914823+00 0.1802133+00 0.180210E+00 
0.9790293+00 0.9185513+00 0.8907123+00 

0.30 - 0.80 

0.80 - 0.95 

0.95 - 1.00 

(c) Sample size = 100 
Prob. Range I Crit. I CM (1021) LM (1021) LM (5000) 

0.95 - 1.00 
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mdicated by CM, and the PTLM, indicated by LM, based on the generated cases which are 

both feasible to the two methods. The nuniber of feasible cases in 5000 simulation runs is 

presented in parenthesis. The last column is the averaged relative errors for the PTLM for 

all 5000 feasible sirrmlated cases. When all the cases fiom a distribution are feasible using the 

PTCM, the second and the last columns are identical. Except for the relative biasness, there 

is no sigdicant difference between the last two columns, which suggests that the performance 

of the P”IM is quite stable. As can be seen in these tables, the relative errors increase when 

the GEV distribution becomes more skewed. The relative mean-absolute and root-mean- 

squared errors decrease when the sample size increase for a @en GEV distribution in most 

cases. 

To facilitate the comparison of relative performance of the two methods under the 

different conditions, Table 4.14 is prepared in which the better method with respect to the 

various error criteria are identified. In the table, “C” denotes that the PTCM is the better 

method whereas “I? for the PTLM. When the relative error of one method is significantly 

less than that of the other, the letter “C” or “L“ is followed by an *. From this table, several 

observations can be made: 

( 1) The performance of the PTCM and PTLM is practically identical when the sample size 

is not large. 

When the sample size is 20 or 50 and T~ = 0.2 or 0.4, the PTLM outperforms the 

PTCM m the region ofp = 0.95 - 1 since every relative error for all cases is less than 

that of the PTCM. This information is essential in hydrologic fiequency analysis 

because many hydrologic records are short and the focus of the analysis is often 

(2) 
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Table 4.14 Identification of Better Method (C - PTCM; L - PTLM) 
(a) Sample size = 20 

=3 

0.2 Prob. 
Region 

0.0 0.4 
eb emae eb emae eb =2 

0.1 
0.2 
0.3 
0.1 
0.2 
0.3 
0.1 
0.2 
0.3 

- 

- 

c c c  
c c c  
C C L  
c c c  
c c c  
C" c L 
L C C  
L C C  
L C C  

L L L  
c c c  
L C C  
L" L" L" 
c c c  
c c c  
c c c  
L L C  
L C C  

L C  L 
L" c L 
c* c L 
C" c L 
C" c L 
C" c c 

0.0 - 1.0 

0.0 - 0.3 

L C C  
L C C  
L C C  

0.3 - 0.8 

0.1 
0.2 
0.3 
0.1 
0.2 
0.3 

- 

- - 

c c c  
c c c  
c c c  

~ ~ ~ _ _ _ _ _ _ _  c c c  
L" L L 
L" L L 

c c c  
c c c  
c c c  

0.8 - 0.95 

L L C  
L c c  
L" L c 

L L L  
L" L L 
L" L L 

L L L  
L L L  
L L L  

0.95 - 1 

(b) Sample size = 50 - - 

=2 

0.1 
0.2 
0.3 
0.1 
0.2 
0.3 
0.1 
0.2 
0.3 

- 

- 

- 

=3 

Prob. 
Region 

0.0 0.2 0.4 
eb eb eb 

L c c  
L c c  
L" c c 
L L C  
L L C  
L" c c 
c c c  
C" c c 
C" c c 

C L L  
L L L  
L" L L" 

L L L  
L L L  
L L L  

0.0- 1.0 

C" L L 
L L" L" 
L" L L" 

L" L" L" 
L* L" L" 
L" L" L" 

0.0 - 0.3 

C" L L 
L L L  
L" L L 
L" L L 
L" L L 
L" L L 

C L L  
C L L 
L" L" L" 
C c c  
C c c  
L" L L 
L L L 
L L L 

0.3 - 0.8 

0.1 
0.2 
0.3 
0.1 
0.2 
0.3 

- 

- - 

~~ 

L c c  
L" c c 
L" c c 
L" c c 
L" c c 
L" c c 

0.8 - 0.95 

L" L L 
L* L L 
L" L L 

0.95 - 1 
L L L 
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Table 4.14 (concluded) 
(c) Sample size = 100 

I I z3 

0.2 
10.3 

0.2 
0.3 

0.1 

Rob. 
Region 

~ 0 . 1  
0.2 
0.3 
0.1 
0.2 
0.3 

- 

- - 

0.0 - 1.0 

0.0 - 0.3 

0.3 - 0.8 

0.8 - 0.95 

0.95 - 1 

I 0.0 

L C  C 
c c  C 
c *  c C 
L L C 
c c  C 
L* c c 
C c c  
L c c  
c* c c 
C c c  
L* c c 
L* c c 
L c c  
L* c c 
L * .  c c 

0.2 

eb enme 

C L L  
L L L  
L* L L* 
L* L* L* 
L* L* L 
L* L* L* 
L* L L 
c *  L L 
c *  L L 
L* L L 
L* L L 
L* L L 
L* L L 
L* L L 
L* L L 

~ ~~ 

0.4 
eb enme 

C L* L* 
L* L* L* 
L* L* L* 
L" L* L* 
L* L* L* 
L* L* L* 
L* L* L* 
L* L* L* 
L* L* L* 
L* L* L* 
L* L L 
L* L L 
L L L  
L L L  
L L L  
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placed on the tail part of the distribution. 

When the sample size is 100, for T~ = 0.0, the GEV distribution is almost symmetric, 

the relative mean-absolute error and the relative root-mean squared error of 

the PTCM is always less than those of the PTLM while the relative biasness of 

the pTL;M tends to be less when the region moves to the upper tail of the distribution. 

For the cases with high skewness, T~ = 0.4, almost every relative error of the PTLM 

is less than that of the PTCM. 

When the GEV distribution becomes more dispersed and skewed, ie., with large 

( T ~ ,  TJ, the PTLM tends to outperform the PTCM. 

The relative biasness of the PTLM is often less than or significantly less than that of 

the PTCM in the upper tail region, withp = 0.8 - 1.0. 

The PTLM is more capable of describing skewed GEV distributions than the PTCM. 

Practically, the PTCM may fail due to (1) the violation of the feasibility requirement by the 

sample skewness and kurtosis; and (2) the divergence of the Newton-Raphson method. This 

is especialEy likely when the sample size is not large. However, the coefficients in polynomial 

transformation are always solvable using the PTLM regardless of the sample size. 

Furthermore, the P"L,M is computationally much easier than the PTCM because it is required 

to solve a set of linear equations rather than to sohe a system of nonlinear equations as 

required by the PTCM. Hence, the use of Gmoments is recommended for the polynomial 

transformation to normality. 

(3) 

(4) 

( 5 )  
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4.6 EXTENSION TO BIVARIATE POLYNOMIAL TRANSFORMATION 

As &own m the previous section, the PTCM and PTLM are effective alternatives for 

normal transformaton. It is always desirable to use these procedures to generate multivariate 

non-normal variates. A general method of extending the polynomial transformation to a 

bivariate case is discussed in this section. 

Vale and Maurelli (1983) extended the polynomial transformation to a bivariate 

case. Let Y, and Y2 be the two correlated non-normal variables, expressible in polynomial 

transformation as 

Y, = a, + b , ~ ,  + c1z12 + d1zI3 
Y2 = a2 + b2Z2 + c2Z; + d2Z; 

(4.27) 

where Z, and 5 are the two standard normal random variables. Let pry denote the 
1 2  

correlation coefficient of Yl and Y,, then, the correlation coefficient in the normal space, 

pz1z2 ’ can be obtained by solving the following third-order polynomial equation 

(4.28) 

Based on the bkariate polynomial transformatiOn, an alternative procedure to generate 

unconstrained multivariate non-normal random variates can be easily developed. This 

procedure involves the following steps: 

Step [ 11 - Fit the polynomial transformation to each variable and calculate the correlation 

coefficients for the random variables in the original space. 
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Step [2] - 

Step 131 - 

Calculate correlation coefficients in the normal space using Eq. (4.28). 

Use an orthogonal transformation to generate multivariate standard n o d  

random variates z = (zl,---,zn) with the prescribed P ~ , ~ , .  

Transform the generated multivariate standard normal variates to the original 

parameter space using the corresponding polynomial transformation. 

' I  

Step 141 - 

4.7 SUMMARY A N D  CONCLUSIONS 

Two Smple akernatives for normal transformation, that is, linear transformation and 

polynomial transformation, were discussed. To avoid using the skewness and kurtosis in 

parameter estimation, especially when the sample size is small, partial moments and L- 

moments were considered. Using Werent types of moments, four procedures, LTPM, 

PTCM, PTPM, PTLM, were proposed. By comparing the approximated quantiles using 

different procedures, the LTPM and PTPM were rejected due to their poor accuracy whereas 

both the PTCM and PTLM are effective alternatives for normal transformation. Simulation 

were carried out to further investigate the behavior of the PTCM and PTLM. The accuracy 

of these two methods are almost the same when the sample size is large. The PTLM 

outperforms the PTCM in the regionp = 0.95 - 1 when the sample size is not large, say 20 

or 50. It is more appropriate to describe a more skewed GEV distribution. The PTCM may 

f%l due to the fhct that (1) the sample skewness and kurtosis may not lie in the feasible region 

for distributions; and (2) the Newton-Raphson method fails to converge. This is especially 
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likely when the sample size is small. Computationally, the PTLM is much easier and the 

coefficients of p o l p o d  transformation can always be sohed. Therefore, the PTLM is the 

recommended alternative for normal transformation. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

5.1 SUMMARY 

This study contains two major parts. The first part is concemed with the identzcation 

of representative storm patterns in Wyoming. The second part is the development of 

procedures to stochastically generate temporal distributions for a design storm. 

In the first part, average storm patterns for complete storms were of interest. 

'Significant storms' for each station with depth exceeding that of a 10-year retum period at 

that particular station were extracted. Both duration-based and event-based storm data sets 

were established. Through the non-dimensionalization process, dimensionless rainfall mass 

curves and statistical moments of time were used as the attributes m statistical cluster analysis. 

Contingency tests were performed to find out whether the occurrence of various storm 

patterns were affected by climatic region, storm duration, and seasonality. The representative 

storm patterns were fitted to the Beta distribution and Johnson SB distribution by various 

methods. 

In the second part, the storm pattern in its dimensionless form were treated as 

compositional data. Generating compositional data requires a procedure of generating 

unconstrained multivariate non-normal random variables which, in turn, can be efficiently 

done in the multivariate standard normal space after a n o m l  transformation is made. The 

Johnson distribution system was adopted as the means for n o d  transformation due to its 
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flexiiihty of covering a wide variety of distribution types. Different methods of selecting the 

Johnson distribution type and estimating its parameters were reviewed. The Nataf model was 

then studied based on which the Johnson system was extended to a multivariate setting. 

Using the Johnson disb.ibuton system coupled with the use of the bivariate Natafmodel, the 

procedure of generating correlated n o n - n o d  random variables without constraint was 

developed. Three methods, namely, the AR method, the CDF method, and the log-ratio 

method were then developed for generating temporal distributions for storm patterns. 

Without making a parametric assumption about the distribution form, four procedures 

with respect to the use of different moments, linear transformation with partial moments 

(LTPM), polynomial transformation with complete moments (PTCM), polynomial 

transformation with partial moments (PTPM), and polynomial transformation with L- 

moments (PTLM), were proposed as the alternative for normal transformation. Their 

performance was examined by conducting Monte Car10 simulations under various conditions. 

Simulations were also carried out to mvestigate closely the behavior of the PTCM and PTLM. 

5.2 CONCLUSIONS 

In the storm pattern study, eight duration-based storm patterns and fwe event-based 

storm patterns were identilied in Wyoming. The event-based storm patterns were found to 

be independent of climatic region but dependent on storm durations and seasons. On the 

other hand, the occurrence of duration-based storm patterns were dependent on climatic 
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regions, storm durations, and seasons. In the parametric model fitting for storm patterns, the 

Beta distribution is not appropriate for describing the storm patterns while the 3-parameter 

reduced Johnson S, coupled with the least squares method using quantiles provides a good 

fit. 

If only a small portion of the observations in a given storm pattern contains zero 

precipitation percentages, the log-ratio method is recommended. If' a considerable number 

of observations m a given stompattern have zero precipitation percentages, the AR method 

should be tried first. If'the efficiency of the AR method is low, one can consider using the 

CDF method to generate the storm pattern. 

By comparing the performance of several alternative normal transformation 

procedures, the LTPM and PTPM were rejected due to their poor accuracy. Both the PTCM 

and PTLM can serve as viable alternatives for normal transformation. The PTLM 

outperforms the PTCM in the probability regionp = 0.95 - 0.1 when the sample size is not 

large. Furthermore, the PTLM is more appropriate to describe more skewed distributions. 

The PTCM may fd m two possiile causes: (1) the sample skewness and kurtosis may define 

an infeasible distribution; and (2) the Newton-Raphson method may not converge. This is 

especially likely when the sample size is not large. The PTLM is computationally easier and 

the coefficients of polynomial transformation can always be solved. Hence, the PTLM is the 

recommended alternative for normal transformation under all conditions. 
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5.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

Due to the small number of expected observations in some cells, the chi-square test 

for contingency table is not appropriate for testing the dependency of storm patterns and the 

climatic region, storm duration, and season. The network algorithm developed by Mehta and 

Pate1 (1983) should be implemented to perform the exact Fisher's test. 

One disadvantage of the AR method for generating storm patterns is that its efficiency 

is generally unknown m advance. As stated in Chapter 3, this efficiency can be expressed as 

the product of two probabilities as shown in Eq. (3.14). It would be usefid to know or to 

estimate the efficiency in advance because one may want to discard the AR method even 

before using it if the efficiency is low. Further effort should be made to estimate this 

efficiency. 

The log-ratio transformation requires non-zero components in the sample which is 

often violated in reality as shown in storm patterns analysis in Chapter 3. Computationally, 

we are only interested in the first four central moments of the log-ratios. One possible way 

to circumvent the problem associated with the zero-valued components is to use some type 

of approximation procedure to mdirectly calculate the moments of log-ratios from the sample 

moments of the components rather than calculate directly from sample log-ratios. However, 

finding such a procedure is not a trivial task since the skewness and the kurtosis are also 

needed to be approximated. Another related issue is how good are the indirect procedures. 

Chapter 4 suggests that the polynomial transformation with Lmoments can be used 

as the alternative for normal transformation. As pointed out in Chapter 3, the STARSHIP 
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is the recommended procedure for the Johnson system to deal with small sample size. 

Simulation should be performed to examine the performance of the PTLM and STARSHIP 

when the sample size is small. In addition, the PTLM can also be incorporate in the reliability 

analysis to deal with problems involving multivariate non-normal random variables. 
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APPENDIX A. 

The formulas of the bivamte Johnson system are developed using the standardized 

Johnson variates with h = 1 and 6 = 0 .  It is easy to prove that p,,,, = p, x., p,, = (p, - c) /A and 

a,,= a,/A with p and obeing the mean, standard deviation of the standardized Johnson 

variates, respectively. 

{ J  ' J  

The formulas for SL" and SLN,LN can be found in Liu and Kiureghian (1986). 

Johnson (1982,1987) gave the formula for Su,u. Let Y denote a random vector 

Y = [Y,,-=,Y,] = [sinh(Z,/),-,sinh(Z,/)l where 

for l i i i n  

It is easy to show that 2' is multivariate normal with E(Zi')= -yi/Bi and 

Var(Z,? = - 1/83. Applying the formula Johnson provided, the formula for S,,u is 

obtained as shown in Table 3.1. 

It is impossible to obtain analytical expressions for SBLN, SB,u and SB,B. The 

derivations of formulas for S,,, S,,, and SB,, are presented below. 
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Note that pj = 0 and oj = 1 .  Consider the transformation 

1 
2 5  u = (1-p ) (z i -pzj)  

v = zj 

and omit the subscript for pz, the above integral equation can be written as 

p2 - 2Yihi 

26; + e  

The third step follows the fact that E[sinh( U)] = exp( 02/ 2)*sinh( p) where U- N( p,02). 

Use the same transformation, the integral equation can be evaluated as 
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, then sd( - ") = o, the above equation is Px'i'j + Pi Pj Byletting o = 
1 126; + 1 126; - yj /6 j  6i6j 6i e 

solved. 

Note that pj = 0 and oj = 1 . Consider the transformation 

1 
2 7  

2.4 = (1-p ) (zj-p.$ 
v = zi 

and omit the subscript for pz, the above integral equation can be written as 
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w w  

- 
9- 

1 
-(v-y,)/ i i ,  6 -p / 

-w 1 + e  
W V f  

1 -- 

-03 6 
-+’ 1 Y .  (v + 1 /6$ 

1 - - ‘e  
‘ i  -(v -y,)/6, 

The last step is obtained by using the following recursive equation developed by Johnson 

( 1949a), 
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