
Internal Layers of a Transient Convection-Diffusion 
Problem by Perturbation Methods 

Shagi-Di Shih 
and 

Yeou-Koung Tung 

Journal Article 
1995 

WWRC-95-05 

In 
Advances in Water Resources 

Volume 18, No. 2 

Shagi-Di Shih 
Department of Mathematics 

University of Wyoming 
Laramie, Wyoming 

and 

Yeou-Koung Tung 
Department of Statistics 

and 
Wyoming Water Resources Center 

University of Wyoming 
Laramie, Wyoming 

1995 



ELSEVIER 

Advances in Water Resources, Vol. 18, No. 2, 111-120,1995 
Copyright 0 1995 Elsevier science Limited 
Printed in Great Britain. All rights rcscrva3 

0 3 0 9 - 1 7 0 8 ( 9 4 ) 0 0 0 2 2 - 0  0309-1708/95/~.50+0.00 

Internal layers of a transient convection-diffusion: 
problem by perturbation methodst 

Shagi-Di Shih' & Yeou-Koung Tungb 
"Department of Mathematics, bDepartment of Statistics and Wyoming Water Resources Center, University of Wyoming, Lmamie, 

i Wyoming, 82071 -3036, USA 

i 

71 

1 INTRODUCTION 

(Received 13 May 1994; accepted 10 October 1994) 

A transient convection-diffusion problem with moving sharp fronts is studied by 
using perturbation methods. A uniformly valid approximate solution is obtained 
for two cases: shock layer and angular layer. It is shown that the shock layer 
function can be described by the complementary error function, while the angular 
layer function can be described by the first iterated integral of the complementary 
error function. 

Understanding pollutant transport mechanisms in water 
bodies, including surface and subsurface flow, is 

; essential for risk assessment, pollutant cleanup, 

activities. A typical transport mechanism involving 
3 time-dependent convection-diffusion, with convection 

being the dominant process, can be expressed as 

i 

1 monitoring network design, and various other related 
I- 

d C  - V *  (DVC) + V *VC = F 

perturbation, we consider the following one-dimensional 
transient convection-diffusion equation 

ac a2c d C  
- - D - + V ( t ) - = O  
at ax2 OX 

defined in !I= {(x, t) : 0 < x < 00, 0 < t < oo}, where 
c(x, t )  is a resident solute concentration at the position x 
and time t ;  D is a positive-valued diffusion coefficient; 
and V ( t )  is the mean solute velocity, which could be a 
function of time. In many applications, the values of D 
are very close to zero. Equation (1.1) is .subject to initial 
condition 

This equation is widely used in soil science, chemical, 
environmental, and petroleum reservoir engineerings, 4x7 0) = f ( x )  
and water resources. Some of the known applications 
include the movement of ammonium or nitrate in soils 
(Gardner," Misra & Mishra,22 Reddy et al."), pesticide 
movement (Kay & Elrick,16 van Genuchten & 
Wierenga,3'), the transport of radioactive waste 
materials (Amett et al.: Duguid & Reeves'), the 
fixation of certain iron and zinc chelates (Lahav & 
Hochberg"), the precipitation and dissolution of 
gypsum (Glas et al.," Keisling et QZ.,~' Kemper 
et al.") or other salts (Melamed et aL2'), saltwater 
intrusion problems in coastal aquifers (Shamir & 
Harleman"), thermal and contaminant pollution of 
rivers, lakes, and estuaries (Baron & W a j ~ , ~  Cleary: 
DiToro,8 Thornann3'), and convective heat transfer 
problems (Carslaw & Jaeger,6 Lykov & Mikhailo?'). 

To clearly understand the phenomena of moving sharp 
fronts of this equation and the techniques of singular 

tsupported by a grant from the WWRC/USGS Water 
Resources Program. 

for 0 < x < 00, Dirichlet boundary condition at x = 0 

and boundary condition at infinity 

lim c(x, t) = 0 (1.4) xtoo 

for 0 < t < 00, wheref(x) and g(t)  are functions to be 
determined by the physical conditions of the specific 
application. In subsurface flow, description of the 
flow physics is often augmde8.by chemical and/or 
biological considerations. This generally leads to con- 
vective-diffusive-reactive transport equations. When 
multiple species are present in the aqueous phase, the 
governing equations form a set of partial differential 
equations that are coupled through reaction terms. 
These equations generally need to be solved numerically. 
In all these cases, the most dominant factor is still the 
convection. 
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The main objective of this study is to propose a 
reasonable approximate solution to a solute transport 
process using singular perturbation procedures. The 
accuracy of the approximate solution is examined and 
its relative performance can be used to compare with 
other solution techniques. Furthermore, the proposed 
solution allows one to investigate the effect of 
uncertainties in model parameters, initial and boundary 
conditions on the pollutant concentration level. 

The solution to a singularly perturbed problem is said 
to possess boundary layer behavior if it exhibits rapid 
variations within some small region along the boundary 
of the domain under consideration and the width of the 
region goes to zero as the small parameter of the 
problem tends to zero. The solution to a singularly 
perturbed problem is said to possess internal layer 
behavior if it exhibits rapid variations within some small 
region along a curve internal to the domain and the 
width of the region goes to zero as the small parameter 
of the problem tends to zero. In this study we are 
interested in two types of internal layers arising from the 
propagation of singularity emanating from the inflow 
comer of the domain: 

shock layer if the solution of the reduced problem, 
by letting the small parameter be zero, is 
discontinuous along the internal curve; 
angular Zuyer if the solution of the reduced problem 
has discontinuous first-derivatives along the 
internal curve. 

Each type of internal layer is considered as a com- 
bination of two related boundary layers located on two 
sides of the internal curve, respectively, so that the 
non-smoothness of the solution to the reduced problem 
can be removed. 

It is known that the layer structure of many problems 
having boundary layer behavior can be described by 
virtue of the exponential function (exp). In this work, 
two types of moving fronts are explicitly found in terms 
of the complementary error function (erfc) and its first 
iterated integral (ierfc). Due to the fact that the 
functions erfc(s), ierfc(s) decay faster than the function 
exp( -s) as s tends to infinity, we are led to require more 
stable, accurate numerical methods to approximate 
moving fronts than boundary layer functions. For 
example, numerical papers Stynes and O’Riordan?’ 
and Guo and Stynes” are for singularly perturbed linear 
time-dependent convection-diffusion problems which 
have boundary layer behavior without the types of 
internal layers studied in this work. 

Works that are related to the resent work are 
Isakova,14 Bobisud? and Shih267273 2f: for the internal 
layers caused by the rough initial data. The internal 
layers under this investigation are due to the corner 
singularity and they are more complicated than those 
generated by the rough initial data. One such related 
work for a linear parabolic problem with comer 

singularity is by Howes13 who gives some exponential 
upper bound for the angular layer function. 

2 PERTURBATION METHODS 

In this study, the technique of singular perturbation is 
applied to the given problem (l.l), (1.2), (1.3), (1.4). 
Specifically, we first construct the outer solution, a 
solution to eqn (1.1) with D = 0. The outer solution 
provides a good approximation to the concentration of 
solute transport for the entire domain except along a 
neighborhood of a characteristic curve of the first-order 
hyperbolic differential operator. Along this charac- 
teristic curve the outer solution changes abruptly and 
is not uniformly valid for all intended values of the 
independent variables. It gives rise to determine another 
type of solution, the inner solution, in this narrow region 
by employing a stretched variable along the curve of 
nonuniform approximation. The inner solution satisfies 
a parabolic partial differential equation without a 
small parameter after scaling the original independent 
variables. The initial and boundary conditions for the 
inner solution are imposed in such a way that a 
matching principle between outer and inner solutions 
is valid and this inner function is important only near 
this curve. The inner solution is used to supplement 
the outer solution along the characteristic curve and 
their sum provides an approximation to the solute 
concentration for the entire domain. 

For a constant diffusion 0 < D << 1, the solute 
concentration c(x, t )  defined by eqns (l.l), (1.2), (1.3), 
and (1.4) can be approximated by a solution u(x, t )  to 
the first-order hyperbolic partial differential equation, 
obtained from eqn (1.1) by putting D = 0 

’ 

du dU 

at d X  
-+ V ( t ) - = O  

dehed in Q. With the positive mean solute velocity V ( t ) ,  
the reduced eqn (2.1) is subject to the inflow auxiliary 
conditions: initial condition (1.2) and boundary 
condition (1.3). From the theory of hyperbolic partial 
differential equations, eqn (2.1) has the characteristic 
curve 

emanating from the origin and the function u is found to 
be of the form 

x > P ( t )  
g ( P - l ( P ( t )  - x)) x < P(t )  (2-3) u(x, t )  = { f(. - p ( t ) )  

where P-’ is the inverse function of P. Indeed, the 
change of variables = x - P(t ) ,  T,I = t reduces the 
hyperbolic eqn (2.1) to the differential equation 
du/dq=O, which has a solution of the form 
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u(&q) = +(t) for some function 4. In terms of the 
original variables ( x , t ) ,  we then have u(x,t) = 
4 ( x -  P( t ) ) .  The desired result (2.3) follows from the 
auxiliary conditions (1.2) and (1.3). Note that the 
existence of P-* is guaranteed by V ( t )  > 0. 

Although u(x , t )  provides a good approximation to 
the solute concentration c(x, t) in most of the domain R 
for a small diffusion coefficient D, there is a discrepancy 
between u(x, t) and c(x,  t) along the characteristic curve 
x = P( t ) .  From 

u(P(t)+, t )  := lim u(x, 2 )  = f ( O )  
xlP(t) 

u(P(2) - , t )  := lim u(x, t )  =g(O) 
x t P(t )  

the function u(x , t )  is not continuous along the 
characteristic curve x = P( t) unless the equality 
f ( 0 )  = g(0) holds. Moreover, even if the relation 
f ' ( 0 )  =g'(O) is valid, the function u(x, t) is not 
differentiable along the curve x = P( t) as shown below. 

024 dU - (P(t)+,  2 )  := lim - (x ,  2 )  = f ' ( O )  
dx x l P ( t )  ax 

dU all g'(0) - (P( t ) - ,  2 )  := lim - ( x , t )  = -- 
ax x t P ( t )  ax V ( 0 )  
a4 dU 
d t ( ~ ( t ) + , t )  := lim - ( x , t )  = -f'(O)V(t)  

x lP( t )  at 

Thus the function u(x, t) is differentiable along the curve 

true. The internal layer function is usually required to 
supplement the outer function u(x , t )  along the 
characteristic curve x = P ( t )  so that their s u m  gives an 
approximation to the solute concentration on the entire 
domain 52 when the diffusion D is small. Note that the 
internal layer function is important in a neighborhood 
of the characteristic curve x = P( t )  and it is very close to 
zero outside a neighborhood of the curve x = P( t ) .  

Define the stretched variable < along the characteristic 
curve x = P ( t )  by 

. x = P( t )  only if the condition g'(0) + V(O)f'(O) = 0 is 

x - P(t )  +- a 
With the variables [ and t, eqn (1.1) becomes the heat 
equation 

defined in -00 < < 00, 0 < t < 00. Note that, after 
using the stretched variable c, eqn (2.4) does not depend 
on the small parameter D anymore. 

For the sake of convenience, denote v((, t)  by 
v+(& t) and v-(& t )  for 0 < < 00 and -00 < < 0, 

respectively. To specify some initial and boundary 
conditions for eqn (2.4), we have two different cases as 
follows. 

2.1 Shock layer function 

and the proposed internal layer function v( t , t )  is to 
overcome the discontinuity of u(x, t) along x = P(t ) .  In 
other words, the sum u(x, t) + v(C, t) is constructed to be 
continuous along the curve x = P(t ) .  In particular, we 
impose 

Consequently, the function v'(&t) is subject to the 
initial condition 

V+(C,O) = 0 (2-5) 

V+(O, 2 )  = 4 [u(P(t)- ,  2 )  - u(P(t)+, t ) ]  

and boundary conditions 

= $ [do) - f (O) l  (2.6) 
lim v + ( ~ ,  t )  = o 
[too 

when 0 < c < 00. Similarly, the function v-(&t) is 
subject to the initial condition 

V--(&O) = 0 (2.7) 

v--(O, 2) = i [u(P(t)+, t )  - u(P( t ) - ,  t)l 

and boundary conditions 

= i [ f ( O )  - S(0)l (2.8) 

when -00 < < < 0. It then follows that 

?I--(<, 2 )  = -v+(-t, 2 )  t < o  
and thus it is suflicient to find the function v"(5,t). The 
theory of heat equation (Carslaw & Jaeger6 (p. 63) or 
Cannon' (p, 50)) implies that the function v+(&t) 
defined by eqn (2.4) subject to initial condition (2.5) and 
boundary condition (2.6) can be expressed as l v  , 

where G(& q, t) is Green's function of the heat operator 
in the quarter plane defined by 

G(J, 7 7 7 2 )  = K(E - rl, 2) - K(5 + 790 

with the fundamental solution of the heat operator 
K(&t )  (Carlslaw & Jaeger6 (p. 62) or Cannons (p. 33)) 
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defined by 

From 

which is continuous along x = P( t ) ,  and this approxi- 
mation to c(x, t) is uniformly valid in 0. 

As an illustrative example, forf(x) = 0, g(t) = 1, and 
V ( t )  = 2, we have P ( t )  = 2t and the function C(x, t )  
given by (2.12) becomes 

(2.9) 

- ( & O , t )  dG = -2-(C,t) aK =- c exp(-z) 
2f i t  312 

by using (2.10). This function satisfies the initial drl ae 
we have boundary value problem 

ac d2C ac 
at a x ~  ax D-+2-=O ins2 -- 

2 "  C(x,O) = 0 C(O, t )  = 1 - ef ic(&E) =-I fi gXP(-PZ) dP 
lim C(x, t) = 0 
x t m  

= edc(--$) 
It then follows that the function +(x, t) := c(x, 2)- 
C(x, t) satisfies the problem 

a2$ w -- D-7+2-=0 

lim @(X) t) = 0 

where erfc is the complementary error function defined 

by at ax ax 
2 " O  

erfc(x) = - exP(-s2) ds +(x, 0) = 0 +(O, t )  = e r f c t r n )  

with the following properties x t w  

erfc(0) = 1 erfc( -x) = 2 - erfc(x) 

2 a s x t o o  1 erfc(x) - -exp(-x ) 

(2.10) 

(2*11) 

The maximum principle (Protter & Wei~~berge?~ (p. 183)) 
states 

min{0, +(x, 01, +(o, t > )  <+(x, t )  Q max{o,+(x,o), ~l(o,t>) 
and, thus, we obtain 

f i x  
Thus, we obtain 

c(x, t )  = ~ ( x ,  t )  + O(erfc(&E)) = C(X, t) + ~ ( f i )  
in s2. Figure 1 is for the function C(x, t) when D = 0.01 

According to eqn (2.10), the function w-(c> t, defhled (solid curye), 0.1 (dashed curve), 0.2 (dotted curye) and 
eqn (2.4) subject to initial condition (2.7) and boundary 
condition (2.8) can be found as 

= 1, 2, 3. 
The exact solution of this example can be written as 

c(x, t) = terfc (is) - + j e x p ( ) e r f c r s )  

whose derivation is given in the Appendix. This result 
also appears in van Genuchten and Alves,32 and Jury 

v-(5,t> = 4rf<o> -dO)Ierfc(-&) 

The internal layer function 

j k(0) -f(O)Ierfc(&) e ' 0 I i[f(O) - g(O)lerfc($) c .c 0 
4 5  = 

is called a shock layer function, which is discontinuous 
along the curve < = 0 such that the discontinuity of u(x, t) 
along the characteristic curve x = P( t )  is eliminated. 

Based on the techniques of singular perturbation, one 
has obtained an asymptotic approximation C := u + v 
given by 

- P(t ) )  + 4 k(0) - f ( O ) l e r f c ~ ~ )  x W t )  

1 2 3 4 5 6 7 8 9 1 0  
X 

C ( X ,  t )  = 

(2.12) Fig. 1. Shock layer behavior. 
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and Roth’’ (p. 158). We conclude that the asymptotic 
solution C(x,t)  is an excellent approximation to the 
exact solution c(x, t )  due to the fact that 

(x - 2t)2 
a s D 1 0  4Dt ] 

by virtue of eqn (2.1 1). 

2.2 Angular layer function 

In the case off(0) = g(O), we have 

u(P(t)+, t )  =f (0) = g(0) = u(P(t)-, t )  

g’(o) d’ (P(t)-, t )  dU -(P(t)+, t )  = f ’(0) # -- = - 
ax V(0) a x  

aU dU 

V(0) at 
(P(t)+,  t )  = -f ’(0) V( t )  # g‘o V ( t )  = - (P(t)- ,  t )  

and the proposed internal layer function v(c,t) is to 
overcome the discontinuity in the first derivatives of 
u ( x , t )  along x = P(t). In other words, the s u m  
u(x,  t )  + t )  is not only continuous along 
x = P(t)  but also differentiable in both x and t along 
x = P( t ) .  In particular, 

v+(0, t )  = W - - ( O ,  t )  

dU dv+ 
at - at - (P(t>+, t )  + 6---- (0, t )  

1 au 

all dv- 
at at 

= - 2 [-(P(t)+,?) at +$(P(t)-, t )]  

= - (P(t)- ,  t )  + 6---- (0, t )  

Consequently, the function v+(&t) is subject to an 
initial condition 

v’(<,O) = 0 (2.13) 

and boundary conditions 

-(O,t) &+ =-[-(P(t)-,t) 1 a u  --(P(t)+,t)] dU 

= -- 2 [ f’(O)+,(,) g‘(0)l 
% 2 ax d X  

(2.14) 

when 0 < c < 00. Similarly, the function v-(& t )  is 
subject to the intial condition 

v-(&O) = 0 (2.15) 

and boundary conditions 
dv- 1 au dU 

2 ax i3X 
- (0, t )  = - [- (P(t)+, t )  - - (P(t)-, 4 

= - 1 [ f ‘ ( O )  + g 3 ]  

2 V(0) 
(2.16) 

when -00 < < < 0. It then follows that 

v- ( r ,  0 = TJ+ (--& t )  t < o  (2.17) - 
and, thus, it is sufficient to find the function v’(&t). 
From the theory of the heat equation (Carslaw & 
Jaeger6 (p. 76) or Cannon’ (p. 55)), the fbnction v+(<, t )  
defined by eqn (2.4) subject to initial condition (2.13) 
and boundary condition (2.14) can be expressed as 

where N ( x ,  q, t )  is Neumann’s function (Cannon’ 
(p. 43)) of the heat operator in the quarter plane given 
by , ‘ 

N x ,  7 7 9 0  = K ( x  - 7, 4 + K(x + rl, 4 
with the fundamental solution of the heat operator given 
by (2.9). Thus, we have 

A computation gives 

where ierfc is the first iterated integral of the 
complementary error function defined by (Abramowitz 
& Stegun’ (p. 299)) 

ierfc(x) = I, erfc(s) ds = -exp(-x2> - xerfc(x) 1 00 

f i  
(2.18) 

with the following properties 

ierfc(x) N -2x asx-1-oo 

2 a s x t m  (2.19) 
1 ierfc(x) - - exp( -x ) 

2x2 

1 ierfc’(0) = - I ierfc(0) = - 6 
ierfc( -x) = 2x + ierfc(x) (2.20) lim v’(& t )  = 0 

€too  
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Thus, we get 

Furthermore, by eqn (2.17), we obtain 

The internal layer function 

is called an angular layer function, which is con- 
tinuous along 6 =  0 but is discontinuous in its 
6-derivatives along the curve t = O  so that the 
discontinuity in the first derivatives of u(x , t )  along 
x = P( t )  is eliminated. 

~n asymptotic approximation c := u + JDv given 
by 

“i 1.5 

Z I  / 
/ 

Fig. 2. Angular layer behavior. 

The exact solution of this example derived in the 
Appendix is 

(2.23) 

(2.21) 

is not only continuous but also differentiable along 
x = P ( t ) .  This approximation to c(x, t) is uniformly 
valid in R. 

For an illustration with f ( x )  = x, g ( t )  = t ,  V ( t )  = 2, 
we have P ( t )  = 22 and the asymptotic approximation 
given by eqn (2.21) becomes 

with the use of eqn (2.20). The function C ( x , t )  
defined by eqn (2.22) satisfies the initial boundary value 
problem 

in fl ac a2c ac -- D-+2-=0 
at ax2 ax 

C(x,O) = x C(O, t )  = t - f i i e r f c ( m )  

The maximum principle implies that 

holds in R. Figure 2 is for the function C(x , t )  
when D = 0.01 (solid curve), 0.1 (dashed curve), 0.2 
(dotted curve) and t = 1. 

It then follows from eqn (2.19) that the asymptotic 
solution C(x, t) gives an excellent approximation to the 
exact solution c(x, t) due the fact that 

by virtue of eqn (2.19). 

3 SUMMARY AND CONCLUSIONS 

The significance of the asymptotic results presented in 
this paper for the transient convection-diffusion prob- 
(lems by using perturbation methods is the following. 
First, the function C(x, t) defined by eqn (2.12) or eqn 
(2.21) provides an excellent approximation to the solute 
concentration c(x, t) for a small diffusion coefficient D. 
It offers a way to measure the accuracy of other solution 
techniques including numerical methods. Second, the 
results yield functional relationships for the time- 
distribution of pollutant concentration in water bodies 
when the diffusion coefficient D is small. These func- 
tional relations allow one to examine the sensitivity of 
model output with respect to model parameter values 
and initial/boundary conditions. Information obtained 
from the sensitivity analysis can further be incorporated 
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into uncertainty analysis. Moreover, the identrfication of 
the shock (or angular) layer function as a complemen- 
tary error function (or the first iterated integral of the 
complementary error function) gives a foundation to 
design a highly accurate, stable numerical method for 
the general problem. For example, those who are 
interested in local grid refinement in numerical compu- 
tations may find the variable [x - P ( t ) ] / 2 m  of erfc 
and ierfc useful in choosing mesh size and location of 
refined meshes. Finally, from the mathematical view- 
point, the layer structure of solute concentration shown 
in this paper may play an important role in obtaining 
error estimates for reliable numerical methods. 

The uniformly valid approximate solutions (2.12), 
(2.21) for the shock and angular layers which are of the 
zeroth order in D can be generalized to higher orders in 
D in principle. Specifically, an asymptotic expansion of 
the order n for the shock layer case is of the form 
~ ; = ~ d c u ~ ( x ,  t )  + c ~ = ~ D ~ / ~ v ~ ( < ,  t ) ;  while an asymptotic 
expansion of the order n for the angular layer case is 
given by C;!ODk~k(x, t) + C,”= I d c 1 2 ~ k ( < ,  t ) ,  where the 
outer solutions uk(x , t )  are defined by the first-order 
hyperbolic partial differential operator given in eqn (2.1) 
and the internal layer functions Q(<, t) are defined by 
the heat operator given by eqn (2.4). The moving sharp 
fronts studied in this paper are due to the corner 
singularity of the inflow auxiliary conditions. The 
analysis can be applied to other types of moving sharp 
fronts caused by non-smoothness of the inflow initial/ 
boundary data or the sign-change of the mean velocity. 
Furthermore, the results presented here can be extended 
to eqn (1.1) with the velocity V ( x ,  t )  depending on both 
spatial and temporal variables. The internal layer 
functions are then governed by a parabolic differential 
equation which can be reduced to the heat equation by a 
change of independent variables (Shih2*). 
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APPENDIX 

From Cannon’ (p. 50), we have the following theorem. 
Theorem A.l: The diffusion equation 

in 0 with a positive diffusion coefficient D subject to the 
initial condition 

where G(x,q, t )  is Green’s function of the diffusion 
operator, given in (Al), over the quarter plane defined by 

with the fundamental solution K ( x , t )  of the diffusion 
operator given by 

G(x, 77, t> = K ( x  - v, t )  - K ( x  + 7 7 9 4  (4 

1 

Moreover, the above result can be extended to a 
convention-diffusion problem. 
Theorem A.2: The convection-diffusion equation 

ac a2c dc 
at ax2 ax 
- - D - + V - = O  

in 0 with a positive diffusion coefficient D and a 
constant V subject to the initial condition 

C ( X , O )  =f(4  O < X < O O  (A41 

and the Dirichlet boundary condition 

is given by 
C ( 0 , t )  = so) O < t < O O  

where G(x,q,t)  is Green’s function of the diffusion 
operator, given in (Al) over the quarter plane defined by 
(W. 
Proof: The substitution 

C ( X ,  t )  = v(x,  t) exp - - - (E 1;) 
converts the initial boundary value problem (A3), (A4), 
(A5) to 

dv d2v -- D-=O 
at ax2 

v(0, t) = g ( t )  exp (1;) - ‘ 

The desired integral representation of c (x , t )  follows 
from Theorem A. 1.  

From Theorem A.2, we are ready to obtain the 
explicit repsentations of c(x , t )  with two sets of input 
data. We state some preliminary results OII integration. 
Lemma A.1. 

x 1  (s - vt)2 x -  vt 
4Dt ] *= -tedc(z) 

x +  v t  

x - s  (s - vt)2 j-,mexp[- 4Dt ] ds=x-  vt 

O0 x - s  ( s +  v t ) 2  cis = -fiierfc(-) x +  vt h me’’[- 4Dt ] 2@ 



119 Internal layers of a transient convection-dirusion problem 

Proof: Equations (A6), (A8) follow by using substitution 
f x + v s  ( x -  VSl2 *+ f x - v s  s -  v t  -t{lOmexp[- - 4Ds ] I 0 4 d a  

-- 
2 d K P  c - 

and eqn (2.18); while eqns (A7), (A9) are obtained with 
- (x  - VS)2 x e x p l  4Ds 1.) the substitution L J '  

s+ vt -- 
2 a - D  

and (2.18). 

Lemma A.2 

' x  ( x -  vs)2 * j o m e x p [ -  4Ds ] 
=- 2 [ erfc ( - x,;) + exp (g) erfc rs)] x f x - v s  ( x -  VS)2 * 

+ ( t + -  v ) j o 4 d a e x p [ -  - 4Ds ] 
The desired result follows after using substitution (A12) 
and (2.18). 

x( t  - s) Theorem A.3: The convection-diffusion eqn (A3) in 
with a positive diffusion coefficient D and a constant V 
subject to the initial condition 

= fi V { iedc (s) - exp (5) iedc rs)} c(x, 0) = ci o < x < o o  

Proof: Split the given integral of (A10) as . c(0, t) = Cb O < t < o o  

(A1 1) with a constant Ci and the Dirichlet boundary condition 

f X  ( x -  VS)2 * 
1 bmexp[- 4Ds ] with a constant cb is given by 

cb-c i  [ ("-") 2 2 f i  
c(x,  t) = ci + - erfc - +exp - 

L J Proof: The initial data gives the contribution 

Equation (A10) follows after using substitutions 

x +  v s  exp (-; --- 1;) [;[K(x - 7 7 9 0  - ++ 7741  
(A12) -- x -  v s  -- 

2 4 %  - p  2 f i  - O  

x exp (- 2) dq = exp (- 2) [Im K(s, t )  exp(g) dr 
for two resultant integrals, respectively. For (All), we 
have 

* xs (x- vs)2 * - -  
/ 2 d z e x p [ -  4Ds ] 
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after using (A6), (A7). The boundary data yields the 
integral 

=- 2 [ erfc (;;) - + exp (g) erfc rs)] 
by using (A10). Thus Theorem A.2 gives the desired 
result. 

Theorem A.4 The convection-diifdsion eqn (A3) in Q 
with a positive diffusion coefficient D and a constant V 
subject to the initial condition 

C ( X ,  0) = cix? o < x < o o  

c(0, t )  = Cbt O < t < o o  

with a constant ci and the Dirichlet boundary condition 

with a constant cb is given by 

- exp (g) ierfc rs)} 
L : ii 

Proof: The initial data yields 

+exp --- (; 2) 
x-s  (s- vt)2 - - ~ ~ m ~ e x p [ -  4Dt 1. 

x - s  (s+ vq2 & jxwGexp[-  4Dt ] 

with the use of (A8), (A9). Next, the boundary data 
gives 

= -2Dexp(g) j ; ( t - ~ ) ~ ( x , s ) e x p  dK 

* x(t - s) ( x  - vs)2 * 
= ~ o ~ ~ ~ ~ [ -  4Ds ] 

V 

by virtue of (All). Thus Theorem A.2 gives rise to ’ 

c(x,t)  = c i ( x -  vt) + ( c i + ; ) a  

x { iedc rs) - exp (g) ierfc rs)} 


