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Abstract. A unit hydrograph (UH) obtained from past storms can be used to predict a direct runoff 
hydrograph (DRH) based on the effective rainfall hyetograph (ERH) of a new storm. The objective 
functions in commonly used linear programming (LP) formulations for obtaining an optimal UH 
are (1) minimizing the sum of absolute deviations (MSAD) and (2) minimizing the largest absolute 
deviation (MLAD). This paper proposes two alternative LP formulations for obtaining an optimal 
UH, namely, (1) minimizing the weighted sum of absolute deviations (MWSAD) and (2) minimizing 
the range of deviations (MRNG), In this paper the predicted DRHs as well as the regenerated DRHs 
by using the UHs obtained from different LP formulations were compared using a statistical cross- 
validation technique. The golden section search method was used to determine the optimal weights 
for the model of MWSAD. The numerical results show that the UH by MRNG is better than that 
by MLAD in regenerating and predicting DRHs. It is also found that the model MWSAD with a 
properly selected weighing function would produce a UH that is better in predicting the DRHs than 
the commonly used MSAD. 

Key words: unit hydrograph, linear programming, validation. 

Notations 

M 
N 
R 

MSAD 
MWSAD 

MLAD 
MRNG 
RMSE 

pm 
Qn 
uk 
Wn + 
E n  
E7t 

number of effective rainfall increments. 
number of direct runoff hydrograph ordinates. 
number of storrns. 
minimize sum of absolute deviation. 
minimize weighted sum of absolute deviation. 
minimize the largest absolute deviation. 
minimize the range of deviation. 
root mean square error. 
effective rainfall in time interval [(m-l)At, mat].  
direct runoff at discrete time nAt. 
unit hydrograph ordinate at discrete time k k .  
weight assigned to error associated with estimating en. 
error associated with over-estimation of Q n  . 
error associated with under-estimation of Qn. 
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= 
= maximum negative error in fitting direct runoff hydrograph. t 

= 
= 

maximum positive error in fitting direct runoff hydrograph. 

largest absolute error in fitting obtained direct runoff. 
the Zth error criterion measuring the fit between the observed 
DRHs and the predicted (or reproduced) DRHs for the rth storm. 

E,,l - 
El = averaged value of error criterion over R storms. 

1. Introduction 

The unit hydrograph (UH) proposed by Sherman (1932) is defined as a direct 
runoff hydrograph (DRH) resulting from one unit of effective rainfall distributed 
uniformly over a watershed for a specified duration. In UH theory, the watershed 
is considered as a system with effective rainfall hyetograph (ERH) being the input, 
DRH being the output, and UH being the kernel function. The discrete convolution 
relationship that relates the ERH, DRH, and UH can be written as (Chow et al., 
1988). 

in which Pm is the mth ordinate of the ERH (m = 1,2,3,. . . ,M) with M being the 
number of ERH ordinates, Q n  is the nth ordinate of the DRH (n = 1,2,3. . . ,ZV) with N 
being the number of DRH ordinates, and Ur is the rth UH ordinates characterizing 
the rainfall-runoff relation for the watershed. The total number of UH ordinates is 
N-M+1. Given the ERH and DRH obtained from a storm occurring in a watershed, 
Equation (1) can be used to derive the corresponding UH. The derived UH, in turn, 
can be used to predict the DRH of a storm if the ERH is known. 

There have been many methods developed for deriving UHs from complex 
storm events which include successive approximations (Collins, 1939; Barnes, 
1959; Bender and Roberson, 1961), the system transformations (O'Donnel, 1960; 
Dooge, 1965; Dooge and Garvey, 1978), least-squares and its variations (Snyder, 
1955; Newton and Vinyard, 1967; Kuchment, 1967; Singh, 1976; Bruen and Dooge, 
1984), and linear programming (Deininger, 1969; Eagleson et al., 1966; Singh, 
1976; Mays and Coles, 1980; Morel-Seytoux, 1982; Singh, 1988). 

In a previous study on the UH determination using the linear programming (LP) 
approach, two types of objective functions have been used: (1) minimization of the 
sum of absolute deviations (MSAD) and (2) minimization of the largest absolute 
deviation (WAD). The LP formulation based upon the MSAD criterion can be 
stated as 

" 

minimize 

n=l 
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subject to 

n<M 

m=l 

N-M+1 
at c u. = 1, 

U. LO, r = 1,2  ,..., N - M + 1 ;  

in which En+ and En- are nonnegative decision variables representing errors due 
to over-estimation and under-estimation, respectively; and At is the UH duration. 
The units for Pm, Q n ,  and Ur used in this formulation are mm, mm/h, and l h ,  
respectively. For the above model (Equations (2a)-(2d)), the number of decision 
variables is 3N-M+1 and the number of constraints is N+1. 

The LP model based upon the MLAD criterion can be formulated as 

minimize 

subject to 

m= 1 

N-M+I 

r=l 

in which emax is a nonnegative decision variable representing the largest absolute 
deviation. The number of decision variables in this LP formulation is N-M+2, 
which is significantly less than that in the MSAD formulation, while the number 
of constraints is 2N+1, which is about twice as many as that in the MSAD. 

The purposes of this paper are (1) to propose two alternative LP formula- 
tions for determining optimal UHs and (2) to evaluate the relative performance 
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of derived UHs from the various LP formulations. More specifically, statistical 
cross-validation technique was employed in the investigation. The various LP for- 
mulations were applied to 20 storms in Bree’s paper (1978). The two proposed 
alternative LP formulations for the UH determination are (1) the minimization 
of the weighted sum of absolute deviations (MWSAD) and (2) minimization of 
the range of deviations (MRNG). The MSAD formulation is a special case of the 
MWSAD model, since the MSAD criterion assigns equal weights to all deviations 
in the objective hnction. Instead of controlling the largest absolute deviation as in 
the MLAD formulation, the MRNG criterion controls the range of deviations. 

Since the optimal UH obtained from minimizing one form of objective function 
may not be the optimal UH for predicting other storms or future storms, it is essential 
to examine the predictability of UHs obtained from different LP formulations. The 
predictability of UHs derived from the MSAD, MLAD, M W S A D ,  and MRNG was 
assessed by applying the derived UHs to other observed storms using a statistical 
cross-validation technique. The MWSAD formulation with different values of 
the weighing function were considered. The golden section search method was 
applied to determine the optimal weights for the MWSAD criterion that yields the 
best predictability. 

2. Minimizing the Weighted Sum of Absolute Deviations (MWSAD) 

The LP formulation based upon the MWSAD criterion can be mathematically 
expressed as 

minimize 
N 

n=l 

subject to 

n<M 

C PnUn-m+i - E$ + E, = Qn, 

At C Ur = 1, (W 

E$ LO, E; 20,  n = 1,2 ,..., N ,  (4d) 

n = 1,2 ,..., N, (4b) 
m= 1 

N - M + l  

r=l 

U r l O ,  r = 1,2 ,..., N - M + l ;  

in which Wn is the weight assigned to the deviation of the nth DRH ordinate. The 
weighing function considered in this study is 

, n =  1,2 ,..., N, NQ:: 
C!L QZ 

Wn = 

. 
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I 

in which a is a constant, Note that when a = 0, the MWSAD formulation reduces 
to the MSAD model. As a common practice in hydrology, one often uses positive- 
valued a in Equation (5). The larger the value of a, the more emphasis is given to 
fit closely to higher discharge values. 

3. Minimizing the Range of Deviations (MRNG) 

The range of deviation is defined as E~~ = E ~ ~ +  +Em=- with Em=+ = max{ En' } ,  

the largest value of over-estimation, and Emax- = max{ E n -  }, the maximum value 
of under-estimation. The LP formulation can be expressed as 

minimize 

&3 = &mg = + Ernax 

subject to 

N - M + l  
At C UT = 1 ,  

r=l 

This formulation of minimizing the range of errors is somewhat similar to the 
MLAD formulation which minimizes the largest absolute deviation. However, 
since the MRNG formulation controls the range of the deviations, it is expected that 
the UH by the MRNG criterion will yield a better overall fitting and prediction of 
DRH than that by the MLAD. The number of constraints for the MRNG formulation 
is identical to that for the MLAD formulation while the MRNG model has one extra 
decision variable as compared with the MLAD formulation. 

4. Comparative Studies 

The four LP formulations based upon the criteria of the MSAD, MLAD, M W S A D ,  
and MRNG were applied to derive the UHs based on twenty storm events that 
occurred in the Nenagh at Clarianna. The drainage area of the watershed is 295 
km2. The E M S  and DRHs for the twenty storms were obtained from Bree (1978) 
and are listed in Table I. The duration of the UH is 3 hours. 



Table I. Data of 20 storms (Be, 1978) 
(a) Direct Runoff Hydrographs (DRHs) 

Time 
(hrs) 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 

DRHs (in cubic meters per second) of nKenty Storms 

3 
6 
9 

12 
15 
18 
21 
24 
27 
30 
33 
36 
39 
42 
45 

2.2 0.5 1.2 1.1 0.50 0.6 0.8 2.3 
5.8 1.1 2.3 2.7 1.15 1.2 1.5 2.6 

11.9 3.6 3.3 7.9 2.39 4.8 4.1 6.7 
15.2 7.8 5.8 13.6 9.84 18.9 5.7 10.6 
15.9 10.9 11.8 13.2 13.19 16.9 9.1 11.6 
12.7 12.8 15.3 27.9 8.53 11.4 14.5 11.7 
10.5 12.4 13.5 17.4 7.68 8.0 12.9 12.5 
10.2 9.8 10.9 15.7 7.23 7.9 10.2 13.8 
10.9 8.5 8.2 18.8 5.97 7.2 9.1 ' 12.5 
12.3 7.3 6.8 17.9 4.82 6.3 8.0 11.2 
11.2 6.2 5.9 15.3 4.07 5.2 7.3 10.3 
9.6 5.3 5.2 12.8 3.61 4.4 6.8 9.7 
9.0 4.6 4.8 11.2 3.26 3.9 6.8 8.8 
8.4 3.8 4.3 9.7 3.11 3.3 6.3 7.1 
8.0 3.1 4.0 9.1 2.95 3.1 5.8 6.3 

6 

1.60 
3.40 

11.59 
15.39 
12.88 
8.88 
6.68 
5.37 
4.57 
3.77 
2.96 
2.46 
1.95 
1.65 
1.55 

1.5 1.6 2.9 
3.7 11.5 7.0 
9.9 18.1 14.6 

12.5 13.6 15.7 
13.0 9.4 29.3 
10.9 7.9 41.6 
8.4 6.8 40.2 
6.5 6.0 28.0 
5.5 5.3 21.7 
4.6 4.7 20.5 
3.9 4.3 22.9 
3.4 3.8 21.7 
2.9 3.3 18.7 
2.0 3.1 16.9 
2.2 2.8 12.3 

1.90 
6.23 

15.16 
22.59 
25.32 
20.65 
13.78 
10.72 
8.85 
6.98 
6.21 
5.44 
4.67 
4.80 
4.23 

1.40 
4.19 

12.47 
18.26 
20.84 
17.53 
12.21 
9.20 
8.38 
6.17 
5.35 
4.54 
3.92 
3.41 
3.09 

1.1 0.70 1.0 
2.0 1.69 8.7 
3.3 4.08 18.6 
7.6 4.57 16.1 

12.8 5.46 12.0 
13.2 9.35 8.3 
10.3 9.44 7.5 
7.9 6.93 5.6 
7.0 5.42 5.2 
6.7 4.71 4.7 
6.7 4.00 4.3 
6.0 3.29 3.9 
5.5 2.98 3.5 
4.9 2.67 3.2 
4.4 2.46 3.0 

1.40 0.80 
1.78 1.99 
2.57 4.38 

25.75 7.38 
35.84 22.27 
38.12 26.86 
24.31 23.35 
18.19 16.95 
16.18 13.84 
14.66 11.43 
13.65 8.92 
12.23 7.42 
10.92 6.61 
11.20 5.70 
10.28 4.99 

L 

1 .00 
2.32 
6.14 

20.26 
30.18 
32.20 
32.52 5 
23.14 
16.26 
12.58 
10.10 

B 

? 
9.22 c] 

7-34 6.56 2 
5.68 

. 



48 
51 
54 
57 
60 
63 
66 
69 
72 
75 
78 
81 
84 
87 
90 
93 
96 
99 

102 
105 

7.4 
6.7 
6.1 
5.5 
5.1 
4.6 
4.1 
3.6 
3.1 
2.6 
2.1 
1.7 
1.3 
0.9 
0.6 
0.3 

2.4 
2.1 
1.6 
1.2 
1.0 
0.9 
0.6 
0.5 
0.4 
0.3 
0.2 

3.5 
3.1 
2.7 
2.3 
2.0 
1.8 
1.7 
1.5 
1.3 
1.1 
1 .o 
0.8 
0.7 
0.5 
0.4 
0.2 
0.1 

I 

8.5 
7.9 
7.1 
6.4 
5.9 
5.3 
4.7 
4.3 
3.8 
3.5 
3.1 
2.6 
2.2 
1.8 
1.4 
1.1 
0.8 
0.5 

2.80 
2.75 
2.40 
2.14 
2.14 
1.94 
1.78 
1.63 
1.38 
1.12 
0.97 
0.82 
0.66 
0.4 1 
0.26 
0.10 

2.9 
2.7 
2.2 
1.8 
1.5 
1.2 
1 .o 
0.8 
0.6 
0.4 
0.2 

5.3 
4.9 
4.4 
4.0 
3.5 
3.1 
2.7 
2.3 
1.9 
1.5 
1.2 
0.9 
0.6 
0.3 
0.1 

5.5 
4.8 
4.1 
3.5 
3 .O 
2.5 
2.2 
1.9 
1.6 
1.3 
1.2 
1.1 
0.9 
0.8 
0.7 
0.5 
0.3 
0.2 
0.1 

1.24 
1.04 
0.93 
0.83 
0.73 
0.62 
0.52 
0.42 
0.3 1 
0.2 1 
0.10 

1.8 
1.6 
1.3 
1.0 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

2.4 
2.1 
1.8 
1.5 
1.2 
1 .o 
0.9 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

10.7 
9.6 
7.5 
5.9 
4.9 
3.5 
2.7 
2.2 
1.8 
1.5 
1.3 
1.1 
0.9 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

3.46 
3.29 
3.02 
2.75 
2.38 
2.02 
1.65 
1.28 
0.91 
0.54 
0.27 

2.58 
2.56 
2.15 
1.83 
1.62 
1.40 
1.19 
0.97 
0.76 
0.54 
0.43 
0.21 

3.9 
3.0 
2.5 
2.1 
1.8 
1.5 
1.2 
0.9 
0.7 
0.5 
0.3 
0.1 

2.24 
2.13 
1.92 
1.61 
1 .so 
1.19 
0.98 
0.57 
0.56 
0.25 
0.04 
0.03 
0.02 

2.8 
2.6 
2.4 
2.2 
2.0 
1.8 
1.6 
1.4 
1.2 
1 .O 
0.8 
0.6 
0.4 
0.2 
0.1 

10.07 
9.15 
8.94 
8.02 
7.31 
6.79 
6.68 
6.16 
5.65 
5.03 
4.42 
3.70 
3.28 
2.77 
2.55 
1.94 
1.72 
1.51 
1.29 
1.08 

J 

4.28 
3.38 
2.67 
2.36 
2.05 
1.75 
1.44 
1.13 
0.82 
0.52 
0.2 1 

4.90 
4.12 
3.34 
2.56 
1.38 
1 .oo 
0.72 
0.54 
0.36 
0.18 



Table I. Data of 20 storms (Bree, 1978) 
(b) Effective rainfall hyetographs (ERHs) 

Time 
( h ) 1  2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 

ERH (mm) of Twenty Storms 

3 
6 
9 

12 
15 
18 
21 
24 
27 
30 
33 
36 
39 
42 
45 
48 

1.57 
1.92 
2.39 
0 
0 
0 
0.14 
1.64 

0.48 0.76 
0.58 0.57 
2.92 0.54 

0.8 1 
1.02 
0.25 
0.25 
0.25 
0.25 

2.17 0.22 
2.12 0.44 
0.92 1.44 
0.22 0.06 
0.47 0.29 
0.97 0.58 
0.84 0.38 
0.80 0.32 
0.71 
0.49 

1.42 1.69 
2.16 0.92 
0.75 1.1 1 

1.13 
0.19 
0.18 
0.1 

0.70 0.62 0.87 2.19 
1.11 1.88 1.98 0.81 
1.59 0.85 0.36 0.49 
0.54 0.45 0.32 
0.48 0.29 
0.34 0.15 
0.55 
0.51 
0.06 
0.32 
0.16 

1.25 
2.97 
0.10 
2.42 
3.06 
0.23 
0.83 
0.07 
0.20 
1.60 
0.43 
0.39 

2.85 1.74 0.76 0.59 1.09 
2.32 2.04 0.42 0.96 1.82 
1.38 1.41 2.67 0.03 0.34 

0.20 0.46 0.75 0.33 
0.64 0.33 

0.33 
0.33 

1.74 
3.66 
0.75 
0.72 
0.28 
1.22 
0.09 
0.33 
0.67 
0.43 
0.2 1 
0.30 
0.41 
0.57 
0.59 
0.35 

1.20 5.64 
1.79 2.94 
2.73 
0.99 



OPTIMAL UNIT HYDROGRAPHS AND LINEAR PROGRAMMINGS 109 

Computer programs using MATLAB language were developed to conduct the 
analysis. MATLAB language is a high-level computer language which is efficient 
in matrix operations (Mathworks, 1989). The LP algorithm in MATLAB is based 
upon an active set method which is a variation of the simplex method (Grace, 
1993). All computer programs written in MA?ZAB were run on a PC-486DX with 
33MHz. 

a 

* 

4.1. REGENERATION AND PREDICTION OF DWS BY THE DERIVED 

An optimal UH can be obtained by solving one of the four LP formulations based 
upon the ERH and DRH of a storm. Regeneration of a DRH is referred to as using 
the obtained UH to compute or regenerate the DRH for the storm used in the 
derivation of the optimal UH. Equation (1) can be used to convolve the derived 
optimal UH with the ERH to regenerate the corresponding DRH. On the other 
hand, prediction of a DRH herein is referred to as using the derived UH to compute 
the DRH of another storm by convolving the derived optimal UH with the ERH 
data of the corresponding storm. 

A U H  obtained from minimizing one form of error criterion is optimal only to the 
error criterion describing the deviation between the regenerated and the observed 
DRH that is minimized. The error between the regenerated and observed DRHs 
is minimal for the error criterion used in derived the optimal UH. However, the 
optimality for a regenerated storm does not necessarily translate to the optimality 
for predicting another storm. Therefore, it is important to investigate how well 
derived UH can predict the DRHs for other storms. A comparison of predictability 
among the optimal UHs obtained from the MSAD, MLAD, MWSAD, and MRNG 
will be presented later. A comparison based upon a statistical cross-validation 
technique is given below. 

4.2. STATISTICAL CROSS-VALIDATION TECHNIQUE 

Validation is an important task in the process of developing a model. Based upon 
validation test, one can assess how well the derived UH can predict the DRHs of 
future storms. The statistical cross-validation method is a useful technique (Allen, 
1971; Stone, 1974; Geisser, 1975; McCarthy, 1976). When applied to a UH vali- 
dation test where R storms are available, the cross-validation method uses one of 
the R storms to obtain an optimal UH and then uses the optimal UH to predict 
the DRHs for the remaining R-1 storms. The errors between the observed and 
predicted DRHs for each storm can be computed by the adopted error criterion 
from which an average error over the remaining R storms can be computed. This 
process is repeated for each of the R storms. Then, a final average error value can 
be computed which is used to compare the predictability of UHs obtained from 
different LP formulations. The procedure of the statistical cross-validation methods 
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follows: 
9 

Consider R storms, S1, S2, . . . , SR. 
Let r =  1.  
Apply a LP formulation (MSAD, MLAD, M W S A D ,  or MRNG) to storm S, 
to obtain an optimal UH,. 
Use the optimal UH, to predict the DRHs of the remaining R-1 storms. 
Compute the error measure of interest, E,, based on the deviations between 
the predicted and observed DRH for each of the R-1 storms. 
Average E, over the R-1 storms to obtain B,. 
Repeat steps (3)-(6) for r = r+l until r = R. 
Average E,  over R storms to obtain an averaged error measure to be used for 
comparing the predictability of UH from different LP formulations. 

- 

ERROR CRITERIA 

Eleven error criteria were considered in this study for assessing the predictabili- 
ty and reproducibility of DRHs by the UHs from the four LP formulations. They are 

(1) The sum of absolute deviations of DRH ordinates: 
Nr 

&,I = C IQr,n - QT,n I 
n=l 

in which Qr,n is the observed nth DRH ordinate for the rth storm and the "A" 
represents the regenerated or predicted values, and N, is the number of DRH 
ordinates for the rth storm. 

(2) The weighted sum of absolute deviations of DRH ordinates: 
Nr 

Er,2 = C WnlOr,n - Qr,n 1, (8) 
n=l 

where the weighing function Wn is defined by Equation (5). 
(3) The largest absolute deviation of DRH ordinates: 

(4) The range of deviations of DRH ordinates: 

Er,4 = max (Qr,n - Qr,n> + max Qr,n - (Qr,n) (10) 
1 5 n S N  1 5 n l N  

(5) The root-mean-squared error of DRH ordinates: 
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(6) The relative absolute error of time-to-peak: 

in which TP, is the time-to-peak of DRH of the rth storm. 
(7) The relative absolute error of DRH peak: 

in which QP, is the peak discharge of DRH of the rth storm. 
(8) The relative absolute error of DRH volume: 

in which VT is the volume of DRH of the rth storm. 
(9) The relative bias of time-to-peak: 

(10) The relative bias of DRH peak: 

(1 1) The relative bias of DRH volume: 

&,ll  = 

111 

Error criteria (1)-(4) coincide with the objective functions of the MSAD, 
MLAD, MWSAD, and MRNG, respectively. Also, note that error criteria (9)- 
(1 1) are useful to measure the over-prediction or under-prediction of time-to-peak, 
peak, and volume of DRH. Suppose that the prediction of a DRH is considered. A 
positive E9 implies an overall over-prediction of time-to-peak in the predicted DRH 
whereas a negative E9 implies an overall under-prediction of the time-to-peak. 

* ’ 

4.4. COMPARISON OF THE DERIVED OPTIMAL UHS 

An optimal UH can be obtained from each of the 20 storms by solving each of 
the LP formulations. The LP formulations are the MSAD, MLAD, M W S A D  with 
a = -0.5, MWSAD with Q! = 0.5, and MRNG. Figure 1 illustrates the UHs for one 
of the 20 storms by different LP formulations. The comparison among the optimal 
UHs obtained from the five LP formulations was made based upon the averaged 
value for a UH considered herin property over the 20 storms. The properties of a 
UH are the peak, time-to-peak, smoothness, computation time, number of decision 
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+ MSAD 
* MWSAO alpha=-0.5 
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Fig. 1. UHs for storm No. 1 by different LP formulations. 

variables, and number of constraints. Smoothness of a UH, based upon Bkorck 
(1990), can be measured by 

II Bu I12 (18) 

where u is a vector of derived UH ordinates and B is a matrix of discrete approxi- 
mation to the second-derivative operator, 

B =  

1 - 2  1 o . . o  0 0 
0 1 - 2 1 . . 0  0 0 
. . .  . . . . . .  
. . . . . . . . . 
0 0 0 0 . . 1 - 2 1  (J-2)XJ 

Table II lists the averaged values for each of the UH properties over the twenty 
storms. It can be seen in Table 11 that the MLAD formulation requires the least 
computation time while the MSAD and MWSAD models require the most compu- 
tation time. The computation time for the MRNG formulation is between the time 
required by the MLAD and MSAD (or MWSAD). Recall that, with Nand M respec- 
tively being the number of ordinates of a DRH and ERH, the number of decision 
variables for the models of MSAD (or MWSAD), MLAD, and MFWG are 3N- 
M+1, N-M+2, and N-M+3, respectively. The number of constraints in the models 
of MSAD (or MWSAD) and MLAD (or MRNG) are N+l and 2N+1, respective- 
ly. The numerical results show that the averaged computation time increases as 
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TABLE 11. Averaged values associated with UHs based upon 20 storms for different formulations 

113 

' UH Properties MSAD MWSAD MWSAD MLAD MRNG 
(a = -0.5) (a! = 0.5) 

Computing time (sec) 7.0639e+01 7.319e+01 7.3440e+01 1.3626eMl 2.9744eM1 
Number of variables 83 83 83 25 26 
Number of Contraints 30 30 30 60 60 
Peak (Vhr) 6.0994e-02 6.1472e-02 6.0169e-02 6.2281e-02 6.2281e-02 
Time-to-Peak (hours) 1.2150e+01 1.2150e+01 1.1700e+01 1.2300e+01 1.2300eM1 
Smoothness 1.1297e-02 8.0704e-03 9.5429e-03 1.4039e-02 1.3831e-02 
Volume 1 .o 1 .o 1 .o 1 .o 1 .o 

TABLE 111. Averaged values of error criteria associated with regenerated DRHs based upon 
20 storms for different formulations 

Error criteria for MSAD MWSAD MLAD MRNG 
regenerated DRHs a! = 0.5 
properties 

5.9338e+00 
7.0448e+00 
1.8 1 3 7 e 4  
2.8573e4 
4.4787e-O 1 
2.7976e-02 
2.7580e-02 
1.4924e-03 
1.3690e-02 

-2.7580e-02 
-1.8833e-04 

6.5864e+OO 
6.23 50e+00 
2.08 18e+00 
3.0489e+00 
4.8899e-01 
8.3333e-03 
1.877 le-02 
1.4924e-03 
8.3333e-03 

-1 377 1 e-02 
-1.8833e-04 

1 -758 1 e+O 1 
2.06 1 9e+0 1 
8.4 1 04e-0 1 
1.6820e+00 
6.3673e-01 
1.8333e-02 
3.3626e-02 
1.4924e43 

-1.8333e-02 

-1.8833e-04 
-1.1894e-02 

1.7030e+01 
2.0 147ei-O 1 
8.4 104e-0 1 
1.6820e+00 
6.2505e-01 
1.8333e-02 
3.3763e-02 
1.4924e-03 

-1.8333e-02 
-1.1757e-02 
-1.8833e-04 

Note: The units for MSAD, MWSAD, MLAD, MRNG, and RMSE are m3/s. . '  

the averaged number of decision variables increases by the active set algorithm 
employed in MATLAB. 

One can observe from Table 11 that the UHs obtained from the MLAD and 
MRNG formulations have the same peak and time-to-peak which are larger than 
those from the MSAD and MWSAD. The smoothness values in Table 11 indicate 
that the UH obtained from the MRNG formulation is smoother than that obtained 
from the MLAD. The UH from the MWSAD formulation with a. = -0.5 is the 
smoothest. The volume of all derived UHs is unity as expected. 

1 
a 

4.5. COMPARISON OF THE REPRODUCED D W S  

The optimal UH obtained from solving LP models of MSAD, MWSAD with 
a. = 0.5, MLAD, and MRNG to each of the 20 storms is used to regenerate the 
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DRH of the storm used to derive the optimal UH. The error measures between the 
reproduced and observed DRHs are measured by the eleven criteria described in 
Section 4.3. Then, the averaged values for each of the error criteria is computed 
over the 20 storms. It can be observed in Table 111 that the UHs by MSAD, M W S A D  
with a = 0.5, MLAD, and MRNG regenerate DRHs which have, on an average, the 
smalles values of ET,l,  ET,2, Er,3, and ET,4, respectively. This is expected because 
the error criteria coincide with the objective functions which are minimized. It is 
also shown in Table III that the UH from the MRNG yields a smaller value of Er,l 
than the MLAD does. This implies that the UH from the MRNG is better in overall 
curve-fitting than that from the MLAD. 

Other error criteria such as the RMSE, time-to-peak, peak, and volume defined 
in Section 4.3 were also computed and tabulated in Table III. As expected, the 
MSAD yields the smallest value of the RMSE. Comparing the time-to-peak error 
(ET,6) among different LP formulations, one can find that the MWSAD with cy = 0.5 
gives the smallest value of Er,6 and the MSAD gives the largest value. As for the 
peak discharge error (ET,7, the MWSAD with a = 0.5 results in the smallest value. 
The volume errors 

Criteria Er,9, ET,10, and ET,11 were used to evaluate the degrees of bias of the 
reproduced DRH with respect to the time-to-peak, peak, or volume compared with 
the observed DRH. This bias criterion may be important in flood forecasting. Since 
the values of ET,9 for the MLAD and MRNG are negative (see Table III), the 
time-to-peak of the regenerated DRHs by the MLAD and MRNG is shorter, on 
an average, than that of the observed DRHs. The negative values for peak and 
volume errors of the regenerated DRHs for all LP formulations indicate that all LP 
formulations result in under-estimating the peak and volume of DRHs. 

for the different LP formulations are the same. 

4.6. COMPARISON OF PREDICTED D W S  . -  

An important application of the UH theory is to use the derived UH to predict the 
DRHs of future storms. Therefore, it is essential to study the predictability of the 
derived UH by the various LP formations. 

The algorithm of the statistical cross-validation described in Section 4.2 was 
applied to the 20 storms in Bree (1978). El and E5 were used to measure the overall 
prediction of DRHs. Table IV shows that the MSWAD with a = -0.5 yields the 
smallest values of El and E5. This indicates that the MSWAD with a = -0.5 is 
the best in overall prediction of DRHs for other storms or possibly future storms. 
Examining the eleven error criteria (El-Ell)  for all LP formulations, one observes 
that the MWSAD with a = -0.5 gives the smallest error values of El-E11 than 
other LP formulations do, implying that the MWSAD with a = -0.5 has the best 
predictability. When a negative value is assigned to a in Equation (9, higher 
discharges in the DRH receive less weight than those lower discharges. The results 
having a better predictability with a negative-valued a indicate that, contrary to the 
popular belief in common hydrologic practice, emphasis to fit high discharge in 

u 
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TABLE IV. Averaged vaIues of error criteria associated with predicted DRHs based upon statistical 
cross-validation on 20 storms for different LP formulations 

a 

MSAD MWSAD MWSAD MLAD MRNG Error criteria for 
regenerated DRHs o! =4.5 (a = 0.5) 

- properties 

El (MSAD) 
E2 (MWSAD, = 0.5) 
E3 (MLAD) 
E4 (MRNG) 
E5 (RMSE) 
Eg (Time-tO-peak) 
E7 (Peak) 
E8 (Volume) 
I% (Time-to-peak) 
EIO (Peak) 
El1 (Volume) 

6.0502e+O 1 
8.3742e+O 1 
9.8833e+OO 
1.5718e+01 
3.151 le+00 
2.7080e-01 
2.2970e-01 
1.4928e-03 
8.3377e-02 
1 S303e-02 

-1.3859e-M 

5.8462e+01 
3.6706e+0 1 * 
9.72@e+OO 
1.5377e+01 
3.0655e+00 
2.5844e-01 
2.2704e-a 1 
1.4928e-03 
7.061 7e-02 
6.7 15k-03 

-1.3859e-04 

6.1361e+01 
8.4702e+01 
9.8 57k+OO 
1.5789e+01 
3.1822e+00 
2.7386e-01 
2.3292e-01 
1.4928e-03 
7.6901 e-02 
2.0 1 6 1 e-02 

-1.3859e-04 

6.2433e+O 1 
8.5878e+0 1 
9.9342e+00 
1.61 12e+01 
3.2258e+00 
2.700 1 e-0 1 
2.2757e-01 
1.4928e-03 
9.9479e-02 
2.4634e-02 

-1.3859e-04 

6.2397e+0 1 
8.5907eM 1 
9.9342eW 
1.6093e+01 
3.2238e+00 
2.7001e-01 
2.275941 
1.4928e-03 
9.9479e-02 
2.4649e-02 

-1.3859e-04 

Notes: 
The units for MSAD, MWSAD, MLAD, MRNG, and RMSE are m3/s. 
Supscript ‘*’ indicates that the error criterion Er,2 uses Q = -0.5 instead of 0.5. 

UH determination does not necessarily yield accuracy prediction for hture storm 
events as a whole or even for the peak discharge of future events. Criterion E7 in 
Table IV shows that the overall accuracy of predicting peak discharge of DRH for 
other storms by the MLAD and MRNG is better than the MSAD and MWSAD 
with a = 0.5. Criterion El0 in Table N indicates that to emphasize fitting to 
higher discharges potentially would lead to over-prediction of peak discharge of 
future storms. If one argues on the viewpoint of conservatism, using the MLAD 
and MRNG formulations could be even more conservative on prediciting peak 
discharge. 

Table N also shows that the MRNG yields smaller values of El and E5 than 
the MLAD does. The MLAD and MRNG have the same error values for time-to- 
peak, peak, and volume for predicting the DRHs. It is interesting to note that the 
MWSAD with a = 0.5 results in larger values of El and E2 than the MSAD does 
but smaller values than the MLAD and MRNG do. 1 

! 

1 
1 ’’ 4.7. DETERMINATION OF OPTIMAL WEIGHTS FOR W S A D  FORMULATION 

The numerical results in Section 4.6 based upon statistical cross-validation show 
that the MWSAD formulation with a negative a is better than the one with a20 
in predicting the DRH. Note that the MWSAD reduces to MSAD when a = 0. 
In this section, an optimal a is determined by golden section technique with the 
embedded statistical cross-validation method such that an adopted error criterion 
is minimized. The golden section technique is a one-dimensional optimum search 
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Fig. 2. Flowchart for determining an optimal weight function by the golden section technique 
in conjunction with the statistical cross-validation method for LP formulation. 
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TABLE V. Optimal Q! by the golden section technique for different prediction 
error criteria in conjunction with the statistical cross-validation technique 

Error criteria 
El (MSAD) E6 (Time-to-Peak) E7 (Peak) 

Convergance tolerance Q! 0.001 0.001 0.001 
Iteration number 18 18 18 
Computing time 15 hours 15 hours 15 hours 
Optimal Q! -0.68 -0.33 -0.68 
Minimized mean 58.384 (m3/s) 0.2235 0.00149 

procedure. Detailed discussion on the golden section technique can be found in 
Mays and Tung (1992). Figure 2 gives a flow chart for the determination of the 
optimal a for the MWSAD model by the golden section technique in conjunction 
with the statistical-cross validation. 

Table V lists the optimal values of CY for three different error criteria, namely, El ,  
&, and E7, for the predicted DRHs. By the golden section technique, the optimal 
a with respect to each of the three error criteria were searched in the interval (-2, 
2). With 20 storms in validation test, each error criterion takes eighteen iterations 
and about fifteen hours on a PC-486 to converge to an optimal solution. 

5. Summary and Conclusions 

The main purposes of this paper were (1) to propose two alternative LP formulations 
for determining the optimal UHs and (2) to asssess the relative performance of the 
derived UHs based upon various LP formulations. The two proposed alternative 
LP formulation are to minimize the weighted sum of absolue deviations and to 
minimize the range of deviations. The MWSAD formulation is a generalization of 
the commonly used MSAD model for UH determination. The MRNG model may 
also be considered as the extension of minimizing the largest deviation (MLAD). 
The performance assessment were conducted using a statistical cross-validation 
technique based on 20 storms from Bree (1978). 

The comparison among various LP formulations was made based upon (1) 
UH properties such as peak, time-to-peak, volume, CPU time for computing an 
optimal UH, number of decision variables, number of constraints; (2) properties of 
the regenerated DRHs; and (3) properties of the predicted DRHs. Golden section 
technique was applied to determine the optimal weighing function for the MWSAD 
formulation in conjunction with the statistical cross-validation technique. 

The numerical results from the statistical cross-validation show that the MRNG 
gives a smoother UH than the MDLAD does. The regenerated DRHs and the 
predicted DRHs by the MRNG are closer to the observed DRHs than those by 
the MLAD. The smaller deviations between the predicted and observed DRHs 
for the MRNG indicate that the MRNG is better than the MLAD in its capability 

. 



118 BING ZHAO AND YEOU-KOUNG TUNG 

to predict the DRHs for other storms. The computation time for the MRNG is 
somewhat longer than that for the MLAD. The UH from the MSAD model was 
found to perform better than the MRNG in predicting the DRHs but require much 
longer computation time. The results from the numerical investigation provide 
useful information to hydrologists in selecting an LP formulation. 

Interestingly, the numerical results indicate that the MWSAD formulation with 
a negative a was the best in predicting the DRHs among all LP formulations. 
The statistical cross-validation method was incorporated into the framework of 
golden section technique to determine the optimal a in the weighing function for 
a selected error criterion. It was found that there exists a negative optimal a for 
each of the selected three error criteria. This observation implies that emphasizing 
fitting on peak discharge of DRH does not necessarily produce a UH equipped with 
a better predictive capability for future storm events. Application of the proposed 
MWSAD and MRNG formulations in this study show some promising features 
for the derived UHs. More extensive investigations using storms occurred in other 
watersheds is recommended for future research and application. 
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