

Wyoming Water Resources Center P.O. Box 3067 13th and Lewis Streets Laramie, Wyoming 82071-3067 (307) 766-2143 • Fax (307) 766-3718

January 29, 1996

Bill Gern Vice President for Research Old Main Campus

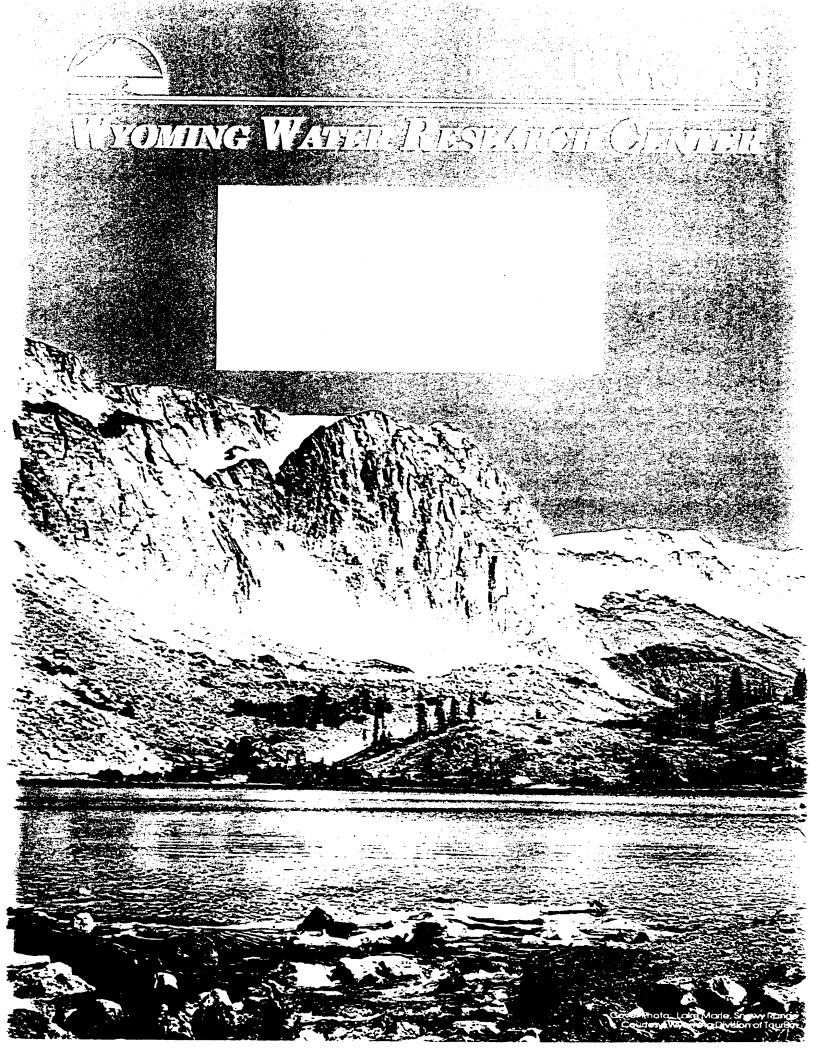
Dear Bill:

I am pleased to deliver to you Volumes 1 through 3 of our AML project completion report entitled "Methodology for the Geomorphic Classification and Design of Drainage Basins and Stream Channels in the Eastern Powder River Basin Coal Field of Wyoming." The Executive Summary, which we anticipate will receive wider distribution, is still undergoing U.S. Geological Survey review. I will deliver this document to you at the earliest possible date.

Thank you for your interest in and support of this research effort.

Sincerely,

m


Thomas A. Wesche Professor and Co-Principal Investigator

Enc.

cc:

Steve Gloss Hugh Lowham Tony Anderson

Methodology for the Geomorphic Classification and Design of Drainage Basins and Stream Channels in the Eastern Powder River Basin Coal Field of Wyoming

Anthony J. Anderson Lee E. Jensen Suzy L. Noecker Thomas A. Wesche Volume 1 of 3 Text (pgs. 1 - 248) December 1995 WWRC-94-20

Technical Report Submitted to The Abandoned Coal Mine Lands Research Program

Prepared by

Anthony J. Anderson Lee E. Jensen Suzy L. Noecker Thomas A. Wesche Wyoming Water Resources Center University of Wyoming Laramie, Wyoming

December, 1995

ACKNOWLEDGEMENTS

The authors would like to thank Mr. Hugh Lowham and Mr. Richard Daddow of the U.S. Geological Survey for their recommendations, guidance, and virtual co-authorship of this report. We would also like to thank Dr. Quentin Skinner and Dr. Richard Marston for sitting on the graduate committees of the students involved and for their excellent advise. We would also like to thank Dr. Richard Anderson-Sprecher of the University of Wyoming Statistics Department for his frequent assistance.

The staffs of the Wyoming Water Resources Center and the University of Wyoming Department of Range Management were instrumental in the completion of this report. We would like to commend our office technicians Lisa Reynolds and Bridgette White for their work during the delineation and digitizing portions of this study. We would also like to thank our field hand, Jeff Stafford, for his work in the collection of field data.

We would like to thank all the private landowners in Campbell County, Wyoming who allowed us access to their property for this study. We were received well by all the ranchers and coal companies in the Eastern Powder River Basin and we hope this spirit of cooperation continues in the future. This work was supported in part by the Abandoned Coal Mine Lands Research Program at the University of Wyoming. This support was administered by the Land Quality Division of the Wyoming Department of Environmental Quality from funds returned to Wyoming from the Office of Surface Mining of the U.S. Department of the Interior.

ABSTRACT

Jensen, Lee E., Anthony J. Anderson, Suzy L. Noecker, and Thomas A. Wesche 1994. <u>Methodology for the Geomorphic</u> <u>Classification and Design of Drainage Basins and Stream</u> <u>Channels in the Eastern Powder River Basin coal field of</u> <u>Wyoming.</u> Final technical report to the Abandoned Coal Mine Land Research Program. University of Wyoming Office of Research. Laramie, Wyoming.

Current and potential coal mining operations in the Powder River Basin have increased the need for knowledge regarding drainage basin form and function in that region. The current life-of-mine estimates indicate that each mine in the region will disturb and then reclaim between 959 to 13,217 acres before completion of mining activities. Quantitative analysis of erosional landforms has derived and defined variables that can distinguish drainage basins. Three hundred eighty-four low order drainage basins were selected from USGS, 1:24000, 7.5 minute, topographic quadrangles. Fifteen quantitative and six categorical variables were used to characterize and describe each basin. Additionally, field investigations were conducted to quantify cross-sectional and longitudinal profile characteristics of 58 drainage networks.

Multivariate statistics including, principal components analysis, cluster analysis, and discriminant function analysis were used to categorize the drainage basins in each order. The resulting categories were altered as necessary after correlations of key parameters were analyzed.

1

The resulting classification has three strata defined by geology, basin area, and gross basin slope of the third order drainage basin. Second and first order basins were classified by the third order stream to which they are tributary.

The geomorphic characteristics of the basins in each strata were then used to develop design equations for the reconstruction of drainage basins and networks within each strata by order. Approximately 200 significant design equations were developed for reclamation in the Eastern Powder River Basin.

TABLE OF CONTENTS

Pag	ge
INTRODUCTION	1
PURPOSE AND SCOPE	3 4
DESCRIPTION OF THE STUDY AREA	7
SOILS	10 12 12 13 14
LEGISLATION PERTAINING TO COAL MINE RECLAMATION	17
	17 22
OVERVIEW OF RECLAMATION DESIGN	30
METHODS	49
DRAINAGE BASIN IDENTIFICATION CODES	49 52 53 56 54 77 80
RESULTS	83
	16 19
Second Order	19 24 28

. .

TABLE OF CONTENTS (cont.)

5	STRATUM I	в	•••	•••	•	• •	•	•••	•	• •	•	•	•	•	•	138
	Seco	st Ord ond Or rd Ord	der		• •		•	• •	•				•			141
S	STRATUM (c			•				•		•		•	•		155
	Seco	st Ord ond Ord rd Ord	der	• •	•		•		•	•	•		•		•	161
	VEGETATIO SURFICIAI															
DISCUS	SSION .		•••	• •	• •	•••	•	•••	• •	•	•	•	•	•	•	185
	COMPILAT: CLASSIFIC															
	Stra Stra	atum A ata B a	 and (· · 2 ·	•••	•	•	 	• •	•	•	•	•	•		190 192
R M	REYING DE RELATION MULTIVARI MULTIVARI	TO PRI IATE C	EVIOU LASSI	JS RE FICA	ISEA ATIC	ARCH	I. NC	Geon	10RI	но	LOG	Y	•	•	•	196 201
		st and cd Orde														
	POOL AND	JCTION	OF	DRA	INA	GE	BA	SIN	s I	AND	D	RA	IN	ΙAG	E	
	NETV SIGN EX UTURE RE						•	•								226
CONCLU	SIONS .			•••	• •	•	•			•	•	•	•	•	•	234
APPEND	DICES .	•••	•••			•		•		•	•	•	•	•	•	249

.

LIST OF TABLES

Tabl	e	Pa	age
1.	Drainage basin characteristics determined for basins in the Eastern Powder River Basin coal field of Wyoming.	•	54
2.	Drainage basin characteristics, their definitions, and procedures for delineation and measurement.	•	55
3.	Directional categories for Basin Aspect	•	59
4.	Categories used to classify the vegetative communities within the Eastern Powder River Basin coal field of Wyoming	•	62
5.	Textural categories used to classify soils	•	64
6.	Categories used to classify the subsurface geologic formations for drainage basins		64
7.	Categories developed to classify the abundance of clinker within drainage basins	•	64
8.	Categories developed to describe the mean annual precipitation for drainage basins	•	66
9.	Results of the Principal Components Analysis of the third order drainage basins. Eigenvalues, and the proportion of the variability within the data set that they represent,		68
10.	A step by step readout of the cluster analysis (joining operation) used to cluster the third order drainage basins	•	71
11.	Summary statistics for third order drainage basins		84
12.	Summary statistics for second order drainage basins	•	86
13.	Summary statistics for first order drainage basins	•	88
14.	The coefficients derived for the first 6 principal components	•	93

.

Tal	ble	Page
15	. Third order drainage basins in the Powder River Basin Coal Field, listed by the classification strata	. 95
16	. Summary statistics for third order drainage basins investigated in the Powder River Basin Coal Field identified in classification Stratum A	. 96
17	. Summary statistics for third order drainage basins investigated in the Powder River Basin Coal Field identified in classification Stratum B	. 98
18	. Summary statistics for third order drainage basins investigated in the Powder River Basin Coal Field identified in classification Stratum C	100
19	. Results of analysis of variance and multiple comparisons performed on third-order drainage basins	106
20.	A dichotomous key for identification of drainage basins in the Eastern Powder River Basin coal field of Wyoming as members of one of the three developed classification strata	115
21.	. Average of the high bank reach means for Stratum A first order basins	120
22.	. Average of medium bank reach means for Stratum A first order basins	121
23.	. Average of the Low bank reach means for Stratum A for order basins	irst 121
24.	. Design relationships for map measured characteristics of Stratum A first order basins	122
25.	. Design relationships for field measured characteristics of Stratum A first order basins	123
26.	Average of the high bank reach means for Strata A second order basins	125
27.	Average of the medium bank reach means for Strata A second order basins.	126

• •

Tabl	e	Page
28.	Average of the low bank reach means for Strata A seconder basins.	cond 127
29.	Design relationships for map measured characteristic Strata A second order basins	s of 129
30.	Design relationships for field measured characteristics of Stratum A second order basins.	130
31.	Average of the high bank reach means for Stratum A third order basins	132
32.	Average of the medium bank ¹ reach means for Stratum A third order basins	133
33.	Average of the low bank¹ reach means for Stratum A third order basins	134
34.	Average of the low bank $#2^{\dagger}$ reach means for Stratum A third order basins	135
35.	Design relationships for map measured variables of Stratum A third order basins	136
36.	Design relationships for field measured characteristics of Stratum A third order basins	137
37.	Average of the high bank reach means for Stratum B first order basins	139
38.	Average of the medium bank reach means for Stratum B first order basins	140
39.	Average of the low bank reach means for Stratum B first order basins.	140
40.	Design relationships for map measured characteristics of Stratum B first order basins	142
41.	Design relationships for field measured characteristics of Stratum B first order basins	143
42.	Average of the high bank reach means for Stratum B second order basins	144
43.	Average of the medium bank reach means for Stratum B second order basins	145

.

Table		Page
44.	Average of the low bank reach means for Stratum B second order basins	145
45.	Design relationships for map measured characteristics of Stratum B second order basins.	147
46.	Design relationships for field measured characteristics of Stratum B second order basins.	148
47.	Average of the high bank reach means for Stratum B third order basins	150
48.	Average of the medium bank ¹ reach means for Stratum B third order basins	15İ
49.	Average of the low bank ¹ reach means for Stratum B third order basins	152
50.	Design relationships for map measured characteristics of Stratum B third order basins	153
51.	Design relationships for field measured characteristics of Stratum B third order basins	154
52.	Average of high bank means by reach for Stratum C first order basins	156
53.	Average of the medium bank reach means for Stratum C first order basins	157
54.	Average of the low bank reach means for Stratum C first order basins	158
55.	Design relationships for map measured characteristics of Stratum C first order basins	159
57.	Average of the high bank reach means for Stratum C second order basins	162
58.	Average of the medium bank reach means for Stratum C second order basins	163
59.	Average of the low bank reach means for Stratum C second order basins	163
60.	Design relationships for map measured characteristics of Stratum C second order basins.	165

.

Tabl	e	Page
61.	Design relationships for field measured characteristics of Stratum C second order basins.	166
62.	Average of the high bank reach means for Stratum C third order basins	168
63.	Average of the medium $bank^1$ reach means for Stratum C third order basins	169
64.	Average of the low bank ¹ reach means for Stratum C third order basins	170
65.	Average of the low bank $#2^1$ reach means for Stratum C third order basins	171
66.	Design relationships for map measured characteristics of Stratum C third order basins	172
67.	Design relationships for the high bank and medium bank characteristics of Stratum C third order basins	173
68.	Design relationships for the low-flow and second low-flow channels of Stratum C third order basins	174
69.	Predominate and notable vegetation characteristics for first order basins	176
70.	Predominate and notable vegetation characteristics of second order basins	177
71.	Predominate and notable vegetation characteristics of third order basins	178
72.	Predominant surficial geologic delineation for first order basins derived from USGS Surficial Geologic Maps developed by Reheis and Coates (1987) and Reheis (1987)	180
73.	Predominant surficial geologic delineation for second order basins derived from USGS Surficial Geologic Maps developed by Reheis and Coates (1987) and Reheis (1987)	181
74.	Predominant surficial geologic delineation for third order basins derived from USGS Surficial Geologic Maps developed by Reheis and Coates (1987) and Reheis (1987)	183

. .

Page

· .

Predicted design characteristics for a third order drainage basin in Stratum C (using a basin area of 5.14 miles^2).	230
Predicted design characteristics for a second order drainage basin in Stratum C (using a basin area of 1.41 miles ²).	230
Predicted design characteristics for a first order drainage basin in Stratum C (using a basin area of 0.25 miles ²).	231

LIST OF FIGURES

Figu	re	Page
1.	Location of the study area within the Eastern Powder River Basin, Wyoming	8
2.	USGS 7.5 minute topographic quadrangles used to define the Eastern Powder River Basin Study area.	11
3.	Delineation of the three major drainage systems in the Eastern Powder River Basin	15
4.	Basin identification codes broken down for basin 0100	51
5.	A scree plot of the eigenvalues of each principal component plotted against the number of the component	69
6.	Means, 90% confidence limits, and ranges of area in each of the three orders of investigated drainage basins in the Powder River Basin	90
7.	Means, 90% confidence limits, and ranges of relief ratio in each of the three orders of investigated drainage basins in the Powder River Basin	90
8.	Means, 90% confidence limits, and ranges of channel slope in each of the three orders of investigated drainage basins in the Powder River Basin	91
9.	Means, 90% confidence limits, and ranges of drainage density in each of the three orders of investigated drainage basins in the Powder River Basin	91
10.	Means, 90% confidence limits, and ranges of area in each of the three strata of third order drainage basins in the Powder River Basin.	
11.	Means, 90% confidence limits, and ranges of relief ratio in each of the three strata of third order drainage basins in the Powder River Basin	103
12.	Means, 90% confidence limits, and ranges of channel slope in each of the three strata of third order drainage basins in the Powder River Basin	104

. :

LIST OF FIGURES (cont.)

. .

13.	Means, 90% confidence limits, and ranges of drainage density in each of the three strata of third order drainage basins in the Powder River	104
	Basin	104
14.	Comparison of the number of drainage basins in each geology category, by strata, for third order drainage basins	108
15.	Comparison of the number of drainage basins in each surface geology category, in each strata, for selected third order drainage basins	109
16.	Comparison of the number of drainage basins in each precipitation category, by strata, for third order drainage basins.	110
17.	Comparison of the number of drainage basins in each vegetation category, by strata, for third order drainage basins.	111
18.	Comparison of the number of drainage basins in each soil category, by strata for third order drainage basins.	112
19.	Typical cross-section profile indicating the three primary banks identified for first order reaches of all strata and second order reaches in Strata B and C	117
20.	Typical second order cross-section profile indicating the three primary banks identified for Stratum A reaches	117
21.	Large gradient adjustment occurring on a first order reach	205
22.	Relatively minor adjustments occurring on second order reach	206
23.	Large headcut in a second order reach just below the confluence of two first order reaches	207
24.	Large valley-fill from a side-tributary to a first order reach	209
25.	Typical flat-bottom profile indicative of valley- filling	211

Page

LIST OF FIGURES (cont.)

Figure

. :

26.	Typical round-bottom profile indicative of efficient water transport	211
27.	Pool formation in fill material on a valley meander	215
28.	Third order discontinous channel below a meander bend	217
29.	Schematic diagram of the four hillslope shapes: concave, complex, uniform, and convex	220
30.	Diagram indicating the channel slope measured using points at 15 and 85% of the dominant channel length and the actual third order slope.	224
31.	points at 15 and 85% of the dominant channel	225
32.	First order reach after short-duration, high intensity thunderstorm	227
33.	Fourth order reach one day after precipitation was received.	228

Page

LIST OF APPENDICES

Appendix		Page
I.	DRAINAGE BASIN LOCATION CODES	250
II.	MEASUREMENT OF MORPHOMETRIC VARIABLES	255
III.	THE DATABASE COMPILED FOR THIS STUDY	259
IV.	SECOND ORDER CLASSIFICATION STRATA STATISTICS	285
v.	FIRST ORDER CLASSIFICATION STRATA STATISTICS	303
A-1.	STRATUM A FIRST ORDER SURVEY DATA AND REGRESSION OUTPUT	321
A-2.	STRATUM A SECOND ORDER SURVEY DATA AND REGRESSION OUTPUT	364
A-3.	STRATUM A THIRD ORDER SURVEY DATA AND REGRESSION OUTPUT	410
B-1.	STRATUM B FIRST ORDER SURVEY DATA AND REGRESSION OUTPUT	466
B-2.	STRATUM B SECOND ORDER SURVEY DATA AND REGRESSION OUTPUT	525
B-3.	STRATUM B THIRD ORDER SURVEY DATA AND REGRESSION OUTPUT	578
C-1.	STRATUM C FIRST ORDER SURVEY DATA AND REGRESSION OUTPUT	633
C-2.	STRATUM C SECOND ORDER SURVEY DATA AND REGRESSION OUTPUT	688
C-3.	STRATUM C THIRD ORDER SURVEY DATA AND REGRESSION OUTPUT	735
VI.	ABSTRACTS OF RESULTING THESES AND PUBLICATIONS	809

•

CHAPTER I

INTRODUCTION

Historic surface and underground mining activities in Wyoming commonly changed the natural landscape. In some cases, these activities have resulted in detrimental effects, such as accelerated erosion and increased sediment yields, on drainage basins and stream channels. Prior to the enactment of the Surface Mining Control and Reclamation Act of 1977 (SMCRA), surface coal mines commonly were left without In addition to areas disturbed suitable reclamation. historically, considerable areas are currently (1994) being disturbed in Wyoming. Many of the active surface coal mines in Wyoming are located in the Powder River structural basin where as much as 253 square miles of land surface eventually could be disturbed by all anticipated mining (Martin et. al., 1988). Because of the significant land areas disturbed by past, present, and projected coal mining activities in Wyoming, successful mine land reclamation is of great interest to land managers, mining companies, regulatory agencies, and the general public.

The process of designing and reconstructing an ecosystem following the mining process has many facets, of which restoring the hydrologic function and stability of drainage

1

networks is an integral part. Current drainage basin design in the Eastern Powder River Basin coal field is an attempt to meet Wyoming Department of Environmental Quality (WDEQ) / Land Quality Division (LQD) and U.S. Office of Surface Mining (OSM) standards in the most economical and efficient manner possible. Mine land reclamation techniques rely heavily on engineering design and hydraulic behavior considerations for reclaiming drainage basins and stream channels. At present; these techniques are considered to be the most economical method of meeting WDEQ standards. Engineered channels, however, do not take into consideration the hydrologic regime of the region; they simply are designed to convey a flow of given magnitude, at a given velocity, in a stable manner.

A geomorphic approach to drainage network reclamation is an alternative to current engineering design approaches. Reclamation failures are generally a result of instability and arise as a consequence of engineering approaches that do not adequately consider geomorphic principles. A geomorphic approach to channel and drainage basin design takes into account the natural processes involved in transporting precipitation runoff and sediment (Hadley and Toy, 1987). The primary assumption of the geomorphic approach is that the drainage basin and stream network have adjusted over geologic time to climatic and lithologic conditions, thereby reflecting the hydrologic and erosional processes that control their morphology (Marston, 1978). The geomorphic approach allows for the integration of the form and process of natural landscapes into reconstruction designs. Aggradation and degradation of channels and hillslope erosion may occur but need not indicate anything more than geomorphic processes at work in the natural hydrologic regime.

Reclamation evaluation studies completed in semi-arid southwestern Wyoming suggest that channel adjustment is not necessarily a sign of instability and that "non-erosive conditions" for engineered stream channels do not exist (Western Water Consultants Inc, 1993). Engineered channels also tend to adjust to "...approach the configuration of natural channels over time." (Western Water Consultants Inc., 1993).

PURPOSE AND SCOPE

In the spring of 1992 the Abandoned Coal Mine Land Research Program funded this joint project by the Wyoming Water Resources Center and the U.S. Geological Survey (USGS), Water Resources Division entitled;

"Methodology for the Geomorphic Classification and Design

of Drainage Basins and Stream Channels in the Powder River Coal Field of Wyoming."

For the purposes of this report, the Powder River Basin refers to the structural basin between the Black Hills and the Big Horn Mountains. The Eastern Powder River Basin coal field refers to the area of mining activity along the contact between the Fort Union and Wasatch Formations in Campbell County, Wyoming. The goal of the project was to analyze the geomorphology of drainage basins and stream channels in the Eastern Powder River Basin and to integrate that analysis into an approach for reclamation of drainage networks in the region.

OBJECTIVES OF THE STUDY

Three objectives were identified in the original project proposal. Each objective became the subject of a graduate research study at the University of Wyoming. The original project objectives and the objectives of the associated graduate research studies, are listed below.

- Inventory, review, and summarize design procedures being used for reconstruction and reclamation of drainage basins and stream channels in the Powder River coal field in Wyoming, especially the type and extent that the geomorphic approach is used for reconstruction design.
 - A) Review existing guidelines and procedures used by regulatory and land management agencies and private industry in Wyoming for reclamation design.
 - B) Review literature on existing design methods and previous studies involving reconstruction and reclamation of drainage basins and stream channels.
 - C) Compare and contrast the engineering and geomorphic design approaches to basin and channel reclamation.

- 2. Develop a classification system for drainage basins and stream channels in the Powder River coal field in Wyoming based on the natural, physical characteristics of selected groups of small drainage basins.
 - A) Delineate a study area representative of the eastern Powder River Basin coal field.
 - B) Select and measure a set of drainage basin and drainage network characteristics including: soils, vegetation, climate, and topography, for selected drainage basins and stream channels, using available maps, databases, and field surveys.
 - C) Using the above characteristics, analyze drainage basins for similarity using multi-variate statistical techniques to categorize the drainage basins.
 - D) Develop a drainage basin classification system based upon similariti t and differences between the basins that are found in the categories generated.

- 3. Analyze and summarize the geomorphic characteristics of different classes or types of drainage basins and stream channels, thereby developing geomorphic methodology and criteria for the design of reconstructed drainage basins and stream channels.
 - A) Characterize the geomorphic features of natural (undisturbed) drainage networks in the eastern
 Powder River Basin coal field, including both channel geometry and morphology.
 - B) Formalize recognizable geomorphic relationships in graphical and equation formats.
 - C) Classify drainage networks and stream channels based on their morphometric characteristics.
 - D) Provide procedures to utilize the geomorphic appoach for practical reclamation design purposes.

CHAPTER II

DESCRIPTION OF THE STUDY AREA

The Powder River Basin in northeastern Wyoming is a broad structural syncline between the Bighorn Mountains to the west, the Black Hills to the east, the Casper Arch, Laramie Mountains, and Hartville uplift to the south, and the Cedar Ridge anticline in Montana to the north (Glass, 1978). A map of the defined study area is presented in Figure 1. The basin surface is considered to be in the Northern Great Plains region and part of the Missouri Plateau (Martin et al., 1988). The area is primarily underlain by Upper Cretaceous and Lower Tertiary sedimentary formations. These formations dip gently to the west in the eastern and central portions of the basin and more steeply to the east in the western portions of the basin (Glass, 1980; Knutson, 1982). Two of these formations, the Paleocene Fort Union and Eocene Wasatch formations are the principal bearers of minable coal deposits in the eastern Powder River Basin.

The coal beds in the Power River Basin represent some of the world's largest and most easily extracted supplies of coal. The coal resources in the Powder River Basin are estimated in excess of 500 billion tons of which a conservative estimate of 24 billion tons are thought to be

7

WYOMING

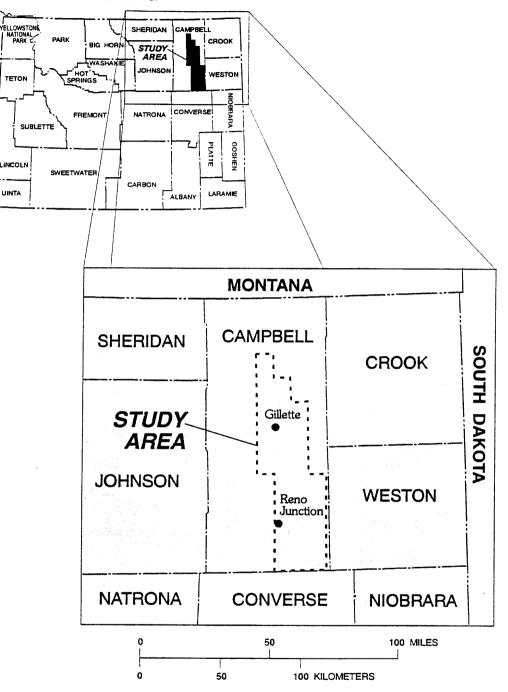
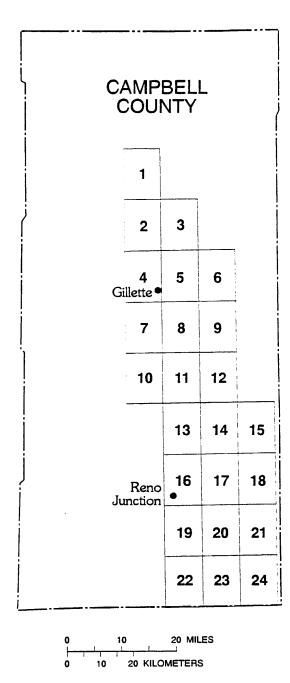


Figure 1. Location of the study area within the Eastern Powder River Basin, Wyoming.

:


economically minable (Lowry et al., 1986). Overburden thickness throughout the Eastern Powder River Basin ranges from less than six feet to over 120 feet. The coal seams under the overburden range from less than 50 feet to over 120 ft. The shallow overburden thickness and thick coal seams create low stripping ratios which, combined with high quality, low sulfur coal, make these deposits desirable for development (Lowry et al., 1986). The low stripping ratios typically found in the Eastern Powder River Basin generally lead to an overall lowering of the land surface following mining. The lowering is attributed to the vast amount of coal removed and the lack of overburden for back-fill material (Lidstone, 1982). The lowering is so great in some instances that creating surface drainage after mining is a problem.

There are currently 15 active and several planned surface mining leases along the contact between the Fort Union and Wasatch formations. Life-of-mine estimates range from the year 1996 to the year 2026, subject to change based on coal production costs and revenue generated (Martin et al., 1988). The maximum land area to be disturbed by future mining activities ranges from 959 to 13,217 acres at each mine (Martin et al., 1988). The mines typically disturb up to 100 acres each year. Generally, there is more vertical than lateral extension of the open-pit area due to the thickness of the coal seams. The study area lies within the Eastern Powder River Basin along the Fort Union-Wasatch Formation contact. The boundaries of the study area are presented in Figure 1 and Plate 1. The boundaries follow USGS 7.5 minute topographic maps available for the area. A map of the 7.5 minute quadrangles used to define the study is presented in Figure 2. The study area roughly coincides with that used by Martin et al. (1988), and is approximately 20 miles wide and 85 miles long.

GEOLOGY

Martin et al. (1988) describe the Paleocene Fort Union and Eocene Wasatch Formations as consisting primarily of "continental-type sediments deposited in fluvial, lacustrine and swampy environments." They also indicate that the formations are characterized by alternating layers of sandstone, siltstone, clays, and mudstone. The layers are seldom of great lateral extent and are commonly interspersed with coal. The Wasatch Formation tends to be sandier than does the Fort Union Formation (Martin et al., 1988). Subterranean burning of coals has resulted in the baking of the overlying shales and clays into "clinker" or "scoria." These clinker beds are resistant to erosion and commonly form outcrops and resistant ridges (Glassey et al., 1955).

10

List of 7.5-minute topographic quads:

1 Calf Creek

- 2 Rawhide School
- 3 Moyer Springs
- 4 Gillette West
- 5 Gillette East
- 6 Fortin Draw
- 7 Appel Butte
- 8 The Gap
- 9 Coyote Draw
- 10 Scaper Reservoir
- 11 The Gap SW
- 12 Saddle Horse Butte
- 13 Eagle Rock
- 14 Neil Butte
- 15 Rough Creek
- 16 Reno Junction
- 17 Hilight
- 18 Open A Ranch
- **19 Little Thunder Reservoir**
- 20 Reno Reservoir
- 21 Piney Canyon NW
- 22 Teckla SW
- 23 Teckla
- 24 Piney Canyon SW
- Figure 2. USGS 7.5 minute topographic quadrangles used to define the Eastern Powder River Basin study area.

SOILS

According to the U.S. Soil Conservation Service (SCS) general soil survey of Campbell County (Glassey et al., 1955), the soils of the basin closely reflect the underlying parent material. The soils tend to be residual in nature except for alluvial deposits in stream beds and eolian deposits scattered throughout the southern portion of the study area. Due to the environment, very little organic matter semi-arid accumulation, horizonation, or weathering has occurred. The soils tend to have a calcareous layer of accumulation due to the lack of precipitation and leaching (Glassey et al., 1955). Lowry et al. (1986) list Torriorthents and Haplargids as the predominant soils in the study area. Some Paleargids also are present in the locale (SCS, 1992). The bulk of the soils in the study area are loamy silts, sandy loams, clayey loams, or clayey soils. Loamy type soils tend to predominate in the area (SCS, 1992; and Apley, 1976).

VEGETATION

Vegetation of the Powder River basin is typical of the plains of the semi-arid west. The region is dominated by sagebrush-grasslands with high frequencies of blue grama (*Bouteloua gracilis*), needle-and-thread (*Stipa comata*), western wheatgrass (*Agropyron smithii*), and big sagebrush (*Artemesia tridentata var. wyomingensis*) (Martin et al., 1988; Apley, 1976; and Glassey et al., 1955). Riparian vegetation can vary from lush grasses to greasewood (*Sarcobatus vermiculatus*) breaks and cottonwood stands (*Populus deltoides*). Silver sage (*Artemisia cana*) is also a common plant in sandy areas. There are 4 major vegetation communities in the study area. These include: grasslands, sagebrush-grasslands, riparian communities, and ponderosa pine (*Pinus ponderosa*) (Driese and Reimers, 1992).

CLIMATE

The study area is considered to be semi-arid with mean annual rainfall ranging from about 11 to 16+ inches (Martner, 1986; Water Resources Data System (WRDS), 1992). Annual precipitation can vary widely from year to year (Apley, 1976; WRDS 1992). Precipitation tends to increase from east to west and south to north (Schaefer, 1982; WRDS, 1992) with a zone of high mean annual precipitation in the area of Gillette (Toy and Munson, 1978). About 60 to 80 percent of the mean annual precipitation falls between March and August, most in the form of high intensity thunderstorms that can vary widely in intensity and duration over short distances (Schaefer, 1982). Most of the remaining precipitation (about 20 - 40 percent) occurs as snow from November to March (Martin et al., 1988; Apley, 1976; Hadley and Schumm, 1961).

The area is characterized by long cold winters and mild summers (Hadley and Schumm, 1961). Temperatures are considered northern temperate with average daily minimums between 5 and 40 degrees F in winter and annual highs between 90 and 100 degrees F. (Schaefer, 1982; Martner, 1986). The annual growing season is approximately 120 days (Martin et al., 1988). National Weather Service records indicate that the area has substantially greater annual potential evapotranspiration than precipitation (Bureau of Land Management (BLM), 1975).

SURFACE WATER HYDROLOGY

The study area lies within three major drainage systems: the Cheyenne River, the Belle Fourche River, and the Powder River (Figure 3). The Cheyenne River system drains the southern section of the study area; the Belle Fourche River system drains the central portion; and the Little Powder River, a tributary of the Powder River, drains the northern portion. Most of the streams in the study area are ephemeral (Knutson, 1982). These streams are typical of a flashy, upper flow regime and are not exposed to the continuous low flow regime of perennial streams (Rechard, 1980). Some stream reaches intersect the ground water and flow at very low rates for portions of the year (Knutson, 1982; Martin et al., 1988). Perennial and intermittent reaches have been identified in the Rochelle Hills area (Apley, 1976), the result of natural streambed springs. Almost all other flow is in direct response to snowmelt or rainfall. The drainage pattern of all networks within the study area is primarily dendritic (Knutson, 1982). Additionally, several playa lakes have been identified throughout the study area (Apley, 1976).

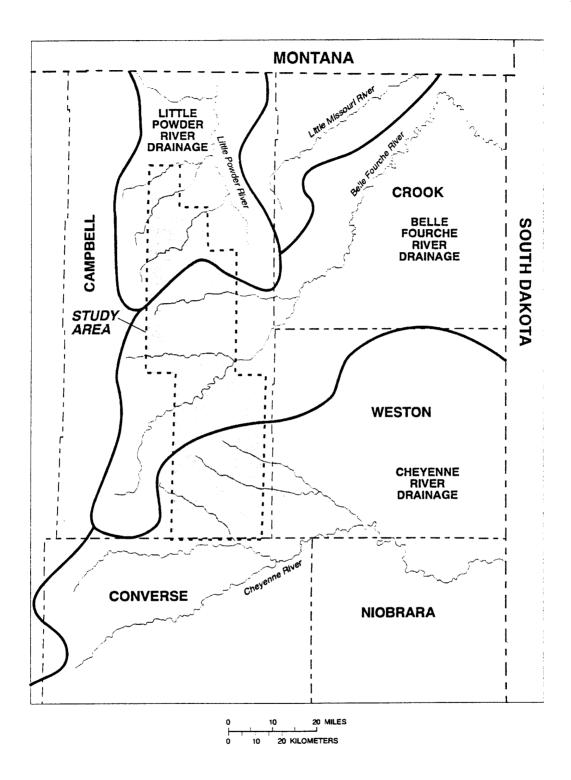


Figure 3. Delineation of the three major drainage systems in the Eastern Powder River Basin.

These playas have no drainage outlet and are easily identifiable on USGS 1:24,000 topographic maps.

Stream channels of the Eastern Powder River Basin typically experience flow less than 15 days a year and flood only 3-4 days a year (Rechard, 1980). The combined climate and soils of the area have led to the development of potholes in several streams of the study area. These streams may contain standing water year round in the depressions (Rechard, 1980), which may interrupt the channel profile and indicate intermediate stages of channel development.

In terms of channel geometry, Schaefer (1982) found that geometry was highly variable over short reaches of one half of a mile or less. This was attributed to the flow regime and soils of the area. Soils of the basin seem to significantly affect bank stability. Apley (1976) noted that channels with high clay content were armored during dry periods and susceptible to erosion in the spring when additional moisture helped disperse the clays. Additionally, Rechard (1980) noted frequent bank instability that was attributed to excessive pore-space, spring freeze/thaw action, and/or antecedent soil moisture conditions.

CHAPTER III

LEGISLATION PERTAINING TO COAL MINE RECLAMATION FEDERAL LAWS

Surface mining of coal increased from 22% to 50% of domestic production between 1950 and 1974, with production shifting from Kentucky and West Virginia to the western states during the later years of this time span (Nehring et al., 1976). The western states were and are characterized by low population densities and had no history of large scale energy development. Although Wyoming had experienced development of oil and gas resources, agriculture was the dominant sector of the state's economy until demand for Wyoming coal increased (Nehring et al., 1976). This large scale development of coal an energy source led to the creation of legal and as institutional structures enabling lyoming and other western states to cope with the effects of that development. The anticipated effects of development created a need for government control of reclamation.

Regulations generally emerge as a response to the demands of those who will be adversely affected by the proposed development. The regulating process is affected by the complexity of the development, perceptions of costs and benefits to individuals, uncertainty about future effects of

• •

development, political strength of individuals and groups affected, cost of information and the involvement of decision making entities (Nehring et al., 1976). Regulations tend to develop in a reactionary manner as decision makers respond to the demands of groups affected at different stages of development. Some effects of development are clearly anticipated; others are realized only when they are experienced.

Proposed coal development in Wyoming, and the nation's heightened awareness of environmental issues, occurred at about the same time. The National Environmental Policy Act (NEPA) was passed in 1969 and created the U.S. Environmental Protection Agency to implement the objectives of the In the broadest of terms, this legislation legislation. requires careful examination of possible environmental effects caused by major federal actions. NEPA requires that "all agencies of the Federal Government shall include in every recommendation or report on proposals for legislation and other major federal actions significantly affecting the quality of the human environment, a detailed statement by the responsible official on 1) the environmental impact of the proposed action, 2) any adverse environmental effects which cannot be avoided should the proposal be implemented, 3) alternatives to the action, 4) the relationship between local short-term uses of man's environment and the maintenance and enhancement of long-term productivity and, 5) any irreversible

and irretrievable commitments of resources which would be involved in the proposed action should it be implemented" (National Environmental Policy Act of 1969, pg. 250).

The first surface mining legislation in the United States was passed by West Virginia in 1939 and recognized the disruptive environmental effects of the industry (Toy and Hadley, 1987). In 1978, 38 states had legislation dealing with environmental controls on surface mining (Bowling, 1978): Most of these state laws are directed at problems specific to that state. The variability of laws from state to state led to variability in the level of environmental protection provided from state to state. Less stringent reclamation requirements in some areas would lower overall costs of production for operators in that area, giving them a competitive advantage in the marketplace.

The Surface Mining Control and Reclamation Act of 1977 (SMCRA) sought to establish a national program to "protect society and the environment from the adverse effects of surface coal mining operations" (Toy and Hadley, 1987). Among the most important provisions of the act are those that assure reclamation of surface mined areas. The act prohibits mining where reclamation as required by the act is not feasible, and promotes reclamation of lands disturbed by mining prior to its enactment. SMCRA created the Office of Surface Mining Reclamation and Enforcement within the U.S. Department of the Interior, established minimum performance standards for

reclamation of surface mined lands, and structured the federal-state relationship in the regulation of surface coal mining (Imes and Wali, 1978). This federal-state relationship has generally taken the form of primacy, which was given to states that formulated legislation for environmental protection and reclamation standards that were at least as stringent as those set forth in federal legislation. Primacy allows the states to address their own unique reclamation problems and enforce compliance with state laws that essentially become the federal statutes under the authority of SMCRA.

Important to this report is the requirement by SMCRA that the land be returned to approximate original contour. There has been much disagreement about just what this requirement means. However, it is generally agreed upon that approximate original contour means that the shape of the land should be about the same after mining, even though it may not be at premining elevation. In Wyoming, the low stripping ratios deny the opportunity to restore the landscape to its former elevation (Keefer and Hadley, 1976). SMCRA was also designed to allow states to draft their own regulations regarding the reclamation of surface mined land. Regulations had to be at least as stringent as those found in SMCRA, but allowed the states to address specific problems encountered in the reclamation of disturbed lands in their state.

Although SMCRA and NEPA are probably the two most important laws in terms of federal regulation on reclamation of surface mined lands, they are by no means the only controls placed upon the surface mining industry. The surface mining of coal is one of the most highly controlled economic activities in the United States. The National Research Council (1981) found that 21 laws affecting the coal industry have been enacted since 1970. About six of these laws apply consistently to all mines. Compliance is made more difficult by the frequent amendments made to some of the laws (Toy and Hadley, 1987). Borchert (1980), in evaluating the history of legislation governing surface mining, concluded that older laws addressed the problems but did not coordinate authority. and channels authority, SMCRA concentrates but lacks flexibility to deal with widely varied environmental settings.

The U.S. Bureau of Land Management, U.S. Forest Service and other federal land management agencies must meet requirements and responsibilities set by the Federal Land Policy and Management Act of 1976, NEPA and SMCRA. Federal Land Management Agencies have The Code of Federal Regulations (CFR) to follow in terms of permitting, leasing, and otherwise determining the manner of use or development of public lands. In the Western States, the many combinations of surface ownership and resource ownership bring many different statutes into play at a single mine site.

WYOMING LAWS

Coal has been mined in Wyoming since the middle of the 19th century, with most of the early production coming from underground mining operations (Brown, 1974). The surface mining of coal in Wyoming became more prevalent as the nation searched for cost efficient energy sources to decrease our dependence upon foreign supplies.

The Open Cut Land Reclamation Act of 1969 was passed in response to increasing production of coal, uranium and bentonite in the state. The act required operators to obtain a permit and post a bond equal to the estimated cost of reclamation. Submission of reclamation plans was optional. This act was criticized for its vague and inadequate reclamation standards. Operators were required, where practical, to make a reasonable effort to "encourage the revegetation of disturbed lands" (Session Laws of Wyoming, 1969, pg. 396). The act made no provision for reclaiming previously disturbed land (land affected by operations completed prior to May 23, 1969, the effective date of the Reclamation requirements of the Open Cut Land act). Reclamation Act required operators to grade ridges (a lengthened elevation of overburden created during the mining process) to a minimum width of 10 feet and peaks (a projecting point of overburden) to a minimum of 15 feet. This grading was in compliance with the regulation that peaks and ridges be reduced to a rolling topography for ease of revegetation and reduction of erosion. Reseeding was required where practicable and programs could be negotiated between the operator and the Operators who strictly followed commissioner or examiner. their approved reseeding programs, but met with reclamation failure were released from their reclamation obligation with respect to the reseeded land. The operator and the into agreements regarding could enter commissioner experimental methods of reseeding to satisfy reclamation obligations. Upon completion of the experiments agreed upon, the operator was released from further obligation with respect to the affected land covered by the agreement. Due to the need for reclamation experience to make specific reclamation requirements, the cost of preparing and reseeding disturbed land in Wyoming was presumed to be \$50.00 per acre unless shown otherwise in an acceptable reclamation plan (Orf, 1974). More recent estimations of reclamation costs per acre in Wyoming list \$4,000 as a high but essentially realistic figure (Nehring et al., 1976).

The statutory and administrative environmental protection systems of the state of Wyoming were reorganized and updated with the passage of the Environmental Quality Act of 1973. Wyoming's legislature sought to retain state control of environmental protection by setting standards comparable to minimum federal standards and by providing flexible regulatory procedures capable of adjusting to changes in federal standards (Orf, 1974). The act created the Wyoming Department of Environmental Quality (DEQ), which is composed of a director (appointed by the Governor), the Environmental Quality Council, three administrative divisions (land, air, and water quality), and an advisory board for each division.

Article 4 of the Environmental Quality Act established a process of licensing and permitting to ensure adequate reclamation of surface mined lands (Brown, 1974). Licensing is based upon submission of a detailed reclamation plan to the Land Quality Division Administrator. The Administrator and the Land Quality Advisory Board have broad discretion in denying, approving or modifying the proposed plan. An approved plan sets the performance standards for reclamation. Mine operators must submit annual reports on reclamation activity. The Administrator of the Land Quality Division is required to conduct annual inspections of mine sites and adjust bonds to correspond with changing conditions.

In 1977, SMCRA was passed and Wyoming's Environmental Quality Act of 1973 was found to be deficient in several areas:

- 1. segregated topsoil handling,
- 2. road standards,
- 3. effluent standards,
- 4. runoff and stream diversion criteria,
- 5. coal waste dam and embankment criteria,
- 6. return to approximate original contour and,
- 7. revegetation success standards.

Wyoming's legislature amended the Environmental Quality Act to bring it into compliance with the demands of the federal statute. Standards were established to insure stockpiling of topsoil for use in revegetation. Amendments were made to encourage reclamation activity as soon as possible after coal removal, including revegetation of a type consistent with the surrounding terrain, prevention of water pollution from mine drainage, and contouring the land in a manner that returned it to the land use set out in the reclamation plan. Wyoming's Land Quality Rules and Regulations were modified to include addressing surface preparation, overburden regulations handling and replacement techniques, revegetation standards, diversion of surface water, impoundments for water and tailings, reclamation time schedules, and standards for placement and construction of roads.

On August 24, 1976 the U.S. Department of the Interior proposed actions under the authority of 30 CFR 211.75(a) of the Department's coal mining operating regulations 41 FR 20252 to adopt the surface coal mine reclamation standards of Wyoming as the federal standards applicable to operations on federal leases in the State of Wyoming (Federal Register, 1976). The Department of the Interior entered into a Cooperative Agreement with Wyoming to allow the state to administer and enforce its reclamation laws after a public hearing in Cheyenne in September of 1976. At that meeting, most participants wanted Wyoming to be allowed to administer

and enforce its own regulations regarding reclamation operations. The cooperative agreement addressed administration and enforcement of Wyoming's reclamation laws This agreement, together with the rulemaking by the state. allowed by 30 CFR 211.75(a), established a uniform and complete system of coal mine reclamation on federal licenses, which provided a high level of environmental protection and protection of federal interests (Federal Register, 1976). The agreement also contained an understanding with the State of Wyoming to cover changes in state and federal regulations. Federal approval of mining or exploration plans in Wyoming may be granted only if the plan complies with the reclamation laws and regulations of the State. Wyoming's Environmental Quality Act and Land Quality Rules and Regulations were adopted as federal standards on December 2, 1976 and published in the federal register.

Important to this report are those Land Quality Regulations pertaining to the rehabilitation of the hydrologic system that is altered by surface mining. Most of the rules and regulations set forth by the DEQ/LQD pertaining to surface water address control of erosion and prevention of water pollution. These rules and regulations are set forth in Chapter IV, Environmental Protection Performance Standards of the DEQ/LQD Rules and Regulations for Coal (Wyoming DEQ, 1989). Spoil is required to be replaced in a controlled manner that prevents pollution from runoff and prevents mass movement during and after construction, thereby providing stable drainages and hillslopes.

Diversions must be designed to assure public safety, prevent material damage outside the permit area, and minimize adverse effects to the hydrologic balance. Temporary diversions of ephemeral streams must be able to contain and pass in a non-erosive manner the peak runoff from a two-year, six-hour precipitation event or a storm duration that produces the largest peak flow as specified by the Administrator. Permanent diversions of ephemeral streams need to be able to contain and pass the 100-year, six-hour event or a storm duration that produces the largest peak flow, as specified by the administrator, in an erosionally stable manner. A11 diversions are required to be designed and constructed so they are erosionally and geomorphically compatible with the natural drainage system (Wyoming DEQ, 1989).

When permanent diversions are constructed, or when stream channels are being restored, regulations require: 1) restoration and maintenance of natural riparian vegetation on the banks and floodplain of the stream, 2) establishment or restoration of stream characteristics, including aquatic habitats to approximate pre-mining channel characteristics, and 3) restoration of erosionally stable stream channels and flood plains. Regulations allow riprap in diversion ditches, but vegetation is the preferred means to control surface erosion.

Guideline 8 of the Wyoming DEQ Hydrology Guidelines defines an erosionally stable stream as one that will convey the lower return period flows, which are the 5 to 10 year flows, under non-erodible conditions. Maximum permissible velocity for non-erodable channels ranges from 3 to 5 feet per second, which has been determined to be the highest velocity that will not erode (Wyoming DEQ, 1990). All diversions must be authorized by the administrator and temporary diversions must be removed when they are no longer needed for the purpose for which they were authorized. Permanent diversions must be renovated before bond release will occur (Wyoming DEQ, 1989). The affected land must be regraded and revegetated to acquire erosional and geomorphic stability. Sedimentation ponds are provided for in the rules and regulations, but are removed after stabilization and establishment of vegetation on affected lands. Permanent water impoundments are generally prohibited unless specifically authorized bv the administrator.

Reclaimed land is monitored by the mining companies to determine infiltration rates, subsurface flows and the water storage characteristics of the reclaimed land and adjacent areas. Monitoring also helps to determine the effects of reclamation on the groundwater recharge capacity of reclaimed areas and the suitability of groundwater quality for current and post-mining land uses. Surface water is monitored to determine the quantity and quality of surface water flowing from affected lands, including those that have been regraded and stabilized. Monitoring helps to determine the extent of disturbance to the hydrologic balance and helps prevent degradation of water quality.

These data, while abundant, remain inconsistent, and are of little to use to reclamation personnel in the public or private sectors. The data will remain so until such time as they are organized, standardized, and stored in a manner more conducive to use by individuals concerned.

CHAPTER IV

OVERVIEW OF RECLAMATION DESIGN

Two basic approaches, geomorphic and engineering, are used in designing fluvial systems after land disturbances. Problems exist in the application of either approach (Toy and Hadley, 1987). The geomorphic approach suffers from lack of on-site studies documenting successful use of geomorphic principles for large mined areas in the arid and semi-arid western United States. The engineering approach is based on network and channel design that will accommodate expected water and sediment discharge following disturbance and reconstruction (Lowham and Smith, 1993).

As a natural component of semi-arid lands, erosion is a force to be worked with, not against, for the reclamation of disturbed lands. Natural drainages evolve over long periods of time, and in a very general sense may be considered to be in equilibrium with the climatic and physical conditions of their basins. When discussing natural landscapes, the term "stability" should not be taken literally. Often the term is construed to mean unchanging or static. Stability in a natural landscape means dynamic stability, or a continuous state of evolution in which basin surfaces and their stream channels are reacting to forces placed upon them by climate,

geologic structure above and below the surface, runoff patterns and use by humans and animals (Martin, et al, 1980).

Restoration of mined land to approximate original contour is a requirement of SMCRA (U.S. Congress, 1977). In the Powder River Basin the thick coal beds and low stripping ratio prevent restoring the landscape to its former elevation (Keefer and Hadley, 1976). Toy and Hadley (1987) state that it is generally agreed that "approximate original contour" as required by law, means that the shape of the land after mining should be about the same as pre-disturbance but not necessarily at the same elevation. Gregory, et al (1986) examined some of the problems associated with the concept of "approximate original contour" as defined by SMCRA. He feels both state and federal regulations are vague and do not provide clear direction for satisfying approximate original contour requirements. Review of the regulations and their history show the central theme to be concern for postmining land use. As currently practiced, application of approximate original contour requirements may leave a surface that is "not conducive to postmining land use or to geomorphic stability" (Gregory, et al, 1986, pg. 95).

Another requirement of SMCRA (U.S. Congress, 1977) is that spoil materials "be shaped and graded in such a way as to prevent slides, erosion and water pollution" and that "adequate drainage" be provided. SMCRA basically requires that the procedures during mining and reclamation minimize the contribution of suspended materials outside the lease boundaries, control rilling and gullying, and minimize disturbance to the prevailing hydrologic balance (Lowham and Smith, 1993). Surface mines having thick coal beds are commonly exempt from the requirement of approximate original contour restoration because of their characteristic "low stripping ratio". Although adequate drainage is still required, the reclaimed landscape can be more subdued than it was before mining (Lowham and Smith, 1993).

The Wyoming Environmental Quality Act (Wyoming State Legislature, 1973) requires that each operator of a surface coal mine provide a plan to minimize disturbance to the hydrologic balance at the mine site and adjacent areas, and to protect the quantity and quality of ground and surface water during and after mining. Hydrology guidelines prepared by the Wyoming Department of Environmental Quality (1990) recommend that coal mining companies measure various drainage basin and stream channel characteristics to aid in the reclamation of drainage systems.

Restoration of stability to drainage basins altered by mining is essential to successful post mining land use. Stable hillslopes and drainage networks are needed to avoid adverse effects in offsite streams from increases in erosion and sedimentation (Lowham and Smith, 1993). Lowham and Smith (1993) also note that although reconstructed and reclaimed areas at active mine sites appear to be stable, long term

stability is difficult to ascertain because the rills and gullies that form are immediately repaired.

Successful reclamation generally is considered to have been achieved when a drainage basin has relatively high revegetation success and low annual sediment yields. Field studies by Leopold et al. (1966) and Rankl (1987), support this conclusion, as their detailed monitoring showed sediment loads from eroding headcuts made a relatively minor contribution to total basin sediment yield. Laboratory studies by Parker (1977) and Zimpfer et al. (1982) indicate that basins reconstructed to simulate immature states of erosional development resulted in relatively low sediment yield. Reconstructing only second and higher order stream channels and allowing first order channels to develop naturally may yield the best results in reclamation success. Lowham and Smith (1993) conclude that this practice has the advantage of producing flatter valley hillside slopes leading sediment greater revegetation success and smaller to discharges.

Successful reconstruction of channels and basins requires the identification of characteristics that will be compatible with existing basin and hydrologic conditions. The geomorphic approach is well suited to this goal. Lowham and Smith (1993) provide empirical predictive relations for bankfull discharge (approximated by the two-year annual peak flow) that can be used in stream channel design for reconstruction. They note that testing of these relations is needed at more reclamation sites and that reconstructed channels need to be monitored to determine cross-section changes and erosion patterns.

The geomorphic approach also includes an analysis of stream pattern. Lowham and Smith (1993) conclude that reconstruction of a stable meander pattern will minimize erosion and related maintenance costs. If controlling geologic features are altered or removed during mining, empirical relations derived for stream channels in areas that are hydrologically and geologically similar to the post-mining topography could be used in channel pattern design.

Flowing water is the major natural force affecting reclaimed areas in the study area (Martin et al, 1988). Erosion and sediment transport by streams flowing across large areas of disturbed land have the potential to impact channel stability. These impacts may occur locally or some distance away, upstream or downstream. Designing stable drainage basins is critical to the type and degree of post-mining land use. The more closely post-mining topography can be restored complement the surrounding natural conditions to and approximate original contours, the greater the likelihood of stable drainage networks and successful reclamation (Bishop, 1980). Although pre-mining conditions will not be restored, the post-mining hydrologic condition needs to complement that of the surrounding area for reclamation to be considered a success.

Even though it is infrequent, runoff is the major natural force affecting semi-arid landscapes. Small basins commonly have periods of one year or more between substantial runoff events. The adjustments of an unstable reclaimed basin to the semi-arid hydrologic regime may not be noticeable until several large flows have occurred, which may take decades (Martin, et al, 1988). Rills and gullies could form rapidly, which may or may not indicate instability. It is just as probable that relatively undramatic, gradual responses will occur until substantial runoff reveals instability.

The Powder River Basin is characterized by ephemeral stream systems. These systems carry water only during periods of spring runoff and high intensity-short duration summer Stream channels in an ephemeral system are rainfall. generally narrower and shorter, but more numerous than those in a perennial system. From the divide to the mouth of an ephemeral basin the increase in channel size is accompanied by a decrease in channel numbers (Leopold and Miller, 1956). Sparse vegetation in semi-arid climates decreases the length of overland flow, increasing channel density. Erosion is naturally accelerated in semi-arid climates owing to the combination of sparse vegetation and storms that occur with sediment. The physical frequency to move enough characteristics of channels in semi-arid areas tend to reflect the attributes of the largest flows occurring in them. These high flows, depending upon the geological forms present, can

create deeply incised channels with straight sided banks or broad flat bottomed channels with gently sloping banks. Because of the rarity of extremely high flows, the broad flat bottomed channels can become well vegetated between events, whereas the banks of the deeply incised channels, although remaining unvegetated, become stable between high flow events due to the absence of water working to erode the banks.

According the Heede (1981), effective erosion control and watershed rehabilitation designs must be responsive to the dynamic interactions within the natural system. Base level interactions necessitate treatment beginning downstream and proceeding upstream, starting at a location with a stable elevation that will not be lost during the life of the treatment. Topographic shaping and vegetative treatments need to proceed from headwaters downward to assure functional integrity (Heede, 1981).

Rechard (1980) examined the stream pattern characteristics of wavelength, radius of curvature, widthdepth ratio and sinuosity on 11 ephemeral and intermittent streams in the eastern Powder River Basin. He developed 15 empirical design equations for use in determining proper width-depth ratios, radius of curvature, sinuosity, and mean and maximum meander length for stream restoration after surface mining. His investigations led to two possible approaches to the problem of stream restoration. One involves determining the meander patterns that existed before stream disturbance, with the characteristics then being incorporated into the stream pattern design. The other would be used if an extended period of time elapsed between disturbance and restoration. In this case pre-mining, baseline measurements of the stream would need to be compared to measurements immediately preceding restoration to determine any significant changes in the stream pattern. Stream patterns are dynamic, so changes may occur during the mining sequence. Replacing a stream pattern that has been abandoned by a stream will hamper the establishment of a stable fluvial system (Rechard, 1980).

A significant drawback discovered by Rechard during this study is that the procedures should only be used on streams considered to be "stable" and where post-mining conditions would not alter the drainage basin characteristics "significantly" (Rechard, 1980). The lack of flow in ephemeral and intermittent streams makes them difficult to analyze for stability. Some ephemeral channels allow observation of headcuts, aggradation or deposition; on others vegetation makes these features harder to detect. If drainage basin characteristics are significantly altered, a new stream pattern equilibrium pattern needs to be anticipated (Rechard, Estimations of the new pattern can be made by 1980). determining drainage area, acceptable slope and velocity (within regulation guidelines), dimensions needed for bankfull discharges, and proper meander properties such as radius of curvature and stream sinuosity for known and unknown slope values, and the selection of mean and maximum meander wavelength.

Three potential geomorphic approaches to designing a reclaimed mine surface were listed by Divis and Tarquin (1981): 1) the carbon copy, 2) terrain comparison, and 3) regime characterization. Direct restoration of previously existing conditions is the goal of carbon copy reclamation. It is based on two assumptions that do not always hold true: 1) the stream pattern before mining is stable and 2) the geomorphic factors affecting stream pattern will be identical after restoration (Rechard, 1980). Mines in the Powder River Basin are reduced in elevation by 20 to 100 feet and small scale topographic highs, such as hills and bluffs are suppressed, making carbon copy reclamation almost impossible.

Terrain comparison involves the location of a "blueprint area" with geomorphic characteristics similar to the reclaimed surface. Divis and Tarquin (1981) cite the problems of this method in terms of time, cost, and the fact that the "blueprint area" may itself be unstable, in which case it could not be used as a basis for reclamation design.

The last approach, regime characterization, is the approach addressed at length by Divis and Tarquin (1981). Although it is a "terrain matching" approach, it differs from terrain comparison in that it does not utilize the "blueprint area". The approach assumes that certain parameters such as basin area, basin relief to length ratio, and sediment texture characterize terms of in stability and an area that statistical analysis of the relationships between independent (causative) and dependent (resultant) variables can be used in a numerical description of stability. Because this approach uses well known, published methodology, has well documented application to arid regions, permits use of geomorphichydrologic data bases, and uses site specific variables, Divis and Tarquin (1981) believe that the regime approach is the most appropriate for reclamation planning in semi-arid Wyoming.

The regime characterization approach was used by Tarquin and Baeder (1982) in the design of two small drainage basins within the permit area of Black Thunder Mine in the Powder River Basin. Their principal objective was to produce a stable "regime" watershed, with a geohydrologic function closely approximating that of the original watershed. Tarquin and Baeder (1982) used Thunder and Lightning Draws to refine the design criteria to develop a procedure that allows for consistency and control in the design of lower order basins.

Thunder Draw was designed by using a large, oversized valley in which the stream was allowed to cut its own pilot channel. The authors note that although this procedure created an initial erosional condition, the stream adjusted quickly to what appeared to be a stable channel. Lightning Draw was designed with a pilot channel in an effort to reduce or eliminate the initial downcutting that was experienced in

Thunder Draw. A broad valley was provided by a recontoured surface to serve as a floodplain that would accommodate the 10-year flow event. The pilot channel was constructed to carry the two-year flow event. During the study, Lightning Draw experienced an unacceptable amount of erosion due to a concentration of flow in the pilot channel, insufficient application of mulch without crimping or tackifying, and the presence of a meander with a very low radius of curvature. Remedial action in Lightning Draw took the form of channel widening which allowed water spreading, reduced velocity, and permitted the stream to cut its own pilot channel.

Tarquin and Baeder (1982) concluded that the most critical factors in designing stable lower order channels are 1) design of a floodplain without a pilot channel, 2) control of flow velocity through manipulation of channel length, width and roughness, 3) establishment of sufficient radius of curvature on meander bends, 4) correct timing of revegetation and mulching, and 5) adequate field control to insure that construction conforms to the design. Both of the designed basins were part of larger fourth order basins, and while the Wyoming DEQ/LQD Guideline 8 suggests the use of a 100 year peak flow in the design of main channel floodplains, the limited drainage area and low intensity-high frequency floods were thought to be more important in determining the stability of lower order streams. Tarquin and Baeder (1982) used the 10-year peak flow as representative of bankfull discharge in

Thunder and Lightning Draws. They determined that the most important parameter in determining channel design is streamflow, which is controlled by basin characteristics, such as maximum relief and basin slope. Maximum relief is determined by measuring the difference in elevation between the mouth of the channel and the highest point in the basin. Basin slope is obtained by measuring (in miles) the lengths of all contour lines within the drainage boundary, multiplying by the contour interval (in feet) and dividing by the drainage area (in square miles). Basin slope is manipulated within the restrictions of drainage area, maximum relief, and materials balance (mulch, vegetation, riprap, and so forth determining channel roughness) to fall within pre-mining limits. This design procedure results in a first order basin for which peak flows can be predicted and a channel can be designed. Premining limits are sufficiently flexible to allow adjustment of basin parameters, with the end result being a stable stream channel in a compatible basin (Tarquin and Baeder, 1982).

Tarquin and Baeder (1982), indicate that the principle design criterion for a stream channel is velocity. Stream channels establish and maintain water flow at a velocity that allows a balance between erosion and deposition. For lower order basins, reclaimed channels require a design capable of handling the 10-year flow event at a velocity of less than 5 feet per second. The Manning-Chezy equation relates all of the principal design features and was used as the principle design tool by Tarquin and Baeder (1982).

The equation is as follows:

$$Q = \frac{1.49}{n} A(R)^{2/3} S^{1/2}$$

- Where: Q = streamflow (cfs)
 - A = channel area (ft²)
 - R = hydraulic radius (ft)
 - S = water surface slope (ft/ft)

n = Manning's roughness coefficient

Channel area and hydraulic radius are functions of channel bottom width, sideslopes and depth of water in the channel. Although channel area has no design restrictions, limitations have been established for the ratio of channel width to water depth based on pre-mining channels. Channel sideslopes have generally been established at 3(h):1(v) which keeps streamflow concentrated in the channel without sloughing of the banks and facilitating revegetation. Arbitrary design limits, based on reclamation patterns at Black Thunder mine, were set at a maximum of 2(h):1(v) and a minimum of 5(h):1(v)slope. These limits allow the flexibility needed for design work while retaining the basic form of a channel to collect and transport water (Tarquin and Baeder, 1982).

Water surface slope is set in the basin design and is approximated by channel slope. This variable can be altered by manipulating channel length, specifically by using meanders to increase channel length. Channel slope must be at least 0.5 percent to establish a functioning channel (Tarquin and Baeder, 1982). The upper limit of channel slope is determined by streamflow velocity; if velocity is less than 5 feet per second, channel slope is deemed acceptable. At the time of Tarquin and Baeder's study, no limits had been established on the radius of curvature for meander bends due to lack of data from lower order channels. Limitations may be needed to eliminate "hair-pin curves" that become areas of instability (Tarquin and Baeder, 1982).

Channel bed material (rocks, vegetation, soil, or whatever the channel form is composed of) controls the value of Manning's roughness coefficient (n). Most reclaimed channels are grass lined and assigned an "n" value of 0.035 (Tarquin and Baeder, 1982). If the roughness of a channel needs to be increased, rocks and shrubs may be used (Wyoming DEQ, 1989). Although the use of shrubs to increase roughness is not limited, use of rock is limited to prevent overuse. These limitations are:

- 1. Rock should be sized such that a 10-year streamflow event will move the geometric mean size and the 25year event will move most of the rock. The rock is to be used to decrease streamflow velocities by increasing the roughness of the channel bottom and decreasing the erosive potential of the storm. Rock is not meant to be a permanent structure.
- 2. Rock will be spread out to reduce interference with new vegetative communities. The intent of rock placement is to replace and simulate stream gravels that may have existed prior to mining. Gravels will generally be required when a reclaimed stream must immediately receive water from an upstream channel (natural or reclaimed).

Design criteria or limits are based on the pre-mining surface when using the regime approach, so successful reclamation depends upon thorough baseline studies. The design of the lower order channel and its basin is an iterative process allowing a channel to be tailored to a particular basin. Flexibility of design in terms of basin adjustment or manipulation allows the design of a stable channel.

A review of mine plans submitted to the State of Wyoming for approval indicate that mine operators have traditionally looked at three methods to aid in the prediction of flood peaks and volumes for streams in the Powder River Basin that have little or no records of discharge. These methods are the U.S. Soil Conservation Service's triangular hydrograph method, the Craig and Rankl method, and the Lowham method. The triangular hydrograph method is a rainfall-runoff procedure that uses the computer program TRIHYDRO. The method uses drainage area, stream length, stream elevation difference, curve number, and a minimum infiltration loss rate to compute runoff from a precipitation event of desired frequency and duration, such as the two-year, six-hour event (Carter Mining, 1985). Curve numbers and the minimum infiltration rates selected for each drainage basin are weighted for areal extent of the soils and vegetation conditions found in the drainage basin, using SCS soil maps, antecedent moisture conditions, and rangeland conditions determined by SCS technical guides.

Discharge capacities and velocities for pre-mining and reclaimed channels are determined by using a variation of Manning's equation, which accounts for varying roughness coefficients found in natural channel/floodplain cross sections.

Craig and Rankl (1978) conducted a flood-hydrograph study to define the magnitude and frequency of flood volumes and flood peaks that could be expected from drainage basins smaller than 11 miles² in the plains and valley areas cf Wyoming. Rainfall and runoff data collected for 9 years were used to calibrate a rainfall-runoff model on each of 22 small basins. Long-term records of runoff volume and peak discharge were synthesized for the 22 basins (Craig and Rankl, 1978). Flood volumes and peaks of specific recurrence intervals (2, 5, 10, 25, 50 and 100 years) were related to basin characteristics with a high degree of correlation. Volumes were related to drainage area, maximum relief, and basin slope. Peaks were related to the same three characteristics with channel slope added. For design purposes, a peak and estimated from basin characteristics. volume be can Hydrographs from the study basins were used to study hydrograph shape, which resulted in the development of mean dimensionless hydrographs for each basin. A single composite mean dimensionless hydrograph was then developed for the basins. The streams used to test and develop this method were all ephemeral. Craig and Rankl (1978) found that the

synthesized hydrographs were similar in shape to observed hydrographs; they believe that the concept is valid for design purposes on small, semi-arid, ephemeral streams. Although this method was originally developed for use in choosing the correct size and placement for culverts during highway construction, it has proven useful in designing channels to carry design flows required by reclamation standards in Wyoming.

A method developed by Lowham (1976) presents two techniques to estimate peak flows and mean annual flow for natural streams in Wyoming; 1) the channel-geometry method, where flow characteristics are related to channel dimensions, and 2) the basin-characteristics method, where flow characteristics are related to physiographic and climatic features of the drainage basin. Lowham (1988) used additional streamflow data to update the original estimating relations. In bothe reports, Lowham (1976, 1988) divided Wyoming into hydrologic different regions based upon hydrologic similarities such as mountains and plains.

An on-site visit to measure channel width is necessary with the channel-geometry technique. Channel width is measured at the narrowest section of a straight reach in the main channel at a section exhibiting a stable appearance. The reliability of this method for estimating annual runoff is dependent upon the correlation of annual runoff with peak flows. The principle underlying this method is that channel

size is influenced by some formative or dominant discharge, to which other flow characteristics are related. Channel width is the significant variable for estimating mean annual flows with this method; it was used by Lowham (1988) to establish regression equations for peak-flow relations in perennial, intermittent, and ephemeral streams.

basin-characteristics method is based The on the assumption that certain physiographic and climatic variables produce or affect streamflow from a basin (Lowham, 1988). This method is an office technique (on-site visits are not required) that uses maps to determine basin characteristics and easily accessed climatic data such as mean annual precipitation. Drainage area, the most significant variable in this method for estimating flows, was used to develop regression equations for each hydrologic region for the 2-, 5-, 10-, 25-, 50-, and 100-year flood event. The limitation on this method is that it is applicable only to those sites where streamflows are virtually natural, and is not used where flows are significantly affected by dams, reservoirs, diversions or urbanization.

Rathburn et al. (1993) studied data from 17 natural basins adjacent to the Rainbow and Colony mines in southcentral Wyoming. In that study, these basins were considered to be stable, and measurements from these basins formed the basis for stability criteria tests on reclaimed channels.

Three channel parameters (channel slope, flow velocity, and cross-sectional area) were used for long-term stability tests. A risk based channel stability analysis was presented to facilitate regulatory decisions and engineering designs by statistically comparing reclaimed channel designs with the undisturbed areas. Using one-tailed confidence intervals calculated about the mean predicted channel slope, flow velocity, and flow area from the natural data, 18 of 20 reclaimed channels at the mines were determined to be stable at a risk level of alpha = 0.1 (risk associated with accepting a channel design that does not meet stability test criteria). A more stringent test (alpha = 0.01) indicated that 16 of 20 reclaimed channels were stable. Channels not meeting the stability criteria tests had steeper slopes or smaller flow areas than the natural channels, which are aspects that enhance erosion potential (Rathburn, 1993). The major emphasis of Rathburn's research was to develop relationships between basin parameters and channel hydraulic parameters important to designing channels and affecting the stability of ephemeral channels. The reclaimed channels at the Colony and Rainbow mines form broad shallow swales. Floodplains were constructed according to Wyoming Department of Environmental Quality guidelines, but pilot channels were not used as part of the reclamation design.

CHAPTER V

METHODS

DRAINAGE BASINS SELECTION

A group of third, second, and first order drainage basins and their associated drainage networks within the study area were selected for analysis through a process of exclusion. USGS 1:24,000 quadrangle topographic maps were selected for use as they are the largest scale maps available throughout the study area. The selected drainage basins were used to represent the small drainage basins and networks of primary concern to reclamation specialists in the Eastern Powder River Basin.

The selection process began by limiting the third order basins to those having their mouths on the 24 USGS 7.5 minute topographic maps that define the study area. Those drainage basins which were partially or wholly dissected or traversed by railroad tracks, improved or hard-surfaced roads, or other severe anthropogenic disturbances were excluded from the analysis, subject to map interpretation. Additionally, those drainage basins that had significant dam development were excluded from the analysis. On the basis of these selection criteria, 64 third order drainage basins were selected for analysis (Plate 1).

The intent of the study was to maintain a systems approach to the classification system; therefore, it was necessary to ensure that the selected second order drainage basins were within the third order drainage basins and that the first order drainage basins were within the seconds. А systems approach allowed description of third order streams based not only on quantitative variables but also on the type of first and second order streams that are tributary to the higher order stream. This goal for the study was accomplished by selecting the first two second order streams that came together to form the third order channel. Those second order streams had two first order streams that came together to form the second order stream. Three, of those uppermost four first order channels within the selected seconds were randomly selected for analysis. A total of 128 second order and 192 first order channels were selected and identified using these procedures. The total sample size was 384 drainage basins. DRAINAGE BASIN IDENTIFICATION CODES

Each selected drainage basin was identified with a 4 digit identification code (Figure 4). The first two digits are numeric. The selected third order drainage basins were numbered from 01-65 (basin 39 was removed from the study after numbering) moving north to south and west to east by 7.5 minute quadrangles. For each second and first order drainage basin within each third order drainage basin, the first two

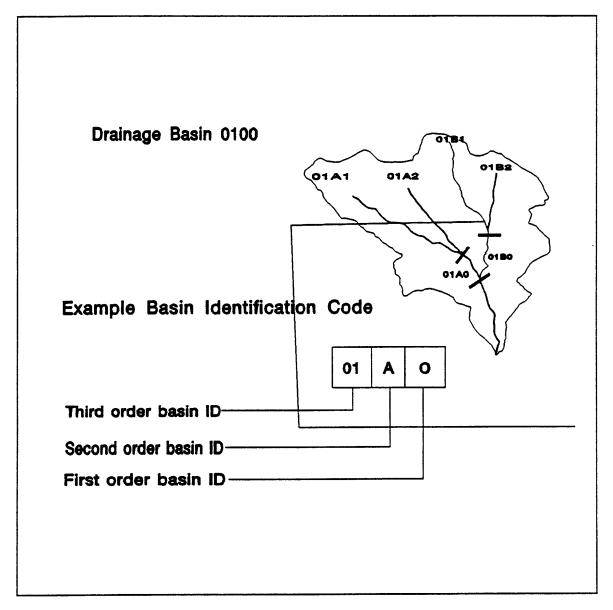


Figure 4. Basin identification codes broken down for basin 0100.

The first two digits indicate the third order basin. The third (alpha) character indicates the second order tributary to the third order. Moving clockwise from the mouth of the third order stream the seconds are lettered A,B,C etc. The fourth character (numeric) indicates the first order tributary to the second order. Moving clockwise from the mouth of the second order stream the firsts are numbered 1,2,3 etc. A basin ID code such as 1201 would indicate a first order

A basin ID code such as 1201 would indicate a first order stream directly tributary to the third order channel. The first order streams directly tributary to the third would be numbered moving clockwise from the mouth. digits of the identification code are the same as the third order.

The third digit identifies the second order basin. Second order basins within a third order basin were labelled alphabetically starting at the mouth of the third order stream and moving clockwise around the basin. An "A" indicates the first second order stream encountered, a "B" indicates the second second order encountered, and so on. A zero in the third slot indicates that the stream is not tributary to a second order stream.

The fourth digit identifies the first order basin. First order streams within a second order were numbered starting at the mouth and moving clockwise around the second order basin. Zeros in the third and fourth slots indicate a third order basin (0100). A letter in the third slot and a zero in the fourth slot indicate a second order basin (01A0). A zero in the third slot with a number in the fourth slot indicates a first order stream directly tributary to the third order stream (1201).

Codes that can be used to locate the mouth of each drainage basin were developed and are explained in Appendix I. DRAINAGE BASIN DELINEATION

Drainage basins were delineated on USGS 1:24,000 scale topographic maps. Drainage basin boundaries were determined by contour analysis. Contour lines were analyzed case by case to determine the appropriate location of the basin perimeter. Lines indicating perennial, intermittent, or ephemeral streams were used as the only indicators of stream channels. The dominant channel for each second and third order basin was determined to be the channel having the greatest drainage basin area. This was determined easily by visual estimates in most cases. Where one basin was not clearly larger than another, a polar planimeter or the AUTO-CAD v.12 c2 (1992) software package were used to determine the largest area.

The lines used to determine valley lengths were indicated on the map. Stream channels were examined for changes in the overall direction of the valley. At points of direction change, the map was marked with an "x." Additional vertices were included in the valley lengths at each confluence of measured streams. The last point on any valley length line was the mouth of the stream in question. The head of the blue line on the map was considered to be the head of the valley. MORPHOMETRIC ANALYSIS

Drainage basin characteristics that were measured or derived for this analysis are presented in Table 1. The criteria used by Martin et al. (1988) to determine some of the variables used are presented in Table 2.

Drainage basin characteristics were measured or computed from the 1:24,000 topographic maps according to the procedures used by Martin et al. (1988) with the following exceptions. The point on the drainage basin perimeter that was used for basin length, basin relief, and basin aspect measurements was Table 1. Drainage basin characteristics determined for basins in the Eastern Powder River Basin coal field of Wyoming.

* Indicates variables that were not included in the multivariate statistical analysis.

First order	Second order	Third order
Basin Area Basin Length Basin Perimeter Basin Relief Channel Length Valley Length Used Relief Relief Ratio Ruggedness Number Channel Slope Sinuosity Drainage Density Circularity (Shape) Precipitation Geology Scoria Abundance *Vegetation *Soils *Basin Aspect *AGI#1 *AGI#2 *AGI#3 *AGI#4	Basin Area Basin Length Basin Perimeter Basin Relief Main Channel Length Valley Length Number of first order channels Total Channel Length Used Relief Relief Ratio Ruggedness Number Channel Slope Sinuosity Drainage Density Circularity (Shape) Precipitation Geology Scoria Abundance *Vegetation *Soils *Basin Aspect *AGI#1 *AGI#2 *AGI#3	Basin Area Basin Length Basin Perimeter Basin Relief Main Channel Length Valley Length Number of first order channels Number of second order channels Total Channel Length Used Relief Relief Ratio Ruggedness Number Channel Slope Sinuosity Drainage Density Circularity (Shape) Precipitation Geology Scoria Abundance *Vegetation *Soils *Basin Aspect *AGI#1 *AGI#2 *AGI#3 *AGI#4

Table 2. Drainage basin characteristics, their definitions, and procedures for delineation and measurement. (from: Martin et al. 1988)

* Indicates a variable not defined by Martin et. al. (1988)

** Indicates a definition that was altered from Martin et al. (1988) for this study.

Characteristic	Explanation of Characteristic
Basin Area (AREA)	Area, measured in a horizontal plane, from which direct surface runoff from precipitation normally drains into the stream channel upstream from the specified point.
Basin Length (BL)	**Straight line distance across the drainage basin from the point on the drainage divide nearest the head of the dominant channel to the basin mouth.
Basin Perimeter (PER)	Perimeter of the drainage basin.
Basin Relief (BASREL)	**Difference in elevation between the point on the drainage divide that would mark the intersection with the extended main stream channel and the basin mouth.
Main Channel Length (MCL)	Length of dominant channel measured using the blue streamline shown on a 1:24,000-scale topographic map.
Valley Length (VL)	Length of valley along the dominant stream channel.
Number of first order channels (NO1)	The number of first order channels within the 2nd or 3rd order basin.
Number of second order channels (NO2)	The number of 2nd order channels with the 3rd order basin.
Total Channel Length (TCL)	Summation of lengths of all stream-channels of all orders in the drainage basin. For first order streams, this is the same as Main Channel Length.

Table 2. (continued)

•

Used Relief (USEDREL)	Difference in elevation between two points on the stream channel. For first order basins, the points were selected at each end of the blue streamline shown on a 1:24,000-scale topographic map. For the second and greater order basins, the points were selected at 15 and 85 percent of the dominant stream channel length.
Relief Ratio (RR)	Basin Relief divided by Basin Length
*Ruggedness Number (RUG)	Basin Relief multiplied by Drainage Density
Channel Slope (CHANSLOP)	Used Relief divided by the length of stream channel between the points identified in used relief, in ratio. The channel length between the points is equal to 70 percent of the Main Channel Length. This depicts an average stream-channel slope, which should not be confused or compared with values that are measured at particular locations along stream channels.
Sinuosity (SIN)	Main Channel Length divided by Valley Length. This depicts an average sinuosity for the stream channel, which should not be confused with values that are measured at particular locations along stream-channels.
Drainage Density (DD)	Total Channel Length divided by the Basin Area.
Circularity Ratio (CIRC)	Area of the drainage basin divided by the area of a circle having the same perimeter as the drainage basin.
*Basin Aspect	Compass heading along the line of basin length from head to mouth.
*Area-Gradient Index #1 (AGI1)	AREA (mi ²)x (BASREL (ft.)/(MCL (mi.) x 5280))
*Area-Gradient Index #2 (AGI2)	AREA (mi ²) x CHANSLOP (ft./ft.)
*Area-Gradient Index #3 (AGI3)	AREA (mi ²) x ((BASREL (ft.)/(LENGTH (mi.) x 5280))
*Area-Gradient Index #4 (AGI4)	AREA (mi ²) x BASREL (ft.)

not the point on the perimeter nearest the head of the dominant channel. Contour crenulations were used to estimate the point on the perimeter where the extended channel would intersect the perimeter. If the direction indicated by contour crenulations was unclear, the last clearly indicated direction was used to determine the point of intersection with the perimeter.

Minimum basin elevation was determined at the mouth of the stream at the point of confluence with a stream of the same or higher order. The maximum basin elevation was the elevation determined for the point on the perimeter that would mark the intersection of the perimeter and the extended stream channel.

Elevations for basin relief and used relief were determined using the contour lines on the maps. All elevations were determined by visually dividing the 20 foot contour intervals into quarters. The elevation of the point in question was estimated to the nearest 5 feet. If two streams had their mouth at the same point, the elevation estimation was made using the contour interval in the direction of the dominant channel. The same minimum elevation was then used for both basins.

The maximum elevation point often was inside a closed contour line with no additional contour lines or other indicators of elevation available. Five feet was added to the elevation of the last contour line when this occurred.

Used relief elevation values were estimated after all digitizing and measurements had been accomplished and recorded.

The contour interval for maps within the study area changed from 20 feet to 10 feet as one proceeded south. The change in contour interval was essentially ignored to retain consistency in map interpretation. Only the contour lines that were multiples of 20 were used on maps with 10 foot intervals. All other contour lines were ignored for the purposes of determining elevations.

DIGITIZING

The AUTO-CAD v.12 c2 (1992) software package was used to measure areal and linear dimensions of the delineated drainage basins and their features. The digitizing hardware included a Cal-Comp model 9100 digitizing board interfaced with a Caliber micro-computer with a 386 microprocessor, 8 meg of RAM, and a math co-processor. The specifications for the Cal-Comp model 9100 are as follows (all values represent map units):

Resolution: up to 1,280 lines per inch.

Accuracy: 0.01 inch - 0.005 inch

Repeatability: 0.001 inch

A set protocol was used to digitize all drainage basins starting with equipment calibration by measurement of known areas. The procedures used to calibrate the equipment and digitize the drainage basins are described in Appendix II. The digitizing process provided all the areal and linear measurements listed in Table 2.

Some of the variables considered (e.g. drainage density, relief ratio, sinuosity, ruggedness number, channel slope, circularity ratio and the 4 Area-Gradient Indices AGI1, AGI2, AGI3, and AGI4) are products or dividends of measured variables and constants. These were computed using a computer spreadsheet.

Measurement of basin aspect was performed by extending the line of basin length to the edge of the 1:24,000 topographic map and measuring the angle of intersection with the known North-South or East-West line represented by the edge of the map. Basin aspect was recorded categorically as a function of the compass heading determined from the angle of intersection. Categories and the associated degree values are presented in Table 3.

Table 3. Directional categories for Basin Aspect and associated directional values in (degrees) used in this study.

Category	Direction Values (Degrees)
1 (North)	0 - 45 and 316 - 359
2 (East)	46 - 135
3 (South)	136 - 225
4 (West)	226 - 315

CATEGORICAL AND SURFACE COVER VARIABLES

Six variables were treated as categorical in nature. Vegetation, soils, clinker abundance, geology, precipitation, and basin aspect were recorded numerically so that each category was represented by an integer.

Vegetation data were obtained from the University of Wyoming GAP Analysis (Driese and Reimer, 1992), a digital database of vegetative communities in Wyoming. The GAP database was developed from multispectral remote sensing data at an original scale of 1:250,000 with a minimum resolution of 1 hectare and a minimum mapping unit of 100 hectares. GAP was used to generate 1:24,000 scale overlays of the study area.

Soils data were taken from the SCS State Soil Geographic Data Base (STATSGO) (SCS, 1992). STATSGO is a digital database originally created at 1:100,000. STATSGO was used to generate 1:24,000 scale overlays of the study area.

Clinker abundance was estimated from surficial geologic Maps of the Gillette, Recluse, and Reno Junction 30'x 60' quadrangles at a scale of 1:100,000 (Reheis, 1987; Reheis and Williams, 1984; and Reheis and Coates, 1987).

Subsurface geologic data were obtained from geologic maps of the Gillette and Newcastle $1^{\circ} \ge 2^{\circ}$ quadrangles at a scale of 1:250,000 (Love et al., 1990 and Love et al., 1987).

Precipitation data were gathered using a contour map of Campbell County that was generated using 1990 Thirty Year Normals obtained from the National Weather Service. The contour map was originally generated at 1:300,000 scale using ARC-INFO v. 6.11 (1992). Criteria used to select stations with adequate consistency of record were those used by Eastwood et al. (1994) for an extreme storm event study. The original contour map was modified, in consultation with the Wyoming State Climatologist (Hasfurther, 1994) to reflect other less current but relevant data. A more detailed precipitation contour map generated by Toy and Munson (1978) was referenced to modify the contour patterns of the original map.

Surface and precipitation categories cover were determined as a function of area for each drainage basin. When the predominant category was determined for a drainage basin, that basin was assigned the appropriate integer for The dominant surface cover category for each that category. variable was defined as the category that covered most of the basin. If no category covered more than 50 percent of the area, then the category that covered the greatest percentage of the basin was used as the dominant type. Overlays were used to determine the dominant surface cover category for soils and vegetation.

Six types of vegetation cover were identified in the study area and each was developed into a category (Table 4). Professional judgment was used to derive the vegetation categories. The mapping units provided were distinguished by Table 4. Categories used to classify the vegetative communities within the Eastern Powder River Basin coal field of Wyoming. Data from the University of Wyoming GAP analysis digital database (Driese and Reimers, 1992).

Category	Description
1	Sagebrush/Ponderosa Pine
	Sagebrush dominated community with Ponderosa pine being the major secondary component
2	Sagebrush
	Sagebrush dominated community with no major secondary component.
3	Sagebrush/Grassland
	Sagebrush dominated community with mixed- grass prairie, cultivated pasture or cropland being the major secondary component
4	Grassland/Sagebrush
	Mixed-grass prairie, cultivate pasture, or cropland dominated community with sagebrush being the major secondary component.
5	Grassland
	Mixed-grass prairie, cultivated pasture, or cropland dominated community with no major secondary component.
6	Grassland/Ponderosa Pine
	Mixed-grass prairie, cultivated pasture, or cropland dominated community with Ponderosa Pine as the major secondary component.

dominant and secondary vegetation types. The percentage of cover represented by the dominant and secondary vegetation communities within the mapping unit was provided. The categories derived reflect an interpretation of the mapping units provided by Driese and Reimers (1992). The mapping units shown within a drainage basin were analyzed and the vegetation category was assigned based upon best professional judgment.

The STATSGO (SCS, 1992) map of Campbell County provided an appropriate level of soil identification and was adapted for use in this study. The already broad groupings of the STATSGO were further reduced to four textural categories (Table 5).

Precipitation, geology, and surficial geology maps were only available at small scales that differed from the topographic maps; therefore, the location of drainage basins on the larger maps had to be visually estimated.

The four categories for sub-surface geology were based upon the geologic formation that underlies the selected drainage basin (Table 6). The locations of the basins were estimated on the 1:250,000 scale maps by drawing in the 7.5 minute quadrangles on the smaller scale maps. The abundance of clinker was estimated by drawing the 7.5 minute quadrangles on the 1:100,000 scale maps and estimating a percentage of the basin covered by clinker deposits. Six categories were derived for the abundance of clinker (Table 7).

Table 5. Textural categories used to classify soils within the Eastern Powder River Basin coal field of Wyoming. Categories based on the STATSGO data base (SCS, 1992).

Category	Description
1	Fine
2	Fine loamy
3	Loamy
4	Loamy Skeletal

Table 6. Categories used to classify the subsurface geologic formations for drainage basins in the Eastern Powder River Basin coal field of Wyoming. (Variable abbreviation=SSGEO)

Category	Description							
1	100 percent Wasatch Formation parent material							
2	Wasatch Formation dominated mixture of Wasatch and Fort Union Formation parent material							
3	Fort Union dominated mixture of Wasatch and Fort Union parent material							
4	100 percent Fort Union Formation parent material							

Table 7. Categories developed to classify the abundance of clinker within drainage basins in the Eastern Powder River Basin coal field of Wyoming. (Variable abbreviation = SURFGEO)

Category		Description
0	0 percent.	No clinker present in basin.
1	0-1 percent.	A trace of clinker present.
2	1-10 percent.	Little clinker present.
3	10-25 percent.	Moderate clinker present.
4	25-50 percent.	Heavy clinker abundance.
5	> 50 percent.	Clinker dominates basin.

Climatological variations were represented by mean annual precipitation as reflected in the precipitation contour map. Five categories were defined for mean annual precipitation (Table 8). The positions of the drainage basins on the contour map were estimated using the 1:24,000 quadrangle boundaries as points of reference. Due to the small scale of the map, the mean annual precipitation estimation was applied to the third order basins. All the tributary basins of the third order basin were placed in the same category.

STATISTICAL ANALYSIS

Once the drainage basins were delineated, the parameters measured, and the data compiled, a three tiered statistical analysis was conducted. Drainage basins were presorted by order prior to analysis to avoid any problems regarding randomness caused by the selection of first and second order basins within higher order basin. The 18 variables listed in Table 1 were used in the principal components analysis (PCA). The eliminated variables were chosen based upon preliminary analysis of the clusters derived using them. After these preliminary PCA's and cluster analyses, the most distinct clusters were derived using only the indicated variables.

PCA was used to define major axes of variation among drainage basins. Cluster analysis was then used to identify groups of drainage basins with similar characteristics. The third step involved discriminant function analysis (DFA) to Table 8. Categories developed to describe the mean annual precipitation for drainage basins in the Eastern Powder River Basin coal field of Wyoming. (Variable abbreviation = PRECIP)

Category	Mean Annual Precipitation (in inches)
1	12-13
2	13-14
3	14-15
4	15-16
5	> 16

verify the strength of similarity between groups of drainage basins identified in the cluster analysis.

According to Dunteman (1989) PCA is a multivariate statistical analysis technique having the goal of reducing the dimensionality of a data set. The measured variables are combined linearly into a single variable or principal component. According to Dunteman (1989),

"With principal components analysis a large number

of independent variables can be systematically

reduced to a smaller, conceptually more coherent set of variables."

Each variable is weighted with a coefficient and the sum of all the weighted variables is the principal component. The number of components that can be generated is equal to the number of original variables (Dunteman, 1989). The sum of the products of the coefficients and variables provided the new variables for later cluster analysis and DFA. It was hoped that PCA would explain with one variable as much as 30 or 40 percent of the variability of the data set.

Several techniques can be used to decide the appropriate number of principal components to be retained (Dunteman, 1989). These methods include graphical analysis techniques that may or may not indicate clearly the cut-off point. Other methods proposed a minimum level of explained variability, or a minimum value of the "eigenvalue" or variance of the principal component. At some point in most analyses retention of additional principal components becomes unnecessary as each new component explains only an insignificant amount of variation (Dunteman, 1989).

The goal of this study was to explain 75-80 percent of the variability within the data set with the selected principal components. This goal would have required retention of five principal components as displayed in Table 9. After further analysis, three principal components were retained to simplify the cluster analysis results. The decision to retain three principal components is supported by the scree plots of the eigenvalues in Figure 5. The break in slope of the plot was the graphical indicator of the appropriate number of principal components to retain that was mentioned by Dunteman (1989). The lack of any clear definition of the fourth and fifth principal components also contributed to the decision to

Table 61. Design relationships for field measured characteristics of Stratum C second order basins.

[VA = Valley Area (ft²); AGI#2 = Area-Gradient Index #2 (miles² • ft/ft); TW = Top Width (ft); \overline{D} = Average Depth (ft); BW = Bed Width (ft); A3 = Low Bank Area (ft²); TW3 = Top Width of the Low Bank (ft); \overline{D} 3 = Average Depth of the Low Bank (ft)]

Design Relationship (n = 6) [‡]	Design Range ^{∖1}	r ^{\2}	p- Value ^{∖3}
VA = -4854 + (286200 • AGI#2)	0.014 - 0.033	0.89	0.0175
TW = 61.13 + (0.032 * VA)	375.00 - 5554.40	0.98	0.0007
D = 5.97 + (0.003 * VA)	375.00 - 5554.40	0.89	0.0173
BW = -41.79 + (0.77 * TW)	74.17 - 244.17	0.99	0.0001
A3 = -0.14 + (0.001 * VA)	375.00 - 1636.90	0.86	0.0602
TW3 = 4.78 + (1.47 * A3)	0.27 - 3.45	0.95	0.0036
$\bar{D}3 = 0.05 + (0.09 * A3)$	0.27 - 3.45	0.99	0.0000

1 Predictive range of the independent variable(s) in the design relationship

2 Pearson Correlation Coefficient

;

3 Significance of the relationship; p = 0.0000 = probability < 0.00001

± n = 6 field sampled study reaches characterized by a high and low bank

the three strata. Conversely, these basins also have the lowest mean relief ratio, channel slope, and drainage density of the three strata.

Five third order reaches in Stratum C were field investigated, with 29 sites sampled. Of these reaches, five were characterized by a high bank (Table 62), five by a medium bank (stream channel) (Table 63), three by a low bank (lowflow channel) (Table 64), and five by a low bank #2 (second low-flow channel) (Table 65). The mean high bank top width (143.15 ft) and bed slope (0.007 ft/ft) for Stratum C third order basins were the largest among strata. The Stratum C third order stream channels (medium bank) had the lowest mean average depth, bank slope, and estimated velocity of the three Additionally, the low-flow channels (low bank) and strata. second low-flow channels (low bank #2) had the lowest mean area, top width, average depth, and estimated velocity and discharge of the three strata.

Significant geomorphic design relationships for Stratum C third order basins are presented in Tables 66-68. Basin area was the strongest independent variable for relating the drainage network to the drainage basin in this stratum. The field characteristics were related to a variety of drainage basin and network characteristics: channel slope, basin area, relief ratio, area-gradient index #1, used relief, and areagradient index #4. Channel slope was used to predict valley area, low-flow channel (low bank) area, and the second lowTable 62. Average of the high bank reach means for Stratum C third order basins.

	AREA (ft ²)	WETTED PERIMETER (ft)	TOP WIDTH (ft)	HYDRAULIC RADIUS (ft)	AVERAGE DEPTH (ft)	W/D RATIO	FLOODPLAIN WIDTH (ft)	BED SLOPE (ft/ft)
n [†]	5	5	5	5	5	5	5	5
MEAN	1225.50	147.00	143.15	6.33	6.63	24.86	68.75	0.007
S.D.	1380.90	97.11	95.37	5.00	5.24	9.82	61.12	0.003
C.V. (%)	113	66	67	79	79	39	89	43
MINIMUM	88.20	32.10	28.45	1.98	2.10	10.19	10.15	0.004
MAXIMUM	3477.40	249.77	239.90	14.58	15.40	34.64	125.25	0.012
RANGE	3389.20	217.67	211.45	12.59	13.30	24.45	115.10	0.007

Bed slope = channel bed slope

‡ n = average reach means for 5 study reaches; reach means = average cross section values by reach

. .

* mean = stratum mean

Table 63. Average of the **medium bank**¹ reach means for **Stratum C** third order basins.

	AREA (ft²)	WETTED PERIMETER (ft)	TOP WIDTH (ft)	HYDRAULIC RADIUS (ft)	AVERAGE DEPTH (ft)	W/D RATIO	BED SLOPE (ft/ft)	BANK SLOPE (ft/ft)	MANNING'S "n" ²	VELOCITY ³ (ft/s)	DISCHARGE "Q" ³ (cfs)
n ⁴	5	5	5	5	5	5	5	5	5	5	5
MEAN ^s	87.15	34.35	33.06	1.86	1.98	18.73	0.008	0.010	0.032	6.48	903.46
S.D.	79.47	22.40	22.27	1.12	1.21	10.02	0.005	0.009	0.002	5.16	1216.90
C.V. (%)	91	65	67	60	60	54	63	90	7	80	135
MINIMUM	9.30	12.23	11.33	0.77	0.83	9.13	0.000	0.001	0.030	1.51	14.04
MAXIMUM	194.10	58.10	57.25	3.23	3.33	35.58	0.012	0.025	0.034	14.94	2982.30
RANGE	184.80	45.87	45.92	2.46	2.50	26.44	0.012	0.024	0.004	13.43	2968.26

1 medium bank = high banks of a physical stream-channel

. .

2 Manning's "n" = estimated roughness coefficient

3 estimated from Manning's equation

4 n = averaged reach means for 5 study reaches; reach means = averaged cross section values by study reach

5 mean = stratum mean

.

Table 64. Average of the low bank¹ reach means for Stratum C third order basins.

	AREA (ft²)	WETTED PERIMETER (ft)	TOP WIDTH (ft)	HYDRAULIC RADIUS (ft)	AVERAGE DEPTH (ft)	W/D RATIO	BED SLOPE (ft/ft)	BANK SLOPE (ft/ft)	MANNING'S "n"²	VELOCITY³ (ft/s)	DISCHARGE "Q" ³ (cfs)
n ⁴	3	3	3	3	3	3	3	3	3	3	3
MEAN⁵	4.36	11.37	11.11	0.41	0.43	56.37	0.009	0.007	0.031	1.63	7.34
S.D.	1.91	4.81	4.91	0.18	0.21	37.36	0.006	0.007	0.002	0.63	3.56
C.V. (%)	44	42	44	45	48	66	59	105	6	39	49
MINIMUM	2.20	7.15	6.65	0.20	0.20	15.67	0.003	0.001	0.030	0.91	4.62
MAXIMUM	5.83	16.60	16.37	0.55	0.60	89.11	0.014	0.015	0.033	2.10	11.37
RANGE	3.63	9.45	9.72	0.35	0.40	73.45	0.011	0.015	0.003	1.19	6.75

1 low bank = low flow channel within the high banks of a physical stream-channel

2 Manning's "n" = estimated roughness coefficient

.

3 estimated from Manning's equation

4 n = averaged reach means for 3 study reaches; reach means = averaged cross section values by study reach

5 mean = stratum mean

Table 65. Average of the low bank #2¹ reach means for Stratum C third order basins.

	AREA (ft²)	WETTED PERIMETER (ft)	TOP WIDTH (ft)	HYDRAULIC RADIUS (ft)	AVERAGE DEPTH (ft)	W/D RATIO	BED SLOPE (ft/ft)	BANK SLOPE (ft/ft)	MANNING'S "n"²	VELOCITY ³ (ft/s)	DISCHARGE "Q" ³ (cfs)
n ⁴	5	5	5	5	5	5	5	5	5	5	5
MEAN ⁵	0.75	4.25	4.16	0.16	0.17	55.10	0.008	0.006	0.031	0.85	0.89
S .D.	0.65	1.68	1.71	0.08	0.09	45.58	0.006	0.004	0.001	0.34	1.17
C.V. (%)	87	40	41	48	51	83	71	75	4	40	131
MINIMUM	0.15	2.10	1.90	0.06	0.06	15.00	0.000	0.001	0.030	0.54	0.13
MAXIMUM	1.60	6.00	5.95	0.28	0.30	132.70	0.014	0.013	0.033	1.42	2.92
RANGE	1.45	3.90	4.05	0.21	0.24	117.70	0.014	0.011	0.003	0.88	2.79

1 low bank #2 = second low flow channel within the high banks of a physical stream-channel

. .

2 Manning's "n" = estimated roughness coefficient

3 estimated from Manning's equation

4 n = averaged reach means for 5 study reaches; reach means = averaged cross section values by study reach

5 mean = stratum mean estimated bankfull discharge of the stream channel. The bed slope of the stream channel was correlated to area-gradient index #1 and bank slope was correlated to bed slope. Estimated bankfull discharge of the low-flow channel (low bank) was correlated to used relief; however, discharge of the second low-flow channel (low bank #2) was correlated to area-gradient index #4. The four banks did not correlate to each other.

Table 66. Design relationships for map measured characteristics of Stratum C third order basins.

[BP = Basin Perimeter (mi); BA = Basin Area (mi²); DD = Drainage Density (mi/mi²); BL = Basin Length (mi); NOF = Number of First Order Basins; TCHL = Total Channel Length (mi); CS = Channel Slope (ft/ft); NOS = Number of Second Order Basins; MCL = Main Channel Length (mi); RR = Relief Ratio (ft/mi); VL = Valley Length (mi); BR = Basin Relief (ft); UR = Used Relief (ft); RNO = Ruggedness Number (mi/mi² * ft)]

Design Relationship (n = 22)	Design Range ^{\1}	۲ ^{\2}	p- Value ^{\3}
BP = 5.39 BA ^{0.51}	2.58 - 8.65	0.87	0.0000
DD = 4.31 BA ^{-0.28}	2.58 - 8.65	-0.47	0.0281
BL = 1.71 BA ^{0.51}	2.58 - 8.65	0.76	0.0000
NOF = 10.05 TCHL ^{1.21} CS ^{0.64}	8.09-24.04/0.004-0.016	0.86	0.0000
NOS = 3.53 TCHL ^{0.74} CS ^{0.45}	8.09-24.04/0.004-0.016	0.69	0.0020
MCL = 1.91 BA ^{0.63}	2.58 - 8.65	0.78	0.0000
$TCHL = 4.31 BA^{0.72}$	8.09 - 24.04	0.81	0.0000
RR = 155 BA ^{-0.46}	2.58 - 8.65	-0.51	0.0153
VL = 1.59 BA ^{0.63}	2.58 - 8.65	0.82	0.0000
BR = 161 BA ^{-0.41} BL ^{0.93}	2.58 - 8.65 / 2.77 - 6.83	0.48	0.0790
UR = 3490 BA ^{0.50} CS ^{0.81}	2.58-8.65 / 0.004-0.016	0.80	0.0001
RNO = 0.00026 BR ^{1.12}	140.00 - 565.00	0.86	0.0000
CS = 0.000078 RR ^{1.07}	39.79 - 142.30	0.90	0.0000

1 Predictive range of the independent variable(s) in the design relationship

2 Pearson Correlation Coefficient

3 Significance of the relationship; p = 0.0000 = probability < 0.00001

Table 67. Design relationships for the high bank and medium bank characteristics of Stratum C third order basins.

VA = Valley Area (ft²); CS = Channel Slope (ft/ft); TW = Top Width (ft); \overline{D} = Average Depth (ft); A2 = Stream Channel Area (ft²); BA = Basin Area (mi²); RR = Relief Ratio (ft/mi); Q2 = Estimated Bankfull Discharge for the Stream Channel (cfs); TW2 = Top Width of the Stream Channel (ft); \overline{D} 2 = Average Depth of the Stream Channel (ft); V2 = Estimated Velocity of Bankfull Discharge for the Stream Channel (ft/s); BS = Bank Slope (ft/ft); GS = Ground Slope (ft/ft); AGI#1 = Area-Gradient Index #1 (mi² * ft/ft)]

Design Relationship (n = 5)	Design Range ¹¹	r ^{\2}	p- Value ^{∖3}
VA = -2300 + (3.58x10 ⁵ * CS)	0.007 - 0.016	0.94	0.0168
TW = 2.98 VA ^{0.57}	88.20 - 3477.40	0.97	0.0058
$\bar{D} = 0.34 \text{ VA}^{0.43}$	88.20 - 3477.40	0.95	0.0122
A2 = 3.46x10 ⁻²¹ BA ^{4.53} RR ^{9.50}	3.18-7.65/77-142	0.97	0.0536
Q2 = 3.08x10 ⁻³⁵ BA ^{7.60} RR ^{15.86}	3.18-7.65/77-142	0.99	0.0118
A2 = 1.56 Q2 ^{0.61}	14.04 - 2982.30	0.99	0.0016
TW2 = $3.54 \text{ A2}^{0.54}$	9.30 - 194.10	0.94	0.0179
$TW2 = 4.38 Q2^{0.33}$	14.04 - 2982.30	0.94	0.0165
$\bar{D}2 = 0.28 \ A2^{0.46}$	9.30 - 194.10	0.92	0.0251
$\bar{D}2 = 0.36 \ Q2^{0.28}$	14.04 - 2982.30	0.90	0.0396
$V2 = 0.65 Q2^{0.37}$	14.04 - 2982.30	0.95	0.0116
BS = 0.051 GS ^{0.38}	0.00006 - 0.012	0.82	0.0902
GS = 1.53x10 ⁹ AGI#1 ^{10.42}	0.059 - 0.094	0.84	0.0761

1 Predictive range of the independent variable(s) in the design relationship

2 Pearson Correlation Coefficient

3 Significance of the relationship

Table 68. Design relationships for the low-flow and second low-flow channels of Stratum C third order basins.

[Q3 = Estimated Bankfull Discharge for the Low-Flow Channel (cfs); UR = Used Relief (ft); A4 = Second Low-Flow Channel Area (ft²); CS = Channel Slope (ft/ft); Q4 = Estimated Bankfull Discharge for the Second Low-Flow Channel (cfs); AGI#4 = Area-Gradient Index #4 (mi² * ft); TW4 = Top Width of the Second Low-Flow Channel (ft); D4 = Average Depth of the Second Low-Flow Channel (ft); V4 = Estimated Velocity of Bankfull Discharge for the Second Low-Flow Channel (ft/s)]

Design Relationship (n = 5; n [†] = 3)	Design Range ^{∖1}	r ^{\2}	p- Value ^{∖3}
$Q3 = 3.36 \times 10^{-9} \text{ UR}^{3.96\dagger}$	185.00 - 250.00	0.99	0.0190
$A4 = 0.000016 \text{ CS}^{-2.16}$	0.007 - 0.016	-0.88	0.0492
$Q4 = 2.82 \times 10^{-8} \text{ AGI} \# 4^{2.10}$	1446 - 4321	0.84	0.0751
TW4 = 2.54 + (2.16 * A4)	0.15 - 1.60	0.82	0.0857
D 4 = 0.08 + (0.12* A4)	0.15 - 1.60	0.88	0.0483
A4 = 0.32 + (0.49 * Q4)	0.13 - 2.92	0.87	0.0531
D 4 = 1.29 Q4 ^{0.07}	0.13 - 2.92	0.91	0.0295
$V4 = 4.07 Q4^{0.27}$	0.13 - 2.92	0.92	0.0270

1 Predictive range of the independent variable(s) in the design relationship

2 Pearson Correlation Coefficient

3 Significance of the relationship

 \dagger n = 3; three reaches were characterized by a low-bank

flow channel (low bank #2) area. Alternatively, basin area and relief ratio were used to predict the stream channel (medium bank) area and estimated bankfull discharge of the stream channel. The bed slope of the stream channel was correlated to area-gradient index #1 and bank slope was correlated to bed slope. Estimated bankfull discharge of the low flow channel (low bank) was correlated to used relief; however, discharge of the second low-flow channel (low bank #2) was correlated to area-gradient index #4. The four banks did not correlate with one another.

Geomorphic relationships in graphic format, regression output tables and simple linear regression plots, standard statistics by reach and by bank, cross section profiles, raw data, and photographic documentation are presented in Appendix C-3.

VEGETATION OBSERVATIONS

The reconnaissance notes were compiled by stratum and order concerning the predominant and notable vegetation characteristics (Tables 69-71). The drainage basins in Stratum A had vegetation species indicative of dry, shallow soils, and rocky areas such as Ponderosa pine, Juniper, and Bluebunch wheatgrass. Alternatively, the drainage basins in Stratum C had vegetation characteristics indicative of deep, sandy soils such as Needle-and-thread and Indian ricegrass. The drainage basins in Stratum B exhibited a combination of vegetation characteristics of both Strata A and C.

	T		
Vegetation Species	St	rat	um
Ponderosa pine (<i>Pinus ponderosa</i> Laws.)	Α		
Rocky Mountain juniper (Juniperus scopulorum Sarg.)	A		
Chokecherry (<i>Prunus virginiana</i> L.)			С
Douglas rabbitbrush (Chrysothamnus viscidiflorus [Hook.] Nutt.)		в	
Big sagebrush (<i>Artemisia tridentata</i> Nutt.)	A	В	с
Silver sagebrush (Artemisia cana Pursh)		в	С
Gardner saltbush (Atriplex gardneri [Moq.] D. Dietr.)			с
Woods rose (<i>Rosa woodsii</i> Lindl.)			С
Fringed sagebrush (Artemisia frigida Willd.)	A		
Cudweed sagewort (Artemisia ludoviciana Nutt.)	А	В	
Needle-and-Thread (Stipa comata Trin. & Rupr.)		В	С
Western wheatgrass (Agropyron smithii Rydb.)	A	В	С
Bluebunch wheatgrass (Agropyron spicatum [Pursh] Scribn. & J.G. Smith)	А	В	
Slender wheatgrass (Agropyron trachycaulum [Link] Malte)	А	В	
Blue grama (Bouteloua gracilis [H.B.K.] Lag. exSteud)	A	в	
Prairie junegrass (<i>Koeleria cristata</i> [L.] Pers.)	А	В	
Alkali sacaton (Sporobolus airoides Torr.)			С
Indian ricegrass (Oryzopsis hymenoides [Roem. & Schult.] Ricker)			С
Kentucky bluegrass (<i>Poa pratensis</i> L.)	A	В	С
Sedge (Carex ssp.)	A	В	С
Scurf-pea (<i>Psoralea</i> ssp.)	Α	В	С

:

Table 69. Predominate and notable vegetation characteristics for first order basins.

Table 70.	Predominate and	notable vegetation	characteristics
	of second order	basins.	

Vegetation Species	S	tratu	m
Big sagebrush (Artemisia tridentata Nutt.)	А	В	С
Silver sagebrush (Artemisia cana Pursh.)	А	В	С
Cudweed sagewort (Artemisia ludoviciana Nutt.)	А	В	
Needle-and-Thread (Stipa comata Trin. & Rupr.)	А	В	С
Green needlegrass (<i>Stipa viridula</i> Trin.)	A	В	
Western wheatgrass (Agropyron smithii Rydb.)	А	в	[·] C
Slender wheatgrass (Agropyron trachycaulum [Link] Malte)		В	
Blue grama (Bouteloua gracilis [H.B.K.] Lag. exSteud)	А	В	С
Prairie junegrass (<i>Koeleria cristata</i> [L.] Pers.)	А	В	
Bluegrass (<i>Poa</i> ssp. L.)	А	В	С
Indian ricegrass (Oryzopsis hymenoides [Roem. & Schult.; Ricker)			С
Little bluestem (Schizachyrium scoparium [Michx.] Nash)		В	
Foxtail barley (Hordeum jubatum L.)		в	
Sedge (Carex ssp.)	А	в	С
Cattail (<i>Typha</i> ssp.)		в	
Scurf-pea (<i>Psoralea</i> ssp.)	A	В	

oi third order basins.			
Vegetation Species	S	tratu	m
Ponderosa pine (Pinus ponderosa Laws.)	A		
Plains cottonwood (Populus deltoides var. occidentalis Rydb.)	A		
Rocky Mountain juniper (Juniperus scopulorum Sarg.)	A		
Douglas rabbitbrush (Chrysothamnus viscidiflorus [Hook.] Nutt.)		В	
Greasewood (Sarcobatus vermiculatus [Hook.] Torr.)		В	
Big sagebrush (Artemisia tridentata Nutt.)	А	В	с
Silver sagebrush (Artemisia cana Pursh)	A	В	С
Fringed sagebrush (Artemisia frigida Willd.)	А		
Cudweed sagewort (Artemisia ludoviciana Nutt.)	A	В	
Needle-and-Thread (Stipa comata Trin. & Rupr.)	A	В	С
Green needlegrass (<i>Stipa viridula</i> Trin.)	A	В	
Western wheatgrass (Agropyron smithii Rydb.)	A	В	С
Slender wheatgrass (Agropyron trachycaulum [Link] Malte)		В	
Bluegrass (<i>Poa</i> ssp. L.)	A	в	С
Blue grama (Bouteloua gracilis [H.B.K.] Lag. exSteud)	A	в	С
Little bluestem (Schizachyrium scoparium [Michx.] Nash)		в	
Indian ricegrass (Oryzopsis hymenoides [Roem, & Schult.] Ricker)		в	
Prairie junegrass (<i>Koeleria cristata</i> [L.] Pers.)	A	в	с
Woods rose (<i>Rosa woodsii</i> Lindl.)	А		
Scurf-pea (<i>Psoralea</i> ssp.)	А	В	С

•

Table 71. Predominate and notable vegetation characteristics of third order basins.

SURFICIAL GEOLOGY

The predominant geologic components of field sampled reaches were identified on USGS surficial geology maps (1:100,000 scale) developed by Reheis and Coates (1987) and Reheis (1987). The geologic components by stratum and order are presented in Tables 72-74. The drainage basins in Stratum A are dominated by the Fort Union Formation, residuum on the Fort Union Formation, and clinker outcrops or escarpments. The drainage basins in Stratum C are dominated by the Wasatch Formation and residuum on the Wasatch Formation. The drainage basins in Stratum B are a combination of geologic units found in both Stratum A and Stratum C.

Three reaches (two first order, one second order) in Stratum A were geologically controlled for short distances by the presence of mammoth scoria boulders aligning the valley banks and armoring the bottom. These areas were identified as confined-valley sections with a V-shape (cross-sectional). Minor sandstone outcrops were observed in Strata B and C with one exception. Consolidated and unconsolidated eolian deposited sands and silts now exposed to erosion occur in the southwest corner of the study area in a first order reach classified in Stratum B. Additionally, several significant pediment deposits were identified in all strata, with occurrences of colluvial deposition from mass wasting in two drainage basins in Stratum C. Alluvial geologic units inappropriately identified and units not identified by Table 72. Predominant surficial geologic delineation for first order basins derived from USGS Surficial Geologic Maps developed by Reheis and Coates (1987) and Reheis (1987).

Geologic Unit			Stratum		
	Description	Origin	A	B X X X	С
Fort Union Formation	Light-gray to yellowish-brown, fine-grained sandstone, light-gray siltstone, mudstone, and shale, brown carbonaceous shale, and coal. Includes small areas of residuum, colluvium, and sheet-wash alluvium.	Bedrock - Deposited in streams, swamps, and lakes; later consolidated by deep burial; now exposed by erosion.	x	x	
Residuum on Fort Union Formation	Gray to brown silty and sandy weathered material with variable clay content. Grades downward into unweathered Fort Union Formation. Includes areas of sheetwash alluvium and Fort Union bedrock and colluvium.	<u>Residuum</u> - Material derived from weathering of Fort Union Formation in place; may be modified by sheetwash and soil creep.	x	x	
Baked & Fused Rock	Bedrock altered when coal beds were burned. Mostly hard, dense, red to orange, baked shale and siltstone. Black, bubbly, sometimes glassy rock; resembles volcanic rocks. Gray or white coal ash occurs as a layer (5cm to 1.2m thick) at base of baked zone. Locally includes small areas of colluvium.	<u>Bedrock</u> - Overlying bedrock baked when coal beds in Wasatch and Fort Union Formations burned.	x	x	
Wasatch Formation	Brown and gray claystone and siltstone with thick lenses of coarse- grained, crossbedded, arkosic sandstone. Generally poorly consolidated but has some well-cemented resistant sandstone beds. Thin beds of coal and carbonaceous shale common locally. May include small areas of residuum and sheetwash alluvium.	Bedrock - Deposited in streams, swamps, and lakes; later consolidated by deep burial; now exposed by erosion.		x	x
Residuum on Wasatch Formation	Sandy and silty with variable clay content. Grades downward into unweathered Wasatch Formation. May contain sheetwash alluvium or eolian deposits. May include small areas of Wasatch.	<u>Residuum</u> - Material derived from weathering of Wasatch Formation in place; may be disturbed by sheetwash, soil creep, and erosion or deposition by wind.		x	x
Fan and Pediment Deposits	Upper 0.3-3 m commonly sheetwash alluvium; commonly grades downward into stream alluvium of sand and silt containing abundant small lenses of angular to subangular gravel. On pediments, sheetwash alluvium may overlie bedrock.	<u>Alluvial Deposit</u> - Deposited by ephemeral streams and by sheetwash. Fan-shaped surface formed primarily by deposition, but some areas cut on bedrock and thinly veneered with alluvium.	X1	x '	X ²

1 These deposits were not classified by Reheis and Coates (1987) and Reheis (1987).

. . .

2 These deposits were classified as floodplain and low-terrace alluvium by Reheis and Coates (1987) and Reheis (1987).

Table 73. Predominant surficial geologic delineation for second order basins derived from USGS Surficial Geologic Maps developed by Reheis and Coates (1987) and Reheis (1987).

Geologic Unit	Description		Stratum		
	Description	Origin	A	В	с
Fort Union Formation	Light-gray to yellowish-brown, fine-grained sandstone, light-gray siltstone, mudstone, and shale, brown carbonaceous shale, and coal. Includes small areas of residuum, colluvium, and sheet-wash alluvium.	<u>Bedrock</u> - Deposited in streams, swamps, and lakes; later consolidated by deep burial; now exposed by erosion.	x	x	
Residuum on Fort Union Formation	Gray to brown silty and sandy weathered material with variable clay content. Grades downward into unweathered Fort Union Formation. Includes areas of sheetwash alluvium and Fort Union bedrock and colluvium.	<u>Residuum</u> - Material derived from weathering of Fort Union Formation in place; may be modified by sheetwash and soil creep.	x	x	
Baked & Fused Rock	Bedrock altered when coal beds were burned. Mostly hard, dense, red to orange, baked shale and siltstone. Black, bubbly, sometimes glassy rock; resembles volcanic rocks. Gray or white coal ash occurs as a layer (5cm to 1.2m thick) at base of baked zone. Locally includes small areas of colluvium.	<u>Bedrock</u> - Overlying bedrock baked when coal beds in Wasatch and Fort Union Formations burned.	x		
Wasatch Formation	Brown and gray claystone and siltstone with thick lenses of coarse- grained, crossbedded, arkosic sandstone. Generally poorly consolidated but has some well-cemented resistant sandstone beds. Thin beds of coal and carbonaceous shale common locally. May include small areas of residuum and sheetwash alluvium.	Bedrock - Deposited in streams, swamps, and lakes; later consolidated by deep burial; now exposed by erosion.		x	x
Residuum on Wasatch Formation	Sandy and silty with variable clay content. Grades downward into unweathered Wasatch Formation. May contain sheetwash alluvium or eolian deposits. May include small areas of Wasatch.	<u>Residuum</u> - Material derived from weathering of Wasatch Formation in place; may be disturbed by sheetwash, soil creep, and erosion or deposition by wind.		x	x
Fan and Pediment Deposits	Upper 0.3-3m commonly sheetwash alluvium; commonly grades downward into stream alluvium of sand and silt containing abundant small lenses of angular to subangular gravel. On pediments, sheetwash alluvium may overlie bedrock.	<u>Alluvial Deposit</u> - Deposited by ephemeral streams and by sheetwash. Fan-shaped surface formed primarily by deposition, but some areas cut on bedrock and thinly veneered with alluvium.	X1	X²	X ₃

1 These deposits were classified as floodplain and low-terrace alluvium by Reheis and Coates (1987) and Reheis (1987).

2 These deposits were not classified by Reheis and Coates (1987) and Reheis (1987).

.

. .

3 Some of these deposits were classified as floodplain and low-terrace alluvium within fan and pediment deposits by Reheis and Coates (1987) and Reheis (1987).

Table 74. Predominant surficial geologic delineation for third order basins derived from USGS Surficial Geologic Maps developed by Reheis and Coates (1987) and Reheis (1987).

Geologic			Stratum		
Unit	Description	Origin	A	A B (X (X	С
Fort Union Formation	Light-gray to yellowish-brown, fine-grained sandstone, light-gray siltstone, mudstone, and shale, brown carbonaceous shale, and coal. Includes small areas of residuum, colluvium, and sheet-wash alluvium.	<u>Bedrock</u> - Deposited in streams, swamps, and lakes; later consolidated by deep burial; now exposed by erosion.	x	x	
Residuum on Fort Union Formation	Gray to brown silty and sandy weathered material with variable clay content. Grades downward into unweathered Fort Union Formation. Includes areas of sheetwash alluvium and Fort Union bedrock and colluvium.	<u>Residuum</u> - Material derived from weathering of Fort Union Formation in place; may be modified by sheetwash and soil creep.	x	x	
Baked & Fused Rock	Bedrock altered when coal beds were burned. Mostly hard, dense, red to orange, baked shale and siltstone. Black, bubbly, sometimes glassy rock; resembles volcanic rocks. Gray or white coal ash occurs as a layer (5cm to 1.2m thick) at base of baked zone. Locally includes small areas of colluvium.	<u>Bedrock</u> - Overlying bedrock baked when coal beds in Wasatch and Fort Union Formations burned.	x		
Wasatch Formation	Brown and gray claystone and siltstone with thick lenses of coarse- grained, crossbedded, arkosic sandstone. Generally poorly consolidated but has some well-cemented resistant sandstone beds. Thin beds of coal and carbonaceous shale common locally. May include small areas of residuum and sheetwash alluvium.	<u>Bedrock</u> - Deposited in streams, swamps, and lakes; later consolidated by deep burial; now exposed by erosion.		x	x
Residuum on Wasatch Formation	Sandy and silty with variable clay content. Grades downward into unweathered Wasatch Formation. May contain sheetwash alluvium or eolian deposits. May include small areas of Wasatch.	<u>Residuum</u> - Material derived from weathering of Wasatch Formation in place; may be disturbed by sheetwash, soil creep, and erosion or deposition by wind.		x	x
Fan and Pediment Deposits	Upper 0.3-3m commonly sheetwash alluvium; commonly grades downward into stream alluvium of sand and silt containing abundant small lenses of angular to subangular gravel. On pediments, sheetwash alluvium may overlie bedrock.	<u>Alluvial Deposit</u> - Deposited by ephemeral streams and by sheetwash. Fan-shaped surface formed primarily by deposition, but some areas cut on bedrock and thinly veneered with alluvium.	X¹	x	X²

These deposits are floodplain and low-terrace alluvium as classified by Reheis and Coates (1987) and Reheis (1987).

. .

2 These deposits were classified as floodplain and low-terrace alluvium by Reheis and Coates (1987) and Reheis (1987).

previous investigators were reassigned where necessary. A disclaimer notice is presented with the geologic maps indicating that discrepancies may exist.

.

CHAPTER VII

DISCUSSION

COMPILATION OF THE DATABASE

The development of a uniform database for the study area provided one of the primary limitations to this project. Examination of 21 mine permits on file with WDEQ/LQD in Chevenne revealed that the data inventoried for those documents was not adequately uniform for this analysis. Coal mine reclamation plans are commonly mapped at a scale of 1:6000 or greater but the lack of consistency between coal mine baseline analyses prevented the use of these sources of data. Most of the data used in this study are collected by the mine operators for baseline data and annual reports. The lack of consistency in scale or methods created an abundant collection of data that, for this study, were effectively Alterations in scale and mapping units for the useless. vegetation, soils, and geology maps made the mine permit data for these variables unusable as well.

Maps used in the study needed to be consistent in scale, mapping units, and level of detail throughout the study area. Therefore, the largest scale maps and databases that were available for the entire study area were used. The study area was defined by U.S.G.S 1:24,0000 scale topographic quadrangles

for that reason. The selected 7.5 minute quadrangles were mapped at the same time (1969-1972) and had roughly the same degree of detail.

The soils, vegetation, geology, and surface geology of the region were not mapped at that scale. Smaller scale maps of the area or 1:24000 scale overlays developed from smaller scale maps were used to insure that all variables had a uniform level of coverage throughout the study area. This also insured consistency of mapping units throughout the study area. The final database for the study was as uniform as was possible to develop.

The soils and vegetation maps of the region that were used to develop the categories for this analysis were proven to be consistent with most of the results. Whether they are accurate remains unknown. During the process of checking the vegetation analysis with aerial photographs, mistakes were found in the depicted mapping units. The ponderosa pine communities were not always accurately mapped or represented. This condition posed no major problem due to the availability of aerial photos and the ease with which ponderosa pine or juniper can be identified from those photos; however, the other two major components of the vegetation categories (sagebrush community and mixed-grass prairie community) were not easily distinguished from one another on the aerial photographs. These distinctions may have been more clear on the multi-spectral images available to the cartographers for

the GAP analysis but were not readily apparent on the aerial photographs. The authors could not therefore, check the vegetation maps for distinctions between sagebrush and grassland dominance. This condition has caused some concern over the accuracy of the vegetation mapping. However, the mapping did tend to be consistent with field observations and earlier work.

Soils of the study area were mapped and categorized in very broad and general terms. The accuracy of the large scale maps and the correlation of mapping units to drainage basins are a concern. Soil texture seemed to correlate with geologic parent material. However, the correlation conflicts with what one would expect from the geologic formations in question.

Coarser grained soils were generally coincident with the clinker outcrops and the occurrence of ponderosa pine. Hansen et al., (1988) indicate that ponderosa pine tends to grow well in coarse grained soils. Stratum A has no indicated occurrences of the finest grained soil category. The abundance of clinker deposits and the occasional lenses of sandstone in the Fort Union Formation explain the dominance by more coarse textured soils. Below the clinker escarpment the soil textures should become finer within the finer textured parent material of the Fort Union. The soils map used does not show this pattern. The drainage basins below the escarpment continue to be listed as being coarser grained than those on the more coarsely grained Wasatch Formation. If

parent material is the primary consideration, one would expect soils to be sandier on the more coarse parent material.

Field analysis of stream bed soils poses contradictions to the results as well. The drainage basins in the Powder River system were dominated by sandy parent material and had large components of sand. Glassey et al. (1955) indicate that a much of the soil in these areas that is listed as fine STATSGO (SCS, 1992) is loamy. Field textured in investigations by Munn (1994) indicated that the interbedded shales of the Wasatch Formation were providing a significant clay componenent to the soils of the area. This could well explain the STATSGO (SCS, 1992) mapping units.

The precipitation map generated for the area in consultation with the State Climatologist (Hasfurther, 1994) was consistent with other maps of similar scale generated for the region. Geology maps and surficial geology maps were available for the entire study area only at scales of 1:250,000 and 1:100,000. These maps provided a level of consistency to the determination of substrate or parent material. The small scales involved however, did not allow for fine distinction or accurate measurement of the areal extent of a formation or surficial deposit within a drainage basin. CLASSIFICATION STRATA

The morphology of drainage basins of the Eastern Powder River Basin coal field of Wyoming appears to be controlled primarily by the geologic substrate and the surficial deposits upon which they rest. The three identified classification strata are primarily distinguished by their geologic parent materials and by their sizes and slopes. Drainage basins on the Wasatch Formation in the south of the area remain on the remnants of the Missouri Plateau (Glassey et al., 1955). This area is relatively low in relief and creates large flat drainage basins (Stratum C). Other drainage basins on the Wasatch Formation reflect the effects of greater relief and clinker deposits creating smaller, steeper basins. Where the residual deposits associated with the remnants of the Missouri Plateau have been removed, exposing the bedrock of the Wasatch Formation, the drainage basins appear to have characteristics more similar to those expected of the Fort Union Formation (drainage basins 0500, 0600, 0700, 1200).

The Fort Union Formation has two primary types of drainage basins; those that form above the clinker escarpments and flow towards the foot, and those that form below the clinker escarpment and slope across unaltered bed rock or residuum of the Fort Union Formation (drainage basins 3300, 3400, 3700, 3800). The basins sloping across the "eastward sloping plains" of Glassey et al. (1955) generally react much differently than do the basins of the clinker escarpment. The channel slopes are lower, the relief ratios are lower, and the areas are generally larger than the clinker dominated drainage basins of Stratum A. A typical first order basin in Stratum B or C very closely resembles that of a typical first order basin characterized by Martin et al. (1988). The relief component of the first order basins in Stratum A, although not significant, is greater than Stratum B or C. About 55% of the relief of a third order basin in Stratum A occurs in the first order basins. Alternatively, the first order basins in Stratum C account for about 44% of the total third order relief.

Stratum A

Third order drainage basins in Stratum A are dominated by the Fort Union Formation. The abundance of clinker along the contact between the Fort Union and Wasatch Formations adds another defining criterion for Stratum A. In these basins, a large portion of the surface material generally consists of clinker. The resulting drainage basins tend to have high relief ratios, high drainage densities, and high channel slopes relative to the streams of the other strata. The smallest drainage basin in the study area (4800) is in Stratum A, as are some of the largest (6000, 6300). Stratum A, therefore, has the largest range of drainage basin area. Drainage basins in Stratum A have a characteristicly large relief component that is expressed in a rapid decrease in elevation at some point on the longitudinal profile of the drainage basin. This steep section of the profile is most commonly expressed in the first order drainage basins near the

head of the dominant channel, but occurs later in the profile in at least two instances (basins 6000 and 1000).

Stratum A was dominated by vegetation communities that had a substantial ponderosa pine component or were covered almost entirely with the Mixed-Grass Prairie community. This condition is consistent with Apley's (1976) analysis. Apley recognized the association of the scoria and a grassland community dominated by bluebunch wheatgrass (<u>Elymus spicatus</u> (Pursh) Gould).

The soils of Stratum A were consistent with the vegetation and geologic maps. The drainage basins of Stratum A appear to have more coarsely grained soils than either of the other strata. This is consistent with the presence of clinker.

Stratum A appeared to have lower mean annual precipitation than did Strata B and C. The authors believe this to be a function of coincidence between the weather patterns of the area and the outcrops of clinker and the coarse textured soils they represent. It has been theorized that the pine covered scoria outcrops may provide enough relief to provide an orographic effect and an increase in precipitation (Hadley and Schumm 1961). This condition remains an unknown, due to a lack of precipitation records in the area. The authors currently believe that precipitation is probably not influenced by the small amount of relief (100-500 ft) provided by the escarpments.

head of the dominant channel, but occurs later in the profile in at least two instances (basins 6000 and 1000).

Stratum A was dominated by vegetation communities that had a substantial ponderosa pine component or were covered almost entirely with the Mixed-Grass Prairie community. This condition is consistent with Apley's (1976) analysis. Apley recognized the association of the scoria and a grassland community dominated by bluebunch wheatgrass (<u>Elymus spicatus</u> (Pursh) Gould).

The soils of Stratum A were consistent with the vegetation and geologic maps. The drainage basins of Stratum A appear to have more coarsely grained soils than either of the other strata. This is consistent with the presence of clinker.

Stratum A appeared to have lower mean annual precipitation than did Strata B and C. The authors believe this to be a function of coincidence between the weather patterns of the area and the outcrops of clinker and the coarse textured soils they represent. It has been theorized that the pine covered scoria outcrops may provide enough relief to provide an orographic effect and an increase in precipitation (Hadley and Schumm 1961). This condition remains an unknown, due to a lack of precipitation records in the area. The authors currently believe that precipitation is probably not influenced by the small amount of relief (100-500 ft) provided by the escarpments. Strata B and C

Drainage basins in Stratum B are small basins that occur primarily on the Wasatch Formation. The drainage basins generally occur on the western edge of the study area and are underlain entirely by the Wasatch or are near the contact between the Fort Union and Wasatch Formations. These drainage basins are all less than about 2.6 mi². They are relatively steep, with moderate drainage densities. Their relief component, although less than that of Stratum A, is still substantial and, in conjunction with small drainage areas, creates a relatively high relief ratio.

Stratum C is comprised of larger drainage basins dominated by the Wasatch Formation or are located east of the clinker dominated escarpment. These basins are large (greater than about 2.6 mi²), long, and flat. The relative lack of relief in the areas dominated by Stratum C, provides little energy for the rapid development of channels. Drainage density is low as a result of the relative stability of the substrate and the indicated lack of potential energy of position. These drainage basins are largely in the region between the clinker rich area near the Fort Union-Wasatch contact and the ridge of clinker capped hills that runs north-south through the study area (Plate 1).

Strata B and C are almost entirely dominated by the finest grained soil category. This condition is contrary to the expected result, as was mentioned above. The Wasatch Formation, which dominates both strata, is generally thought to be sandier in texture than the Fort Union.

Glassey et al. (1955) noted that the grasses of Campbell County tend to grow better on flatter ground, on sandier soil, and in the northern part of the county. The northern areas of the county receive greater mean annual precipitation than the southern. These conditions were consistent with the database analysis and personal observations. The large flat drainage basins of Stratum C seem to support more of what was labelled Mixed-Grass prairie community, pasture land, or cultivated grasslands on the map. Those three components of the vegetation map were listed as being in the Grassland category. The drainage basins of Stratum B were commonly dominated by a sagebrush community component. These drainage basins also were more rugged, and had steeper slopes than most of their counterparts in Stratum C. A correlation with the analysis of vegetation patterns by Glassey et al. (1955) is observable in Stratum B as one moves from north to south through the basin. Stratum B shows a fairly strong southward increase in sagebrush dominance while Stratum C shows a decrease that is much less pronounced.

The drainage basins northeast of Gillette that overlie the Wasatch Formation and drain into Rawhide Creek (drainage basins 0500, 0600, 0700, and 1200) are classified in Stratum C. These drainage basins may be the product of structural controls in the geologic parent material (Knutson, 1986) and

are distinct enough that they could be analyzed as a separate category.. At the third order level, however, they are not particularly distinct when examined on Field maps. examination of the second and third order streams did find substantial differences in these basins. The first order drainage basins tributary to these drainages are exceptionally steep compared to the first order drainage basins of the remainder of Stratum C. These basins appeared to be highly erosive in their upper reaches and much less so in their lower reaches. The valleys of the second order streams were very wide and apparently were trapping the sediment discharge of the unstable first order drainage basins. Signs of gradient adjustments in the lower order reaches were found during the field investigations. The sediment from first order erosion was deposited in the second order streams and was experiencing headcuts, while the third order streams appeared to be flowing over old valley fill deposits.

KEYING DRAINAGE BASINS

The dichotomous key presented as Table 20 is relatively easy to use for determining the correct stratum of a drainage basin that was not investigated in this study. The key can be used at two steps during the reclamation process. The first time would be identifying, from baseline data, the stratum of drainage basins that are going to be disturbed. The second time would be in determining the specifications of drainage basins that are to be reclaimed. Drainage basins could be designed, when possible, to reflect the characteristics of drainage basins in the same stratum the drainage basin was in prior to disturbance. If this is not possible due to low strip ratios or the presence of clinker on the undisturbed basin, the available area and relief could be analyzed to determine what stratum that drainage basin might be designed to reflect. Either way, if the reclamation specialists can determine the area, parent material characteristics, and available relief in the reclaimed drainage basin then an appropriate stratum would be identifiable in the dichotomous key.

Several drainage basins were identified properly in the dichotomous key but perhaps might have been classified differently in the original data set. Drainage basins 1100 and 2600 of Stratum B are very much like those of Stratum A. Both basins have large clinker components (1100 is more than 50 percent clinker), have relatively steep relief ratios, and are fairly small. Drainage basin 2600 is in Stratum B due to its presence on the Wasatch, whereas basin 1100 is in Stratum B because of its small size and relatively low slope.

Drainage basins 4900 and 6100 would key out as being in different drainage basin strata than they were identified. One other drainage basin would be mis-classified due to its area. Drainage basin 4100 is the smallest basin in Stratum C (2.58 mi²) but would key out as being in Stratum B because of its small area. The remaining 59 third order drainage basins would be identified properly using the key.

Drainage basins 3300 and 3400 would probably key out as members of Stratum A but they were not so classified in this study. These basins were distinct enough in their map characteristics, as well as in the field, that they were left out of any of the three categories. These two basins are extremely long with very low channel slopes but moderate relief ratios. They appear to initiate channel development below the clinker escarpment. This would explain the relatively high to moderate relief ratios with the seemingly contradictory low channel slopes.

RELATION TO PREVIOUS RESEARCH

Four primary land forms in the Powder River Basin have been identified by Glassey et al. (1955): 1) Rolling Divide, 2) Rochelle Hills Escarpment, 3) eastward sloping plain, and 4) deeply dissected upland. These identified landforms correspond approximately to the three classification strata of drainage basins identified by this research.

Glassey et al. (1955) identified the northern and western portions of the county as "deeply dissected upland." This dissected upland represents, for the most part, the Powder and Little Powder River drainages. Drainage basins 0500, 0600, 0700, and 1200 are consistent with the description of this region in Glassey et al. (1955). The remaining drainage basins that are tributary to the Little Powder River (1300 and

1400) are mapped as being within the "deeply dissected upland" landform (Glassey et al., 1955), but indications are that they are more similar to other described land forms. Drainage basins 1300 and 1400 form the headwaters of the Dry Fork of the Little Powder River. These drainage basins are at or near the junction of Glassey et al.'s (1955) deeply dissected upland, the Rochelle Hills escarpment, and the Rolling divide. They appear to have the characteristics of the Rolling divide more so than the other two land forms and are consistent with the remainder of the drainage basins in Stratum C. All of the above listed drainage basins are grouped in Stratum C of the classification. Basins 0500, 0600,0700, and 1200 differ from the remainder of Stratum C in that they tend to be mildly steeper than the others as third-order streams and that they have much steeper first order basins than do the other basins of that stratum.

Glassey et al. (1955) identified most of the study area as a landform they termed "rolling divide." This landform corresponds to the study area south of Gillette and extends to the Rochelle Hills in the East. Strata B and C basins were in this area. The diversity of the area would lead the authors to break the area into two or more land forms. The large flat drainage basins of Stratum C that dominate the flat areas of this region are distinctive of an area with much less available relief. They also tend to be dominated by residuum and eolian deposits. The clinker deposits of the area tend to be erosional remnants that provide relief to the area by capping the underlying material and protecting it from erosion. Very little clinker tends to show up in the Stratum C drainage basins.

This same "rolling divide" of Glassey et al. (1955) contains most of the drainage basins in Stratum B. The drainage basins of the eastern portion of the study area tend to be the smaller and steeper basins of Stratum B. Thev occur, for the most part, west of the clinker capped knolls and ridges that divide the area of Glassey et al.'s (1955) "rolling divide." In the eastern portion of the study area, some of the drainage basins that are in the area of the Wasatch-Fort Union contact are classified in Stratum B. These basins are on the edge of Glassey et al.'s (1955) "rolling hills" and their "Rochelle Hills escarpment." Some of the Stratum B drainage basins also occur in Glassey et al.'s (1955) "Eastern sloping plains" land form. These are east of the clinker deposits common to the Rochelle Hills. The relief component of these drainage basins is commonly provided by more substantial clinker components.

Stratum A of the classification is associated with the clinker deposits near the Fort Union-Wasatch contact. This area was identified by Glassey et al. (1955) as the "Rochelle Hills escarpment." This escarpment is capped by a thick and highly resistent layer of clinker. The resulting drainage basins have a distinct rapid decline in elevation that seems

to originate in the drop from the clinker to the bottom of the escarpment. These basins are distinct in character and extend along the contact between the Fort Union and Wasatch Formations from the southeastern corner of Campbell County north to the area east of Gillette and then northwest towards Sheridan. Glassey et al. (1955) ended their Rochelle Hills escarpment in the area northeast of Gillette. The drainage basins of Stratum A, however, extend directly north of Gillette and slightly northwest of that city. The drainage basins of this area are in the northern extension of Glassey et al.'s (1955) "rolling divide" or in the deeply dissected Personal observation, both from maps and in the upland. field, indicates that the inclusion of these drainage basins in the Glassey et al.'s (1955) "Rochelle Hills Escarpment" is appropriate and that perhaps Glassey et al. (1955) were incorrect in ending the "Rochelle Hills escarpment" as far south and east as they did.

Knutson (1986) noted differences in first order drainage basins between the two geologic Formations both in the entire study area and within each of the three primary drainage systems. Knutson expected the drainage basins of the Fort Union Formation to be smaller, shorter, and steeper and to have higher ruggedness numbers and drainage densities than those of the Wasatch Formation. Although his results are consistent with this study, they were commonly contrary to his expected results when drainage basins within the three primary drainages were compared across the Fort Union-Wasatch Formation contact. The drainage networks of the Wasatch Formation, in the Little Powder River basin, appear to have higher ruggedness numbers, greater relief, and steeper first order drainage basins than their counterparts on the Fort Union as was noted by Knutson. The variables of area, length, and drainage density showed no significant differences between formations.

Knutson (1986) also found that in the Chevenne River drainage, the relief, slope and ruggedness number were significantly different between the geologic formations, as The variables of area, length, and drainage was expected. density showed significance but in a direction contrary to the expected results. The Wasatch Formation had smaller, shorter, and more highly dissected drainages than the Fort Union. Many of the first order drainages on the Wasatch Formation that were examined by Knutson were tributary to the North Prong of the Little Thunder Creek (NPLTC). That drainage basin appears to be unique in relation to other basins on the Wasatch. The headwaters of NPLTC are in the clinker capped ridges that run through the mid-section of the study area. This condition could account for any differences in drainage network Formation found in the area. Both Divis and Tarquin (1981) and Apley (1976) indicated that they found low order channels in that area. Those findings contradict the general findings of our field investigations, that no stream channels occur on

200

first order drainage basins of this region. The additional relief and clinker deposits of the headwaters could well generate the conditions necessary for the formation of distinct channels in first order streams.

MULTIVARIATE CLASSIFICATION IN GEOMORPHOLOGY

Two similar studies of drainage basin classification using multivariate analyses were found in the literature (Wesche, 1994; Eyles, 1970). Although both indicated that the use of cluster analysis was successful in grouping similar basins, neither reports the characteristics of the clusters with regards to the sample as a whole. The West Malaysian study by Eyles, and the study in Idaho reported by Wesche (1994) covered a wide range of terrain and drainage basin morphology. Both had larger sample sizes (410 in West Malaysia and 1,042 in Idaho). Eyles was limited to 4th order basins as reflected on 1:63,360 scale maps. Eyles classified drainage basins first by the region in which they were located relative to mountains and then by the amount of dissection in the basins. The Idaho study classified drainage basins of five orders (1-5) in four different classification steps. The basins ranged from high mountain to high plains of the intermountain region. No attempt was made to develop design equations or to run correlation analysis on the clustered drainage basins in either study.

The relative lack of diversity in the Eastern Powder River Basin coal field is reflected in the small number of

classification strata developed. What appeared to be substantially diverse morphometric values yielded surprisingly few distinct groups of drainage basins as derived through principal components analysis and cluster analysis. This contrasts with reports of Eyles (1970) and Wesche (1994) wherein a relatively large number of classification groups were identified. Eyles identified six clusters in a sample size of 410 whereas the Idaho study identified 43 strata of five different orders in a sample size of over 1000. With a smaller sample size and substantially less diversity, it is not surprising to find a smaller number of strata in the Eastern Powder River Basin. As a tool for investigation multivariate statistics appear to indicate substantial similarities and differences that an investigator may not notice without some indicator. Principal components analysis can direct an investigator to significant variation within the data set and cluster analysis can identify the basins that are similar in nature based on those variables with greater variability.

The first three principal components identified three of the most important factors in this study. The first principal component was primarily a size factor and the separation of Strata B and C is based entirely upon drainage area. The second principal component was heavily weighted towards relief, slope, and geologic parent material. Geologic parent material is the first variable used to segregate drainage basins, and the presence or absence of clinker provides a later segregation of drainage basins. The third principal component was weighted towards shape, structure, and geologic variables. The shape variable of circularity was not critical to the analysis but Stratum B is distinct in its number of second order streams. Only two of the drainage basins have three second order channels while the remaining 20 all have two. This condition correlates with the relatively small size of the drainage basins in Stratum B.

Eyles (1970) used the results of the cluster analysis to develop clusters and then analyzed the clusters using professional judgment. As a result, the total of 20 clusters was reduced to 6. Drainage basins from the eliminated clusters were then re-clustered into the closest group. That procedure was used in this study to reduce the nine clusters derived from the cluster analysis to the three strata developed. Drainage basins were moved from a retained stratum to a new stratum if map or field analysis indicated that they were more like the basins of the new cluster.

FIELD OBSERVATIONS

Field reconnaissance of the drainage networks within the Eastern Powder River Basin coal field provided additional insight to the character of these systems.

First and Second Order Basins

The first order reaches that were field investigated in Strata A, B, and C, and second order reaches in Strata B and

C had two consistent characteristics: 1) gradient adjustment, and 2) lack of channel development. Field sampled second order reaches in Stratum A were observed to be more similar to third order reaches and will be discussed later. The longitudinal profile plots in Appendix A-1, B-1, and C-1 indicate the relative degree of gradient adjustment encountered in the first order reaches. A11 field investigated first and second order reaches were undergoing or had experienced some degree of gradient adjustment, ranging from moderate to extreme (Figures 22 and 23). Overgrazing around the turn of the century was identified as a possible cause of gradient adjustments of higher order streams in the surrounding areas by Divis and Tarquin (1981) and Knutson (1982). However, observations in this study suggest that the major gradient adjustments occurring in the Eastern Powder River Basin are from an earlier time. Gradient adjustments (headcutting) were observed in the central and upper reaches of second order drainage networks and throughout the profile of first order drainage networks. The headcuts appear to have progressed through the third order drainage networks and are now well into the first and second order drainage networks. Figure 24 shows a cottonwood tree near the base of a large headcut on a second order drainage network just below the confluence of two first order reaches. The tree is less than 100 ft from the vertical bank of the headcut. If an arbitrary tree age of 25 years is assumed, then the rate of headcut

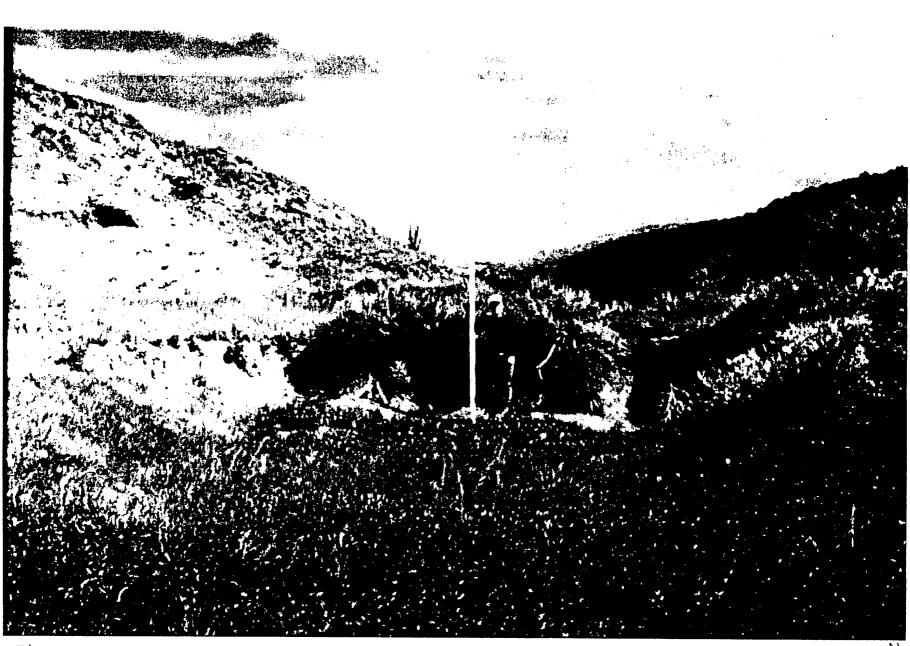


Figure 22. Large gradient adjustment occurring on a first order reach.

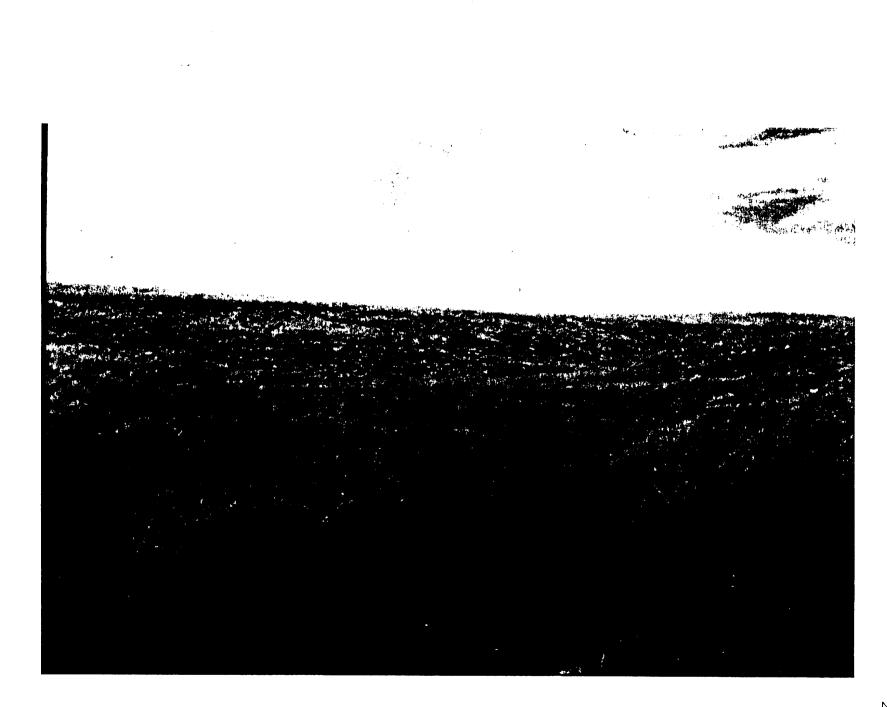


Figure 23. Relatively minor adjustments occurring on second order reach.

Figure 24. Large headcut in a second order reach just below the confluence of two first order reaches (distance from the tree to the active headcut is less than 100 ft).

progression would be approximately 4 feet per year. The reach itself is about 1.5 mi long, which indicates about 2000 years for the headcut to migrate from the mouth to its present location. Although arbitrary, the estimate does suggest that the major gradient adjustments may not have been caused by recent disturbances. It is speculated that adjustments were caused by base-level lowering of higher order streams such as the Mississippi River due to climatic changes. Also, relatively minor gradient adjustments due to anthropogenic disturbances such as roads, culverts, and dams were found during this study.

One consistent feature of all gradient adjustments was deposition of the eroded material short distances downslope The deposited material caused from the active headcut. valley-filling and altered the gradient on both large and small scales. Valley-filling occurred: 1) at the junction of a lower order network with a higher order network, 2) at the entrance of side-tributaries to the main network, 3) at the base of steep valley-slope segments, and 4) where valley margins widened (Figure 25). Several of these deposits on second order reaches and one deposit on a first order reach were identified as floodplain and low-terrace alluvium by Reheis and Coates (1987) and Reheis (1987). These deposits were re-designated as fan and pediment deposits for purposes of this study. These large, broad, and flat deposits were well stabilized with vegetation, with only minor occurrences

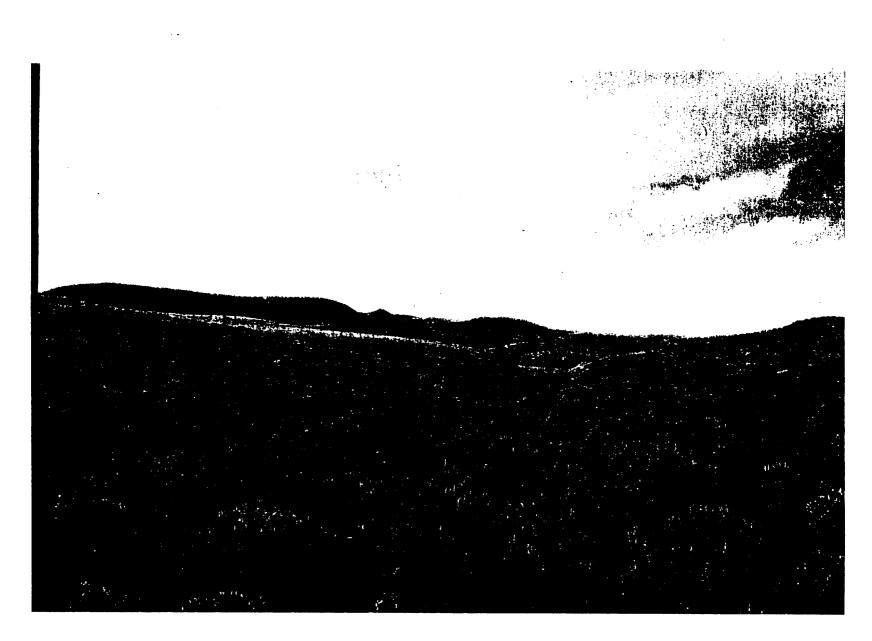


Figure 25. Large valley-fill from a side-tributary to a first order reach.

of gullying in the fill material. The lower end of the fill was generally a site of headcut initiation. These large deposits are now being reworked and gradients are adjusting to those below the fill area. The fill material is then redeposited down-slope and another fill area forms. Throughout the study area cross-section shape coincides with this cut-and-fill process.

Study sites were flat-bottom in profile where filling had occurred and rounded where slope adjustment was advanced (Figures 26 and 27). The shape characteristics may indicate that the rounded shape is more efficient for water transport than the flat-bottom profile. In general, areas having valleys that were flat in profile had a sagebrush - grass vegetation community, whereas valleys with rounded profiles were primarily vegetated with grasses. Field observations also indicate that subirrigation was common for flat-bottom profiles near the mouth of a reach. The water-harvesting characteristics of the flat-bottom profile were a result of steeper slopes surrounding the fill material.

Lack of channel development was the second identifying characteristic of first and second order drainage networks determined in this study (See profile plots in Appendix A-1, B-1, C-1, B-2, and C-2). The lack of channel development is a reflection of not only the gradient adjustments described above but also the ephemeral hydrologic regime of the Eastern Powder River Basin. The field investigation clearly indicates,

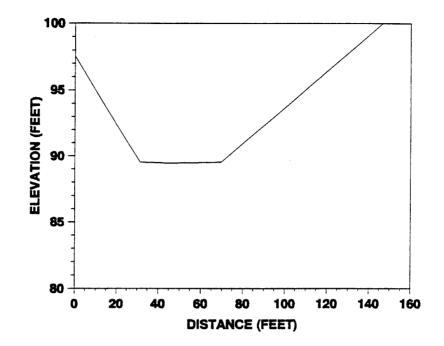


Figure 26. Typical flat-bottom profile indicative of valley-filling

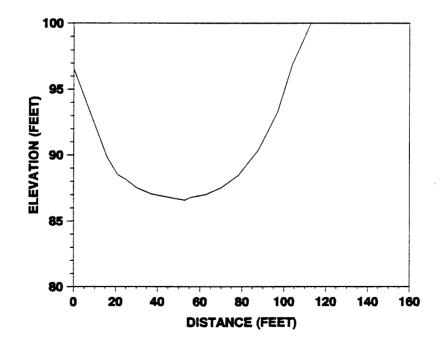


Figure 27.

Typical round-bottom profile indicative of efficient water transport.

that due to the infrequent nature of formative flows, first and second order drainage networks do not at present exhibit channel formation.

Third Order Basins

All third order reaches had some degree of continuous or discontinuous channel development (See profile plots in Appendix A-2, A-3, B-3, and C-3). The characteristics of second order reaches in Stratum A were similar to the third order reaches in Stratum A; therefore, the discussion of third order reaches in Stratum A includes the second order reaches.

The reaches in Stratum A were unique among the three strata. These third order reaches had well developed, easily identifiable stream channels. The channels were in alluvium and generally had layered deposits of scoria material visible in the channel banks. These channels had well developed bar formations on the meander bends, which suggest a variety of flow frequencies and magnitudes. The channel banks were steep and were active both vertically and laterally. The channel beds were typically composed of finer clays interspersed with scoria pebbles and some larger scoria rocks. The floodplain was poorly developed in most instances. The stream channels themselves were typically lacking vegetation, with minor occurrences of some grasses and recruitment of juvenile trees inside the channel banks. The channel shape was mostly rectangular. The floodplain was generally well vegetated with a grass-shrub community and some cottonwoods near the mouth.

In general, cottonwood trees were not abundant until a fourth order or higher basin had developed. The second order reaches in Stratum A also exhibited some channel development. However, the second order reaches did not have the well developed channel characteristics of the third order reaches. Generally, second order reaches exhibited both continuous and discontinuous channel development. Although, valley margins of the second order reaches varied greatly, the third order reaches were well-defined.

The investigated reaches of Strata B and C were similar in terms of channel characteristics. The third order channels in these strata, with the exception of one reach in Stratum C, had well defined stream channels at the mouth. However, channel profiles within both strata were commonly broken in the lower reaches as a result of anthropogenic disturbances such as roads, culverts, and fields, and valley-filling as described earlier. The channels in the upper portion of these reaches were typically not well defined due to valley-filling, immature development in the form of discontinuous and The continuous and discontinuous channels were channels. typically well vegetated with grasses. The low-flow channels within the stream-channels at the mouth were difficult to identify in these reaches. The channel at the mouth was mostly V-shaped. These third order reaches were not laterally active.

213

The field investigations suggest that stream channels begin development at third or higher order basins. The stream channels are developing in fill material beginning at the mouth, reworking the fill material. The third order channels are at various stages of development.

POOL AND DISCONTINUOUS CHANNEL FORMATION

Pool and discontinuous channel development of the drainage basins in the Eastern Powder River Basin is uniquely complex. Each was observed to form on both geologic formations and across all orders. Pools typically formed in conjunction with areas of valley-filling and in fill material on the outside valley meanders (Figure 28). The reach gradient above the fill area was typically steeper. Flow competence appears to be dissipated at the junction of the fill material and the steeper gradient above the fill. Flow is then dispersed across the fill material until it reaches a valley meander. valley meander is a point of constriction that The concentrates this dispersed flow. Increased boundary shear and downward deflection of the flow against the outside meander bank is thought to lead to pool formation.

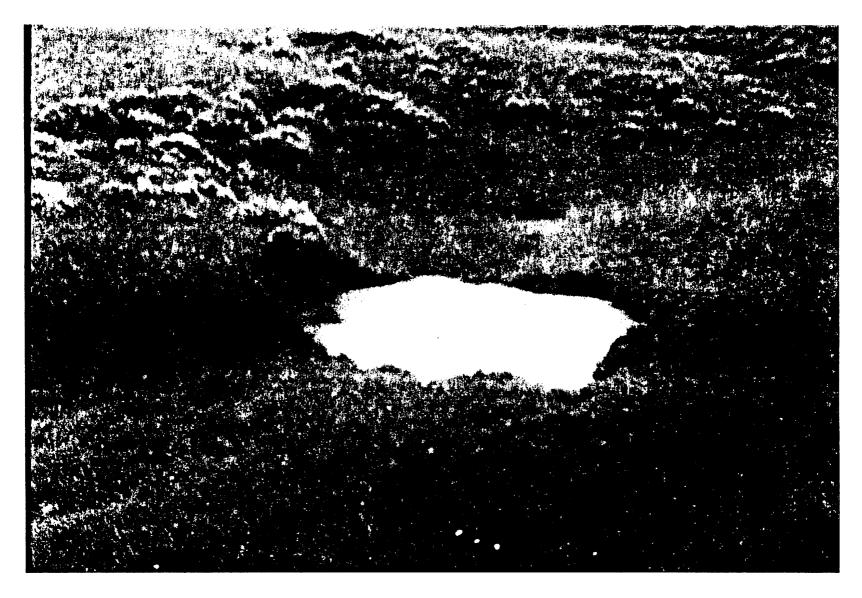


Figure 28. Pool formation in fill material on a valley meander.

Pools and discontinuous channels also form in straight, steeper gradient valley sections below the valley-fill and valley meander (Figure 29). Low and moderate flow competence is believed to be lost in the pools on the meander bends. Competence of these flows is then regained by erosion in the straight, higher gradient areas below the pool. Initially, this condition leads to the development of pools and later discontinuous channels such as that shown in Figure 29. Larger flows may be responsible for scouring material deposited by low and moderate flows in the pools and discontinuous channels.

RECONSTRUCTION OF DRAINAGE BASINS AND DRAINAGE NETWORKS

Drainage basin classification efforts have defined three strata of basins in the study area, therefore, the most appropriate stratum for design needs, needs to be determined. The dichotomous key presented is relatively simple but the user needs to decide whether or not their drainage basin falls within a specified stratum. The design equations may not be appropriate if aerial, linear, or relief components of the basin of interest are outside the specified range for which the design equations were developed.

The next step is to ensure that the appropriate drainage basin order is being utilized. All design equations in this study were developed for the drainage basin order determined

Figure 29. Third order discontinous channel below a meander bend.

217

from blue-lines on USGS 1:24,000 topographic maps; therefore, the scales of delineation need to be in agreement. A correction factor can be developed for a particular basin by examining the basin order on the USGS 1:24,000 topographic maps and comparing it to the order at the field level or from larger scale maps. These equations should not be applied without this conversion.

The design equations from this study were developed to provide flexibility in use. For example, basin area can be used to predict the relief ratio of the basin to be designed or the relief ratio can be determined from predicted values of basin relief and basin length. Additionally, if parameters such as basin relief cannot be manipulated in the recontouring process, then the actual value can be used and parameters such as basin length can be manipulated, exercising caution. Similarly, the design equations can be used to design an entire third order basin or a first order basin within a particular third order basin.

Several geomorphic relationships should be considered before the design process begins. First, the drainage basin size, length, shape, and orientation need to be evaluated. The drainage basin size is directly related to the total basin runoff; however, the relationship is not linear (Simpson and Botz, 1985). The drainage basin length and shape also affect drainage characteristics. For example, a long, tear-drop shaped basin will not have as sharp a peak discharge as will a shorter, more circular basin of the same size. The size, length, and shape of a basin can be manipulated for the design objectives: 1) water transport, or 2) water storage. Additionally, the basin aspect can affect the amount of blowing snow that is trapped and evaporation on hillslopes and in drainage networks (Simpson and Botz, 1985). In the field, that drainage networks banks which had an east or northeast aspect typically had a significant shrub component.

Additional consideration needs to be given to hillslope The first consideration is that of overland flow. design. Overland flow dominates the first order hydrologic regime. The goal of design should be to disperse overland flow (Toy et The concentration of overland flow across al., 1987). hillslopes may initiate erosion and lead to gullying before vegetation is established. Manipulations such as deep ripping or pitting would help alleviate this problem. Divis and Tarquin (1981) noted that the distance from the drainage divide down the hillslope to the drainage network was approximately the same distance as the head of a first order drainage network to the divide. Field observations in this study indicate this distance was variable.

The shape of the hillslope also needs to be considered. There are four primary hillslope shapes: 1) concave, 2) complex, 3) uniform, and 4) convex (Toy et al, 1987) (Figure 30). The concave slope is the most desirable because the steepest portion of the slope is in the upper reaches where

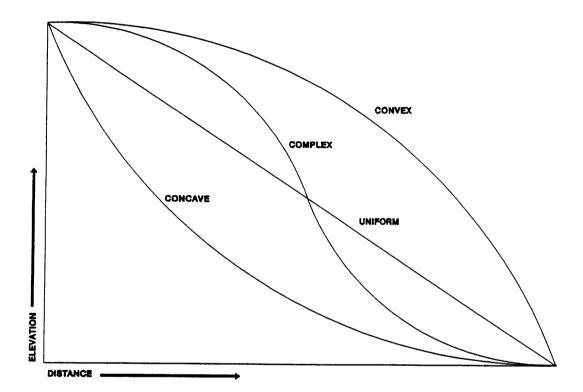
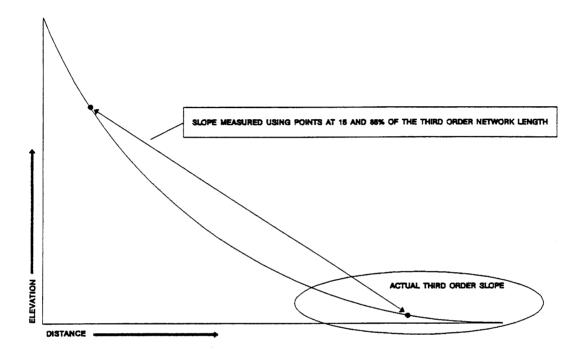


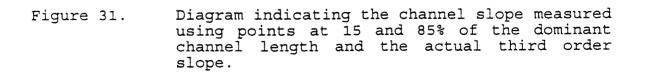
Figure 30.

Schematic diagram of the four hillslope shapes: concave, complex, uniform, and convex.

the power of water is at a minimum and therefore is less erosive. The complex slopes occur most frequently in natural systems of the semiarid environment (Toy et al., 1987). Complex slopes are a combination of slopes: 1) convex in the upper reaches, 2) uniform in the center, and 3) concave in the lower reaches. The uniform slope is not as desirable as the concave or complex but is more desirable than a convex slope. Hillslope length is another important consideration. As hillslope gradient is reduced, the hillslope length increases. Alternatively, steep hillslopes are shorter (Toy et al., 1987). The advantage of shorter hillslope lengths is that the potential for the concentration of water is reduced. All four hillslope shapes were observed in the field.

The basin slope also needs to be considered. Gross basin slope, basin relief divided by basin length, is represented by relief ratio in this study. The low stripping ratios in the Eastern Powder River Basin lead to an overall surface lowering in the post-mine topography. Subsequently, basin relief becomes one of the more inflexible elements in the design However, the same principles that applied to process. hillslopes apply to basin slope and can be adjusted to meet the design objectives. If water transport is the desired shortened. outcome, then basin length should be Alternatively, if water storage is the objective, the basin should be enlarged.


The next concern in the design process is integrating the drainage basin and interfluve (hillslope) to a drainage network. The variable that relates the drainage basin and drainage network is drainage density. Drainage density presents a complex problem. First, infiltration of water on the reclaimed landscape is, at least initially, slower than the surrounding undisturbed landscape (Stiller et al., 1980); therefore, runoff is higher and drainage density will This condition may lead to the eventually increase. conclusion that drainage densities should be increased in the reclaimed environment. However, increasing drainage density can lead to increased flood peaks (Lowham and Smith, 1993; and Stiller et al., 1980). An alternative proposed by Zimpfer et al. (1982) was to not reclaim first order channels in the reclaimed environment. In general, there is a consensus among investigators that drainage densities should be decreased slightly in the reclaimed environment. Throughout the field investigations of this study, sizes of tributaries entering the main channels were variable. Also, drainage basins that were steep and had erosive soils tended to have larger entering the main channel. tributaries and gullies Alternatively, those basins of low gradient and relatively good vegetation cover had only minor gullies entering the main Therefore, the drainage densities should be channel. reclaimed to approximately the same values as those provided in this study.


It is important to note that the network order shown on the USGS 1:24,000 topographic maps does not represent the same order at the field level. A first order network shown on USGS 1:24,000 topographic maps is at least a third order network at the field level. Order will vary with map scale and geographic location; therefore, a scale conversion factor needs to be developed before utilizing drainage density values.

The next consideration is adding a gradient to the determined channel lengths. The goal of design dictates what type of gradient and profile will be reclaimed. If water transport is the objective of design, then short, moderate slopes with a concave-up profile should be designed (Toy and Hadley, 1987). However, if water harvesting and sediment control are the objective of design, then rough, broken profiles such as those observed for first order basins, is recommended. The field measured bed slope should be used for third order networks. The third order channel slope measured from the USGS 1:24,000 topographic maps encompasses the steeper slopes of the first and second order networks, which inflates the estimate (Figure 31).

The geometric dimensions of drainage networks in Stratum A, B, and C, and second order networks in Strata B and C are determined primarily by the high bank characteristics. The design equations were developed so that the valley characteristics such as high bank area could be related to

223

drainage basin and/or drainage network characteristics. The high bank characteristics of these drainage basins are the most distinguishing and therefore are the focus of design. Typically, the medium bank is indicative of past drainage network structure, and the low bank is representative of fill material at the junction of the bed and bank.

Broad, flat transition areas should be the focus of design for third order basins in Strata B and C. The third order reaches in Stratum A typically had well defined stream channels and therefore are the focus of design. The design equations developed using estimated bankfull discharge following the work of Leopold and Maddock (1953) are suspect. The product of coefficients rarely equal unity, which may indicate that the drainage basins do not achieve bankfull discharge at equal frequencies (Apley, 1976). Additionally, channel top width did not relate well to the estimated Therefore, the design discharge in several instances. equations developed using stream channel area are more reliable and should be used for design. The third order channels which contain discontinuous and broken profiles may also negate the use of predicted bankfull discharge in design. The valley characteristics in all three third order strata indicate the characteristics of the developing floodplain within which the stream channels are or have developed.

There are a few general points which should be considered before utilizing the design equations produced in this study.

First, the reclaimed landscape can only become part of the natural ecosystem by replicating the geomorphic forms of its' surroundings. The main problem with geomorphic designs however, is that geology has been completely disrupted during the mining process and cannot be recreated. Because replication cannot be accomplished, a close simulation of the natural geomorphic surroundings should be the goal of reconstruction efforts. The reclaimed landscape will undergo processes of adjustment to the surrounding undisturbed landscape. Furthermore, adjustment will occur through time regardless of the methods used to design that reclaimed environment. Therefore, the more closely the design of the reclaimed environment follows natural landforms, the greater the potential for minimizing adjustments and avoiding violation of natural geomorphic relationships that exist in the Eastern Powder River Basin. The drainage basins in the Eastern Powder River Basin are relatively immature and the interaction of form and process is complex. Therefore, for the landscape to form and mature, adjustments and erosion must and will occur (Figure 32 and 33).

DESIGN EXAMPLE

A design example is presented to illustrate the use of the geomorphic design equations developed in this study. In this example, a third order drainage basin in Stratum C having an



Figure 32. First order reach after short-duration, high intensity thunderstorm.



Figure 33. Fourth order reach one day after precipitation was received.

area of 5.14 mi² is used to complete a systems design including first and second order basins.

The design equations in Tables 66 and 67 were used to characterize the third order basin (Table 75). Based upon these equations, this third order basin would have three second order and 11 first order drainage basins. The predicted drainage density indicates that 2.73 miles of channel length should be reclaimed for every square mile of basin area. Additionally, 14 miles of channel length should be reclaimed within this basin. The main channel length should comprise 5.36 miles of the total 14 miles.

The mean basin area within each order was then used to design the lower order basins. The design equations in Tables 60 and 61 are used for second order basins (Table 76) and Tables 55 and 56 for first order basins (Table 77). Note that only 9 of the 11 first order basins are tributary to the second order basins by the relationship of total second order channel length to the number of first orders. The other two first order basins can be selectively placed. It would be anticipated that these two first order basins would be sidetributaries to the third order channel. The length of overland flow developed for the first order basins indicates the relative distance from the drainage divide to the head of each first order drainage network.

Table 75. Predicted design characteristics for a third order drainage basin in Stratum C (using a basin area of 5.14 miles^2).

haain narimatan -	5 00 + 5 4 4 ^{0,51}	10.10
basin perimeter =	$5.39 * 5.14^{0.51} =$	12.42 miles
basin length =	1.71 * 5.14 ^{0.51} =	3.94 miles
basin relief =	161 * (5.14 ^{-0.41}) * (3.94 ^{0.93}) =	294.54 feet
drainage density =	4.31 • 5.14 ^{-0.28} =	2.73 mi./mi. ²
main channel length =	1.91 * 5.14 ^{0.63} =	5.36 miles
total channel length =	4.31 * 5.14 ^{0.72} =	14.00 miles
relief ratio =	155 * 5.14 ^{-0.46} =	73.00 feet/mile
valley length =	1.59 * 5.14 ^{0.63} =	4.46 miles
channel slope =	0.000078 * 73.00 ^{1.07} =	0.008 ft/ft
used relief =	3490 * (5.14 ^{0.50}) * (0.008 ^{0.81}) =	158.42 feet
No. of second orders =	$3.53 * (14.00^{0.74}) * (0.008^{0.45}) =$	3 (2.83)
No. of first orders =	$10.05 * (14.00^{1.21}) * (0.008^{0.64}) =$	11 (11.14)
valley area =	$-2300 + (3.58 \times 10^5 * 0.008) =$	564.00 feet ²
top width =	$2.98 \times 564.00^{0.57} =$	110.27 feet
average depth =	0.34 * 564.00 ^{0.43} =	5.18 feet

Table 76. Predicted design characteristics for a second order drainage basin in Stratum C (using a basin area of 1.41 miles²).

basin perimeter =	5.01 * $1.41^{0.57}$ =	6.09 miles
basin length =	1.55 * $1.41^{0.54}$ =	1.87 miles
basin relief =	135 * $(1.41^{-0.30})$ * $(1.87^{0.79})$ =	199.67 feet
drainage density =	2.74 * $1.41^{-0.23}$ =	2.53 mi/mi ²
main channel length =	1.62 * $1.41^{0.69}$ =	2.05 miles
total channel length =	$2.74 * 1.41^{0.77} =$	3.57 miles
relief ratio =	123 * 1.41 ^{-0.41} =	106.84 ft/mi
valley length =	1.48 * 1.41 ^{0.65} =	1.85 miles
channel slope =	0.000097 * 106.84 ^{1.05} =	0.013 ft/ft
used relief =	$0.68 * 199.67^{0.93} =$	93.71 feet
No. of first orders =	$1.63 * 3.57^{0.55} =$	3 (3.28)
valley area =	-4854 + (286200 * 0.018) =	297.60 ft ²
top width =	61.13 + (0.032 * 297.60) =	70.65 feet
average depth =	5.97 + (0.003 * 297.60) =	6.86 feet
bed width =	-41.79 + (0.77 * 70.65) =	12.61 feet

Table 77. Predicted design characteristics for a first order drainage basin in Stratum C (using a basin area of 0.25 miles²).

	4.78 * 0.25 ^{0.49} =	2.42 miles
basin perimeter =	4.70 0.25 -	
basin length =	$1.37 * 0.25^{0.40} =$	0.79 miles
basin relief =	87.68 * (0.25 ^{-0.37}) * (0.79 ^{0.76}) =	122.42 feet
drainage density =	1.19 * 0.25 ^{-0.54} =	2.52 mi/mi ²
main channel length =	0.81 * 0.79 ^{1.08} =	0.63 miles
valley length =	$0.77 * 0.79^{1.07} =$	0.60 miles
length of overland flow =	1/(2 * 2.52) =	0.20 miles
relief ratio =	2.46 * 122.42 ^{0.88} =	169.14 ft/mi
used relief =	0.97 * 122.42 ^{0.90} =	73.42 feet
channel slope =	0.00042 * 169.14 ^{0.79} =	0.024 ft/ft
sinuosity =	0.98 * 0.024 ^{-0.02}	1.06
valley area =	0.68 * 122.42 ^{1.37} =	493.02 ft ²
top width =	1767 * (122.42 ^{-0.48}) * (1.06 ^{-6.75}) =	118.65 feet
average depth =	0.015 * 493.02 ^{0.93} =	4.79 feet
bed width =	350 0.006 ^{0.51} =	25.76 feet

•

FUTURE RESEARCH

Several aspects of the geomorphic approach would benefit from further investigation. Soil samples were collected during the field investigations of this study. Approximately 600 core-tube (3 inch diameter, 8 inches deep) samples were collected. Although not analyzed in this study, these samples may provide additional stratum characterization and classification parameters such as a D50 for the bed and bank material.

The database of this study could be developed into a bond release tool. Monitoring of the reclaimed landscape would indicate if the geomorphic characteristics of the reclaimed landscape reflect characteristics similar to the undisturbed environment, thereby facilitating a scientific basis for bond release. Additional monitoring data such as infiltration, runoff, vegetation cover and production, soil type and texture, local precipitation, and a variety of other diagnostic parameters could be added to the infrastructure of the developed classification and characterized stratum to strengthen utility for design and bond release.

The length of overland flow is an additional area of concern. Because overland flow dominates the small drainage basin regime, it becomes a critical element in determining where a drainage network actually begins below the drainage divide and across hillslopes. This study observed that the length of overland flow was highly variable throughout the study area. A topographic low from the drainage divide to the head of the drainage network shown as a blue-line on USGS 1:24,000 topographic maps typically represented overland flow.

:

CHAPTER VIII

CONCLUSIONS

- Drainage basins of the Eastern Powder River Basin are controlled primarily by the geologic parent material upon which they are formed.

An immediate research concern would be to extend this study to directly compare in greater detail the influences of surficial geology on the morphometric characteristics of the drainage basins.

- Drainage basins of the Eastern Powder River Basin can be distinguished by similarities of geologic material and morphometric data and to a lesser extent vegetation and soils. These groups of drainage basins can be simulated by reclamation personnel attempting to create drainage basins that reflect the current hydrologic regime of the region. The provided dichotomous key should allow reclamation personnel to identify the type of drainage basin that they are disturbing as well as the kind that they may be able to restore, based upon substrate, area, and relief factors determined in the mine plans.

234

This classification system of drainage basins identifies the primary forces or variables at work in shaping the drainage networks of the Powder River Basin. Used properly, it should assist mine land reclamation personnel in the private and public sectors in determining the characteristics of reconstructed basins. Such knowledge, combined with the design formulae provided, should allow the reconstruction of drainage basins and stream channels that accurately reflect the geohydrologic regime of the Powder River Basin.

Principal components analysis and cluster analysis seem to be effective in geomorphic studies. Trends in variability in the data set and similarities in large data sets that missed might otherwise be can be identified in multivariate analysis. Close attention to the assumptions, such as multivariate normality of data, involved in these procedures may not be possible due to the non-normal nature of some of the data.

A study similar in analytical techniques to this one but without pre-sorting the drainage basins by order may yield beneficial results. It would also be of interest to eliminate the variables associated with size (where most of the variability lies) and conduct a study similar to this one on the variables that reflect properties of a drainage basin that can be compared directly between two drainage basins regardless of size. Variables such as drainage density, relief ratio, channel slope, and circularity ratio would be good examples. A similar analysis using those variables could well lead to slightly different classifications.

- First order basins in Strata A, B, and C, and second order basins in Stratum B and C are undergoing or have undergone major processes of gradient adjustment. The drainage networks within these strata should be designed using the high bank characteristics. These drainage networks exhibit both water storage and transport characteristics without channel development.
- Third order drainage networks in Strata B and C should be designed as transitional areas of deposition suitable for channel development in the upper reaches with defined channels towards the mouth. Third order drainage networks in Stratum A should be designed with stream channel characteristics throughout.

- The third order drainage basins of the Eastern Powder River Basin are in the process of gradient adjustment, exhibiting cut-and-fill processes. The major adjustments in the form of headcuts moving upstream may have begun as a result of a climatic change several thousand years ago.
- Drainage basin and network designs based upon natural geomorphic characteristics should provide a more suitable reclaimed landscape with irevitable adjustments to the surroundings than purely engineered designs.
- If studies such as this are to be made easier and more beneficial to regulatory agencies and industry, there is need for a uniform database compilation. Standard scales need to be established for maps, and procedures for measuring morphometric variables need to be standardized. Standardization would facilitate transfer of information from one mine permit to another.

Valuable time and information could be saved by implimenting standard data collection procedures within the region so that data gathered in one location can be compared to data gathered in another. Studies wishing to examine the Eastern Powder River Basin coal field cannot use the enormous amount of available data due to the variation of data collection techniques from mine to mine.

CHAPTER IX

LITERATURE CITED

Analytical Software. 1992. STATISTX version 4.0: User's Manual. Analytical Software, St. Paul, Minnesota.

Apley, Theodore E. 1976. The hydraulic geometry of the ephemeral channels of the eastern Powder River Basin, Wyoming. M.S. Department of Agricultural Engineering, University of Wyoming. Laramie, Wyoming.

ARC-INFO v.6.11 (Environmental Research Systems Institute Inc.). 1990. Redlands, CA. Environmental Research Systems Institute Inc.

AUTO-CAD v. 12 c2. 1992. Autodesk Inc. Sausalito, CA.

- Bailey, Robert G., Robert D. Pfister, and Jan A. Henderson. 1978. Nature of land and resource classification. Journal of Forestry, October 1978.
- Benson, M.A., and Tate Dalrymple. 1984. General Field and Office Procedures for Indirect Discharge Measurements. U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A1.
- Bishop, M.B. 1980. Geomorphic concepts and their application to ephemeral stream channel reclamation. <u>In</u> Proceedings: Second Wyoming Mining Hydrology Symposium, Laramie, WY. University of Wyoming. p. 249-261.
- Black, Peter E. 1991. <u>Watershed hydrology.</u> Englewood Cliffs, New Jersey. Prentice Hall.
- Borchert, J.P. 1980. Geography and environmental controls in the United States: The case of surface mining. <u>In</u> I.G.U. Symposium of Commission on Environmental Problems, Study and Control of Anthropogenic Transformation of Natural Systems. Moscow ID. p. 188-197
- Bowling, K.C. 1978. History of legislation for different states. <u>In</u> Schaller, F.W. and P. Sutton, eds., Reclamation of Drastically Disturbed Lands. Madison WI. ASA, CSSA, SCS. p. 95-116.

- Brown, R.E. 1974. Land and Water Law Review, 1973; Comments-Wyoming Environmental Act of 1973. Volume 9, No. 1, p. 65-132. University of Wyoming.
- Bureau of Land Management (BLM). 1975. Environmental Impact Statement. (Draft Environmental Impact Statement, Regional Analysis, Development of Coal Resources in the Eastern Powder River Coal Basin of Wyoming). 5 Vol. U.S. Department of the Interior.
- Carter Mining, 1985. Mine plan on file with Wyoming Department of Environmental Quality, Cheyenne WY.
- Chorley, R.J. and B.A. Kennedy. 1971. Physical geography: A systems approach. Prentice-Hall. London, England. 370 p.
- Chorley, Richard J., Stanley A. Schumm, and David E. Sugden. 1984. Geomorphology. Methuen and Co. Ltd, London and New York.
- Clarendon, David T. 1991. Drainage Basin Differences in a Land Classification Scheme on the Medicine Bow National Forest. M.S. Thesis, Department of Geography, University of Wyoming, Laramie, Wyoming.
- Craig, G.S. and J.G. Rankl. 1978. Analysis of runoff from small drainage basins in Wyoming. Geological Survey Water-Supply Paper 2056. Department of the Interior. United States Government Printing Office, Washington, D.C. 70 p.
- Dalrymple, Tate, and M.A. Benson. 1989. Measurement of Peak Discharge by the Slope-Area Method. U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A2.
- Divis, A.F. and P. A. Tarquin. 1981. The geohydrologic regime of the Powder River Basis. Wheatridge, CO. Environmental Science Associates.
- Driese, Ken L. and William A. Reimers. 1992. GAP Analysis of Wyoming. Unpublished data. Departments of Zoology and Botany, University of Wyoming. Laramie, Wyoming.
- Dunteman, George H. 1989. <u>Principal components analysis</u>. Sage University Papers Series 07-069. Newbury Park, CA. Sage Publications.

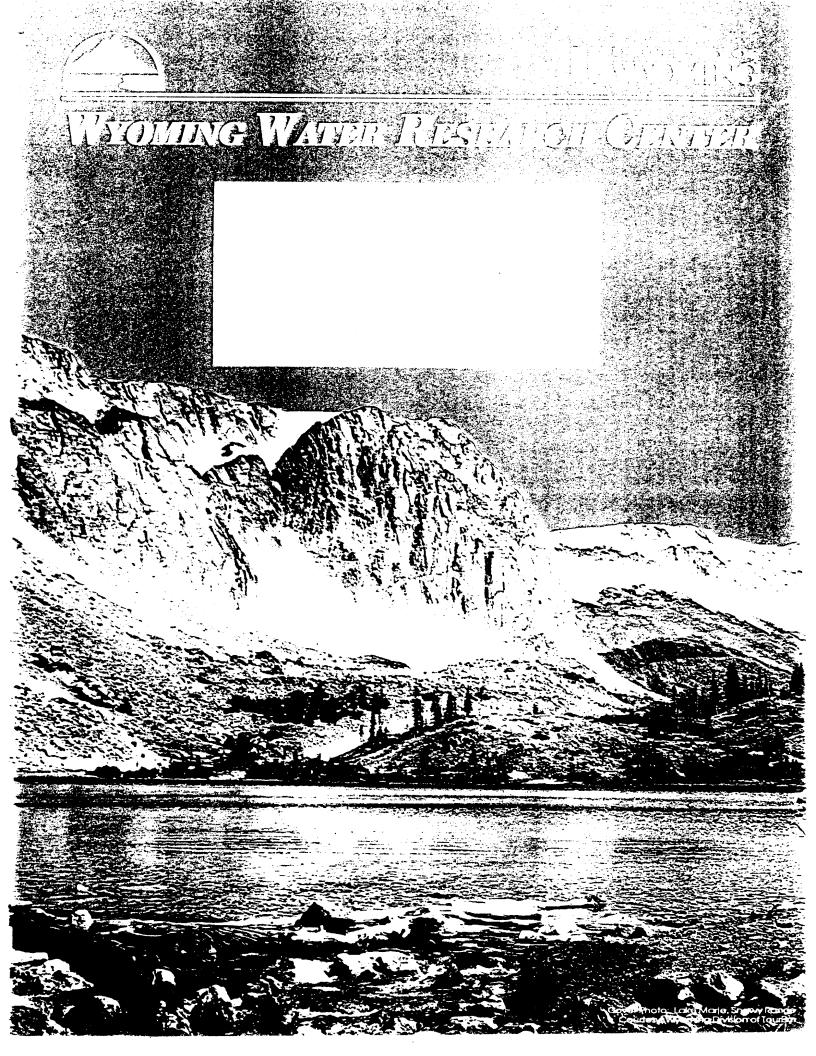
- Eastwood, Daniel, Yeou-Koung Tung, and David S. Benner. 1994. Regional analysis of extreme precipitation in Wyoming. Presented in: Proceedings of the Association of State Dam Safety Officials. Western Regional Conference. Park City, Utah.
- Elias, Thomas S. 1980. <u>The Complete Trees of North</u> <u>America</u>. Book Division Times Mirror Magazines Inc. New York, New York.
- Eyles R.J. 1970. A classification of West Malaysian drainage basins. Annals of the Association of American Geographers v. 61, p. 460-467
- Federal Register. 1976. Title 30-Mineral Resources. Chapter 11-Geological Survey, Department of the Interior. Part 211-Coal Mining Operating Regulations. Volume 41, No. 238, December 9, 1976. p. 53793-53797.
- GAP Analysis. 1992 (Unpublished). Vegetation Survey of Wyoming. Department of Zoology and Botany, University of Wyoming, Laramie, Wyoming.
- Glass, Gary B. 1978. Wyoming Coal Fields, 1978. Geological Survey of Wyoming, Public Information Circular No. 9, Laramie, Wyoming.
- Glass, Gary B. 1980. Coal Resources in the Powder River Coal Basin. (In) Gary B. Glass (ed.) Guidebook to the Coal Geology of the Powder River Basin, Wyoming. Geological Survey of Wyoming, Public Information Circular No. 14., Laramie, Wyoming.
- Glassey, T.W., T.J. Dunnewald, John Brock, Harry Irving, Neff Tippetts, and Conrad Rohrer. 1955. Soil Survey (reconnaissance) of Campbell County, Wyoming. U.S. Department of Agriculture in cooperation with the University of Wyoming Agricultural Experiment Station, Series 1939, no. 22.
- Grant, Gordon E., Joseph E. Duval, Greg J. Koerper, and James L. Fogg. 1992. XSPRO: A Channel Cross-section Analyzer. U.S. Department of the Interior, Bureau of Land Management and U.S. Department of Agriculture, Forest Service Technical Note 387.
- Gregory, K.J., and D.E. Walling. 1973. Drainage Basin Form and Process. Edward Arnold Ltd., London.

- Gregory, D.I., et al. 1987. Determination of Approximate Original Contour. Paper presented at the combined Fourth Biennial Billings Symposium on Mining and Reclamation in the West and the National Meeting of the American Society for Surface Mining and Reclamation. March 17-19, 1987. Billings, MT.
- Hadley, R.F. and S.A. Schumm. 1961. Sediment sources and drainage basin characteristics in upper Cheyenne River basin. <u>In</u>: Hydrology of the upper Cheyenne River basin. U.S. Geological Survey professional paper 1531. U.S. Department of the Interior. Washington, D.C.
- Hadley, R.F. and Terrence J. Toy. 1987. Geomorphology and reclamation of disturbed lands. Orlando, FL. Academic Press, Inc.
- Hansen, Paul L., Steve W. Chadde, and Robert D. Pfister. 1988. <u>Riparian Dominance Types of Montana</u>. Miscellaneous publication No. 49. Montana Forest and Conservation Experiment Station. University of Montana. Missoula, MT 59812
- Hartigan, J.A. 1975. <u>Clustering algorithms.</u> New York. John Wiley and Sons Inc.
- Hasfurther, V.H. 1994. Personal communication. Unpublished mean annual precipitation contour map of Campbell County, Wyoming.
- Heede, B.H. 1981. Analysis and guidelines for watershed rehabilitation. <u>In</u> Proceedings of a symposium on watershed rehabilitation in Redwood National Forest Park and other Pacific Coastal areas. R.N. Coats, ed., August 1981. 360 p.
- Horton, Robert E. 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, v. 56, p. 275-370, March, 1945.
- Imes, A.C. and M.K. Wali. 1978. Governmental regulation of reclamation in the western United States: An ecological perspective. Reclamation Review, Volume 1, p. 75-88. Pergamon Press, USA.
- Keefer, W.R. and R.F. Hadley. 1976. Land and natural resource information and some potential environmental effects of surface mining of coal in the Gillette area, Wyoming; U.S. Geological Survey Circular 743, 27 p.

- Knutson, Kent. 1982. Regional comparison of drainage basin morphometry; eastern Powder River Basin, Wyoming. <u>In</u>; Proceedings, Hydrology Symposium on Surface Coal Mines in the Powder River Basin. Gillette, WY. 275 p.
- Knutson, Kent. 1986. Regional comparison of drainage basin morphometry; eastern Powder River Basin, Wyoming. Denver, Colorado.
- Langbein, W.B. and S.A. Schumm. 1958. Yield of sediment in relation to mean annual precipitation. Am. Geophys. Union Transactions 39. p. 1,076-1,084.
- Leopold, Luna B., and Thomas Maddock, Jr. 1953. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications. U.S. Geological Survey Professional Paper 252.
- Leopold, L.B. and J.P. Miller. 1956. Ephemeral streams: Hydraulic factors and their relation to the drainage net. Geological Survey Paper 282-A. Washington, D.C. 35 p.
- Leopold, L.B., W.W. Emmett and R.M. Myrick. 1966. Channel and hillslope processes in a semiarid area, New Mexico. U.S. Geological Survey Professional Paper 352. p. 193-253.
- Lidstone, Christopher D., 1982. Stream Channel Reconstruction and Drainage Basin Stability. (In) Hydrology Symposium on Surface Coal Mines in Powder River Basin, November 3-5, 1982, Gillette, Wyoming.
- Love, J.D., Ann Coe Christiansen, and Laura W. McGrew. 1987. Geologic map of the Newcastle 1°x2° quadrangle Northeastern Wyoming and Western South Dakota. Map Series 25-I. Wyoming Geological Survey. Laramie, Wyoming.
- Love, J.D., Ann Coe Christiansen, Laura W. McGrew, and Jon K. King. 1990. Geologic map of the Gillette 1°x2° quadrangle Northeastern Wyoming and Western South Dakota. Map Series 25-G. Wyoming Geological Survey. Laramie, Wyoming.
- Lowham, H.W. 1976. Techniques for estimating flow characteristics of Wyoming streams. United States Geological Survey Water-Resources Investigations 76-112. Department of the Interior.

- Lowham, H.W. 1986. Climate. <u>In</u>; Hydrology of Area 50, Northern Great Plains and Rocky Mountain Coal Provinces, Wyoming and Montana. Water Resources Investigations Open-File Report 83-545. U.S. Department of the Interior Geological Survey. p. 12.
- Lowham, H.W. 1988. Streamflows in Wyoming. U.S. Geological Survey Water-Resources Investigations Report 88-4045.
- Lowham, H.W. and M. E. Smith. 1993. Characteristics of Fluvial Systems in the Plains and Deserts of Wyoming. Water Resources Investigations Report 91-4153. U.S. Geological Survey. Cheyenne, Wyoming. 57 p.
- Lowry, Marlin E., James F. Wilson, and others. 1986. Hydrology of area 50 northern great plains and Rocky Mountain coal provinces, Wyoming and Montana. U.S. Geological Survey/ Water Resources Investigations Open-File Report 83-545. U.S. Geological Survey Cheyenne, Wyoming.
- Marston, Richard A. 1978. Morhpometric Indices of Streamflow and Sediment Yield from Mountain Watershed in Western Oregon. U.S.Department of Agriculture, Forest Service, Siuslaw National Forest.
- Martin, Lawrence J., David L. Naftz, H.W. Lowham and J.G. Rankl. 1988. Cumulative potential hydrologic impacts of surface coal mining in the eastern Powder River structural basin, northeastern Wyoming. USGS Water Resources Investigations Report 88-4046. Cheyenne, Wyoming.
- Martner, Brooks E. 1986. <u>Wyoming climate atlas</u>. Wyoming Water Resource Center and University of Wyoming through the University of Nebraska Press. Lincoln NE.
- McLauphlin, Keith. 1977. Geomorphic Characteristics of A Watershed: Their Meaning and Management Activities (Unpublished). U.S. Forest Service, Medicine Bow National Forest.
- Munn, Larry C. Ph.D. 1994. Personal communication. Unpublished field observations. Professor of Plant Soils and Insect Sciences, University of Wyoming.
- National Environmental Policy Act of 1969. Public Law 91-190. <u>In</u> Compilation of Selected Energy-Related Legislation, Volume IV, 1981. United States Government Printing Office, Washington, D.C. p. 249-254.

- National Research Council. 1981. Surface mining, soil, coal and society. Washington D.C. National Academy Press. 233 p.
- Nehring, R. et al. 1976. Coal development and government regulation in the Northern Great Plains: A preliminary report. Rand Corp. Santa Monica, CA. 199 p.
- Orf, T.E. 1974. Land and Water Law Review, 1973; Comments-Wyoming Environmental Act of 1973. Volume 9, No. 1, pgs. 65-132. University of Wyoming.
- Parker, R.S. 1977. Experimental study of basin evolution and its hydrologic implications. Fort Collins, Co. Colorado State University, unpublished dissertation.
- Peterson, D.A. 1986. Vegetation. <u>In</u>; Hydrology of Area 50, Northern Great Plains and Rocky Mountain Coal Provinces, Wyoming and Montana. Water Resources Investigations Open-File Report 83-545. U.S. Department of the Interior Geological Survey. p. 20.
- Rankl, J.G. 1986. Drainage. <u>In</u>; Hydrology of Area 50, Northern Great Plains and Rocky Mountain Coal Provinces, Wyoming and Montana. Water Resources Investigations Open-File Report 83-545. U.S. Department of the Interior Geological Survey. p. 16.
- Rankl, J.G. 1986. Soils. <u>In</u>; Hydrology of Area 50, Northern Great Plains and Rocky Mountain Coal Provinces, Wyoming and Montana. Water Resources Investigations Open-File Report 83-545. U.S. Department of the Interior Geological Survey. p. 18.
- Rankl, J.G. 1987. Analysis of sediment production from two small semiarid basins in Wyoming. U.S. Geological Survey Water Investigations Report 85-4314. 27p.
- Rathburn, S.L., P.A. Rechard, T. Hanlin and D.R. Jensen. 1993. Long-term stability of designed ephemeral channels at reclaimed coal mines, Wyoming. Final Technical Report for AML Research Program. Western Water Consultants, Laramie, WY. 42 p.
- Rechard, R. 1980. Suggested stream pattern restoration for the Eastern Powder River Basin. <u>In</u> Proceedings of the Second Wyoming Mining Hydrology Symposium. Water Resources Research Institute, Laramie, WY. May 1980. p. 214-248.


- Rechard, Robert Paul. 1980. Meander Parameters in the Eastern Powder River Basin. M.S. Thesis, Department of Civil Engineering, University of Wyoming, Laramie, Wyoming.
- Reheis, Marith C. 1987. Surficial geologic map of the Gillette 30'x60' quadrangle, Campbell and Crook Counties, Wyoming. Map C-105 U.S. Geological Survey Coal Investigations Map. U.S. Geological Survey. Reston, VA.
- Reheis, Marith C. and Donald A. Coates 1987. Surficial geologic map of the Reno Junction 30'x60' quadrangle, Campbell and Weston Counties, Wyoming. Map C-106 U.S. Geological Survey Coal Investigations Map. U.S. Geological Survey. Reston, Va.
- Reheis, Marith C. and Van S. Williams 1984. Surficial geologic map of the Recluse 30'x60' quadrangle, Wyoming and Montana. Map C-91-5 U.S. Geological Survey Coal Investigations Map. U.S. Geological Survey. Reston, Va.
- SAS Institute Inc. 1989. Statistical Analysis Software, version 6.09. Cary, NC.
- Schaefer, R. Gregory. 1982. Continuous Streamflow Modeling in the Eastern Powder River Basin. M.S. Thesis, Department of Civil Engineering, University of Wyoming, Laramie, Wyoming.
- SCS (Soil Conservation Service). 1992. State soil geographic database. (STATSGO). Miscellaneous publication number 1492. Soil Conservation Service. U.S. Department of Agriculture, Casper, Wyoming.
- Scheidegger, A.E. 1965. The Algebra of Stream-Order Numbers. U.S. Geological Survey Professional Paper, 525-B.
- Session Laws of Wyoming. 1969. Chapter 192 §6 page 396.
- Shreve, R.L. 1967. Infinite Topologically Random Channel Networks. Journal of Geology, V. 75: 178-186.
- Simons, Daryl B. and Fuat Senturk. 1977. Sediment Transport Technology. Water Resources Publications, Fort Collins, Colorado.
- Simpson, David W. and M.K. Botz. 1985. Concepts and Practices in Replacement of Water Sources on Reclaimed Mined Lands. (In) National Meeting of the American Society for Surface Mining and Reclamation, October 8-10, 1985, Denver, Colorado.

Sokal, Robert R. 1974. Classification: Purposes principles, progress, prospects: Science, v. 185 no. 4157 p. 115-123.

- Stieg, Elizabeth A. and Dennis L. Law. 1985. Watershed Reconstruction During the Rehabilitation of Surface Mined Disturbances. (In) National Meeting of the American Society for Surface Mining and Reclamation, October 8-10, Denver, Colorado.
- Stiller, D.M., G.L. Zimpfer and M. Bishop. 1980. Journal of Soil and Water Conservation. 35:6 p. 274-277.
- Strahler, Arthur N. 1952a. Dynamic Basis of Geomorphology. Bulletin of the Geological Society of America v.63, p.923-938.
- Strahler, Arthur N. 1952b. Hypsometric (area-altitude)
 analysis. Bulletin of the Geological Society of America,
 v.63, p. 1117-1142.
- Strahler, Arthur N. 1957. Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union. v. 38, No. 6, p. 913-920 December, 1957.
- Strahler, Arthur N. 1964. Quantitative geomorphology of drainage basins and channel networks. <u>In; River Networks</u> (edited by R.S. Jarvis and M.J. Woldenburg) chap 5, pp. 56-93. Benchmark Papers in Geology, v.80. Hutchinson Ross Publishing. Reprinted from: <u>Handbook of Applied</u> <u>Hydrology</u> (edited by V.T. Chow) McGraw-Hill, New York. 1964. 1465 p.
- Tarquin, P.A. and L.D. Baeder, 1982. Stream channel reconstruction: The problem of designing lower order streams. <u>In</u> Hydrology Symposium on Surface Coal Mines in Powder River Basin. November 1982, Gillette, WY. 275 p.
- Touysinhthiphonexay, Kimball C.N., and Thomas W. Gardner. 1984. Threshold Response of Small Streams to Surface Coal Mining, Bituminous Coal Fields, Central Pennsylvania. Earth Surface Processes and Landforms, v. 9:43-58.
- Toy, Terrence J. 1977. Hillslope form and climate. Bulletin of the Geological Society of America, v. 88 p. 16-22, January, 1987.
- Toy, Terrence J. and Brian E. Munson. 1978. Climate appaisal maps of the rehabilitation potential of strippable coal lands in the Powder River Basin, Wyoming and Montana. U.S. Geological Survey. Reston, VA.

- Toy, Terrence J., Chester C. Watson, Daniel I. Gregory, and Stephen C. Parsons. 1987. Geomorphic principles, stability and reclamation planning. Presented at: Fourth Biennial Billings Symposium on Mining and Reclamation in the West and the National Meeting of the American Society of Surface Mining and Reclamation. Billings, Montana, March 1987.
- Toy, T.J. and R.F. Hadley. 1987. Geomorphology and reclamation of disturbed lands. Orlando FL. Academic Press, Inc. 480 p.
- U. S. Congress. 1977. Surface Mining Control and Reclamation Act of 1977-Public Law 95-87. 95th Congress of the United States, August 3, 1977, U.S. Statutes at Large, v. 91, p. 445-532.
- U.S.D.I. 1975. Draft Environmental Impact Statement, Regional Analysis, Development of Coal Resources in the Eastern Powder River Coal Basin of Wyoming. U.S. Department of the Interior, V. 5.
- WRDS (Water Resource Data System). 1992. Data obtained from; National Oceanic and Atmospheric Administration, National Weather Service monthly climatological data. Complete and estimated records included in calculation, any years with missing data were excluded.
- Wesche, Thomas A. Ph.D. 1994. Personal communication. Unpublished report. Professor of Range Management, Associate Director Wyoming Water Resources Center, University of Wyoming.
- Western Water Consultants Inc. 1993. Long-term stability of designed ephemeral channels at reclaimed coal mines, wyoming. Western Water Consultants Inc. Laramie, Wyoming
- Wyoming Department of Environmental Quality/Land Quality Division. 1989. Coal Rules and Regulations. Cheyenne WY.
- Wyoming Department of Environmental Quality. 1990. Hydrology. Cheyenne, Wyoming. Wyoming Department of Environmental Quality, Land Quality Division Guideline No. 8, revision 2. 53 p.
- Wyoming Natural Resource Board. 1966. Wyoming Weather Facts. Natural Resources Research Institute, College of Engineering, University of Wyoming, Laramie. 48 p.

- Wyoming State Legislature. 1973. The Wyoming Environmental Quality Act-Title 35, Chapter 11, Sections 101-1428, <u>In</u> Wyoming statutes annotated and 1990 cumulative supplement. Cheyenne WY. Wyoming Department of Environmental Quality. 1990. 114 p.
- Zimpfer, G.L., Michael O'Brien, and S.A. Schumm. 1982. Design of Stable Drainage Networks for Mined Land Reclamation. Final report to Colorado Commission on Higher Education, December 1982.

Methodology for the Geomorphic Classification and Design of Drainage Basins and Stream Channels in the Eastern Powder River Basin Coal Field of Wyoming

Anthony J. AndersonVolume 2 of 3Lee E. JensenAppendices (pgs. 249 - 465)Suzy L. NoeckerDecember 1995Thomas A. WescheWWRC-94-20

Technical Report Submitted to The Abandoned Coal Mine Lands Research Program

Prepared by

Anthony J. Anderson Lee E. Jensen Suzy L. Noecker Thomas A. Wesche Wyoming Water Resources Center University of Wyoming Laramie, Wyoming

December, 1995

APPENDICES

APPENDIX I

DRAINAGE BASIN LOCATION CODES

A location code was developed for the study area to locate the basins without benefit of the actual maps used. The location code is an 11 digit alpha-numeric code that locates the mouth of the individual basin. The code includes a map identifier specifying the 7.5 minute quadrangle map on which the mouth appears, what is essentially a legal description of the location of the mouth, and a method of determining the correct channel (Figures 1 and 2). Users may have to identify stream orders in the area of concern prior to using the identification codes.

The first two digits of the location code are used to identify the 7.5 minute quad sheet on which the mouth of the selected drainage basin appears (Table 1.) A two digit, alphabetic code was developed for each 7.5 minute quad sheet used in the study. The next six digits are numeric and identify the township, range, and section in which a stream's mouth appears (Figure 1). The ninth and tenth digits are alphabetic and identify the quarter section and quarter, quarter section in which the mouth appears (Figure 2).

250

Location Code for basin 0100.

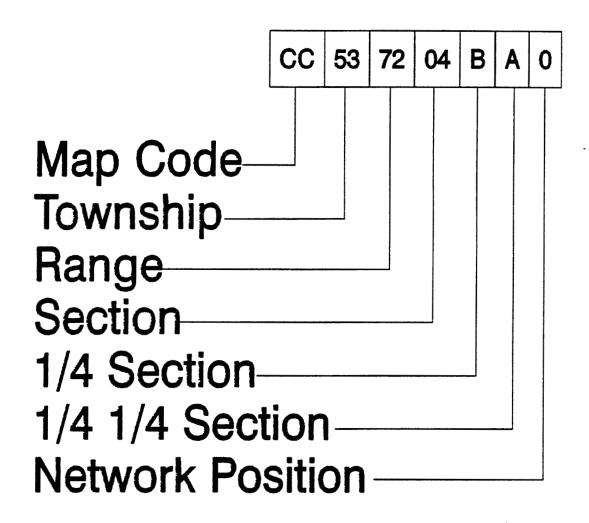


Figure 1. Analysis of the location codes developed in the Eastern Powder River Basin coal field study. The location indicated is the map location of the mouth of the third order stream that defines the drainage basin. The map codes are presented in Table 1. Township, Range and Section are those used in legal descriptions. Townships are North, Ranges are West and Sections are those listed on the USGS 1:24,000 topographic guadrangles.

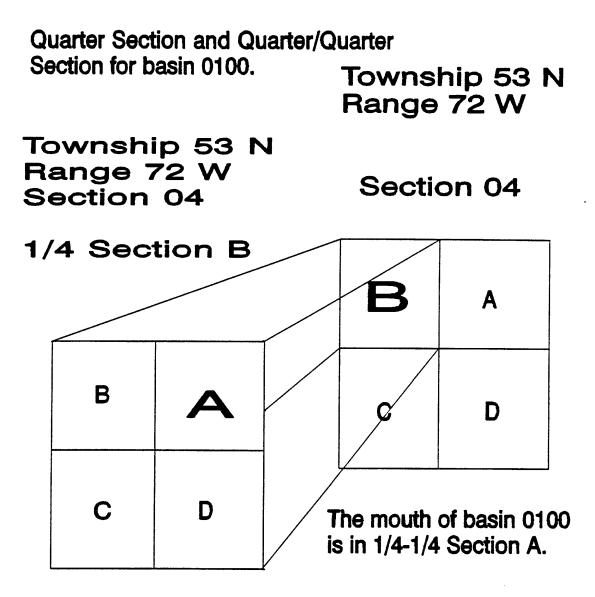


Figure 2. Analysis of 1/4 section and 1/4 1/4 section characters for basin 0100 in the Eastern Powder River Basin coal field study. Location code for basin 0100 is CC537204BA0. The B indicates the 1/4 section, the A indicates the 1/4 1/4 section.

Table 1. USGS 7.5 minute quadrangles used to define the Eastern Powder River Basin study area and their two letter abbreviations. Accessory USGS 7.5 minute quadrangles used to delineate basins that extended off the 24 primary quadrangle maps.

Primary USGS 7.5 Minute Quadrangles	Map Code
Calf Creek Quadrangle	cc
Rawhide School	RS
Moyer Springs	MS
Gillette West	GW
Gillette East	GE
Fortin Draw	FD
Appel Butte	AB
The Gap	TG
Coyote Draw	CD
Scaper Reservoir	SR
The Gap South West	GS
Saddle Horse Butte	SH
Eagle Rock	ER
Neil Butte	NB
Rough Creek	RC
Reno Junction	RJ
Hilight	HL
Open A Ranch	OA
Little Thunder Reservoir	LT
Reno Reservoir	RR
Piney Canyon North West	PN
Teckla South West	TS
Teckla	TK
Piney Canyon South West	PS
Accessory Maps	
Pitch Draw	PD
Oriva North West	ON
Green Hill	GH
Four Bar J Ranch	FB
Pleasantdale	PL
Three Mile Creek Reservoir	TM
Piney Canyon South East	PE

•

The eleventh and last digit is either an L, an R, or a 0. If two streams of the same order come together at that location an L or an R will be used. If the stream in question is on the left looking downstream an L is in the code. If the stream is on the right looking downstream an R is in the code. If the stream in question is a lower order stream that enters directly into a stream of greater order the 0 is used.

APPENDIX II

MEASUREMENT OF MORPHOMETRIC VARIABLES

Units of Measure

AUTO-CAD requires a known coordinate system be entered for each basin. The state plane coordinate system was used for this purpose. Tick marks were marked on the maps at approximately 10,000-20,000 foot intervals. If a drainage basin fell entirely on one 7.5 minute quadrangle, the 4 tick marks on the manuscript were used. If more than 4 tick marks were on a map, the 4 tick marks that came closest to surrounding the basin were used. When drainage basins were on two or more 7.5 minute quads, the map manuscripts were spliced together and the 4 tick marks on all the maps that came closest to surrounding the basin were used. Root Mean Square Errors (RMS) were recorded in the calibration process. If the RMS exceeded 20, the digitizing board was re-calibrated. Calibration

Two squares of known dimension were drawn on the maps for each basin. Basins very near to one another often shared the same squares. One square was $1.5" \times 1.5"$, the other was 4.0"x 4.0". These translate into squares that have perimeters, in "real world" values, of 12,000' and 32,000' respectively. The squares have "real world" areas of 9,000,000 ft² and 64,000,000 ft². These squares were digitized prior to any basin digitization. Initially, the squares were digitized to determine the accuracy of the calibration. Values for perimeter and area were recorded.

256

It was determined part way through the digitizing process that the values could be used to set a standard of precision. The process was altered slightly so that values differing by more than 1% from the expected values would result in the redigitizing of the squares or the digitizing Table being recalibrated until the appropriate values were reached. Digitizing procedures

The main channel was used as the basis for all later digitizing and editing. The main channel was digitized first. Then all channels that intersected the main channel were digitized moving clockwise from the mouth of the third order basin. All tributary channels that did not intersect the main channel were digitized moving clockwise around the tributary Each stream directly tributary to the third order basin. stream was digitized in a clockwise direction around the third order basin starting at the mouth. Each stream channel tributary to a previously digitized second order stream was then digitized. These tributaries to second order channels were digitized in a clockwise direction around the second order basin. Digitizing proceeded around the second order basins in a clockwise direction around the third order basins. All digitized stream channels were then edited to fit the main

channel. At no time was the main channel edited after it was satisfactorily digitized.

The main channel lengths for second and third order streams were divided using the functions of the software into 20 equal increments. The increments of 5 percent were displayed on the monitor and correlated to points on the map manuscript. The third mark from both ends was identified and marked on the manuscript. This identified the points representing 15 and 85 percent of the channel length. Elevations were later determined for these points to determine used relief.

The boundaries or perimeters of the drainage basins were digitized next. It was the intent of the project to never digitize the same line twice within a third order basin. The third order basin perimeter was digitized first. It was in turn edited to fit the main channel so that the mouth precisely intersected the perimeter. The second order perimeters were then digitized. Only the interior perimeter lines needed to be digitized because the exterior perimeters were part of the third order basin perimeter and could be edited to obtain area and perimeter measurements. Interior perimeter lines for the second order drainage basins were done in two "polylines" only. The first order perimeter lines were done in like manner to the seconds with only those perimeter lines not included in the second and third order perimeters being digitized. The selection process resulted in two

adjacent first order basins in each third order basin being selected and one first order being isolated. The basin perimeter for the lone basin was digitized as one line. The basin perimeters for the adjacent basins were done as two lines only just as with the second order perimeters. Perimeter lines were edited to fit one another and to intersect the stream channels at the precise point of confluence. We insured that the basin perimeters did not cross any stream channels and that perimeters were contiguous and fit to the channel network at this time.

Valley lengths were digitized using points pre-marked on the maps. The same procedure was used for valley lengths as was used for stream channels. The main valley was digitized first and fit to the confluences of the tributary channels. The valley length line was edited to fit the stream channel by fitting a valley length vertex to the confluence of the main channel with any first or second order stream that would be measured. Only then were the tributary valley lengths measured. Valley lengths were measured only for selected basins. The valley lengths were also edited to the intersection of the basin perimeter with the mouth of the third order stream.

APPENDIX III

THE DATABASE COMPILED FOR THIS STUDY

:

The appendix lists the data gathered and developed for use in the classification and characterization process. The units for the variables are listed in Table 1. The data are presented by the classification strata developed in drainage basin order.

Table	1.	Variables	listed	in	Appendix	IV	and	the	units	in
		which they	/ are d	ispl	ayed.					

Variable	Units
BasNum (Basin Identification Number)	None
Location Code	None
Order	None
Basin Area	Miles ²
Basin Length	Miles
Basin Perimeter	Miles
Maximum Elevation	Feet
Minimum Elevation	Feet
Basin Relief	Feet
Main Channel Length	Miles
Valley Length	Miles
Number of Seconds	Integer
Number of Firsts	Integer
Total Channel Length	Miles
Maximum Used Relief (Elevation)	Feet
Minimum Used Relief (Elevation)	Feet
Used Relief	Feet
Relief Ratio	Feet/Mile
Ruggedness Number	Unitless
Channel Slope	Feet/Foot
Sinuosity	Unitless
Drainage Density	Miles/Miles ²
Circularity	Unitless
AGI #1	Unitless
AGI #2	Unitless
AGI #3	Unitless
AGI #4	Unitless

Table 2. Third order drainage basins listed by classification stratum. Stratum A.

. .

BASNUM	LOCATION CODE	ORDER	CAT	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH		NUMBER OF SECONE			TOTAL CHANNEL LENGTH	MAXIMUM USED RELIEF	MINIMUM USED RELIEF	USEDREL
	CC537204BA0	3	A	1.90		7.03	4205	3855	350	2.46	2.25	2		4	5.36	4070	3875	195
0200	CC537205AA0	3	A	2.64	2.78	8.25	4265	3870	395	3.40	3.05	2		6	7.36	4085	3880	205
0300	CC537208CBR	3	A	1.48	1.88	5.60	4305	3910	395	1.94	1.88	2		5	4.64	4070	3930	140
	MS527215DBR	3	A	3.22	2.29	8.39	4350	4020	330	3.64	3.28	2		7	9.47	4235	4035	200
	MS527130ABR	3	A	3.17	2.11	9.48	4445	4140	305	2.83	2.26	4		12	10.33	4355	4170	185
1000	MS517201AB0	3	A	0.93	1.90	5.94	4525	4115	410	2.41	2.15	2		4	3.75	4390	4160	230
1700	FD507021DC0	3	A	2.66	2.91	9.24	4715	4335	380	4.66	3.60	2		10	9.19	4610	4350	260
3800	OA456921BAL	5	A	4.54	4.13	11.06	5025	4730	295	6.13	4.13	2		10	16.04	4925	4755	170
4500	PN436910BB0	3	A	1.19	2.22	5.86	4985 5000	4605	380	2.77	2.19	2		ь 5	5.74	4770	4620	150 165
4600	PN436909ABR	3	A	0.84	1.38	4.57	4875	4645 4645	355 230	1.52 4.33	1.30	2 F		5 17	4.01 17.72	4825 4810	4660 4665	145
4700	PN436909ABL	2	A	5.04	3.03	9.96	48/5	4660	255	4.33	3.58 0.81	2		4	2,59	4810	4670	145
4800	PN426904ACL	3	A	0.48	0.83	3.05 7.91	4915	4525	410	3.46	2.85	2		4 11	12.03	4765	4670	220
5000	PN436928CC0 TK417016DC0	3	A	2.46	2.71 2.69	7.33	4925	4525	365	3.46	2.85	2		12	8.97	4745	4585	160
5900	TK417016DC0	3	A	7.43	4.66	16.16	4980	4515	465	8.00	5.81	6		29	27.46	4865	4555	310
6000		3	A	6.38	4.52	12.65	4990	4595	395	5.71	4.46	8		25	25.86	4845	4620	225
6300	PS416921AB0	-	A	1.58	4.52	7.21	4990 5105	4775	330	3.49	2.93	2		4	5.57	5015	4805	210
6400	PS426919ACR	3	A	4.02	2.55	10.32	5105	4685	460	4.72	2.93	4		13	13.35	4990	4725	265
6500	PS416915BBR	2	Α	4.02	2.07	10.32	5145	4005	400	4.72	5.61	4		13	13.33	4990	4725	205
BASNUM	RELIEF RUGG	EDNESS NO.			INUOSITY	DRAINAGE DENSITY	CIRCULAR	LITY PRE	CIP. VE	GETATION	SOIL AS		FICIAL DLOGY	GEOLOG	AGI Y #1	AGI #2		3I #4
0100	158 0	.187	0.0	021	1.094	2.82	0.48	ı :	2	1	3	3	4	4	0.051	0.040 0	.057 66	5.00
0200	142 0	.209	0.0	016	1.115	2.79	0.49) :	2	5	3	3	4	3	0.058	0.042 0	.071 104	2.80
0300	210 0	.235	0.0	020	1.033	3.15	0.59) :	2	1	3	4	3	3	0.057	0.030 0	.059 58	4.60
0800	144 0	.184	0.0	015	1.110	2.94	0.57	, ;	2	3	3	1	4	2	0.055	0.048 0	.088 106	2.60
0900	145 0	. 188	0.0	018	1.252	3.26	0.44	1	2	1	3	4	4	3		0.057 0		6.85
1000	215 0	. 314	0.0	026	1.123	4.04	0.33		3	1	3	4	5	2		0.024 0		1.30
1700	130 0	. 249	0.0	015	1.295	3.46	0.39) .	4	3	3	3	4	3	0.041	0.040 0	.065 101	0.80
3800	71 0	. 197	0.0	007	1.484	3.53	0.47	, ;	2	2	3	3	2	4			.061 133	9.30
4500		.346		015	1.261	4.81	0.44	L :	1	1	3	3	2	4		0.018 0		2.20
4600	258 0	. 322	0.0	02 9	1.174	4.79	0.50) (1	1	2	1	4	4		0.024 0		8.20
4700	76 0	153	0	009	1 210	3 5 1	0 64		1	3	7	2	3	2	0 051	0 045 0	073 115	9 20

BASNUM RATIO	NO.	01.000													
	110 .	SLOPE	SINUOSITY	DENSITY	CIRCULARITY	PRECIP.	VEGETATION	SOIL	ASPECT	GEOLOGY	GEOLOGY	#1	#2	#3	#4
0100 158	0.187	0.021	1.094	2.82	0.48	2	1	3	3	4	4	0.051	0.040	0.057	665.00
0200 142	0.209	0.016	1.115	2.79	0.49	2	5	3	3	4	3	0.058	0.042	0.071	1042.80
0300 210	0.235	0.020	1.033	3.15	0.59	2	1	3	4	3	3	0.057	0.030	0.059	584.60
0800 144	0.184	0.015	1.110	2.94	0.57	2	3	3	1	4	2	0.055	0.048	0.088	1062.60
0900 145	0.188	0.018	1.252	3.26	0.44	2	1	3	4	4	3	0.065	0.057	0.087	966.85
1000 215	0.314	0.026	1.123	4.04	0.33	3	1	3	4	5	2	0.030	0.024	0.038	381.30
1700 130	0.249	0.015	1.295	3.46	0.39	4	3	3	3	4	3	0.041	0.040	0.065	1010.80
3800 71	0.197	0.007	1.484	3.53	0.47	2	2	3	3	2	4	0.041	0.032	0.061	1339.30
4500 171	0.346	0.015	1.261	4.81	0.44	1	1	3	з	2	4	0.031	0.018	0.039	452.20
4600 258	0.322	0.029	1.174	4.79	0.50	1	1	2	1	4	4	0.037	0.024	0.041	298.20
4700 76	0.153	0.009	1.210	3.51	0.64	1	3	3	2	3	3	0.051	0.045	0.073	1159.20
4800 309	0.261	0.034	1.094	5.40	0.65	1	6	4	2	4	4	0.026	0.016	0.028	122.40
5000 152	0.380	0.017	1.214	4.89	0.49	1	1	2	3	3	4	0.055	0.042	0.071	1008.60
5900 135	0.288	0.013	1.191	4.17	0.50	1	5	4	4	4	4	0.045	0.028	0.055	784.75
6000 100	0.325	0.010	1.378	3.69	0.36	1	5	4	3	4	3	0.082	0.074	0.141	3454.95
6300 87	0.303	0.011	1.281	4.06	0.50	1	6	4	3	4	4	0.084	0.070	0.105	2520.10
6400 129	0.220	0.016	1.193	3.52	0.38	1	5	4	4	5	4	0.028	0.025	0.039	521.40
6500 222	0.289	0.015	1.305	3.32	0.48	1	6	4	3	5	4	0.074	0.060	0.169	1849.20

Table 2. (cont.) Third order drainage basins listed by classification stratum. Stratum B.

. .

.

BASNUM	LOCATION CODE	ORDER	CAT	BASIN AREA		BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH		NUMBER OF SECONDS	NUMBER OF FIRSTS	TOTAL CHANNEL LENGTH	MAXIMUM USED RELIEF	MINIMUM USED RELIEF	USEDREL
0400	RS517301AAR	3	В	1.65	2.58	6.47	4440	4175	265	3.07	2.60	2	7	6.49	4300	4195	105
1100	MS517121ABR	3	в	1.64	1.99	6.10	4580	4310	270	2.52	2.25	2	5	4.98	4435	4330	105
1500	GE507134CCR	3	в	2.14	2.61	7.29	4635	4435	200	3.04	2.64	2	4	6.33	4565	4445	120
1800	AB487205ACR	3	в	2.57	2.59	7.78	4925	4665	260	3.59	2.83	2	7	8.31	4810	4675	135
1900	AB487205ACL	3	В	1.85	1.75	6.95	4855	4665	190	2.34	1.91	2	5	5.39	4770	4675	95
2000	AB487312AA0	3	В	1.93	1.59	6.15	4860	4645	215	2.09	1.72	2	7	6.75	4735	4655	80
2100	AB487322AAR	3	В	2.12	2.35	7.27	4925	4710	215	3.51	2.76	2	5	5.60	4830	4730	100
2400	SR477303AA0 GS487222BAL	3	B B	1.52	1.53 1.64	5.37 4.74	4855 4820	4710	145	2.10	1.79	2	5	5.85	4795	4715	80
2600 3000	SH477136CC0	3	В	1.40	2.24	5.74	4820	4555 4485	265 285	1.82 2.44	1.76 2.30	2	4	3.74 5.65	4690	4565	125
3500	RJ447213CCR	-	B	1.76	1.33	5.67	4995	4860	135	1.50	1.40	2	6	5.16	4665 4930	4505 4870	160 60
3600	RJ447213CCL		В	2.51	2.22	7.08	5060	4860	200	2.66	2.49	2	9	7.35	4930	4870	105
3700	OA456921BAR	3	В	1.99	2.44	6.91	4995	4730	265	2.00	2.24	2	6	6.90	4865	4745	120
4200	LT427107BCL	-	в	2.08	2.04	7.76	5085	4830	255	2.76	2.58	2	6	6.56	4940	4835	105
4400	RR437028DC0	3	в	2.37	2.52	7.88	4825	4655	170	2.67	2.41	2	5	5.22	4780	4670	110
4900	PN437026AB0	3	в	0.96	1.75	5.17	4880	4615	265	2.02	1.62	2	5	4.38	4715	4630	85
5200	TS417108DA0	3	в	0.94	1.10	4.55	4935	4740	195	1.16	1.07	2	5	4.35	4845	4755	90
5300	TS417108DBR	3	в	2.29	2.09	7.01	5025	4745	280	2.13	1.99	3	10	9.62	4895	4760	135
5400	TS417108DBL	3	в	1.24	1.25	6.20	4925	4745	180	1.89	1.73	2	4	4.14	4875	4765	110
5600	TK417122AD0	3	в	2.59	2.02	8.72	4910	4630	280	2.61	2.48	3	7	7.62	4825	4650	175
5700	TK417115DC0	3	в	1.91	2.07	6.54	4905	4655	250	1.95	1.77	2	6	5.94	4810	4675	135
6200	TK427136DD0	3	в	2.52	2.15	8.50	4920	4670	250	2.65	2.43	2	4	5.28	4825	4695	130
DACMUM	RELIEF RUGG				INUCCITY	DRAINAGE	CIRCUIN	ממח עידינ	710 VE	TETATION	COLL N	SURFI		AGI			GI
BASNUM		EDNESS NO.			INUOSITY		CIRCULA	RITY PRE	CIP. VE	GETATION	SOIL A				AGI #2	AGI A #3	GI #4
	RATIO	NO.	SLO	OPE S		DENSITY						SPECT GEOL	OGY GEOLO	GY #1	#2	#3	#4
0400	RATIO 103 0	NO. .198	SLC 0.0	DPE S	1.180	DENSITY	0.49	9	2	4	1	SPECT GEOL	DGY GEOLOG	GY #1 0.027	#2 0.015 0	#3 .032 43	#4 7.25
0400 1100	RATIO 103 0 136 0	NO.	SLO	DPE S 009 011		DENSITY		9 : 5				SPECT GEOL	DGY GEOLOG 1 2	GY #1 0.027 0.033	#2 0.015 0 0.018 0	#3 .032 43 .042 44	#4 7.25 2.80
0400	RATIO 103 0 136 0 77 0	NO. .198 .155	SLC 0.0 0.0	DPE S 009 011 011	1.180 1.122	DENSITY 3.94 3.04	0.49	9 5 1	2 3	4 3	1 3	SPECT GEOLO 2 1 3 5	DGY GEOLOG	GY #1 0.027 0.033 0.027	#2 0.015 0	#3 .032 43 .042 44 .031 42	#4 7.25
0400 1100 1500	RATIO 103 0 136 0 77 0 100 0	NO. .198 .155 .112	SLC 0.0 0.0	DPE S 009 011 011 010	1.180 1.122 1.149	2 DENSITY 3.94 3.04 2.97	0.49 0.59 0.51	9 5 1 3	2 3 5	4 3 3	1 3 3	SPECT GEOL 2 1 3 5 4 2	DGY GEOLOG 1 2 2	GY #1 0.027 0.033 0.027 0.035	#2 0.015 0 0.018 0 0.024 0	#3 .032 43 .042 44 .031 42 .049 66	#4 7.25 2.80 8.00
0400 1100 1500 1800	RATIO 1 103 0 136 0 77 0 100 0 108 0	NO. .198 .155 .112 .159	SLC 0.0 0.0 0.0	DPE S 009 011 011 010 010	1.180 1.122 1.149 1.267 1.229 1.212	2 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50	0.49 0.59 0.53 0.53	9 5 1 3 8	2 3 5 4 4	4 3 3 5	1 3 3 1	SPECT GEOL 2 1 3 5 4 2 3 1 3 2 2 1	DGY GEOLOG 1 2 2 1	GY #1 0.027 0.033 0.027 0.035 0.028	#2 0.015 0 0.018 0 0.024 0 0.026 0	#3 .032 43 .042 44 .031 42 .049 66 .038 35	#4 7.25 2.80 8.00 8.20
0400 1100 1500 1800 1900 2000 2100	RATIO 1 103 0 136 0 77 0 100 0 105 0 135 0 91 0	NO. .198 .155 .112 .159 .105 .143 .107	SLC 0.0 0.0 0.0 0.0 0.0 0.0	DPE S D09 D11 D11 D10 D11 D10 D11 D10 D11 D10 D11 D10 D11 D10 D10 D11	1.180 1.122 1.149 1.267 1.229 1.212 1.212	2 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64	0.49 0.59 0.51 0.51 0.40 0.64	9 5 1 5 3 6 8 7 4 7 0	2 3 5 4 4 4 4	4 3 5 3 5 4	1 3 1 1 1 1	SPECT GEOL 2 1 3 5 4 2 3 1 3 2 2 1 2 1 2 2 2 1 2 0	DGY GEOLOG 1 2 2 1 1	GY #1 0.027 0.033 0.027 0.035 0.035 0.028 0.038	#2 0.015 0 0.018 0 0.024 0 0.026 0 0.020 0	#3 .032 43 .042 44 .031 42 .049 66 .038 35 .049 41	#4 7.25 2.80 8.00 8.20 1.50
0400 1100 1500 1800 1900 2000 2100 2400	RATIO 1 103 0 136 0 77 0 100 0 108 0 135 0 91 0 95 0	NO. .198 .155 .112 .159 .105 .143 .107 .106	SLC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DPE S D09 D11 D11 D10 D11 D10 D11 D10 D11 D10 D11 D10 D11 D10 D10 D10 D10 D10	1.180 1.122 1.149 1.267 1.229 1.212 1.212 1.273 1.176	<pre>2 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85</pre>	0.49 0.59 0.51 0.51 0.40 0.64 0.50	9 5 1 5 3 6 4 7 6	2 3 5 4 4 4 4	4 3 5 3 5 4 4	1 3 1 1 1 1	SPECT GEOL 2 1 3 5 4 2 3 1 3 2 2 1 2 0 1 0	DGY GEOLOG 1 2 1 1 1 1	GY #1 0.027 0.033 0.027 0.035 0.028 0.028 0.038 0.025	#2 0.015 0 0.018 0 0.024 0 0.026 0 0.020 0 0.019 0	#3 .032 43 .042 44 .031 42 .049 66 .038 35 .049 41 .037 45	#4 7.25 2.80 8.00 8.20 1.50 4.95
0400 1100 1500 1800 2000 2100 2400 2600	RATIO 1 103 0 136 0 77 0 100 0 108 0 135 0 91 0 95 0 161 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170	SLC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DPE S 009 011 011 010 011 010 011 010 011 010 011 010 011 010 010 019	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.176 1.032	<pre>2 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85 3.39</pre>	0.49 0.55 0.51 0.51 0.40 0.66 0.66	9 5 1 3 8 9 4 0 5 5 2	2 3 5 4 4 4 4 4 4	4 3 5 3 5 4 4 5	1 3 1 1 1 1 1	SPECT GEOL 2 1 3 5 4 2 3 1 3 2 2 1 2 0 1 0 3 3	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1	GY #1 0.027 0.033 0.027 0.035 0.025 0.038 0.025 0.020 0.020 0.030	#2 0.015 0 0.018 0 0.024 0 0.026 0 0.020 0 0.019 0 0.017 0 0.015 0 0.021 0	#3 .032 43 .042 44 .031 42 .049 66 .038 35 .049 41 .037 42 .027 22 .034 29	#4 7.25 2.80 8.00 8.20 1.50 4.95 5.80 0.40 1.50
0400 1100 1500 1900 2000 2100 2400 2600 3000	RATIO 1 103 0 136 0 77 0 100 0 108 0 135 0 91 0 95 0 161 0 127 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170 .219	SLC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DPE S 009 011 011 011 010 011 010 011 010 011 010 011 010 010 013 010 014 010 015 010 016 019 018 018	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.176 1.032 1.060	<pre>2 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85 3.39 4.05</pre>	0.49 0.55 0.55 0.40 0.64 0.55 0.55	9 5 1 3 8 4 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 3 5 4 4 4 4 4 4 4 3	4 3 5 3 5 4 4 5 3	1 3 1 1 1 1 1 1 1	SPECT GEOL 2 1 3 5 4 2 3 1 3 2 2 1 2 0 1 0 3 3 4 0	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 1	GY #1 0.027 0.033 0.027 0.035 0.028 0.028 0.038 0.025 0.020 0.020 0.030 0.020 0.030 0.030 0.031 0.031	#2 0.015 0 0.018 0 0.026 0 0.020 0 0.019 0 0.017 0 0.015 0 0.021 0 0.025 0	#3 .032 43 .042 44 .031 42 .049 66 .038 35 .049 41 .037 45 .027 22 .034 29 .034 39	#4 7.25 2.80 8.00 8.20 1.50 4.95 5.80 0.40 1.50 9.00
0400 1100 1500 1800 2000 2100 2400 2600 3000 3500	RATIO 1 103 0 136 0 77 0 108 0 135 0 91 0 95 0 161 0 127 0 101 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170 .219 .075	SLC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DPE S D09 D11 D11 D10 D10 D10 D10 D10 D13 D10 D14 D11	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.176 1.032 1.060 1.069	DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85 3.39 4.05 2.94	0.49 0.59 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6	9 5 1 3 3 4 4 0 5 5 5 5 5 5 9	2 3 5 4 4 4 4 4 4 4 3 2	4 3 5 3 5 4 4 5 3 2	1 3 1 1 1 1 1 1 3	SPECT GEOL 2 1 3 5 4 2 3 1 2 1 2 0 1 0 3 3 4 0 3 4 0 4	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 1 1	3Y #1 0.027 0.033 0.027 0.035 0.035 0.025 0.025 0.020 0.020 0.030 0.021 0.030 0.035 0.030 0.030 0.031 0.031 0.030	#2 0.015 0 0.018 0 0.024 0 0.020 0 0.019 0 0.017 0 0.015 0 0.025 0 0.025 0 0.019 0	#3 .032 43 .042 44 .031 42 .049 66 .038 35 .049 41 .037 45 .027 22 .034 29 .034 23	#4 7.25 2.80 8.00 8.20 1.50 4.95 5.80 0.40 1.50 9.00 7.60
0400 1100 1500 1900 2000 2100 2400 2600 3000 3500 3600	RATIO 1 103 0 136 0 77 0 100 0 108 0 135 0 91 0 161 0 127 0 101 0 90 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170 .219 .075 .111	SLC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DPE S 009 011 011 011 010 011 010 010 019 019 018 011 011 011	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.176 1.032 1.060 1.069 1.068	 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85 3.39 4.05 2.94 2.93 	0.49 0.55 0.5 0.44 0.64 0.66 0.5 0.65 0.65	9 5 1 3 8 4 9 5 3 9 3	2 3 5 4 4 4 4 4 3 2 2 2	4 3 5 3 5 4 4 5 3 2 2	1 3 1 1 1 1 1 1 3 1	SPECT GEOL 2 1 3 5 4 2 3 1 3 2 1 0 2 0 1 0 3 3 4 0 4 4 1 3	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	GY #1 0.027 0.033 0.027 0.035 0.035 0.025 0.025 0.026 0.020 0.020 0.030 0.030 0.030 0.030 0.030 0.030	#2 0.015 0 0.018 0 0.024 0 0.020 0 0.019 0 0.017 0 0.015 0 0.021 0 0.025 0 0.025 0 0.028 0	#3 .032 43 .042 44 .031 42 .049 66 .038 35 .049 41 .037 45 .027 22 .034 29 .034 39 .034 35	#4 7.25 2.80 8.20 1.50 4.95 5.80 0.40 1.50 9.00 7.60 2.00
0400 1100 1500 1900 2000 2400 2600 3000 3500 3600 3700	RATIO 1 103 0 136 0 77 0 100 0 108 0 135 0 91 0 161 0 127 0 101 0 90 0 109 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170 .219 .075 .111 .174	SLC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DPE S 009 011 010 010 010 010 010 010 010 019 018 011 011 011 011 011	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.176 1.032 1.060 1.069 1.068 1.316	 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.39 4.05 2.94 2.93 3.47 	0.49 0.55 0.55 0.44 0.56 0.66 0.65 0.65 0.65	9 5 5 8 4 9 6 9 9 3	2 3 5 5 4 4 4 4 4 4 3 2 2 2 2 2	4 3 5 3 5 4 4 5 3 2 2 2 2	1 3 1 1 1 1 1 1 3 3	SPECT GEOL 2 1 3 5 4 2 3 1 3 2 2 1 2 1 2 0 1 0 3 3 4 0 4 4 1 3 2 2	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 4	3Y #1 0.027 0.033 0.027 0.035 0.038 0.025 0.025 0.020 0.030 0.031 0.031 0.036 0.036 0.036 0.036 0.036	#2 0.015 0 0.024 0 0.026 0 0.020 0 0.019 0 0.017 0 0.015 0 0.025 0 0.025 0 0.028 0 0.022 0	#3 .032 43 .042 44 .031 42 .049 66 .038 35 .049 41 .037 45 .027 22 .034 23 .034 23 .034 23 .043 50 .041 52	#4 7.25 2.80 8.00 8.20 1.50 4.95 5.80 0.40 1.50 9.00 7.60 2.00 7.35
0400 1100 1500 1900 2000 2400 2600 3000 3500 3600 3700 4200	RATIO 1 103 0 136 0 77 0 108 0 135 0 91 0 95 0 161 0 101 0 90 0 125 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170 .219 .075 .111 .174 .153		DPE S 009 011 010 011 010 011 010 011 010 011 011 010 012 013 013 014 014 015 015 011 011 011 010 011	1.180 1.122 1.149 1.227 1.229 1.212 1.273 1.176 1.032 1.060 1.069 1.068 1.316 1.069	<pre>2 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85 3.39 4.05 2.94 2.93 3.47 3.16</pre>	0.49 0.55 0.57 0.46 0.66 0.65 0.65 0.65 0.65 0.65	9 5 1 3 3 8 4 0 5 5 5 2 3 9 9 3 3 2 2 3	2 3 5 4 4 4 4 4 4 3 2 2 2 2 2 1	4 3 5 5 4 4 5 3 2 2 2 4	1 3 1 1 1 1 1 3 1 3 1 3	SPECT GEOL 2 1 3 5 4 2 3 1 2 1 2 0 1 0 3 3 4 0 3 3 4 0 3 3 4 0 3 3 4 0 4 4 1 3 2 2 4 1	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3Y #1 0.027 0.033 0.027 0.035 0.038 0.028 0.025 0.020 0.031 0.031 0.030 0.031 0.036 0.030 0.030 0.030 0.030 0.030 0.030 0.034 0.034 0.036	#2 0.015 0 0.018 0 0.024 0 0.020 0 0.019 0 0.017 0 0.015 0 0.025 0 0.025 0 0.019 0 0.028 0 0.028 0 0.028 0	#3 .032 43 .042 44 .031 42 .039 66 .038 35 .049 41 .037 45 .027 22 .034 29 .034 23 .034 23 .049 53	#4 7.25 2.80 8.20 1.50 4.95 5.80 0.40 1.50 9.00 7.60 2.000 7.35 0.40
0400 1100 1500 2000 2400 2600 3500 3500 3500 3700 4200	RATIO 1 103 0 136 0 77 0 100 0 135 0 91 0 161 0 127 0 010 0 90 0 101 0 90 0 125 0 68 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170 .219 .075 .111 .174 .153 .071		DPE S 009 011 010 011 010 011 010 011 010 011 010 019 011 011 011 011 011 011 011 011 010 011 011 010 011 010	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.176 1.032 1.060 1.069 1.068 1.316 1.069 1.111	<pre>2 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85 3.39 4.05 2.94 2.93 3.47 3.16 2.20</pre>	0.45 0.55 0.55 0.55 0.66 0.65 0.65 0.65 0.6	9 5 1 3 3 4 4 0 5 5 2 3 3 9 9 3 3 2 2 3 8	2 3 5 4 4 4 4 4 3 2 2 2 2 2 1 1	4 3 5 5 4 4 5 3 2 2 2 2 4 2	1 3 1 1 1 1 1 3 1 3 1 1	SPECT GEOL 2 1 3 5 4 2 3 1 3 2 1 3 2 1 0 3 4 0 3 3 4 0 4 4 1 3 2 2 4 1 1 3 2 2 4 1 1 0	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 1 1 3	5Y #1 0.027 0.033 0.027 0.035 0.038 0.028 0.038 0.026 0.030 0.030 0.030 0.030 0.030 0.030 0.036 0.034 0.034 0.029	#2 0.015 0 0.024 0 0.026 0 0.020 0 0.019 0 0.017 0 0.015 0 0.021 0 0.025 0 0.025 0 0.028 0 0.022 0 0.022 0	#3 .032 43 .042 44 .031 42 .049 66 .038 35 .049 41 .037 45 .027 22 .034 29 .034 29 .034 35 .043 50 .041 52 .041 52 .041 40	#4 7.25 2.80 8.20 1.50 4.95 5.80 0.40 1.50 9.00 7.60 2.00 7.35 0.40 2.90
0400 1100 1500 1900 2000 2400 2600 3500 3500 3500 3600 3700 4200	RATIO 1 103 0 136 0 77 0 100 0 108 0 135 0 91 0 95 0 161 0 127 0 90 0 109 0 125 0 68 0 151 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170 .219 .075 .111 .174 .153 .071 .228		DPE S 009 011 011 011 010 011 010 010 011 010 012 011 013 011 011 011 011 011 011 011 011 011 011 011	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.176 1.060 1.069 1.068 1.316 1.069 1.111 1.250	<pre>2 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85 3.39 4.05 2.94 2.93 3.47 3.16 2.20 4.54</pre>	0.49 0.55 0.57 0.44 0.66 0.66 0.65 0.65 0.65 0.65 0.65 0.41 0.44	9 5 1 3 3 4 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 3 5 4 4 4 4 4 4 3 2 2 2 2 2 1 1 1	4 3 5 5 4 4 5 3 2 2 4 2 2 4 2 2	1 3 1 1 1 1 1 3 1 3 1 4	SPECT GEOL 2 1 3 5 4 2 3 1 3 2 2 1 2 0 1 0 3 3 4 0 4 4 1 3 2 2 4 1 3 2 4 1 3 2 4 1 3 3 2 2 4 1 3 3 2 2 4 1 3 0 1 0 1 3	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 1 1 3 3	3Y #1 0.027 0.033 0.027 0.035 0.038 0.025 0.028 0.038 0.025 0.020 0.030 0.030 0.031 0.030 0.034 0.036 0.034 0.029 0.029 0.024	#2 0.015 0 0.024 0 0.026 0 0.020 0 0.019 0 0.017 0 0.025 0 0.025 0 0.025 0 0.028 0 0.028 0 0.022 0 0.022 0 0.021 0 0.021 0	#3 .032 43 .042 44 .031 42 .049 65 .038 36 .038 36 .027 22 .034 29 .034 29 .034 23 .043 52 .041 52 .041 52 .041 53 .031 40	#4 7.25 2.80 8.00 8.20 1.50 4.95 5.80 0.40 1.50 9.00 7.60 2.00 7.35 0.40 2.90 4.40
0400 1100 1500 2000 2100 2400 3600 3500 3600 3700 4200 4900 5200	RATIO 1 103 0 136 0 77 0 108 0 135 0 91 0 95 0 161 0 90 0 109 0 102 0 103 0 104 0 105 0 106 0 107 0 108 0 109 0 109 0 125 0 68 0 151 0 178 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170 .219 .075 .111 .174 .153 .071 .228 .170		DPE S 0009 011 011 010 010 011 010 010 010 011 011 011 011 011 011 011 011 011 011 011 011 011 021 021	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.176 1.032 1.060 1.069 1.068 1.316 1.069 1.111 1.250 1.083	<pre>2 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85 3.39 4.05 2.94 2.93 3.47 3.16 2.20 4.54 4.61</pre>	0.49 0.55 0.57 0.41 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.61 0.57 0.41 0.41 0.41	9 5 3 8 4 0 6 6 2 3 9 3 3 2 3 8 5 5 7	2 3 5 4 4 4 4 4 3 2 2 2 2 2 1 1 1 1	4 3 5 5 4 4 5 3 2 2 2 4 2 2 2 2 2 2 2 2	1 3 1 1 1 1 1 3 1 3 1 1 4 1	SPECT GEOL 2 1 3 5 4 2 3 1 2 1 2 0 1 0 3 3 4 0 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 1 1 3 3 1	3Y #1 0.027 0.033 0.027 0.033 0.025 0.028 0.025 0.020 0.020 0.030 0.030 0.030 0.036 0.034 0.036 0.026 0.034 0.036 0.024 0.024 0.030 0.034	#2 0.015 0 0.024 0 0.020 0 0.019 0 0.015 0 0.015 0 0.025 0 0.025 0 0.025 0 0.028 0 0.028 0 0.028 0 0.022 0 0.021 0 0.022 0 0.021 0 0.021 0	#3 .032 43 .042 44 .031 42 .049 66 .038 35 .049 45 .037 45 .037 45 .037 42 .034 29 .034 23 .043 50 .041 52 .041 53 .041 53 .031 40 .027 25 .032 18	#4 7.25 2.80 8.20 1.50 4.95 5.80 0.40 1.50 9.00 7.60 2.000 7.35 0.40 2.90 4.40 3.30
0400 1100 1500 2000 2400 2600 3500 3500 3600 4200 4200 4400 5200 5300	RATIO 1 103 0 136 0 77 0 100 0 135 0 91 0 95 0 161 0 109 0 109 0 125 0 68 0 151 0 134 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170 .219 .075 .111 .174 .153 .071 .222		DPE S 0009 011 011 011 010 011 010 010 018 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.060 1.069 1.068 1.316 1.069 1.111 1.250 1.083 1.070	 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85 3.39 4.05 2.94 2.93 3.47 3.16 2.20 4.54 4.19 	0.45 0.55 0.55 0.55 0.67 0.66 0.65 0.65 0.65 0.65 0.41 0.41 0.55	9 5 1 3 8 4 4 5 5 7 7 9 9 5 5 7 7 9 9	2 3 5 4 4 4 4 4 4 4 2 2 2 2 1 1 1 1 1 1	4 3 5 5 4 4 5 3 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 1 1 1 1 3 1 3 1 4 1 1	SPECT GEOL 2 1 3 5 4 2 3 1 2 1 2 0 1 0 3 3 4 0 1 3 2 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 3 2 2 4 1 3 0	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 1 1 3 3 1 1	3Y #1 0.027 0.033 0.027 0.038 0.028 0.038 0.025 0.020 0.020 0.030 0.030 0.030 0.036 0.036 0.036 0.036 0.032 0.036 0.034 0.032 0.029 0.024 0.0357 0.057	#2 0.015 0 0.024 0 0.026 0 0.020 0 0.019 0 0.017 0 0.015 0 0.021 0 0.025 0 0.025 0 0.028 0 0.022 0 0.022 0 0.022 0 0.011 0 0.020 0	#3 .032 43 .042 44 .031 42 .039 66 .038 35 .049 41 .037 45 .027 22 .034 29 .034 23 .043 50 .041 52 .049 53 .041 40 .049 52 .031 40 .027 25 .032 18	#4 7.25 2.80 8.20 1.50 4.95 5.80 0.40 1.50 9.00 7.60 2.00 7.35 0.40 2.90 4.40 2.90 4.40 3.30 1.20
0400 1100 1500 1900 2100 2400 2600 3500 3500 3500 3700 4200 4400 4900 5200 5300 5400	RATIO 1 103 0 136 0 77 0 100 0 108 0 135 0 91 0 161 0 127 0 101 0 90 0 109 0 125 0 151 0 178 0 134 0 145 0	NO. 198 155 112 159 105 143 107 106 170 219 075 111 174 153 071 228 170 222 114		DPE S 009 011 010 011 010 011 010 019 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.176 1.060 1.069 1.068 1.316 1.069 1.111 1.250 1.083 1.070 1.094	 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.39 4.05 2.93 3.47 3.16 2.20 4.54 4.61 4.19 3.33 	0.49 0.55 0.57 0.41 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.41 0.41 0.41	9 5 1 3 3 4 0 5 5 7 9 3 3 8 5 7 9 1	2 3 5 4 4 4 4 4 3 2 2 2 2 2 1 1 1 1	4 3 5 5 4 4 5 3 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 1 1 1 1 3 1 3 1 1 4 1 1 1	SPECT GEOL 2 1 3 5 4 2 3 1 2 1 2 0 1 0 3 3 4 0 1 3 2 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 3 2 2 4 1 3 0	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	5Y #1 0.027 0.033 0.027 0.035 0.038 0.026 0.038 0.025 0.030 0.030 0.031 0.030 0.034 0.36 0.029 0.024 0.020 0.037	$\begin{array}{c} \#2\\ 0.015 & 0\\ 0.024 & 0\\ 0.026 & 0\\ 0.020 & 0\\ 0.017 & 0\\ 0.017 & 0\\ 0.017 & 0\\ 0.017 & 0\\ 0.025 & 0\\ 0.025 & 0\\ 0.028 & 0\\ 0.028 & 0\\ 0.028 & 0\\ 0.028 & 0\\ 0.021 & 0\\ 0.028 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.020 & 0\\ 0.039 & 0\\ 0.020 & 0\\ 0.020 & 0\\ \end{array}$	#3 .032 43 .042 44 .031 42 .049 66 .038 35 .049 41 .037 42 .034 29 .034 29 .034 29 .034 30 .041 52 .041 52 .041 52 .041 52 .041 52 .041 52 .032 68 .031 40 .027 25 .032 68 .034 22	#4 7.25 2.80 8.00 8.20 1.50 4.95 5.80 0.40 1.50 9.00 7.60 2.00 7.35 0.40 2.90 4.40 3.30 1.20 3.20
0400 1100 1500 1900 2000 2400 2600 3000 3500 3700 4200 4200 4900 5200 5300 5400 5600	RATIO 1 103 0 136 0 77 0 100 0 108 0 135 0 91 0 161 0 127 0 109 0 109 0 125 0 151 0 178 0 134 0 138 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170 .219 .075 .111 .174 .153 .071 .222		DPE S 009 011 011 011 010 011 010 010 011 010 013 011 014 011 015 011 011 011 011 011 011 011 011 011 011 011 011 011 012 011 013 011 014 0011 015 016 016 018	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.060 1.069 1.068 1.316 1.069 1.111 1.250 1.083 1.070	 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85 3.39 4.05 2.94 2.93 3.47 3.16 2.20 4.54 4.19 	0.49 0.55 0.55 0.44 0.66 0.65 0.65 0.65 0.65 0.65 0.41 0.44 0.45 0.55 0.55 0.55	9 5 3 8 4 0 5 5 7 9 9 3 8 5 5 7 9 9 1 3 8 5 5 7 9 9 1 3	2 3 5 4 4 4 4 4 4 3 2 2 2 2 2 1 1 1 1 1 1 1	4 3 5 5 4 4 5 3 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 1 1 1 1 3 1 3 1 4 1 1	SPECT GEOL 2 1 3 5 4 2 3 1 3 2 2 1 2 0 3 3 4 0 4 4 1 3 2 2 4 1 3 2 4 1 1 3 2 0 3 0 3 0	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 3 3 1 1 1 2	3Y #1 0.027 0.033 0.027 0.035 0.038 0.025 0.025 0.030 0.030 0.031 0.034 0.036 0.034 0.036 0.025 0.034 0.036 0.034 0.036 0.022 0.037 0.022 0.030 0.044 0.030 0.053	$\begin{array}{c} \#2\\ 0.015 & 0\\ 0.024 & 0\\ 0.026 & 0\\ 0.026 & 0\\ 0.019 & 0\\ 0.017 & 0\\ 0.015 & 0\\ 0.017 & 0\\ 0.025 & 0\\ 0.025 & 0\\ 0.028 & 0\\ 0.028 & 0\\ 0.028 & 0\\ 0.028 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.020 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.020 & 0\\ 0.020 & 0\\ 0.039 & 0\\ 0.047 & 0\\ \end{array}$	#3 .032 43 .042 44 .031 42 .049 66 .038 35 .049 41 .037 45 .027 22 .034 29 .034 39 .034 39 .043 53 .041 52 .041 52 .041 52 .041 52 .031 40 .027 25 .032 18 .058 672	#4 7.25 2.80 8.00 8.20 1.50 4.95 5.80 0.40 1.50 9.00 7.60 2.90 7.35 0.40 2.90 4.40 3.30 1.20 5.20
0400 1100 1500 1900 2100 2400 2600 3500 3500 3500 3700 4200 4400 4900 5200 5300 5400	RATIO 1 103 0 136 0 77 0 108 0 135 0 91 0 95 0 161 0 109 0 127 0 101 0 90 0 125 0 68 0 178 0 134 0 145 0 121 0	NO. .198 .155 .112 .159 .105 .143 .107 .106 .170 .219 .075 .111 .174 .153 .071 .228 .170 .228 .170 .228 .110 .155 .111 .155 .112 .155 .112 .155 .112 .155 .112 .155 .112 .155 .112 .155 .112 .155 .112 .155 .112 .105 .143 .107 .170 .219 .071 .174 .157 .111 .174 .157 .111 .174 .125 .111 .174 .126 .170 .121 .174 .174 .126 .170 .121 .174 .174 .126 .170 .128 .171 .174 .128 .170 .128 .171 .174 .128 .170 .128 .171 .171 .128 .170 .128 .171 .128 .170 .128 .170 .128 .171 .174 .128 .170 .128 .170 .228 .111 .126 .116 .126 .126 .126 .126 .126 .126 .127 .127 .128 .126 .128 .126 .126 .126 .126 .126 .126 .126 .126 .126 .126 .126 .126 .126 .126 .128 .128 .128 .128 .128 .126 .128 .126 .128 .126 .128 .126 .128 .126 .126 .126 .126 .126 .126 .128 .126		DPE S 009 011 011 011 010 011 010 011 010 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 0017 016 019 019	1.180 1.122 1.149 1.267 1.229 1.212 1.273 1.176 1.060 1.069 1.068 1.316 1.069 1.111 1.250 1.083 1.070 1.094 1.055	<pre>2 DENSITY 3.94 3.04 2.97 3.23 2.91 3.50 2.64 3.85 3.39 4.05 2.94 2.93 3.47 3.16 2.20 4.54 4.61 4.19 3.33 2.94</pre>	0.49 0.55 0.57 0.41 0.66 0.65 0.65 0.65 0.65 0.41 0.41 0.41 0.55 0.55 0.55 0.42	9 5 1 3 8 4 4 5 5 5 7 9 9 1 3 8 5 5 7 9 9 1 3 6 6	2 3 5 4 4 4 4 4 4 3 2 2 2 2 2 1 1 1 1 1 1 1	4 3 5 5 5 4 4 5 3 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 1 1 1 1 1 3 1 3 1 1 4 1 1 1 1 1	SPECT GEOL 2 1 3 5 4 2 3 1 3 2 0 1 3 3 4 0 3 3 4 0 1 3 2 2 4 1 3 3 4 0 1 3 2 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 4 0	DGY GEOLOG 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3Y #1 0.027 0.033 0.027 0.027 0.028 0.028 0.020 0.030 0.025 0.020 0.030 0.030 0.036 0.036 0.036 0.034 0.029 0.024 0.030 0.046	$\begin{array}{c} \#2\\ 0.015 & 0\\ 0.024 & 0\\ 0.026 & 0\\ 0.020 & 0\\ 0.017 & 0\\ 0.017 & 0\\ 0.017 & 0\\ 0.017 & 0\\ 0.025 & 0\\ 0.025 & 0\\ 0.028 & 0\\ 0.028 & 0\\ 0.028 & 0\\ 0.028 & 0\\ 0.021 & 0\\ 0.028 & 0\\ 0.021 & 0\\ 0.021 & 0\\ 0.020 & 0\\ 0.039 & 0\\ 0.020 & 0\\ 0.020 & 0\\ \end{array}$	#3 .032 43 .042 44 .031 42 .039 66 .038 35 .049 41 .037 45 .027 22 .034 29 .034 23 .043 50 .041 52 .049 53 .031 40 .027 25 .032 18 .038 64 .038 64 .038 64 .038 72	#4 7.25 2.80 8.00 8.20 1.50 4.95 5.80 0.40 1.50 9.00 7.60 2.00 7.35 0.40 2.90 4.40 3.30 1.20 3.20

Table 2. (cont.) Third order drainage basins listed by classification stratum. Stratum C.

. .

BASNUM	LOCATION CODE	ORDER	САТ	BASIN AREA		BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH		NUMBER OF SECONDS	NUMBER S OF FIRSTS	TOTAL CHANNEL LENGTH	MAXIMUM USED RELIEF	MINIMUN USED F RELIEN	M F USEDREL
0500	RS517312AA0	3	с	3.18	3.20	8.52	4655	4200	455	3.53	3.22	3	11	11.08	4425	4220	205
0600	RS517311AB0		С	3.51	3.35	11.21	4590	4235	355	3.65	3.26	2	9	10.26	4400	4250	150
0700	RS517315AD0		С	7.65	6.83	16.79	4825	4260	565	8.74	7.17	5	20	24.04	4535	4285	250
1200	GW517327DC0		С	4.00	4.47	11.77	4765	4360	405	5.22	4.47	3	15	13.51	4585	4375	210
1300	GE517225BDR		С	3.34	3.81	9.39	4585	4265	320	4.37	3.62	4	11	11.79	4465	4285	180
1400	GE517225BDL		С	4.36	3.89	12.83	4565	4265	300	6.09	4.64	3	17	14.80	4465	4280	185
1600	GE507134CCL		С	6.73	4.27	14.26	4765	4435	330	6.04	5.27	4	16	17.09	4600	4450	150
2200	SR477209CD0	3	С	7.40	4.41	13.47	4980	4605	375	6.15	4.80	4	17	20.37	4810	4625	185
2300	SR477218AC0		С	4.69	3.43	10.66	4945	4640	305	5.05	4.10	3	11	13.18	4860	4670	190
2500	GS477201AC0		С	6.24	4.04	13.73	4745	4510	235	4.97	4.59	2	7	10.63	4650	4535	115
2700	SH477020BC0		С	2.84	2.94	8.36	4725	4420	305	3.98	3.01	2	6	8.09	4585	4435	150
2800	SH477031BA0		С	4.16	3.82	11.31	4735	4445	290	4.95	4.18	2	7	9.79	4640	4475	165
2900	SH477126AD0		С	5.30	2.79	10.97	4690	4475	215	3.43	2.90	4	10	10.25	4595	4490	105
3100	ER467121CC0		С	5.25	3.77	11.82	4855	4580	275	6.19	4.95	2	5	11.65	4740	4610	130
3200	ER457118BC0		С	8.04	5.49	17.94	4985	4695	290	9.88	7.72	2	11	18.88	4865	4725	140
4000	LT437121DB0		С	6.86	4.65	13.53	4975	4790	185	5.89	4.90	3	16	22.19	4880	4795	85
4100	LT427107BCR		С	2.58	2.77	11.43	4970	4830	140	3.74	3.25	2	6	9.19	4920	4835	85
4300	RR437102CAL		С	8.65		17.20	4985	4730	255	6.82	6.24	3	9	22.48	4870	4745	125
5100	PN427001DD	3	С	5.13	3.15	12.18	4880	4655	225	4.58	3.68	2	13	14.42	4835	4665	170
5500	TS427121AB0		С	4.96	3.81	11.93	5005	4765	240	6.03	4.66	3	11	15.38	4935	4770	165
5800	TK417008AA0		С	4.68	3.03	12.11	4945	4615	330	4.56	3.97	3	12	10.95	4850	4650	200
6100	TK417009CC0	3	С	3.42	2.99	9.26	4905	4595	310	4.02	3.23	3	14	12.51	4775	4615	160
BASNUM	RELIEF RUGG RATIO	EDNESS NO.			INUOSITY	DRAINAGE DENSITY	CIRCULA	RITY PRE	CIP. VE	GETATION	SOIL A	SURFI SPECT GEOI		AGI GY #1	AGI #2	AGI / #3	AGI #4
	RATIO	NO.	SLO	OPE S		DENSITY						SPECT GEOI	OGY GEOLOG	GY #1	#2	#3	#4
0500	RATIO 142 0	NO. .300	SLC 0.0	DPE S: 016	1.096	DENSITY	0.5	5	3	3	1	SPECT GEOI	LOGY GEOLOG	3Y #1 0.078	#2 0.051 0	#3).086 144	#4 46.90
0500 0600	RATIO 142 0 106 0	NO. .300 .196	SL0 0.0 0.0	DPE S: 016 011	1.096 1.117	2.92 DENSITY	0.5	5	3 2	3 4	1 3	SPECT GEOI	LOGY GEOLOG 1 2 1	GY #1 0.078 0.065	#2 0.051 0 0.039 0	#3).086 144).070 124	#4 46.90 46.05
0500 0600 0700	RATIO 142 0 106 0 83 0	NO. .300 .196 .336	SLC 0.0 0.0	DPE S: 016 011 008	1.096 1.117 1.219	2 DENSITY 3.49 2.92 3.14	0.5 0.3 0.3	5 5 1	3 2 3	3 4 3	1 3 1	SPECT GEOL 1 2 2 2 1 2	LOGY GEOLOG 2 1 2 1 2 1	GY #1 0.078 0.065 0.094	#2 0.051 0 0.039 0 0.061 0	#3).086 144).070 124).120 432	#4 46.90 46.05 22.25
0500 0600 0700 1200	RATIO 142 0 106 0 83 0 91 0	NO. .300 .196 .336 .259	SL0 0.0 0.0 0.0	DPE S: 016 011 008 011	1.096 1.117 1.219 1.168	2 DENSITY 3.49 2.92 3.14 3.37	0.5 0.3 0.3 0.3	5 5 1 6	3 2	3 4 3 4	1 3 1 1	SPECT GEOU 1 2 2 2 1 2 1 2	LOGY GEOLOG 2 1 2 1 2 1 2 1 2 1	3Y #1 0.078 0.065 0.094 0.059	#2 0.051 0.039 0.061 0.044	#3 0.086 144 0.070 124 0.120 432 0.069 162	#4 46.90 46.05 22.25 20.00
0500 0600 0700	RATIO 142 0 106 0 83 0 91 0 84 0	NO. .300 .196 .336	SLC 0.0 0.0	DPE S: 016 011 008 011 011	1.096 1.117 1.219	2 DENSITY 3.49 2.92 3.14	0.5 0.3 0.3	5 5 5 1 6 8	3 2 3 3	3 4 3	1 3 1	SPECT GEOU 1 2 2 2 1 2 1 2 1 2 1 2	LOGY GEOLOG 2 1 2 1 2 1 2 1 2 1 2 1	3Y #1 0.078 0.065 0.094 0.059 0.046	#2 0.051 0 0.039 0 0.061 0 0.044 0 0.037 0	#3 0.086 144 0.070 124 0.120 432 0.069 162 0.053 106	#4 46.90 46.05 22.25 20.00 68.80
0500 0600 0700 1200 1300	RATIO 142 0 106 0 83 0 91 0 84 0 77 0	NO. .300 .196 .336 .259 .214	SL(0.(0.(0.(0.(0.(DPE S: D16 D11 D08 D11 D11 D08	1.096 1.117 1.219 1.168 1.205	2 DENSITY 3.49 2.92 3.14 3.37 3.53	0.5 0.3 0.3 0.3 0.3	5 5 4 6 8 3	3 2 3 3 4	3 4 3 4 3	1 3 1 1	SPECT GEOU 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2	LOGY GEOLOG 1 1 1 1 1 1 1 1 1 1 1 1 1	3Y #1 0.078 0.065 0.094 0.059 0.046 0.041	#2 0.051 0 0.039 0 0.061 0 0.044 0 0.037 0 0.035 0	#3).086 144).070 124).120 432).069 162).053 106).064 130	#4 46.90 46.05 22.25 20.00 58.80 08.00
0500 0600 0700 1200 1300 1400	RATIO 142 0 106 0 83 0 91 0 84 0 77 0 77 0	NO. .300 .196 .336 .259 .214 .193	SL0 0.0 0.0 0.0 0.0 0.0	DPE S: D16 D11 D08 D11 D11 D08 D07	1.096 1.117 1.219 1.168 1.205 1.314	<pre>2 DENSITY 3.49 2.92 3.14 3.37 3.53 3.39</pre>	0.5 0.3 0.3 0.3 0.3 0.4 0.3	5 5 4 6 8 3	3 2 3 3 4 4	3 4 3 4 3 2	1 3 1 1 1	SPECT GEO 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	LOGY GEOLOG 1 1 1 1 1 1 1 1 1 1 1 1 1	3Y #1 0.078 0.065 0.094 0.059 0.046 0.041 0.070	#2 0.051 0.039 0.061 0.044 0.037 0.035 0.047	#3).086 144).070 124).120 432).069 162).053 106).053 106).064 130).098 222	#4 46.90 46.05 22.25 20.00 68.80 08.00 20.90
0500 0600 1200 1300 1400 1600	RATIO 142 0 106 0 83 0 91 0 84 0 77 0 77 0 85 0	NO. .196 .336 .259 .214 .193 .159	SL0 0.0 0.0 0.0 0.0 0.0 0.0	DPE S: D16 D11 D08 D11 D11 D08 D07 D08	1.096 1.117 1.219 1.168 1.205 1.314 1.146	<pre>density 3.49 2.92 3.14 3.37 3.53 3.39 2.54</pre>	0.5 0.3 0.3 0.3 0.4 0.3	5 5 6 8 3 2	3 2 3 3 4 4 5	3 4 3 4 3 2 3 2	1 3 1 1 1 3 1	SPECT GEOI 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	LOGY GEOLOG 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3Y #1 0.078 0.065 0.094 0.059 0.046 0.041 0.070 0.085	#2 0.051 0 0.039 0 0.061 0 0.044 0 0.037 0 0.035 0 0.047 0 0.059 0	#3 0.086 144 0.070 124 0.069 162 0.053 106 0.064 130 0.098 222 0.119 273	#4 46.90 46.05 22.25 20.00 58.80 08.00 20.90 75.00
0500 0600 1200 1300 1400 1600 2200	RATIO 142 0 106 0 83 0 91 0 84 0 77 0 77 0 85 0 89 0	NO. .300 .196 .336 .259 .214 .193 .159 .195	SL0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DPE S: 016 011 008 011 011 008 007 008 007 008 010	1.096 1.117 1.219 1.168 1.205 1.314 1.146 1.281	<pre>C DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75</pre>	0.5 0.3 0.3 0.4 0.4 0.3 0.4 0.5	5 5 4 6 8 8 3 3 2 1	3 2 3 3 4 4 5 3	3 4 3 4 3 2 3	1 3 1 1 1 3	SPECT GEOI 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	LOGY GEOLOG 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	GY #1 0.078 0.065 0.094 0.059 0.046 0.041 0.070 0.085 0.054	#2 0.051 0 0.039 0 0.061 0 0.037 0 0.037 0 0.037 0 0.037 0 0.044 0 0.037 0 0.047 0	#3 0.086 144 0.070 124 0.120 432 0.069 162 0.053 106 0.053 106 0.098 222 0.098 227 0.079 143	#4 46.90 46.05 22.25 22.00 68.80 08.00 20.90 75.00 30.45
0500 0600 1200 1300 1400 1600 2200 2300	RATIO 142 0 106 0 83 0 91 0 84 0 77 0 77 0 85 0 89 0 58 0	NO. .300 .196 .336 .259 .214 .193 .159 .195 .162	SL0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DPE S: 016 011 008 011 011 008 007 008 007 008 010	1.096 1.117 1.219 1.168 1.205 1.314 1.146 1.281 1.234	<pre>C DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75 2.81</pre>	0.5 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5	5 5 4 6 8 9 3 2 1 2 2	3 2 3 3 4 4 5 3 3	3 4 3 4 3 2 3 2 3 2 3	1 3 1 1 1 3 1 1 1	SPECT GEOI 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	LOGY GEOLOG 1 1 1 1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3Y #1 0.078 0.065 0.094 0.059 0.046 0.041 0.070 0.085 0.054 0.054	#2 0.051 0 0.039 0 0.061 0 0.044 0 0.037 0 0.035 0 0.047 0 0.059 0 0.047 0 0.037 0	#3 0.086 144 0.070 124 0.120 433 0.069 162 0.053 106 0.064 136 0.098 223 0.119 277 0.079 143 0.069 146	#4 46.90 46.05 22.25 20.00 68.80 08.00 20.90 75.00 30.45 66.40
0500 0600 1200 1300 1400 1600 2200 2300 2500 2700	RATIO 142 0 106 0 83 0 91 0 84 0 77 0 85 0 85 0 89 0 58 0 104 0	NO. .300 .196 .336 .259 .214 .193 .159 .195 .162 .076 .164	SLC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DPE S: D16 D11 D08 D11 D11 D08 D07 D08 D07 D08 D07 D08 D10 D06 D10	1.096 1.117 1.219 1.168 1.205 1.314 1.146 1.281 1.234 1.083 1.323	 DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75 2.81 1.70 2.85 	0.55 0.33 0.34 0.33 0.41 0.55 0.55 0.55	5 5 8 8 3 2 1 2 2 2 1	3 2 3 3 4 4 5 5 3 3 3 3	3 4 3 2 3 2 3 3 3 3 3 3	1 3 1 1 1 3 1 1 1 1	SPECT GEOI 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2	LOGY GEOLOG 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	GY #1 0.078 0.065 0.094 0.059 0.041 0.070 0.085 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054	#2 0.051 0 0.039 0 0.061 0 0.037 0 0.035 0 0.047 0 0.059 0 0.047 0 0.037 0 0.037 0 0.038 0	#3 .0086 144 .070 124 .120 432 .069 162 .053 106 .098 222 .119 277 .079 143 .009 146 .056 86	#4 46.90 46.05 22.25 20.00 68.80 08.00 20.90 75.00 30.45 66.40 66.20
0500 0600 1200 1300 1400 1600 2200 2300 2500	RATIO 142 0 106 0 83 0 91 0 84 0 77 0 77 0 85 0 89 0 58 0 104 0 76 0	NO. .300 .196 .336 .259 .214 .193 .159 .195 .162 .076	SL0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DPE S: 016 011 008 001 001 008 007 008 007 008 007 008 007 008 007 008 007 008 010 006 010 009	1.096 1.117 1.219 1.168 1.205 1.314 1.146 1.281 1.234 1.083 1.323 1.185	<pre>2 DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75 2.81 1.70 2.85 2.36</pre>	0.55 0.33 0.34 0.41 0.35 0.45 0.55 0.45 0.45	5 5 6 8 3 2 1 2 2 2 1 1	3 2 3 3 4 4 5 3 3 3 3 3 3 3 2	3 4 3 2 3 2 3 3 3 3 2	1 3 1 1 1 3 1 1 1 1	SPECT GEOI 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOGY GEOLOG 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	GY #1 0.078 0.065 0.094 0.059 0.046 0.041 0.070 0.085 0.054 0.054 0.054 0.046	#2 0.051 0 0.039 0 0.061 0 0.044 0 0.037 0 0.047 0 0.059 0 0.047 0 0.037 0 0.037 0 0.037 0	#3).086 144).070 124).120 432).069 162).053 106 0.064 130 0.098 222 0.119 277 0.079 143 0.069 146 0.056 86 0.060 120	#4 46.90 46.05 22.25 20.00 58.80 08.00 20.90 75.00 30.45 56.40 56.20 05.40
0500 0600 1200 1400 1600 2200 2300 2500 2500 2800 2800	RATIO 142 0 106 0 83 0 91 0 84 0 77 0 77 0 85 0 85 0 89 0 58 0 104 0 76 0 77 0 77 0	NO. .300 .196 .336 .259 .214 .193 .159 .162 .076 .164 .129 .079	SLC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DPE S: D16 D11 D08 D01 D11 D08 D07 D08 D10 D06 D10 D06 D10 D06 D10 D09 D08	1.096 1.117 1.219 1.168 1.205 1.314 1.146 1.281 1.234 1.083 1.323 1.185 1.182	<pre>C DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75 2.81 1.70 2.85 2.36 1.94</pre>	0.55 0.33 0.30 0.4 0.33 0.4 0.55 0.55 0.4 0.55 0.4 5 0.55	5 5 8 8 3 2 2 1 2 2 1 1 5	3 2 3 3 4 4 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 4 3 2 3 2 3 3 3 3 3 2 3 3 2 3	1 3 1 1 1 3 1 1 1 1 1 1	SPECT GEOI 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	JOGY GEOLOG 1 1 1 1 1 1 2 1 3 1 3 4	GY #1 0.078 0.065 0.094 0.059 0.046 0.041 0.070 0.085 0.054 0.056 0.041 0.054 0.054 0.056 0.041 0.056 0.041	#2 0.051 0 0.039 0 0.044 0 0.037 0 0.047 0 0.059 0 0.047 0 0.037 0 0.037 0 0.028 0 0.037 0 0.037 0	#3 0.086 144 0.070 124 0.120 432 0.053 106 0.053 106 0.064 130 0.098 222 0.119 277 0.079 143 0.069 146 0.056 86 0.066 120 0.067 113	#4 46.90 46.05 22.25 22.00 68.80 08.00 20.90 75.00 30.45 66.40 66.40 66.40 39.50
0500 0600 1200 1300 1400 2200 2300 2500 2700 2800	RATIO 142 0 106 0 83 0 91 0 84 0 77 0 85 0 89 0 58 0 104 0 76 0 77 0 73 0	NO. .300 .196 .259 .214 .193 .159 .165 .162 .076 .164 .129	SLC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DPE S: 016 011 008 011 011 011 008 007 007 007 007 007 007 007 008 010 000 009 0008 0008	1.096 1.117 1.219 1.168 1.205 1.314 1.146 1.281 1.234 1.083 1.323 1.185	<pre>2 DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75 2.81 1.70 2.85 2.36</pre>	0.55 0.33 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.4	5 5 6 8 9 2 1 2 2 1 1 5 5 7	3 2 3 3 4 4 5 3 3 3 3 3 3 3 2	3 4 3 2 3 2 3 3 3 3 2	1 3 1 1 1 3 1 1 1 1	SPECT GEOI 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2	LOGY GEOLOG 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3Y #1 0.078 0.065 0.094 0.059 0.046 0.041 0.070 0.085 0.054 0.054 0.054 0.041 0.046 0.041 0.043 0.063	#2 0.051 0 0.039 0 0.061 0 0.037 0 0.037 0 0.044 0 0.037 0 0.047 0 0.047 0 0.037 0 0.037 0 0.037 0 0.037 0 0.032 0	#3 0.086 144 0.070 124 0.120 435 0.069 165 0.053 106 0.053 106 0.098 222 0.119 275 0.079 145 0.079 145 0.069 146 0.066 126 0.067 115 0.073 144	#4 46.90 46.05 22.25 20.00 68.80 08.00 20.90 75.00 30.45 66.40 66.20 06.40 39.50 43.75
0500 0600 1200 1300 1400 2200 2300 2500 2500 2700 2800 2900 3100	RATIO 142 0 106 0 83 0 91 0 84 0 77 0 85 0 89 0 58 0 104 0 76 0 77 0 76 0 77 0 73 0 53 0	NO. .300 .196 .336 .259 .214 .193 .159 .162 .076 .164 .129 .079 .116	SLC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DPE S: D16 D11 D08 D11 D11 D08 D07 D08 D07 D08 D10 D06 D10 D06 D06 D10 D08 D06 D008 D006 D008 D006 D006 D006 D006 D006 D006 D006 D004 D004	1.096 1.117 1.219 1.168 1.205 1.314 1.281 1.234 1.083 1.323 1.323 1.185 1.182 1.252	<pre>2 DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75 2.81 1.70 2.85 2.36 1.94 2.22</pre>	0.55 0.33 0.30 0.4 0.33 0.4 0.55 0.55 0.4 0.55 0.4 5 0.55	5 4 6 9 9 2 2 1 1 2 2 2 1 1 5 5 7 7	3 2 3 3 4 4 5 5 3 3 3 3 3 2 2 3 2 2 2	3 4 3 2 3 2 3 3 3 2 3 5	1 3 1 1 3 1 1 1 1 1 1 1 1	SPECT GEOI 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1	LOGY GEOLOG 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	GY #1 0.078 0.065 0.094 0.059 0.046 0.041 0.070 0.085 0.054 0.054 0.046 0.041 0.046 0.041 0.046 0.043 0.046 0.044	#2 0.051 0 0.039 0 0.061 0 0.037 0 0.035 0 0.047 0 0.047 0 0.037 0 0.037 0 0.037 0 0.037 0 0.032 0 0.032 0	#3 0.086 144 0.070 124 0.120 435 0.069 165 0.053 106 0.064 130 0.098 222 0.119 277 0.079 143 0.069 146 0.055 86 0.060 120 0.077 113 0.061 233	#4 46.90 46.05 22.25 20.00 58.80 08.00 20.90 75.00 30.45 56.40 56.20 06.40 39.50 43.75 31.60
0500 0600 1200 1400 1600 2200 2300 2500 2500 2700 2800 2900 3100 3200	RATIO 1 142 0 106 0 83 0 91 0 84 0 77 0 77 0 58 0 58 0 76 0 77 0 73 0 53 0	NO. .300 .196 .336 .259 .214 .193 .159 .162 .076 .164 .079 .129		DPE S: 016 011 008 011 008 011 008 007 008 007 008 010 006 006 006 009 008 006 006 0004	$\begin{array}{c} 1.096\\ 1.117\\ 1.219\\ 1.168\\ 1.205\\ 1.314\\ 1.146\\ 1.281\\ 1.234\\ 1.083\\ 1.323\\ 1.185\\ 1.182\\ 1.252\\ 1.252\\ 1.280\end{array}$	<pre>2 DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75 2.81 1.70 2.85 2.36 1.94 2.22 2.35</pre>	0.5 0.3 0.3 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.3 0.4 0.5 0.4 0.3 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 5 4 5 8 3 2 2 2 2 1 1 2 2 2 1 1 5 7 7	3 3 3 4 4 5 3 3 3 3 3 3 2 2 3 2 2 1	3 4 3 2 3 2 3 3 2 3 5 4 4	1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1	SPECT GEOI 1 2 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1	JOGY GEOLOG 1 1 1 1 1 1 2 1 2 1 3 2 1 3 4 4 1 1	3Y #1 0.078 0.065 0.094 0.059 0.046 0.041 0.070 0.085 0.054 0.054 0.056 0.046 0.046 0.046 0.046 0.043 0.044 0.044 0.045 0.044	#2 0.051 C 0.039 C 0.041 C 0.044 C 0.037 C 0.037 C 0.047 C 0.047 C 0.047 C 0.047 C 0.028 C 0.037 C 0.028 C 0.032 C 0.032 C	#3 0.086 144 0.070 124 0.070 124 0.053 106 0.053 106 0.064 130 0.098 222 0.079 142 0.069 146 0.056 86 0.066 120 0.067 112 0.073 144 0.063 123 0.061 23 0.061 23 0.081 23 0.081 23 0.081 23 0.081 23 0.082 126 0.081 23 0.081 23	#4 46.90 46.05 22.25 22.25 20.00 68.80 20.90 75.00 30.45 56.40 66.20 06.40 39.50 43.75 31.60 59.10
0500 0600 1200 1400 1600 2300 2500 2500 2700 2800 2900 3100 3200 4000	RATIO 142 0 106 0 83 0 91 0 84 0 77 0 85 0 89 0 58 0 104 0 76 0 77 0 73 0 53 0 40 0 50 0	NO. .300 .196 .259 .214 .193 .159 .159 .164 .129 .079 .116 .129 .113	SLC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DDPE S: D16 D11 D08 D11 D08 D01 D08 D07 D08 D00 D00 D00 D00 D00 D00 D00 D00 D00	1.096 1.117 1.219 1.168 1.205 1.314 1.146 1.281 1.281 1.281 1.323 1.323 1.185 1.182 1.252 1.280 1.201	<pre>Z DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75 2.61 1.70 2.85 2.36 1.94 2.22 2.35 3.24</pre>	0.5 ¹ 0.33 0.41 0.5 0.45 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4	5 5 6 8 7 2 2 1 2 2 1 1 5 5 7 1 1 5 5	3 3 3 4 4 5 3 3 3 3 3 3 2 2 3 2 2 2 2	3 4 3 2 3 2 3 3 2 3 5 4	1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1	SPECT GEOI 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2	JOGY GEOLOG 1 1 1 1 1 1 2 1 2 1 3 4 4 1 4 1 4 1 5 4 1 1 1 1 1 1 1 1	3Y #1 0.078 0.065 0.094 0.059 0.046 0.041 0.070 0.085 0.054 0.054 0.054 0.041 0.044 0.045 0.044 0.045 0.044 0.045 0.044 0.045 0.041 0.045	#2 0.051 C 0.039 C 0.044 C 0.037 C 0.037 C 0.047 C 0.047 C 0.047 C 0.047 C 0.047 C 0.047 C 0.042 C 0.037 C 0.042 C 0.042 C 0.032 C 0.032 C 0.032 C	#3 0.086 144 0.070 124 0.120 435 0.069 165 0.053 106 0.053 106 0.098 222 0.119 275 0.079 145 0.079 145 0.060 126 0.060 126 0.077 115 0.073 144 0.081 233 0.024 36 0.024 3	#4 46.90 46.05 22.25 20.00 68.80 08.00 20.90 75.00 30.45 66.40 39.50 43.75 31.60 59.10
0500 0600 1200 1300 1400 2200 2300 2500 2500 2700 2800 3100 3200 4000 4100	RATIO 1 142 0 106 0 83 0 91 0 84 0 77 0 85 0 89 0 58 0 76 0 73 0 53 0 40 0 50 0 47 0	NO. .300 .196 .336 .259 .214 .193 .195 .162 .076 .129 .116 .129 .112 .094 .125		DDPE S: D16 D11 D08 D11 D08 D01 D08 D00 D08 D00 D00 D00 D00 D00 D00 D00	1.096 1.117 1.219 1.168 1.205 1.314 1.234 1.234 1.083 1.323 1.185 1.182 1.252 1.252 1.252 1.201 1.251 1.252 1.252 1.201 1.53 1.094	<pre>2 DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75 2.81 1.70 2.85 2.36 1.94 2.22 2.35 3.24 3.56 2.60</pre>	0.5 0.3 0.3 0.3 0.4 0.3 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.3	5 5 4 6 8 3 2 2 2 2 1 1 5 5 7 7 1 7 5 7 7	3 2 3 3 4 4 5 5 3 3 3 3 3 2 2 3 2 2 2 1 1 2 2	3 4 3 2 3 2 3 3 2 3 3 2 3 5 4 4 2 3	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SPECT GEOI 1 2 2 2 1 2 1 1 3 1 3 1 2 1 1 1 1 1 1 3 1 1 3 1 2 1 3 1 2 1 1 1 1 1 1 3 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOGY GEOLOG 1 1 1 1 1 1 2 1 2 1 3 4 4 1 4 1 1 1 2 1 3 4 4 1 1 1 1 1 2 1	3Y #1 0.078 0.065 0.094 0.059 0.046 0.041 0.054 0.054 0.046 0.041 0.045 0.045 0.045 0.041 0.045 0.045 0.045	#2 0.051 C 0.039 C 0.041 C 0.044 C 0.037 C 0.037 C 0.047 C 0.047 C 0.047 C 0.047 C 0.028 C 0.028 C 0.028 C 0.022 C 0.032 C 0.032 C 0.032 C 0.032 C	#3 0.086 144 0.070 124 0.120 435 0.069 165 0.053 106 0.054 130 0.098 222 0.119 277 0.079 145 0.069 146 0.055 86 0.060 120 0.077 113 0.073 144 0.081 233 0.052 126 0.024 36 0.024 36 0.027 220	#4 46.90 46.05 22.25 20.00 56.80 08.00 20.90 75.00 30.45 56.40 56.20 06.40 33.50 43.75 31.60 59.10 51.20 55.75
0500 0600 1200 1400 1600 2200 2500 2500 2700 2800 2900 3100 3200 4000 4100 4300 5100	RATIO 1 142 0 106 0 83 0 91 0 84 0 77 0 77 0 58 0 58 0 76 0 77 0 73 0 53 0 40 0 50 0 47 0 71 0	NO. .300 .196 .336 .259 .214 .193 .195 .162 .076 .164 .129 .120		DDPE S: D16 D11 D08 D11 D01 D01 D008 D10 D008 D10 D008 D10 D008 D10 D008 D10 D009 D008 D10 D009 D009 D009 D009 D009 D009 D009	1.096 1.117 1.219 1.168 1.205 1.314 1.146 1.281 1.281 1.234 1.083 1.323 1.185 1.182 1.252 1.280 1.201 1.153 1.094 1.247	<pre>2 DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.55 2.81 1.70 2.85 2.36 1.94 2.22 2.35 3.24 3.56 2.60 2.81</pre>	0.5 0.3 0.4 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 5 4 5 8 3 2 2 2 1 2 2 2 1 1 5 5 7 7 7 5 5 7 7 3	3 3 3 4 4 5 3 3 3 3 3 2 2 3 2 2 2 1 1	3 4 3 2 3 2 3 3 2 3 5 4 4 2 3 2 3 2 3 5 4 4 2 3 2 3 2 3 5	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SPECT GEOI 1 2 2 2 1 2 1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 1 2 1 1 1 2 1	JOGY GEOLOG 1 1 1 1 1 1 2 1 2 1 3 4 4 1 4 1 5 1 6 1 7 1 8 4 1 1 2 1 3 1 4 1 5 1 6 1 7 1	3Y #1 0.078 0.065 0.094 0.059 0.046 0.041 0.054 0.054 0.054 0.041 0.054 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.045 0.041 0.041 0.041 0.041 0.041	#2 0.051 C 0.039 C 0.041 C 0.044 C 0.037 C 0.037 C 0.059 C 0.047 C 0.028 C 0.028 C 0.028 C 0.028 C 0.032 C 0.035 C 0.035 C 0.035 C 0.035 C 0.037 C 0.035 C 0.037 C 0.035 C 0.037 C 0.032 C 0.037 C 0.032 C 0.037 C 0.032 C 0.037 C 0.032 C 0.0	#3 0.086 144 0.070 124 0.120 432 0.069 166 0.053 106 0.053 106 0.064 130 0.098 222 0.079 143 0.069 146 0.069 146 0.060 126 0.077 112 0.073 144 0.081 233 0.052 126 0.024 36 0.024 36 0.077 226 0.077 112 0.077 126 0.081 123 0.081 124 0.081 124	#4 46.90 46.05 22.25 22.25 22.00 68.80 08.00 20.90 75.00 30.45 56.40 66.20 05.40 39.50 43.75 31.60 59.10 51.20 05.75 54.25
0500 0600 1200 1400 1600 2200 2500 2500 2500 2700 2800 2900 3100 3200 4000 4100 4300 5500	RATIO I 142 0 106 0 83 0 91 0 84 0 77 0 77 0 58 0 58 0 76 0 77 0 73 0 50 0 40 0 50 0 47 0 71 0	NO. .300 .196 .336 .259 .214 .193 .195 .162 .076 .164 .129 .079 .112 .129 .113 .094 .129 .121 .129 .121 .129 .121 .129 .121 .129 .1129 .129 .1129 .129 .1120 .1120 .1120		DDPE S: D16 D11 D08 D11 D08 D11 D08 D10 D08 D10 D08 D10 D08 D10 D08 D10 D09 D08 D10 D09 D09 D09 D09 D09 D09 D09 D09 D09 D0	1.096 1.117 1.219 1.168 1.205 1.314 1.281 1.281 1.281 1.281 1.224 1.252 1.252 1.260 1.252 1.2601 1.153 1.094 1.247 1.294	<pre>C DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75 2.81 1.70 2.85 2.36 1.94 2.22 2.35 3.24 3.56 2.60 2.81 3.10</pre>	0.5! 0.3: 0.4 0.4 0.5: 0.4 0.5: 0.4 0.5: 0.4 0.5: 0.4 0.5: 0.4 0.3: 0.4 0.3: 0.4 0.3: 0.4 0.3: 0.4	5 5 6 8 3 2 2 1 2 2 2 1 1 5 7 7 1 7 7 5 7 3 4	3 3 3 4 4 5 3 3 3 3 3 3 2 2 2 1 1 2 2 1 1 2 2 1 1	3 4 3 2 3 2 3 3 2 3 3 2 3 5 4 4 2 3 2 2 2		SPECT GEOI 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 2 3 3 2 1 0 2 1	JOGY GEOLOG 1 1 1 1 1 1 2 1 2 1 3 4 4 1 4 1 5 4 1 1 2 1 3 4 1 1 2 1 3 4 1 1 2 1 3 1	3Y #1 0.078 0.065 0.094 0.059 0.046 0.041 0.070 0.085 0.054 0.054 0.054 0.054 0.063 0.044 0.046 0.043 0.041 0.041 0.054 0.054 0.054 0.054 0.041 0.043 0.045 0.041 0.041 0.018 0.041 0.048 0.041 0.048	#2 0.051 C 0.039 C 0.061 C 0.044 C 0.037 C 0.037 C 0.059 C 0.047 C 0.037 C 0.047 C 0.037 C 0.047 C 0.032 C 0.032 C 0.032 C 0.032 C 0.032 C 0.032 C 0.032 C 0.032 C 0.032 C 0.035 C	#3 0.086 144 0.070 124 0.070 124 0.070 124 0.053 106 0.053 106 0.064 130 0.098 222 0.079 143 0.069 146 0.056 86 0.060 122 0.077 113 0.067 143 0.069 145 0.077 220 0.077 220 0.079 115 0.059 11	#4 46.90 46.05 22.25 22.25 22.00 68.80 58.80 58.80 58.60 50.00 20.90 75.00 30.45 56.40 56.40 56.40 56.40 59.10 59.10 51.20 55.75 54.25 50.40
0500 0600 1200 1400 1600 2200 2500 2500 2700 2800 2900 3100 3200 4000 4100 4300 5100	RATIO I 142 0 106 0 83 0 91 0 84 0 77 0 85 0 89 0 58 0 76 0 73 0 53 0 40 0 50 0 47 0 71 0 63 0	NO. .300 .196 .336 .259 .214 .193 .195 .162 .076 .164 .129 .120	SLC 0. C 0. C 0. C 0. C 0. C 0. C 0. C 0.	DDPE S: D16 D11 D08 D11 D01 D01 D008 D10 D008 D10 D008 D10 D008 D10 D008 D10 D009 D008 D10 D009 D009 D009 D009 D009 D009 D009	1.096 1.117 1.219 1.168 1.205 1.314 1.146 1.281 1.281 1.234 1.083 1.323 1.185 1.182 1.252 1.280 1.201 1.153 1.094 1.247	<pre>Z DENSITY 3.49 2.92 3.14 3.37 3.53 3.39 2.54 2.75 2.81 1.70 2.85 2.36 1.94 2.22 2.35 3.24 3.56 2.60 2.81</pre>	0.5 0.3 0.4 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 5 4 6 8 3 2 2 2 2 1 1 5 5 7 7 1 1 7 5 7 7 3 4 4 0	3 3 3 4 4 5 3 3 3 3 3 2 2 2 2 1 1 1 2 2 1	3 4 3 2 3 2 3 3 2 3 5 4 4 2 3 2 3 2 3 5 4 4 2 3 2 3 2 3 5	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SPECT GEOI 1 2 2 2 1 2 1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 1 2 1 1 1 2 1	LOGY GEOLOG 1 1 1 1 1 1 2 1 2 1 3 4 4 1 4 1 1 1 2 1 3 4 1 1 2 1 3 4 1 1 2 1 3 2 1 2 2 1	3Y #1 0.078 0.065 0.094 0.059 0.046 0.041 0.054 0.054 0.046 0.041 0.045 0.045 0.045 0.041 0.045 0.045 0.041 0.045 0.045 0.041 0.045 0.045 0.045 0.045 0.045 0.045	#2 0.051 C 0.039 C 0.041 C 0.037 C 0.037 C 0.047 C 0.047 C 0.047 C 0.047 C 0.047 C 0.028 C 0.028 C 0.028 C 0.032 C 0.032 C 0.032 C 0.032 C 0.032 C 0.032 C 0.035 C 0.041 C 0.035 C 0.035 C 0.041 C 0.035 C	#3 0.086 144 0.070 124 0.120 432 0.069 166 0.053 106 0.053 106 0.064 130 0.098 222 0.079 143 0.069 146 0.069 146 0.060 126 0.077 112 0.073 144 0.081 233 0.052 126 0.024 36 0.024 36 0.077 226 0.077 112 0.077 126 0.081 123 0.081 124 0.081 124	#4 46.90 46.05 22.25 20.00 68.80 08.00 20.90 75.00 30.45 66.20 06.40 33.50 43.75 31.60 55.10 55.10 55.25 54.25 90.40

Table	2.	(cont.)	Third order	drainage	basins	listed by	classification	stratum.	Stratum
			D.						

BASNUM	LOCATION CODE	ORDER	_	ASIN AREA		BASIN PERIMETER	MAXIMUM I ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH				UMBER FIRSTS	TOTAL CHANNEL LENGTH	MAXIMUN USED RELIER	US	SED	SEDREL
3300	RC466915ACR	3	D	7.25	4.08	13.29	5110	4635	475	8.25	4.86		4	23	25.83	4910	46	575	235
3400	RC466915ACL	3	D	5.56	3.62	11.70	4970	4635	335	7.01	4.01		5	19	21.60	4835	46	555	180
BASNUM	RELIEF RUGG RATIO	EDNESS NO.	CHANN SLOI		INUOSITY	DRAINAGE DENSITY	CIRCULAR	ITY PREG	CIP. VE	GETATION	SOIL A	SPECT	SURFICIAL GEOLOGY	GEOLOG	AGI Y #1	AGI #2	AGI #3	AGI #4	
3300	116 0	. 321	0.00	8	1.696	3.56	0.52	2	2	1	3	1	1	4	0.079	0.058	0.159	3443.	75
3400	93 0	.246	0.00)7	1.748	3.88	0.51	2	2	1	3	2	1	4	0.050	0.039 (0.098	1862.	60

Table 3. Second order drainage basins listed by classification stratum. Stra	catum A.
--	----------

BASNUM	LOCATION CODE	OPPER	CAT	BASIN		BASIN		MINIMUM		MAIN CHANNEL		NUMBI		MAXIMUM USED	USED		RELIEF	
BASNUM	CODE	ORDER	CAT	AREA	LENGTH	PERIMETER	ELEV.	ELEV.	RELIEF	LENGTH	LENGTH	OF FIRS	STS LENGTH	RELIEF	RELIEF	USEDREI	RATIO	
01A0	CC547233BCR	2	A	0.94	1.71	4.72	4205	3900	305	1.70	1.58	2	2.60	4090	3925	165	179	
01B0	CC547233BCL	2	А	0.75	1.36	4.34	4235	3900	335	1.40	1.33	2	2.00	4090	3915	175	246	
02A0	CC537205BAR	2	A	1.82	2.58	7.57	4265	3885	380	2.83	2.60	3	4.05	4095	3905	190	147	
02B0	CC537205BAL	2	Α	0.70	1.41	3.70	4200	3885	315	1.51	1.45	3	2.75	4040	3895	145	223	
0AE0	CC537217ABR	2	А	0.68	1.28	3.77	4305	3960	345	1.22	1.19	2	1.80	4090	3970	120	269	
03B0	CC537217ABL	2	Α	0.53	1.26	3.21	4295	3960	335	1.16	1.11	3	2.12	4070	3970	100	266	
0880	RS527221ABR	2	A	0.78	1.36	4.14	4325	4085	240	1.33	1.30	3	2.53	4195	4095	100	177	
0880	RS527221ABL	2	Α	1.24	1.49	5.15	4350	4085	265	2.27	2.10	2	3.50	4250	4110	140	178	
0900	MS527129ABR	2	A	0.72	1.34	4.52	4470	4245	225	1.56	1.48	3	2.49	4405	4270	135	168	
0900	MS527129ABL	2	A	0.87	1.22	4.20	4445	4245	200	1.33	1.22	3	2.31	4370	4255	115	165	
10A0	MS517105BCR	2	A	0.17	0.56	1.87	4525	4350	175	0.52	0.48	2	0.99	4435	4365	70	315	
1080	MS517105BCL	2	A	0.32	0.75	2.51	4525	4350	175	0.66	0.59	2	1.11	4445	4360	85	232	
17A0	FD507021CAR	2	A	2.31	2.63	8.25	4715	4345	370	4.26	3.31	7	7.36	4610	4370	240	141	
1780	FD507021CAL	2	A	0.21	0.70	2.31	4630	4345	285	0.51	0.48	2	0.98	4400	4360	40	408	
38A0	RC456917AAR	2	A	2.34	3.14	8.67	5025	4790	235	4.21	3.12	4	6.11	4940	4810	130	75	
3880	RC456917AAL	2	A	1.49	2.30	6.42	5100	4790	310	2.68	2.16	4	5.20	4955	4810	145	135	
45A0	PN436904BAR	2 2	A	0.23 0.28	0.91 1.00	2.33	4985	4700	285	0.88	0.81	2	1.43	4795	4715	80	313	
45B0 46A0	PN436904BAL PN436909BDR	2	A A	0.28	1.24	2.60 3.89	4985 5000	4700 4665	285 335	1.02 1.26	$0.94 \\ 1.11$	2	1.37	4850	4720	130	286	
46B0	PN436909BDL	2	Â	0.30	0.73	2.45	4965	4665	300	0.62	0.56	23	3.10 1.77	4835 4740	4680	155	269	
4700	PN436905DCR	2	Â	1.05	1.69	4.83	4925	4700	225	1.91	1.68	4	3.54	4825	4675 4720	65 105	411	
1/00	111130303050	-		1.05	1.05	1.05	1725	4700	223	1.71	1.00	-	3.34	4025	4/20	105	133	
	RUGGEDNESS	CHANNE	EL		DR	AINAGE							SURFICIAL		AGI	AGT	AGT	AGT
BASNUM	RUGGEDNESS NO.	CHANNI SLOPI		SINUOSI			RCULARIT	Y PRECI	P. VEGI	TATION	SOIL	ASPECT	SURFICIAL GEOLOGY	GEOLOGY	AGI #1	AGI #2	AGI #3	AGI #4
BASNUM	NO.	SLOPI	E S		TY D	ENSITY CI		Y PRECI	P. VEGI	TATION	SOIL	ASPECT		GEOLOGY	AGI #1	AGI #2	AGI #3	AG I #4
01A0	NO. 0.160	SLOPI	E 5 6	1.081	TY DI	ENSITY CIN 2.77	0.53	2	P. VEGI	1	3	2		GEOLOGY 4		#2 0.024		
01A0 01B0	NO. 0.160 0.169	SLOPE 0.026 0.034	E 5 6 4	1.081 1.056	TY DI	ENSITY CI 2.77 2.67	0.53 0.50	2 2	P. VEGI	1	3 3	2 3	GEOLOGY		#1	#2	#3	#4
01A0 01B0 02A0	NO. 0.160 0.169 0.160	SLOPI 0.026 0.034 0.016	E 5 6 4 8	1.081 1.056 1.088	TY D	ENSITY CI 2.77 2.67 2.22	0.53 0.50 0.40	2 2 2	P. VEGI	1 1 5	3 3 3	2 3 3	GEOLOGY 5	4 4 3	#1 0.032	#2 0.024	#3 0.032 0.035 0.051	#4 286.70
01A0 01B0 02A0 02B0	NO. 0.160 0.169 0.160 0.234	SLOPE 0.026 0.036 0.016 0.026	E 5 6 4 8 6	1.081 1.056 1.088 1.048	TY DI	ENSITY CI 2.77 2.67 2.22 3.92	0.53 0.50 0.40 0.64	2 2 2 2	P. VEGI	1 1 5 1	3 3 3 3	2 3 3 3	GEOLOGY 5 4	4 4	#1 0.032 0.034 0.046 0.025	#2 0.024 0.026 0.033 0.018	#3 0.032 0.035 0.051 0.030	#4 286.70 251.25
01A0 01B0 02A0 02B0 03A0	NO. 0.160 0.169 0.160 0.234 0.172	SLOPE 0.020 0.034 0.010 0.020 0.020	E 5 6 4 8 6 7	1.081 1.056 1.088 1.048 1.048	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63	0.53 0.50 0.40 0.64 0.60	2 2 2 2 2 2	P. VEGI	1 1 5 1 1	3 3 3 3 3	2 3 3 3 4	GEOLOGY 5 4 4	4 4 3 1	#1 0.032 0.034 0.046 0.025 0.0	#2 0.024 0.026 0.033 0.018 0.018	#3 0.032 0.035 0.051 0.030 0.035	#4 286.70 251.25 691.60 220.50 234.50
01A0 01B0 02A0 02B0 03A0 03B0	NO. 0.160 0.169 0.160 0.234 0.172 0.256	SLOPE 0.024 0.034 0.014 0.024 0.022 0.022	E 5 6 4 8 6 7 3	1.081 1.056 1.088 1.048 1.023 1.039	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04	0.53 0.50 0.40 0.64 0.60 0.64	2 2 2 2 2 2 2	P. VEGI	1 5 1 1	3 3 3 3 3 3	2 3 3 4 1	GEOLOGY 5 4 4 2	4 4 3 1 3	#1 0.032 0.034 0.046 0.028 0.0 0.029	#2 0.024 0.026 0.033 0.018 0.018 0.012	#3 0.032 0.035 0.051 0.030 0.035 0.027	#4 286.70 251.25 691.60 220.50 234.60 177.55
01A0 01B0 02A0 02B0 03A0 03B0 08A0	NO. 0.160 0.169 0.160 0.234 0.172 0.256 0.146	SLOPE 0.026 0.034 0.016 0.020 0.022 0.022	E 5 6 4 8 6 7 3 0	1.081 1.056 1.088 1.048 1.023 1.039 1.039	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22	0.53 0.50 0.40 0.64 0.60 0.64 0.57	2 2 2 2 2 2 2 2 2 2	P. VEGI	1 5 1 1 3	3 3 3 3 3 3 3 3	2 3 3 4 1 1	GEOLOGY 5 4 4 2 5	4 3 1 3 2	#1 0.032 0.034 0.046 0.028 0.0 0.029 0.029 0.027	#2 0.024 0.026 0.033 0.018 0.018 0.012 0.016	#3 0.032 0.035 0.051 0.030 0.035 0.027 0.026	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20
01A0 01B0 02A0 03B0 03A0 03B0 08A0 08B0	NO. 0.160 0.169 0.234 0.172 0.256 0.146 0.142	SLOPE 0.026 0.034 0.016 0.022 0.022 0.022 0.022 0.022	E 5 6 4 8 6 7 3 0 7	1.081 1.056 1.088 1.048 1.023 1.039 1.026 1.080	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83	0.53 0.50 0.40 0.64 0.60 0.64 0.57 0.59	2 2 2 2 2 2 2 2 2 2 2 2 2 2	P. VEGH	1 5 1 1 3 3	3 3 3 3 3 3 3 3 3	2 3 3 4 1 1	GEOLOGY 5 4 4 2 2 5 2 2	4 3 3 3 2 2	#1 0.032 0.034 0.026 0.026 0.0 0.029 0.027 0.027	#2 0.024 0.026 0.033 0.018 0.018 0.012 0.016 0.021	#3 0.032 0.035 0.051 0.035 0.035 0.027 0.026 0.042	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60
01A0 01B0 02A0 02B0 03A0 03B0 08A0 08B0 09C0	NO. 0.160 0.169 0.160 0.234 0.172 0.256 0.146 0.142 0.147	SLOPE 0.026 0.036 0.016 0.027 0.022 0.022 0.022 0.022 0.021 0.022	E 5 6 4 8 6 7 3 0 7 3 3 7 3	1.081 1.056 1.088 1.048 1.023 1.039 1.026 1.080	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.245	0.53 0.50 0.40 0.64 0.64 0.64 0.57 0.59 0.45	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P. VEGH	1 5 1 1 3 3 1	3 3 3 3 3 3 3 3 3 3 3	2 3 3 4 1 1 3	GEOLOGY 5 4 4 2 5 5 2 3	4 4 3 3 2 2 3	#1 0.032 0.034 0.046 0.025 0.025 0.029 0.027 0.027 0.027	#2 0.024 0.026 0.033 0.018 0.012 0.016 0.021 0.017	#3 0.032 0.035 0.051 0.035 0.025 0.027 0.026 0.042 0.042	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00
01A0 01B0 02B0 03A0 03B0 08A0 08B0 09C0 09D0	NO. 0.160 0.169 0.234 0.172 0.256 0.146 0.142 0.147 0.101	SLOPP 0.026 0.036 0.016 0.027 0.022 0.022 0.022 0.021 0.021 0.022	E 5 6 4 8 6 7 3 0 7 3 3 3 3	1.081 1.056 1.088 1.048 1.023 1.039 1.026 1.080 1.056	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.67	0.53 0.50 0.40 0.64 0.60 0.64 0.57 0.59 0.45 0.62	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P. VEGI	1 5 1 1 3 3 1 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 3 4 1 1 1 3 4	GEOLOGY 5 4 4 2 5 2 5 2 3 4	4 4 3 3 2 2 2 3 3 3	#1 0.032 0.034 0.046 0.025 0.025 0.027 0.027 0.027 0.020 0.025	#2 0.024 0.026 0.033 0.018 0.018 0.012 0.016 0.021 0.017 0.020	#3 0.032 0.035 0.051 0.035 0.027 0.026 0.042 0.023 0.027	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00 174.00
01A0 01B0 02A0 03A0 03A0 03A0 08A0 08B0 09C0 09C0 09D0 10A0	NO. 0.160 0.169 0.234 0.172 0.256 0.146 0.142 0.147 0.101 0.191	SLOPP 0.026 0.036 0.026 0.027 0.022 0.022 0.022 0.021 0.022 0.022 0.022	E 5 6 4 8 6 7 3 0 7 7 3 3 6	1.081 1.056 1.088 1.048 1.023 1.029 1.026 1.056 1.084 1.076	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.67 5.76	0.53 0.50 0.40 0.64 0.64 0.57 0.59 0.45 0.62 0.62	2 2 2 2 2 2 2 2 2 2 2 2 3	P. VEGI	1 5 1 1 3 3 1 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 3 4 1 1 3 4 3	GEOLOGY 5 4 4 2 5 5 2 3 4 5	4 4 3 3 2 2 3 3 3 2	#1 0.032 0.034 0.026 0.025 0.027 0.027 0.027 0.027 0.020 0.025 0.011	#2 0.024 0.026 0.033 0.018 0.018 0.012 0.016 0.021 0.017 0.020 0.006	#3 0.032 0.035 0.051 0.035 0.027 0.026 0.042 0.023 0.027 0.020 0.027	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00 174.00 29.75
01A0 01B0 02A0 03A0 03A0 08A0 08B0 09C0 09D0 10A0 10B0	NO. 0.160 0.169 0.234 0.172 0.256 0.146 0.142 0.147 0.101 0.191 0.116	SLOPP 0.026 0.036 0.027 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.036 0.035	E 9 6 4 8 6 7 3 0 7 3 3 6 5	1.081 1.056 1.088 1.048 1.023 1.039 1.026 1.080 1.056 1.084 1.076 1.114	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.67 5.76 3.49	0.53 0.50 0.40 0.64 0.64 0.57 0.59 0.45 0.62 0.62 0.63	2 2 2 2 2 2 2 2 2 2 2 3 3 3	P. VEGI	1 5 1 1 3 3 1 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 4 1 1 3 4 3 1	GEOLOGY 5 4 4 2 5 5 2 3 4 5 5 5	4 3 3 2 2 3 3 2 2 2	#1 0.032 0.034 0.026 0.025 0.029 0.027 0.027 0.027 0.020 0.025 0.011 0.016	#2 0.024 0.026 0.033 0.018 0.012 0.016 0.021 0.017 0.020 0.006 0.011	#3 0.032 0.035 0.051 0.035 0.027 0.026 0.042 0.023 0.027 0.023 0.027 0.010 0.014	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00 174.00 29.75 56.00
01A0 01B0 02B0 03A0 03A0 08B0 09C0 09D0 10A0 10B0	NO. 0.160 0.169 0.234 0.172 0.256 0.146 0.142 0.147 0.101 0.191 0.116 0.223	SLOPH 0.024 0.034 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022	E S 644 86 73 07 73 36 55 5	1.081 1.056 1.088 1.023 1.029 1.026 1.080 1.056 1.086 1.076 1.114	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.67 5.76 3.49 3.18	0.53 0.50 0.40 0.64 0.64 0.57 0.59 0.45 0.62 0.62 0.63 0.43	2 2 2 2 2 2 2 2 2 2 2 2 3 3 4	P. VEGI	1 5 1 1 3 3 1 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 4 1 1 3 4 3 4 3 1 3	GEOLOGY 5 4 4 2 5 2 3 4 5 5 5 5	4 3 3 2 2 3 3 2 2 3 3 2 2 3	#1 0.032 0.034 0.026 0.029 0.029 0.029 0.027 0.027 0.020 0.025 0.011 0.016 0.038	#2 0.024 0.026 0.033 0.018 0.012 0.016 0.012 0.016 0.021 0.021 0.020 0.006 0.011 0.035	#3 0.032 0.035 0.051 0.035 0.027 0.026 0.042 0.023 0.027 0.027 0.020 0.023 0.027 0.010 0.014 0.062	#4 286.70 251.25 691.60 224.60 234.60 177.55 187.20 328.60 162.00 174.00 29.75 56.00 854.70
01A0 01B0 02A0 03A0 03A0 08A0 08B0 09C0 09D0 10A0 10B0	NO. 0.160 0.169 0.234 0.172 0.256 0.146 0.142 0.147 0.101 0.191 0.116	SLOPP 0.026 0.036 0.027 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.036 0.035	E 5 644 86 7 3 0 7 3 3 6 5 5 1	1.081 1.056 1.088 1.048 1.023 1.039 1.026 1.080 1.056 1.084 1.076 1.114	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.67 5.76 3.49	0.53 0.50 0.40 0.64 0.64 0.57 0.59 0.45 0.62 0.62 0.63	2 2 2 2 2 2 2 2 2 2 2 3 3 3	P. VEGŁ	1 5 1 1 3 3 1 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 4 1 1 3 4 3 1	GEOLOGY 5 4 4 2 5 2 3 4 5 5 5 5 5 2	4 3 3 2 2 3 3 2 2 2	#1 0.032 0.034 0.026 0.029 0.027 0.027 0.027 0.027 0.027 0.025 0.011 0.016 0.038 0.022	#2 0.024 0.026 0.033 0.018 0.012 0.016 0.021 0.017 0.020 0.006 0.011 0.035 0.004	#3 0.032 0.035 0.051 0.035 0.027 0.026 0.042 0.023 0.027 0.027 0.027 0.023 0.027 0.014 0.014 0.062 0.016	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00 174.00 29.75 56.00 854.70 59.85
01A0 01B0 02B0 03A0 03A0 08A0 08B0 09C0 09D0 10A0 10B0 17A0 17B0	NO. 0.160 0.169 0.120 0.234 0.172 0.256 0.146 0.142 0.147 0.101 0.191 0.116 0.223 0.251	SLOPH 0.024 0.014 0.024 0.022 0.022 0.022 0.022 0.022 0.022 0.031 0.031 0.031 0.031	E S 644 86 73 07 73 33 65 51 8	1.081 1.056 1.048 1.023 1.029 1.026 1.080 1.056 1.084 1.076 1.114 1.289		ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.83 3.45 2.67 5.76 3.49 3.18 4.66	0.53 0.50 0.40 0.64 0.57 0.59 0.45 0.45 0.62 0.62 0.62 0.63 0.43 0.50	2 2 2 2 2 2 2 2 2 2 3 3 4 4	P. VEG	1 5 1 1 3 3 1 3 3 3 3 3 3 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 4 1 1 3 4 3 1 3 4 3 4	GEOLOGY 5 4 2 5 2 3 4 5 5 5 5 5 2 2 2 2	4 3 3 2 2 3 3 2 2 3 3 3 3 3 3	#1 0.032 0.034 0.026 0.025 0.027 0.027 0.027 0.027 0.027 0.025	$#2\\0.024\\0.026\\0.033\\0.018\\0.018\\0.012\\0.016\\0.021\\0.017\\0.020\\0.006\\0.011\\0.035\\0.004\\0.019$	#3 0.032 0.035 0.051 0.035 0.027 0.026 0.042 0.023 0.027 0.010 0.014 0.014 0.062 0.016 0.033	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00 174.00 29.75 56.00 854.70 59.85 549.90
01A0 01B0 02A0 03B0 03A0 08A0 08B0 09C0 09D0 10A0 10B0 17A0 17B0 38A0	NO. 0.160 0.169 0.234 0.172 0.256 0.146 0.142 0.147 0.101 0.191 0.116 0.223 0.251 0.116	SLOPH 0.024 0.033 0.014 0.022 0.022 0.022 0.022 0.021 0.022 0.021 0.022 0.031 0.033 0.019 0.022 0.036	E 5 64 86 7 30 7 3 3 6 5 5 1 8 5 5 1 8 5	1.081 1.058 1.048 1.023 1.039 1.026 1.080 1.084 1.076 1.114 1.289 1.050 1.348	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.67 5.76 3.49 3.18 4.66 2.61	0.53 0.40 0.64 0.64 0.57 0.59 0.45 0.62 0.63 0.43 0.43 0.39	2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 4 2	P. VEGŁ	1 5 1 1 3 3 1 3 3 3 3 3 1 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 3 4 1 1 3 4 3 1 3 4 3 4 3 4 3	GEOLOGY 5 4 4 2 5 2 3 4 5 5 5 5 5 2	4 3 3 2 2 3 3 2 2 3 3 2 3 3 4	#1 0.032 0.034 0.026 0.029 0.027 0.027 0.027 0.027 0.027 0.025 0.011 0.016 0.038 0.022	$#2\\0.024\\0.026\\0.033\\0.018\\0.012\\0.016\\0.021\\0.017\\0.020\\0.006\\0.011\\0.035\\0.004\\0.019\\0.022$	#3 0.032 0.035 0.051 0.027 0.026 0.042 0.023 0.027 0.026 0.042 0.023 0.027 0.010 0.014 0.062 0.016 0.033 0.038	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00 174.00 29.75 56.00 854.70 59.85 549.90
01A0 01B0 02B0 03A0 03B0 08B0 09C0 09D0 10A0 10B0 17A0 17B0 38A0 38B0	NO. 0.160 0.169 0.160 0.234 0.172 0.256 0.146 0.142 0.147 0.101 0.191 0.116 0.223 0.251 0.116 0.205	SLOPH 0.022 0.033 0.016 0.022 0.022 0.022 0.022 0.022 0.021 0.022 0.031 0.031 0.031 0.011 0.022 0.001	E 5 64486730773365518855	1.081 1.056 1.088 1.048 1.023 1.026 1.080 1.056 1.080 1.056 1.114 1.289 1.050 1.348 1.239	TY DI	ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.67 5.76 3.49 3.18 4.66 2.61 3.50	0.53 0.40 0.64 0.64 0.57 0.59 0.45 0.62 0.62 0.63 0.43 0.50 0.39 0.45	2 2 2 2 2 2 2 2 2 3 3 4 4 2 2 2 2 2 2 2	P. VEGŁ	1 5 1 1 3 3 1 3 3 3 3 1 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 3 4 1 1 3 4 3 4 3 4 3 3	GEOLOGY 5 4 4 2 5 5 2 3 4 5 5 5 5 2 2 2 2 2	4 3 7 2 3 2 3 3 2 3 3 4 4	#1 0.032 0.034 0.026 0.029 0.027 0.027 0.027 0.027 0.027 0.025 0.011 0.016 0.016 0.038 0.022 0.025 0.033 0.014	$#2\\0.024\\0.026\\0.031\\0.018\\0.018\\0.012\\0.016\\0.021\\0.017\\0.020\\0.006\\0.011\\0.035\\0.004\\0.019\\0.022\\0.006$	#3 0.032 0.035 0.051 0.025 0.027 0.026 0.042 0.023 0.027 0.010 0.014 0.014 0.016 0.033 0.038 0.014	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00 174.00 29.75 56.00 854.70 59.85 549.90 461.90 65.55
01A0 01B0 02B0 03A0 03A0 08B0 09C0 09D0 10A0 17A0 17B0 38A0 38B0 45A0	NO. 0.160 0.169 0.234 0.172 0.256 0.146 0.142 0.147 0.101 0.191 0.116 0.223 0.251 0.116 0.205 0.333 0.265 0.392	SLOPH 0.022 0.034 0.011 0.022 0.022 0.022 0.022 0.022 0.032 0.011 0.022 0.001 0.011 0.022 0.001 0.011 0.022 0.003	E 5 64866730733655185553	1.081 1.056 1.088 1.023 1.029 1.026 1.086 1.084 1.076 1.114 1.289 1.050 1.348 1.239 1.084 1.239		ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.67 5.76 3.49 3.18 4.66 2.61 3.50 6.17 4.91 6.18	0.53 0.40 0.64 0.64 0.57 0.59 0.45 0.45 0.45 0.45 0.45 0.45 0.50 0.50 0.45 0.50 0.552 0.42	2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 2 2 2 1	P. VEGŁ	1 5 1 1 3 3 1 3 3 3 3 1 2 2 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 3 4 1 1 3 4 3 1 3 4 3 2	GEOLOGY 5 4 4 2 5 2 3 4 5 5 5 5 2 2 2 2 2 3	4 3 2 2 3 3 2 3 3 4 4 4 4	#1 0.032 0.034 0.026 0.029 0.029 0.027 0.027 0.027 0.027 0.025 0.011 0.016 0.038 0.022 0.025 0.033	$#2\\0.024\\0.026\\0.033\\0.018\\0.018\\0.018\\0.018\\0.012\\0.016\\0.021\\0.017\\0.020\\0.006\\0.011\\0.035\\0.004\\0.019\\0.022\\0.006\\0.010\\$	#3 0.032 0.035 0.051 0.027 0.026 0.042 0.023 0.027 0.026 0.042 0.023 0.027 0.010 0.014 0.062 0.016 0.033 0.038	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00 174.00 29.75 56.00 854.70 59.85 549.90 461.90 65.55 79.80
01A0 01B0 02A0 03B0 08A0 08B0 09C0 09D0 10A0 10B0 17A0 17B0 38A0 38B0 45A0	NO. 0.160 0.169 0.234 0.172 0.256 0.146 0.142 0.147 0.101 0.191 0.116 0.223 0.2251 0.116 0.2251 0.116 0.205 0.333 0.265	SLOPH 0.022 0.034 0.014 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.022 0.031 0.032 0.031 0.032 0.033 0.030 0.033 0.0300000000	E 5 648673073365551855538	1.081 1.056 1.088 1.048 1.023 1.026 1.080 1.056 1.084 1.289 1.050 1.348 1.239 1.084 1.239 1.084 1.239		ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.83 3.45 2.63 3.45 2.61 3.18 4.66 2.61 3.50 6.17 4.91 6.18 5.55	0.53 0.40 0.64 0.57 0.59 0.62 0.62 0.62 0.63 0.43 0.50 0.39 0.45 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.54 0.54 0.52 0.54 0.55 0.54 0.55 0.54 0.55	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 2 2 1 1	P. VEG	1 5 1 1 3 3 1 3 3 3 3 3 1 2 2 2 1 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 3 4 1 1 3 4 3 1 3 4 3 2 3 2 3	GEOLOGY 5 4 4 2 5 5 2 3 4 5 5 5 5 2 2 2 2 2 2 3 3 3	4 3 3 2 2 3 3 2 3 3 4 4 4 4 4 4	#10.0320.0340.0260.0260.0290.0270.0270.0270.0270.0270.0220.0110.0160.0380.0220.0250.0330.0140.015	$#2\\0.024\\0.026\\0.033\\0.018\\0.018\\0.012\\0.016\\0.021\\0.017\\0.020\\0.006\\0.011\\0.035\\0.004\\0.019\\0.022\\0.006\\0.010\\0.017\\$	#3 0.032 0.035 0.051 0.035 0.027 0.022 0.042 0.023 0.027 0.010 0.014 0.014 0.062 0.016 0.033 0.038 0.015	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00 174.00 29.75 56.00 854.70 59.85 549.90 461.90 65.55 79.80 167.50
01A0 01B0 02B0 03A0 03A0 08A0 09C0 09D0 10A0 10B0 17A0 17B0 38A0 38B0 45A0 45A0	NO. 0.160 0.169 0.234 0.172 0.256 0.146 0.142 0.147 0.101 0.191 0.116 0.223 0.251 0.116 0.205 0.333 0.265 0.392	SLOPH 0.022 0.034 0.011 0.022 0.022 0.022 0.022 0.022 0.032 0.011 0.022 0.001 0.011 0.022 0.001 0.011 0.022 0.003	E 5 648673073365551855538	1.081 1.056 1.088 1.023 1.029 1.026 1.086 1.086 1.084 1.050 1.114 1.289 1.050 1.348 1.239 1.084 1.239		ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.67 5.76 3.49 3.18 4.66 2.61 3.50 6.17 4.91 6.18	0.53 0.40 0.64 0.64 0.57 0.59 0.45 0.45 0.45 0.45 0.45 0.45 0.50 0.50 0.45 0.50 0.552 0.42	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 4 2 2 1 1 1	P. VEGŁ	1 5 1 1 3 3 1 3 3 3 3 1 2 2 1 1 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 3 4 1 1 3 4 3 4 3 2 3 1 3 4 3 2 3 1	GEOLOGY 5 4 4 2 5 5 2 3 4 5 5 5 5 2 2 2 2 2 3 3 4 5 5 5 5 5 5 3 4	4 3 3 2 2 3 3 2 2 3 3 4 4 4 4 4 4 4 4	#10.0320.0340.0260.0250.0270.0270.0270.0270.0250.0110.0160.0380.0220.0250.0330.0140.0150.025	$#2\\0.024\\0.026\\0.033\\0.018\\0.018\\0.012\\0.016\\0.021\\0.017\\0.020\\0.006\\0.011\\0.035\\0.004\\0.019\\0.022\\0.006\\0.010\\0.017\\$	#3 0.032 0.035 0.051 0.035 0.027 0.026 0.042 0.023 0.027 0.026 0.042 0.014 0.033 0.038 0.038 0.014 0.035 0.038 0.015 0.025	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00 174.00 29.75 56.00 854.70 59.85 549.90 461.90 65.55 79.80 167.50 96.00
01A0 01B0 02B0 03A0 03A0 08B0 09C0 09D0 10A0 10B0 17A0 17B0 38A0 38B0 45A0 45B0 46B0	NO. 0.160 0.169 0.256 0.142 0.256 0.146 0.142 0.147 0.101 0.191 0.116 0.223 0.251 0.116 0.205 0.333 0.265 0.392 0.315	SLOPH 0.022 0.034 0.014 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.022 0.031 0.032 0.031 0.032 0.033 0.030 0.033 0.0300000000	E 5 648673073365551855538	1.081 1.056 1.088 1.048 1.023 1.026 1.080 1.056 1.084 1.289 1.050 1.348 1.239 1.084 1.239 1.084 1.239		ENSITY CI 2.77 2.67 2.22 3.92 2.63 4.04 3.22 2.83 3.45 2.83 3.45 2.63 3.45 2.61 3.18 4.66 2.61 3.50 6.17 4.91 6.18 5.55	0.53 0.40 0.64 0.57 0.59 0.62 0.62 0.62 0.63 0.43 0.50 0.39 0.45 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.54 0.54 0.52 0.54 0.55 0.54 0.55 0.54 0.55	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 2 2 1 1 1 1	P. VEGŁ	1 5 1 1 3 3 1 3 3 3 1 2 2 1 1 1 1 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 3 4 1 1 3 4 3 4 3 2 3 1 2 3 1 2	GEOLOGY 5 4 4 2 5 2 3 4 5 5 5 2 2 2 2 2 2 3 3 3 4 3 3	4 3 2 2 3 3 2 3 3 4 4 4 4 4 4 4 4 4	#10.0320.0340.0260.0290.0270.0270.0270.0270.0250.0110.0160.0380.0220.0250.0330.0140.0150.0250.0250.025	#2 0.024 0.026 0.033 0.018 0.012 0.017 0.020 0.006 0.011 0.020 0.006 0.011 0.035 0.004 0.019 0.022 0.006 0.017 0.009	#3 0.032 0.035 0.051 0.035 0.027 0.026 0.022 0.023 0.027 0.010 0.014 0.062 0.016 0.033 0.038 0.014 0.015 0.025 0.025	#4 286.70 251.25 691.60 220.50 234.60 177.55 187.20 328.60 162.00 174.00 29.75 56.00 854.70 59.85 549.90 461.90 65.55 79.80 167.50

.

Table	З.	(cont.)	Second order	drainage	basins	listed	by	classification	stratum.	Stratum
			A (cont.).							

60C0

60D0

63D0

63E0

64A0

64BO

65A0

65B0

0.106

0.166

0.136

0.142

0.164

0.163

0.141

0.149

0.014

0.021

0.014

0.014

0.018

0.022

0.018

0.020

1.091

1.173

1.144

1.170

1.149

1.087

1.116

2.48

2.93

3.42

3.26

3.51

3.81

2.92

0.46

0.51

0.42

0,33

0.33

0.56

0.54

0.52

1

1

1

1

1

1

1

1

BASNUM	LOCATION CODE	ORDER	САТ	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH		NUMBER	TOTAL CHANNEL S LENGTH		USED	USEDREL	RELIEF RATIO	
47D0	PN436905DCL	2	А	0.25	1.10	2.73	4975	4700	275	0.92	0.86	2	1.76	4790	4710	80	249	
48A0	PN426904DBR	2	Α	0.22	0.71	2.50	4890	4680	210	0.79	0.76	2	1.19	4800	4695	105	297	
48B0	PN426904DBL	2	A	0.20	0.66	2.03	4915	4680	235	0.67	0.61	2	1.19	4800	4695	105	354	
50A0	PN436928CBR	2	Α	0.34	1.38	3.84	4875	4530	345	1.55	1.44	2	2.10	4680	4540	140	250	
5080	141436928CBL	2	Α	2.05	2.62	7.59	4935	4530	405	3.31	2.76	9	9.78	4770	4550	220	155	
59B0	PS417011CAR	2	A	0.23	0.68	1.92	4910	4710	200	0.62	0.60	2	0.99	4790	4715	75	293	
59C0	PS417011CAL	2	Α	0.34	0.77	2.69	4925	4710	215	0.82	0.73	3	1.61	4820	4730	90	280	
60C0	PS417013ABR	2	Α	2.26	1.53	7.85	4960	4735	225	3.00	2.75	6	5.61	4920	4760	160	147	
60D0	PS417013ABL	2	Α	1.02	1.68	5.03	4975	4735	240	1.64	1.40	5	3.73	4880	4750	130	143	
63D0	PS416908AAR	2	A	1.06	2.31	5.65	4990	4745	245	2.50	2.16	2	3.09	4890	4765	125	106	
63E0	PS416908AAL	2	A	0.91	2.13	5.86	4965	4745	220	2.43	2.12	2	3.11	4895	4770	125	103	
64A0	PS426920CAR	2	Α	0.88	1.77	5.83	5105	4840	265	2.51	2.14	2	2.87	5030	4865	165	150	
64BO	PS426920CAL	2	A	0.49	1.37	3.33	5085	4840	245	1.38	1.20	2	1.72	4965	4855	110	178	
65A0	PS416904ADR	2	А	0.70	1.43	4.03	5070	4875	195	1.59	1.46	3	2.67	4995	4890	105	136	
65B0	PS416904ADL	2	A	1.06	1.38	5.08	5145	4875	270	1.85	1.66	3	3.09	5035	4900	135	195	
BASNUM	RUGGEDNESS NO.	CHANNE SLOPE		SINUOSI		AINAGE ENSITY CI	RCULARITY	PRECI	P. VEG	NOITATE	SOIL		URFICIAL GEOLOGY	GEOLOGY	AGI #1	AGI #2	AGI #3	AGI #4
47D0	0.362	0.023	3	1.077	' '	6.96	0.43	1		1	3	3	2	4	0.014	0.006	0.012	68.75
4 B A O	0.214	0.036	5	1.041		5.38	0.45	1		6	4	2	4	4	0.011	0.008	0.012	46.20
4880	0.263	0.043	3	1.092		5.92	0.61	1		6	4	2	3	4	0.013	0.009	0.013	47.00
50A0	0.398	0.024		1.079		6.09	0.29	1		4	4	3	3	4	0.014	0.008	0.016	117.30
50B0	0.366	0.016		1.198		4.77	0.45	1		1	2	3	4	4	0.048	0.037	0.060	830.25
59B0	0.164	0.033		1.028		4.32	0.78	1		5	4	3	3	4	0.014	0.008	0.013	46.00
59C0	0.192	0.030)	1.125	; (4.70	0.60	1		5	4	4	5	4	0.017	0.010	0.018	73.10
6000	0 106	0 01/	1	1 001		2 4 9	0 16	1		A	٨	Э	2	2	0 0 2 2	0 0 2 2	0 063	E00 E0

5544555555

4

4

4

4

4

4

4

4 3

3

3

3

4

4

2

4

5 2 3

4

5 5 5

5 5

.

3

4

4

4

4

4

4 4

0.032 0.032 0.063 0.028 0.021 0.028

0.020 0.015 0.021

0.016 0.013 0.018 0.018 0.016 0.025

0.016 0.011 0.017

26 σ

508.50 244.80

259.70

200.20

120.05

136.50

Table 3. (cont.) Second order drainage basins listed by classification stratum. Stratum B.

· •

										MAIN			TOTAL	MAXIMUM				
BASNUM	LOCATION CODE	ORDER	CAT	BASIN	BASIN	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN	CHANNEL		NUMBER OF FIRST		USED RELIEF	USED	USEDREI	RELIEF RATIO	
PRONOM	CODE	OKDER	CAI	лкыл	DLIGIN	FERINEIER	BIBV.	ELEV.	KELLEF	LENGIN	LENGIN	OF FIRST	5 LENGIA	RELIEF	RELIEF	USEDKEI	RAIIU	
04A0	RS527336DBR	2	в	0.95	2.08	5.13	4440	4200	240	2.49	2.09	2	2.86	4310	4215	95	115	
0480	RS527336DBL	2	в	0.63	1.28	3.78	4450	4200	250	1.20	1.15	4	3.05	4320	4215	105	195	
11A0	MS517115BAR	2	в	0.62	0.80	3.43	4580	4395	185	0.92	0.86	2	1.66	4475	4400	75	230	
11B0	MS517115BAL	2	в	0.45	1.05	3.06	4605	4395	210	1.10	1.04	2	1.34	4490	4405	85	199	
15A0	GE497103BDR	2	В	1.00	1.96	5.47	4635	4455	180	2.12	1.93	2	2.39	4575	4475	100	92	
15B0	GE497103BDL	2	В	0.78	1.97	5.31	4615	4455	160	2.12	1.94	2	3.02	4575	4470	105	81	
18A0	AB497232DCR	2	В	1.41	1.87	5.77	4925	4690	235	2.46	2.02	4	4.56	4835	4700	135	126	
1880	AB497232DCL	2	B	0.89	1.55	4.58	4910	4690	220	1.54	1.40	3	2.62	4790	4695	95	142	
19A0	AB497233CDR	2	B	0.94	1.01	4.43	4855	4705	150	1.23	1.03	3	2.52	4805	4710	95	149	
19B0	AB497233CDL	2	В	0.46	1.07	3.45	4980	4705	275	1.14	1.10	2	1.75	4860	4715	145	258	
20A0	AB487312BCR	2 2	B B	0.51 0.71	0.98 0.94	2.88	4840	4675 4675	165	0.93	0.85	2	1.65	4735	4680	55	168	
20B0	AB487312BCL SR487322BDR	2	В	0.21	1.63	4.12 1.89	4860 4895	4675	185 150	1.08	0.94 0.54	3 2	1.96	4750	4685	65	197	
21A0 21B0	SR487322BDL	2	В	1.38	0.67	5.93	4925	4745	180			2	0.95	4825	4755	70	92	
21B0 24A0	SR477303ABR	2	В	0.53	1.47	3.38	4925	4715	170	2.37 1.49	1.97 1.40	3	3.52 2.67	4845 4810	4755 4720	90 90	270	
24R0 24B0	SR477303ABL	2	В	0.96	1.43	4.57	4855	4715	140	1.88	1.40	2	2.96	4010	4720	90 75	116 98	
24B0 26A0	TG487222BAR	2	В	0.49	1.39	2.88	4730	4570	160	1.00	0.97	2	1.65	4655	4575	80	115	
26B0	TG487222BAL	2	В	0,52	1.04	4.42	4820	4570	250	1.55	1.50	2	1.83	4700	4585	115	241	
30A0	NB467101DAR	2	В	0.27	0.97	2.31	4785	4585	200	0.73	0.71	2	1.08	4685	4600	85	207	
3080	NB467101DAL	2	в	0.32	0.85	2.69	4770	4585	185	0.95	0.92	2	1.32	4705	4600	105	218	
35A0	RJ447224BAR	2	B	0.77		4.20	4995	4875	120	0.96	0.92	3	2.07	4940	4880	60	115	
20111												•			1000	•••		
	RUGGEDNESS	CHANN				AINAGE							URFICIAL		AGI	AGI	AGI	AGI
BASNUM	RUGGEDNESS NO.	CHANN SLOP		SINUOSI			RCULARITY	PRECIS	P. VEGI	ETATION	SOIL		URFICIAL GEOLOGY	GEOLOGY	AGI #1	AGI #2	AGI #3	AGI #4
	NO.	SLOP	E S		ITY D	ENSITY CI			P. VEGI	ETATION 4		ASPECT			#1	#2	#3	#4
BASNUM 04A0 04B0			E : 0	SINUOSI 1.191 1.050	LTY D		RCULARIT) 0.45 0.55	PRECI 2 2	P. VEGI		SOIL 1 1		GEOLOGY	GEOLOGY 1 1				#4 228.00
04A0	NO. 0.137	SLOP:	E : 0 4	1.191	LTY D	ENSITY CI	0.45	2	P. VEGI	4	1	ASPECT 2	GEOLOGY 1	1	#1 0.017	#2 0.010	#3 0.021	#4
04A0 04B0	NO. 0.137 0.228	SLOP 0.01 0.02	E : 0 4 2	1.191	LTY D	ENSITY CI 3.01 4.82	0.45 0.55	2 2	e. Vegi	4 4	1	ASPECT 2 3	GEOLOGY 1 1	1 1	#1 0.017 0.025	#2 0.010 0.015	#3 0.021 0.023	#4 228.00 157.50
04A0 04B0 11A0 11B0 15A0	NO. 0.137 0.228 0.094 0.118 0.082	SLOP: 0.01 0.02 0.02 0.02 0.02	E : 0 4 2 1 3	1.191 1.050 1.079 1.059 1.091	ITY D	ENSITY CI 3.01 4.82 2.67 2.98 2.41	0.45 0.55 0.66 0.61 0.42	2 2 3 3 5	P. VEGI	4 4 3 3 3	1 1 3 3 3	ASPECT 2 3 3	GEOLOGY 1 5 5 2	1 1 2 2 2	#1 0.017 0.025 0.024	#2 0.010 0.015 0.014 0.009 0.013	#3 0.021 0.023 0.027	#4 228.00 157.50 114.70
04A0 04B0 11A0 11B0 15A0 15B0	NO. 0.137 0.228 0.094 0.118 0.082 0.116	SLOP: 0.01 0.02 0.02 0.02 0.02 0.01 0.01	E : 0 4 2 1 3 3	1.191 1.050 1.079 1.059 1.091	LTY D	ENSITY CI 3.01 4.82 2.67 2.98 2.98 2.41 3.84	0.45 0.55 0.66 0.61 0.42 0.35	2 2 3 5 5	P. VEGI	4 4 3 3	1 3 3 3 3	ASPECT 2 3 4 4 1	GEOLOGY 1 5 5 2 2	1 2 2 2 2	#1 0.017 0.025 0.024 0.016 0.016 0.011	#2 0.010 0.015 0.014 0.009 0.013 0.010	#3 0.021 0.023 0.027 0.017 0.017 0.012	#4 228.00 157.50 114.70 94.50
04A0 04B0 11A0 11B0 15A0 15B0 18A0	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144	SLOP: 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01	E 9 0 4 2 1 3 3 5	1.191 1.050 1.079 1.059 1.091 1.091 1.221	LTY D	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25	0.45 0.55 0.66 0.61 0.42 0.35 0.53	2 3 3 5 5 4	₽. VEGI	4 3 3 3 5	1 3 3 3 3 1	ASPECT 2 3 4 4 1 3	GEOLOGY 1 5 5 2 2 1	1 2 2 2 2 1	#1 0.017 0.025 0.024 0.016 0.016 0.011 0.026	#2 0.010 0.015 0.014 0.009 0.013 0.010 0.021	#3 0.021 0.023 0.027 0.017 0.017 0.012 0.034	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35
04A0 04B0 11A0 15B0 15B0 18A0 18B0	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123	SLOP: 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01	E 9 4 2 1 3 3 5 7	1.191 1.059 1.059 1.091 1.091 1.221 1.096	LTY D	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94	0.45 0.55 0.66 0.61 0.42 0.35 0.53 0.53	2 3 5 5 4 4	₽. VEGI	4 3 3 3 5 4	1 3 3 3 1 1	ASPECT 2 3 4 4 1 3 3 3	GEOLOGY 1 5 5 2 2 2 1 1	1 2 2 2 2 1	#1 0.017 0.025 0.024 0.016 0.011 0.026 0.024	#2 0.010 0.015 0.014 0.009 0.013 0.010 0.021 0.015	#3 0.021 0.023 0.027 0.017 0.017 0.012 0.034 0.024	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35 195.80
04A0 04B0 11A0 15B0 15B0 18A0 18B0 19A0	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076	SLOP 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01	E 9 0 4 2 1 3 3 5 7 1	1.191 1.050 1.079 1.059 1.091 1.091 1.221 1.096 1.193	LTY D	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94 2.67	0.45 0.55 0.66 0.61 0.42 0.35 0.53 0.53 0.60	2 2 3 5 5 4 4 4	P. VEGI	4 4 3 3 3 5 4 3	1 3 3 3 1 1 1	ASPECT 2 3 4 4 1 3 3 3 3	GEOLOGY 1 5 5 2 2 2 1 1 2	1 2 2 2 2 1 1 1	#1 0.017 0.025 0.024 0.016 0.016 0.011 0.026 0.024 0.022	#2 0.010 0.015 0.014 0.009 0.013 0.010 0.021 0.015 0.020	#3 0.021 0.023 0.027 0.017 0.017 0.012 0.034 0.024 0.027	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35 195.80 141.00
04A0 04B0 11A0 15A0 15B0 18A0 18B0 19A0 19B0	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076 0.198	SLOP 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01	E 9 0 4 2 1 3 3 5 7 1 4	1.191 1.050 1.075 1.055 1.097 1.091 1.221 1.096 1.193	LTY D	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94 2.67 3.80	0.45 0.55 0.66 0.61 0.42 0.35 0.53 0.53 0.60 0.49	2 2 3 5 5 4 4 4 4 4	P. VEGI	4 3 3 3 5 4 3 3	1 3 3 3 1 1 1 1	ASPECT 2 3 4 4 1 3 3 3 4 4 4 4	GEOLOGY 1 5 5 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 1 1 1	#1 0.017 0.025 0.024 0.016 0.011 0.026 0.021	#2 0.010 0.015 0.014 0.009 0.013 0.010 0.021 0.015 0.020 0.016	#3 0.021 0.023 0.027 0.017 0.017 0.012 0.034 0.024 0.027 0.022	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35 195.80 141.00 126.50
04A0 04B0 11A0 15A0 15B0 18A0 18B0 19A0 19B0 20A0	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076 0.198 0.102	SLOP 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01	E 5 0 4 2 1 3 3 5 5 7 1 4 6	1.191 1.050 1.075 1.055 1.091 1.091 1.096 1.193 1.036	LTY D	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94 2.67 3.60 3.25	0.45 0.55 0.66 0.61 0.42 0.35 0.53 0.53 0.60 0.49 0.77	2 2 3 5 5 4 4 4 4 4 4	P. VEGI	4 4 3 3 3 5 4 3 3 5 5	1 3 3 3 1 1 1 1 1	ASPECT 2 3 4 1 3 3 3 3 4 1	GEOLOGY 1 5 5 2 1 1 2 2 1 2 0	1 2 2 2 1 1 1 1 1	#1 0.017 0.025 0.024 0.016 0.011 0.026 0.024 0.022 0.021 0.017	$#2 \\ 0.010 \\ 0.015 \\ 0.014 \\ 0.009 \\ 0.013 \\ 0.010 \\ 0.021 \\ 0.015 \\ 0.020 \\ 0.016 \\ 0.008 $	#3 0.021 0.023 0.027 0.017 0.017 0.012 0.034 0.024 0.027 0.022 0.016	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35 195.80 141.00 126.50 84.15
04A0 04B0 11A0 15A0 15B0 18B0 19B0 19B0 20A0 20B0	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076 0.198 0.102 0.097	SLOP: 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.01	E 5 04 42 1 3 3 5 7 1 4 6 6	1.191 1.050 1.075 1.055 1.091 1.091 1.221 1.096 1.195 1.096 1.154	LTY D	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94 2.67 3.80 3.25 2.78	0.45 0.55 0.66 0.42 0.35 0.53 0.53 0.60 0.49 0.77 0.52	2 2 3 5 5 4 4 4 4 4 4 4 4	P. VEGI	4 3 3 3 5 4 3 3 5 5 5 5	1 3 3 1 1 1 1 1 1	ASPECT 2 3 4 1 3 3 4 3 3 4 1 2	GEOLOGY 1 5 2 2 1 2 2 1 2 0 0 0	1 2 2 2 1 1 1 1 1	#1 0.017 0.025 0.024 0.016 0.016 0.011 0.026 0.024 0.022 0.021 0.017 0.023	#2 0.010 0.015 0.014 0.009 0.013 0.010 0.021 0.015 0.020 0.016 0.008 0.011	#3 0.021 0.023 0.027 0.017 0.017 0.012 0.034 0.024 0.024 0.022 0.016 0.026	#4 228.00 157.50 114.70 180.00 124.80 331.35 195.80 141.00 126.50 84.15 131.35
04A0 04B0 11A0 15A0 15B0 18B0 19B0 20A0 20B0 21A0	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076 0.198 0.102 0.097 0.128	SLOP: 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01	E : 04 21 33 57 14 66 3	1.191 1.050 1.055 1.091 1.091 1.221 1.096 1.193 1.036 1.036 1.154 1.055	LTY D L 5 7 1 1 5 5 3 4 3 4	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94 2.67 3.80 3.25 2.67 3.80 3.25 2.78 4.49	0.45 0.55 0.66 0.61 0.42 0.35 0.53 0.53 0.60 0.49 0.77 0.52 0.74	2 2 3 5 5 4 4 4 4 4 4 4 4	P. VEGI	4 3 3 5 4 3 5 5 5 5 5	1 3 3 3 1 1 1 1 1 1 1	ASPECT 2 3 4 1 3 3 3 3 4 1 2 1	GEOLOGY 1 5 5 2 2 1 2 2 1 2 2 0 0 0 0	1 2 2 2 1 1 1 1 1 1 1	#1 0.017 0.025 0.024 0.016 0.011 0.026 0.024 0.022 0.021 0.017 0.023 0.010	#2 0.010 0.015 0.014 0.009 0.013 0.010 0.021 0.015 0.020 0.016 0.008 0.011 0.007	$\begin{array}{c} \# \ 3 \\ 0 \ . \ 0 \ 2 \ 1 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 2 \ 6 \\ 0 \ . \ 0 \ 2 \ 6 \\ 0 \ . \ 0 \ 0 \ 4 \\ 0 \ . \ 0 \ 2 \ 6 \\ 0 \ . \ 0 \ 0 \ 4 \\ 0 \ . \ 0 \ 2 \ 6 \\ 0 \ . \ 0 \ 0 \ 4 \\ 0 \ . \ 0 \ 0 \ 4 \\ 0 \ . \ 0 \ 2 \ 6 \\ 0 \ . \ 0 \ 0 \ 4 \\ 0 \ . \ 0 \ 0 \ 4 \\ 0 \ . \ 0 \ 0 \ 4 \\ 0 \ . \ 0 \ 0 \ 4 \\ 0 \ . \ 0 \ 0 \ 4 \\ 0 \ . \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35 195.80 141.00 126.50 84.15 131.35 31.50
04A0 04B0 11A0 15A0 15B0 18A0 19B0 19B0 20A0 21B0 21B0	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076 0.198 0.102 0.097 0.128 0.087	SLOP: 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.03 0.01	E : 04 21 33 57 14 66 30	1.191 1.050 1.075 1.091 1.091 1.221 1.096 1.193 1.036 1.055 1.205	LTY D	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94 2.67 3.67 3.25 2.78 4.49 2.54	0.45 0.55 0.66 0.61 0.42 0.35 0.53 0.53 0.53 0.60 0.49 0.77 0.52 0.74 0.49	2 2 3 5 5 4 4 4 4 4 4 4 4 4 4 4 4	P. VEGI	4 3 3 3 5 4 3 5 5 5 5 5 4	1 3 3 3 1 1 1 1 1 1 1 1	ASPECT 2 3 4 4 1 3 3 3 4 1 2 2 1 2	GEOLOGY 1 5 2 2 1 1 2 0 0 0 0 0 0 0	1 2 2 2 1 1 1 1 1 1 1 1 1	#1 0.017 0.025 0.024 0.016 0.011 0.026 0.024 0.022 0.021 0.017 0.023 0.010 0.020	#20.0100.0150.0140.0090.0130.0100.0210.0150.0200.0160.0080.0110.0070.014	$# 3 \\ 0.021 \\ 0.023 \\ 0.027 \\ 0.017 \\ 0.012 \\ 0.034 \\ 0.024 \\ 0.027 \\ 0.022 \\ 0.016 \\ 0.026 \\ 0.026 \\ 0.026 \\ 0.004 \\ 0.071 \\ 0.071 \\ 0.021 \\ 0.071 \\ 0.021 \\ 0.071 \\ 0.071 \\ 0.071 \\ 0.021 \\ 0.071 $	#4 228.00 157.50 94.50 180.00 124.80 331.35 195.80 141.00 126.50 84.15 131.35 1.50 248.40
0440 0480 1180 1580 1880 1880 1980 2080 2080 2180 2180 2480	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076 0.198 0.102 0.097 0.128 0.087 0.161	SLOP: 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01	E : 04 21 33 57 14 66 30 6	$\begin{array}{c} 1.191\\ 1.056\\ 1.075\\ 1.055\\ 1.097\\ 1.091\\ 1.221\\ 1.096\\ 1.195\\ 1.036\\ 1.096\\ 1.156\\ 1.201\\ 1.065\end{array}$	L	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94 2.67 3.25 2.78 4.49 2.54 5.01	0.45 0.55 0.66 0.42 0.35 0.53 0.60 0.49 0.52 0.74 0.59	2 2 3 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	P. VEGI	4 3 3 5 4 3 5 5 5 5 5 4 4 3 5 5 5 5 4 4	1 3 3 1 1 1 1 1 1 1 1 1	ASPECT 2 3 4 4 1 3 3 3 4 1 2 1 2 1 2 1	GEOLOGY 1 1 5 2 2 1 1 1 2 0 0 0 0 0 0 0 0	1 2 2 2 1 1 1 1 1 1 1 1 1 1	#1 0.017 0.025 0.024 0.016 0.016 0.021 0.026 0.022 0.021 0.017 0.023 0.010 0.020 0.020	$#2\\0.010\\0.015\\0.014\\0.009\\0.013\\0.010\\0.021\\0.015\\0.020\\0.016\\0.008\\0.011\\0.007\\0.014\\0.008$	$\begin{array}{c} \# \ 3 \\ 0 \ . \ 0 \ 2 \ 1 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 2 \\ 0 \ . \ 0 \ 3 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 2 \ 1 \ 1$	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35 195.80 141.00 126.50 84.15 131.35 31.50 248.40 90.10
04A0 04B0 11A0 15A0 15B0 18B0 19B0 20A0 20B0 21A0 21B0 24A0 24B0	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076 0.198 0.102 0.097 0.128 0.087 0.161 0.082	SLOP: 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.03 0.01 0.03 0.01 0.01 0.01 0.01	E : 04 21 33 57 14 66 30 61	$\begin{array}{c} 1.191\\ 1.050\\ 1.052\\ 1.052\\ 1.097\\ 1.097\\ 1.097\\ 1.221\\ 1.096\\ 1.192\\ 1.096\\ 1.154\\ 1.051\\ 1.267\\ 1.267\\ 1.267\\ 1.267\\ 1.174\end{array}$	L DI Constante de la constante	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94 2.67 3.80 3.25 2.78 4.49 2.54 5.01 3.09	0.45 0.55 0.66 0.61 0.35 0.53 0.53 0.60 0.49 0.77 0.74 0.74 0.49 0.59 0.58	2 2 3 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	P. VEGI	4 3 3 3 5 4 3 5 5 5 4 4 4 4	1 3 3 1 1 1 1 1 1 1 1 1 1	ASPECT 2 3 4 4 1 3 3 4 1 2 1 2 1 1 2 1 1 1	GEOLOGY 1 1 5 5 2 2 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 2 2 1 1 1 1 1 1 1 1 1 1 1	#1 0.017 0.025 0.024 0.016 0.011 0.026 0.024 0.022 0.021 0.017 0.023 0.010 0.020 0.020 0.011 0.014	#2 0.010 0.015 0.014 0.003 0.013 0.010 0.021 0.015 0.020 0.016 0.006 0.011 0.007 0.014 0.008	$\begin{array}{c} \# \ 3 \\ 0 \ . \ 0 \ 2 \ 1 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 1 \ 2 \ 7 \\ 0 \ . \ 0 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 1$	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35 195.80 141.00 126.50 84.15 131.35 31.50 248.40 90.10 134.40
04A0 04B0 11A0 15A0 15B0 18A0 19B0 20A0 20B0 21A0 21B0 24A0 24B0 26A0	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076 0.198 0.102 0.097 0.128 0.087 0.161 0.082 0.103	SLOP: 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.03 0.01 0.03 0.01 0.01 0.01	E : 042133557146663006112	$\begin{array}{c} 1.191\\ 1.052\\ 1.072\\ 1.052\\ 1.097\\ 1.097\\ 1.096\\ 1.193\\ 1.036\\ 1.036\\ 1.055\\ 1.200\\ 1.065\\ 1.200\\ 1.065\\ 1.176\\ 1.065\\ 1.176\\ 1.037\\ \end{array}$	L DI D	ENSITY CI 3.01 4.82 2.97 2.98 2.41 3.84 3.25 2.94 2.67 3.60 3.25 2.78 4.99 2.54 5.01 3.09 3.38	0.45 0.55 0.66 0.61 0.42 0.35 0.53 0.53 0.53 0.60 0.49 0.77 0.52 0.74 0.59 0.58 0.74	2 2 3 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	P. VEGI	4 3 3 3 5 4 3 5 5 5 5 4 4 4 4 5	1 3 3 1 1 1 1 1 1 1 1 1 1 1 1	ASPECT 2 3 4 4 1 3 3 3 4 1 2 1 2 1 2 1 2 1 3	GEOLOGY 1 1 5 2 2 1 1 2 0 0 0 0 0 0 4	1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	#1 0.017 0.025 0.024 0.016 0.011 0.026 0.024 0.022 0.021 0.017 0.023 0.017 0.023 0.010 0.020 0.011 0.014 0.015	$\begin{array}{c} \# 2 \\ 0.010 \\ 0.015 \\ 0.014 \\ 0.009 \\ 0.013 \\ 0.010 \\ 0.021 \\ 0.015 \\ 0.021 \\ 0.016 \\ 0.001 \\ 0.008 \\ 0.011 \\ 0.008 \\ 0.011 \\ 0.011 \\ 0.011 \\ \end{array}$	$\begin{array}{c} \# \ 3 \\ 0 \ . \ 0 \ 2 \ 1 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35 195.80 141.00 126.50 84.15 131.35 31.50 248.40 90.10 134.40 78.40
0440 0480 1180 1580 1880 1880 1980 2080 2080 2180 2180 2480 2680	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076 0.198 0.102 0.097 0.128 0.087 0.161 0.082 0.103 0.167	SLOP: 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.03 0.03 0.01 0.03 0.01 0.01	E : 042213357146663061220	$\begin{array}{c} 1.191\\ 1.056\\ 1.075\\ 1.055\\ 1.097\\ 1.097\\ 1.221\\ 1.096\\ 1.195\\ 1.036\\ 1.056\\ 1.056\\ 1.056\\ 1.156\\ 1.200\\ 1.066\\ 1.176\\ 1.07\\ 1.025\end{array}$	L DI Constante de la constante	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94 2.67 3.25 2.78 4.49 2.54 5.01 3.09 3.38 3.52	0.45 0.55 0.66 0.42 0.35 0.53 0.60 0.49 0.52 0.74 0.52 0.59 0.58 0.58 0.33	2 2 3 3 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	P. VEGI	4 3 3 5 4 3 5 5 5 4 4 4 4 5 5 5	1 3 3 1 1 1 1 1 1 1 1 1 1 1 1	ASPECT 2 3 4 4 1 3 3 4 1 2 1 2 1 1 1 3 3 3 3 4 1 2 1 3 3 3 3 3 4 1 3 3 3 4 1 3 3 4 1 3 3 3 4 1 3 3 3 4 1 3 3 4 1 3 3 4 1 1 3 3 3 4 1 1 3 3 4 1 1 3 3 4 1 1 1 3 3 3 3	GEOLOGY 1 1 5 2 2 1 1 2 0 0 0 0 0 0 0 4 3	1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#1 0.017 0.025 0.024 0.016 0.016 0.026 0.024 0.022 0.021 0.017 0.023 0.010 0.020 0.011 0.014 0.015 0.016	#2 0.010 0.015 0.014 0.009 0.013 0.010 0.021 0.020 0.015 0.020 0.016 0.008 0.011 0.007 0.014 0.008 0.011 0.011	$\begin{array}{c} \# \ 3 \\ 0 \ . \ 0 \ 2 \ 1 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 6 \\ 0 \ . \ 0 \ 1 \ 6 \\ 0 \ . \ 0 \ 1 \ 6 \\ 0 \ . \ 0 \ 1 \ 6 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35 195.80 141.00 126.50 84.15 131.35 31.50 248.40 90.10 134.40 78.40 130.00
04A0 04B0 11A0 15B0 15B0 18B0 19B0 20A0 20B0 21A0 24B0 24B0 26B0 30A0	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076 0.198 0.102 0.097 0.128 0.097 0.128 0.087 0.161 0.082 0.103 0.167 0.149	SLOP: 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01	E : 0422133571466630612202	$\begin{array}{c} 1.191\\ 1.055\\ 1.075\\ 1.055\\ 1.091\\ 1.221\\ 1.036\\ 1.195\\ 1.036\\ 1.055\\ 1.201\\ 1.055\\ 1.205\\ 1.065\\ 1.174\\ 1.03\\ 1.065\\ 1.174\\ 1.03\\ 1.025\\ 1.02$	L DI Control C	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94 2.67 3.80 3.25 2.78 4.49 2.54 5.01 3.09 3.38 3.52 3.93	0.45 0.55 0.66 0.61 0.35 0.53 0.53 0.53 0.60 0.49 0.77 0.52 0.74 0.49 0.59 0.58 0.74 0.59 0.58 0.74 0.33 0.65	2 2 3 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 3	P. VEGI	4 3 3 3 5 4 3 5 5 5 5 4 4 4 4 5	1 3 3 1 1 1 1 1 1 1 1 1 1 1 1	ASPECT 2 3 4 4 1 3 3 4 1 2 1 1 2 1 1 3 4 4 1 2 1 3 4 4 1 2 1 4 1 3 4 4 4 1 2 1 4 4 1 4 4 4 4 4 4 4 4 4 4 4	GEOLOGY 1 1 5 5 2 2 1 1 2 1 0 0 0 0 0 0 0 4 3 0 0	1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#1 0.017 0.025 0.024 0.016 0.011 0.026 0.024 0.022 0.021 0.021 0.023 0.010 0.020 0.011 0.014 0.015 0.016 0.014	#2 0.010 0.015 0.014 0.003 0.013 0.010 0.015 0.020 0.015 0.020 0.016 0.008 0.011 0.007 0.014 0.008 0.011 0.004 0.001 0.010	$\begin{array}{c} \# \ 3 \\ 0 \ . \ 0 \ 2 \ 1 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 6 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \$	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35 195.80 141.00 126.50 84.15 131.35 31.50 248.40 90.10 134.40 78.40 130.00 54.00
0440 0480 1180 1580 1880 1980 1980 2080 2080 2180 2180 2480 2680	NO. 0.137 0.228 0.094 0.118 0.082 0.116 0.144 0.123 0.076 0.198 0.102 0.097 0.128 0.087 0.161 0.082 0.103 0.167	SLOP: 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.03 0.03 0.01 0.03 0.01 0.01	E : 04421335714466300612020	$\begin{array}{c} 1.191\\ 1.056\\ 1.075\\ 1.055\\ 1.097\\ 1.097\\ 1.221\\ 1.096\\ 1.195\\ 1.036\\ 1.056\\ 1.056\\ 1.056\\ 1.156\\ 1.200\\ 1.066\\ 1.176\\ 1.07\\ 1.025\end{array}$	L L J J J J J J J J J J J J J	ENSITY CI 3.01 4.82 2.67 2.98 2.41 3.84 3.25 2.94 2.67 3.25 2.78 4.49 2.54 5.01 3.09 3.38 3.52	0.45 0.55 0.66 0.42 0.35 0.53 0.60 0.49 0.52 0.74 0.52 0.59 0.58 0.58 0.33	2 2 3 3 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	P. VEGI	4 3 3 3 5 4 3 5 5 4 4 4 5 5 3	1 3 3 1 1 1 1 1 1 1 1 1 1 1 1	ASPECT 2 3 4 4 1 3 3 4 1 2 1 2 1 1 1 3 3 3 3 4 1 2 1 3 3 3 3 3 4 1 3 3 3 4 1 3 3 4 1 3 3 3 4 1 3 3 3 4 1 3 3 4 1 3 3 4 1 1 3 3 3 4 1 1 3 3 4 1 1 3 3 4 1 1 1 3 3 3 3	GEOLOGY 1 1 5 2 2 1 1 2 0 0 0 0 0 0 0 4 3	1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#1 0.017 0.025 0.024 0.016 0.016 0.026 0.024 0.022 0.021 0.017 0.023 0.010 0.020 0.011 0.014 0.015 0.016	#2 0.010 0.015 0.014 0.009 0.013 0.010 0.021 0.020 0.015 0.020 0.016 0.008 0.011 0.007 0.014 0.008 0.011 0.011	$\begin{array}{c} \# \ 3 \\ 0 \ . \ 0 \ 2 \ 1 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 2 \ 3 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 1 \ 7 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 6 \\ 0 \ . \ 0 \ 1 \ 6 \\ 0 \ . \ 0 \ 1 \ 6 \\ 0 \ . \ 0 \ 1 \ 6 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \\ 0 \ . \ 0 \ 2 \ 4 \\ 0 \ . \ 0 \ 1 \ 1 \ 0 \ . \ 0 \ 1 \ 1 \ 0 \ . \ 0 \ 1 \ 1 \ 0 \ . \ 0 \ 1 \ 1 \ 0 \ . \ 0 \ 1 \ 1 \ 0 \ . \ 0 \ 1 \ 1 \ 0 \ . \ 0 \ . \ 0 \ 1 \ 1 \ 0 \ . \ 0 \ 1 \ 1 \ 0 \ . \ 0 \ 1 \ 1 \ 0 \ . \ 0 \ . \ 0 \ 1 \ 0 \ . \ 0 \ 0 \ 1 \ 0 \ . \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	#4 228.00 157.50 114.70 94.50 180.00 124.80 331.35 195.80 141.00 126.50 84.15 131.35 31.50 248.40 90.10 134.40 78.40 130.00

Table	3.	(cont.)	Second order drainage basins listed by classification strate	um. Stratum
			B (cont.).	

					•					MAIN			TOTAL	MAXIMUM	MINIMUM			
	LOCATION			BASIN	BASIN	BASIN	MAXIMUM			CHANNEL		NUM			USED		RELIE	
BASNUM	CODE	ORDER	CAT	AREA	LENGTH	PERIMETER	ELEV.	ELEV.	RELIEF	LENGTH	LENGTH	OF FI	RSTS LENGT	H RELIEF	RELIEF	USEDREI	RATI	0
35B0	RJ447224BAL	2	в	0.77	1.04	3.86	5010	4875	135	0.93	0.92		3 2.55	4940	4885	55	130	
36A0	RJ447225BDR	2	в	0.46	1.03	3.04	5060	4920	140	0.83	0.81		2 1.21		4930	55	136	
36B0	RJ447225BDL	2	в	0.79	1.10	3.90	5060	4920	140	1.13	1.10		4 2.4		4935	65	127	
37A0	RC456917ACR	2	в	0.44	1.09	3.29	4985	4800	185	0.97	0.90		2 1.61		4815	65	170	
37B0	RC456917ACL	2	в	0.66	1.39	4.11	4995	4800	195	1.31	1.19		2 1.89	4885	4810	75	140	
42A0	LT427106CAR	2	в	0.67	1.33	4.93	5085	4855	230	1.60	1.52		2 2.23	4955	4865	90	173	
42B0	LT427106CAL	2	в	0.77	1.30	4.74	5085	4855	230	1.58	1.48		3 2.74	4970	4860	110	177	
44A0	RR437033ABR	2	В	0.26	0.89	2.38	4800	4670	130	0.76	0.74		2 1.16		4675	75	146	
4480	RR437033ABL	2	B	2.06	2.25	7.47	4825	4670	155	2.36	2.12		3 3.75		4685	100	69	
49A0	PN437035ABR	2	B	0.30	0.86	2.92	4830	4690	140	0.88	0.79		3 1.8		4695	80	162	
49B0	PN437035ABL	2 2	B B	0.31 0.37	0.76 1.12	2.41 3.22	4815 4945	4690 4750	125 195	0.66 1.07	0.63 0.97		2 1.19 2 1.57		4695	55	165	
52A0 52B0	TS417108DDR TS417108DDL	2	В	0.57	0.99	3.29	4935	4750	185	1.07	0.97		3 2.66		4770 4765	100 85	175 187	
5380	TS417108DDE	2	В	0.59	1.73	4.02	5015	4760	255	1.76	1.66		3 2.72		4780	130	148	
5300	TS41710BACL	2	В	0.75	1.84	4.63	5025	4760	265	1.82	1.73		4 3.5		4785	120	144	
54A0	TS417105DCR	2	В	0.30	1.13	2.96	4990	4810	180	0.91	0.88		2 1.41		4820	105	159	
54B0	TS417105DCL	2	в	0.71	0.88	4.51	4925	4810	115	0.90	0.88		2 1.74		4820	70	131	
56B0	TK417114ADR	2	в	0.38	0.81	2.78	4900	4720	180	0.77	0.72		2 1.3		4730	95	223	
56C0	TK417114ADL	2	в	0.57	0.98	3.90	4910	4720	190	1.12	1.09		2 1.7	4855	4735	120	194	
57A0	TK417115BDR	2	в	0.72	1.84	4.66	4940	4695	245	1.82	1.71		2 2.44	4855	4725	130	133	
57B0	TK417115BDL	2	в	0.90	1.25	4.22	4895	4695	200	1.32	1.23		3 3.50		4725	110	160	
62A0	TK417101BDR	2	в	1.01	1.86	4.60	4930	4735	195	1.89	1.74		2 2.34		4760	110	105	
62B0	TK417101BDL	2	в	1.19	1.53	5.92	4920	4735	185	1.63	1.50		2 2.19	4830	4755	75	121	
	PUGGEDNESS	CHANNE	71.			ATNAGE										NGT		AGT
BASNUM	RUGGEDNESS	CHANNE		SINUOSI	DR.	AINAGE ENSITY CI	RCULARITY		P. VEGI			ASPECT	SURFICIA	,	AGI	AGI	AGI	AGI #4
BASNUM	RUGGEDNESS NO.	CHANNE SLOPE		SINUOSI	DR.		RCULARITY		P. VEGI	ETATION		ASPECT	SURFICIA			AGI #2		AGI #4
BASNUM 35B0			E .	SINUOSI 1.019	DR. TY DI		RCULARITY		P. VEGI			ASPECT 1	SURFICIA	,	AGI		AGI	
	NO. 0.084 0.069	SLOPE 0.016 0.016	E 9 6 8	1.019 1.019	DR. TY DI	ENSITY CI 3.29 2.60	0.65 0.63	PRECII	P. VEGI	ETATION 2 2	SOIL .	1 1	SURFICIAI GEOLOGY	, GEOLOGY	AGI #1	#2	AGI #3	#4
35B0 36A0 36B0	NO. 0.084 0.069 0.083	SLOPE 0.016 0.016 0.016	E 5 6 6	1.019 1.019 1.025	DR. TY DI	ENSITY CI 3.29 2.60 3.15	0.65 0.63 0.65	2 2 2 2 2	P. VEGI	ETATION 2 2 2 2	SOIL . 3 1 1	1 1 2	SURFICIA GEOLOGY 3 3	, GEOLOGY 1 1	AGI #1 0.021 0.015 0.019 0	#2 0.012 0.008 .013 0	AGI #3 0.019 0.012 019	#4 103.95
35B0 36A0 36B0 37A0	NO. 0.084 0.069 0.083 0.128	SLOPE 0.016 0.016 0.016 0.016	E 5 6 6 8	1.019 1.019 1.025 1.072	DR. TY D	ENSITY CI 3.29 2.60 3.15 3.65	0.65 0.63 0.65 0.51	7 PRECI 2 2 2 2 2	P. VEGI	ETATION 2 2 2 2 2	SOIL . 3 1 1 3	1 1 2 2	SURFICIAN GEOLOGY 3 3 2	GEOLOGY	AGI #1 0.021 0.015 0.019 0 0.016	#2 0.012 0.008 .013 0 0.008	AGI #3 0.019 0.012 019 0.014	#4 103.95 64.40 110.60 81.40
3580 36A0 36B0 37A0 37B0	NO. 0.084 0.069 0.083 0.128 0.106	SLOPE 0.016 0.016 0.016 0.016 0.015	E 1 6 8 8 5	1.019 1.019 1.025 1.072 1.104	DR. TY D	ENSITY CI 3.29 2.60 3.15 3.65 2.88	0.65 0.63 0.65 0.51 0.49	7 PRECI 2 2 2 2 2 2 2 2	P. VEGI	2 2 2 2 2 2 2 2	SOIL . 3 1 3 3 3	1 1 2 2 3	SURFICIAN GEOLOGY 3 3 2 2 2	GEOLOGY 1 1 1 4 4	AGI #1 0.021 0.015 0.019 0 0.016 0.019	#2 0.012 0.008 .013 0 0.008 0.010	AGI #3 0.019 0.012 019 0.014 0.018	#4 103.95 64.40 110.60 81.40 128.70
3580 36A0 36B0 37A0 37B0 42A0	NO. 0.084 0.069 0.083 0.128 0.106 0.146	SLOPE 0.016 0.016 0.016 0.016 0.015 0.015	E 1 6 8 6 8 5 5 5	1.019 1.019 1.025 1.072 1.104 1.053	DR. TY DI	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35	0.65 0.63 0.65 0.51 0.49 0.34	7 PRECI 2 2 2 2 2 2 1	P. VEGI	2 2 2 2 2 2 2 4	SOIL . 3 1 1 3 3 1	1 2 2 3 3	SURFICIA GEOLOGY 3 3 2 2 0	GEOLOGY 1 1 4 4 1	AGI #1 0.021 0.015 0.019 0 0.016 0.019 0.018	#2 0.012 0.008 .013 0 0.008 0.010 0.010	AGI #3 0.019 0.012 019 0.014 0.018 0.022	#4 103.95 64.40 110.60 81.40 128.70 154.10
35B0 36A0 36B0 37A0 37B0 42A0 42B0	NO. 0.084 0.069 0.083 0.128 0.106 0.146 0.155	SLOPE 0.016 0.016 0.016 0.016 0.019 0.019 0.019	E : 6 8 6 8 5 5 9	1.019 1.025 1.025 1.072 1.104 1.053 1.069	DR. TY DI	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.35 3.57	0.65 0.63 0.65 0.51 0.49 0.34 0.43	7 PRECI 2 2 2 2 2 2 2 1 1	P. VEGI	2 2 2 2 2 2 2 4 4	SOIL . 3 1 3 3 1 1	1 2 2 3 3 4	SURFICIA GEOLOGY 3 3 2 2 0 0 0	GEOLOGY 1 1 4 4 1 1	AGI #1 0.021 0.015 0.019 0 0.016 0.019 0.018 0.021	#2 0.012 0.008 .013 0 0.008 0.010 0.010 0.015	AGI #3 0.019 0.012 019 0.014 0.018 0.022 0.026	#4 103.95 64.40 110.60 81.40 128.70 154.10 177.10
35B0 36A0 36B0 37A0 37B0 42A0 42B0 44A0	NO. 0.084 0.069 0.083 0.128 0.106 0.146 0.155 0.111	SLOPE 0.016 0.016 0.016 0.015 0.015 0.015 0.015	E 9 6 8 5 5 9 7	1.019 1.025 1.025 1.072 1.104 1.053 1.069 1.036	DR. TY DI	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50	0.65 0.63 0.51 0.49 0.34 0.43 0.57	7 PRECI 2 2 2 2 2 2 1 1 1	P. VEGI	2 2 2 2 2 2 4 4 4 2	SOIL . 3 1 3 3 1 1 1 1	1 2 3 3 4 1	SURFICIA GEOLOGY 3 3 2 2 0 0 0 0	GEOLOGY 1 1 4 4 1 1 4	AGI #1 0.021 0.015 0.019 0 0.016 0.019 0.018 0.021 0.008	#2 0.012 0.008 013 0 0.008 0.010 0.010 0.015 0.007	AGI #3 0.019 0.012 019 0.014 0.014 0.022 0.026 0.007	#4 103.95 64.40 110.60 81.40 128.70 154.10 177.10 33.80
3580 36A0 37A0 37B0 42A0 42B0 44A0 44B0	NO. 0.084 0.069 0.128 0.106 0.146 0.155 0.111 0.053	SLOPE 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.027 0.011	E 9 6 8 6 5 5 5 9 7 1	1.019 1.025 1.025 1.072 1.104 1.053 1.069 1.036 1.114	DR. TY DI	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82	0.65 0.63 0.51 0.49 0.34 0.43 0.57 0.57	7 PRECI 2 2 2 2 2 1 1 1 1 1	P. VEGI	ETATION 2 2 2 2 2 2 4 4 4 2 2 2	SOIL . 3 1 3 3 1 1 1 1 1	1 2 3 3 4 1	SURFICIAN GEOLOGY 3 3 2 2 2 0 0 0 0 0 0	GEOLOGY 1 1 4 4 1 1 4 3	AGI #1 0.015 0.019 0 0.016 0.019 0.018 0.021 0.008 0.026	#2 0.012 0.008 013 0 0.008 0.010 0.010 0.015 0.007 0.023	AGI #3 0.019 0.012 019 0.014 0.018 0.022 0.026 0.007 0.027	#4 103.95 64.40 110.60 81.40 128.70 154.10 177.10 33.80 319.30
3580 3680 3780 3780 4280 4280 4480 4480 4980	NO. 0.084 0.069 0.128 0.128 0.106 0.146 0.155 0.111 0.053 0.168	SLOPE 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.027 0.011 0.024	E 9 6 8 6 5 5 9 7 1 4	1.019 1.025 1.025 1.072 1.104 1.053 1.069 1.036 1.114 1.124	DR. TY DI	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82 6.32	0.65 0.63 0.65 0.51 0.49 0.34 0.43 0.57 0.57 0.46 0.44	7 PRECI 2 2 2 2 2 1 1 1 1 1 1	P. VEGI	2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2	SOIL . 3 1 3 3 1 1 1 1 4	1 2 3 3 4 1 1	SURFICIA GEOLOGY 3 3 2 2 0 0 0 0	GEOLOGY 1 1 4 4 1 1 4 3 3	AGI #1 0.021 0.015 0.019 0.016 0.019 0.018 0.021 0.008 0.026 0.009	#2 0.012 0.008 013 0 0.008 0.010 0.010 0.015 0.007 0.023 0.007	AGI #3 0.019 0.012 0.014 0.018 0.022 0.026 0.007 0.027 0.009	#4 103.95 64.40 110.60 81.40 128.70 154.10 177.10 33.80 319.30 42.00
3580 3680 3780 3780 4280 4280 4480 4480 4980 4980	NO. 0.084 0.069 0.128 0.128 0.146 0.146 0.155 0.111 0.053 0.168 0.088	SLOPE 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.027 0.011 0.024 0.022	E 9 5 6 8 5 5 9 7 1 4 3	1.019 1.025 1.072 1.104 1.053 1.069 1.036 1.114 1.124 1.054	DR. TY DI	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82	0.65 0.63 0.51 0.49 0.34 0.43 0.57 0.57	7 PRECI 2 2 2 2 2 1 1 1 1 1	P. VEGI	ETATION 2 2 2 2 2 2 4 4 4 2 2 2	SOIL . 3 1 3 3 1 1 1 1 1	1 2 3 3 4 1	SURFICIA GEOLOGY 3 3 2 2 0 0 0 0 0 0 4	GEOLOGY 1 1 4 4 1 1 4 3	AGI #1 0.021 0.015 0.019 0 0.016 0.019 0.018 0.021 0.008 0.026 0.009 0.011	#2 0.012 0.008 013 0 0.010 0.010 0.015 0.007 0.023 0.007 0.007	AGI #3 0.019 0.012 019 0.014 0.018 0.022 0.026 0.027 0.027 0.029 0.010	#4 103.95 64.40 110.60 81.40 128.70 154.10 177.10 33.80 319.30 42.00 38.75
3580 3680 3780 3780 4280 4280 4480 4480 4980 5280	NO. 0.084 0.069 0.128 0.106 0.146 0.155 0.111 0.053 0.168 0.088 0.158	SLOPP 0.016 0.016 0.015 0.015 0.015 0.015 0.015 0.025 0.025 0.025	E 9 5 6 8 5 5 5 7 1 4 3 5 5	1.019 1.019 1.025 1.072 1.104 1.053 1.069 1.114 1.124 1.054 1.102	DR. TY D	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82 6.32 3.74 4.27	0.65 0.63 0.51 0.49 0.34 0.43 0.57 0.46 0.44 0.67 0.44	7 PRECI 2 2 2 2 2 1 1 1 1 1 1 1	P. VEGI	ETATION 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2	SOIL . 3 1 3 3 1 1 1 1 4 4	1 2 3 4 1 1 1	SURFICIA GEOLOGY 3 3 2 2 0 0 0 0 0 0 4 0	GEOLOGY 1 1 4 4 1 1 4 3 3 3 1	AGI #1 0.021 0.015 0.019 0 0.016 0.019 0.018 0.021 0.008 0.026 0.009 0.011 0.013	#2 0.012 0.008 0.13 0.008 0.010 0.010 0.015 0.007 0.023 0.007 0.007 0.009	AGI #3 0.019 0.012 019 0.014 0.022 0.026 0.007 0.027 0.027 0.010 0.012	#4 103.95 64.40 110.60 81.40 128.70 154.10 177.10 33.80 319.30 42.00 38.75 72.15
3580 3680 3780 4280 4280 4480 4480 4980 5280 5280	NO. 0.084 0.069 0.128 0.128 0.146 0.146 0.155 0.111 0.053 0.168 0.088	SLOPE 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.027 0.011 0.024 0.022	E 9 6 8 6 8 7 7 1 4 3 5 2	1.019 1.025 1.072 1.104 1.053 1.069 1.036 1.114 1.124 1.054	DR. TY DI	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82 6.32 3.74	0.65 0.63 0.65 0.51 0.49 0.34 0.43 0.57 0.46 0.44 0.67	7 PRECI 2 2 2 2 1 1 1 1 1 1 1 1 1	P. VEGI	ETATION 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2	SOIL . 3 1 3 3 1 1 1 1 4 4 1	1 2 3 4 1 1 1 2	SURFICIAN GEOLOGY 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GEOLOGY 1 1 1 4 4 1 1 4 3 3 3	AGI #1 0.021 0.015 0.019 0 0.016 0.019 0.018 0.021 0.008 0.026 0.009 0.011	#2 0.012 0.008 013 0 0.010 0.010 0.015 0.007 0.023 0.007 0.007	AGI #3 0.019 0.012 019 0.014 0.018 0.022 0.026 0.027 0.027 0.029 0.010	#4 103.95 64.40 110.60 81.40 128.70 154.10 177.10 33.80 319.30 42.00 38.75 72.15 105.45
3580 3680 3780 3780 4280 4280 4480 4480 4980 5280	NO. 0.084 0.069 0.128 0.128 0.106 0.146 0.155 0.111 0.053 0.168 0.088 0.158 0.164	SLOPE 0.016 0.016 0.015 0.015 0.015 0.015 0.025 0.025 0.025 0.025 0.025	E 9 5 6 8 5 5 9 7 1 4 3 5 2 0	1.019 1.019 1.025 1.072 1.104 1.053 1.036 1.114 1.124 1.054 1.102 1.065	DR. TY DI	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82 6.32 3.74 4.27 4.69	0.65 0.63 0.65 0.51 0.49 0.34 0.34 0.57 0.46 0.44 0.67 0.44 0.67	7 PRECI 2 2 2 2 1 1 1 1 1 1 1 1 1	P. VEGI	ETATION 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2	SOIL . 3 1 3 3 1 1 1 1 4 4 1 1	1 2 3 4 1 1 1 2 2	SURFICIA GEOLOGY 3 3 2 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0	GEOLOGY 1 1 4 4 1 1 4 3 3 3 1 1	AGI #1 0.015 0.019 0 0.016 0.019 0.018 0.021 0.008 0.026 0.009 0.011 0.013 0.019	#2 0.012 0.008 0.013 0.008 0.010 0.010 0.015 0.007 0.023 0.007 0.007 0.009 0.013	AGI #3 0.019 0.012 019 0.014 0.022 0.026 0.027 0.027 0.027 0.009 0.012 0.012	#4 103.95 64.40 110.60 81.40 128.70 154.10 177.10 33.80 319.30 42.00 38.75 72.15
3580 36A0 37A0 37B0 42A0 44B0 44B0 49B0 52A0 52B0 53B0	NO. 0.084 0.069 0.083 0.128 0.106 0.146 0.155 0.111 0.053 0.168 0.068 0.158 0.164 0.222 0.236 0.158	SLOPF 0.016 0.016 0.016 0.019 0.019 0.019 0.021 0.021 0.021 0.022 0.022 0.022 0.021	E 9 53 66 85 55 97 71 4 3 52 0 81	$\begin{array}{c} 1.019\\ 1.019\\ 1.025\\ 1.072\\ 1.104\\ 1.053\\ 1.069\\ 1.036\\ 1.114\\ 1.124\\ 1.055\\ 1.065\\ 1.065\\ 1.065\\ 1.038\\ \end{array}$	DR. TY D	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82 6.32 3.74 4.27 4.69 4.60 4.70 4.63	0.65 0.63 0.51 0.34 0.34 0.43 0.57 0.46 0.44 0.67 0.44 0.66 0.44 0.66 0.44	7 PRECI 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	P. VEGI	ETATION 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2	SOIL . 3 1 3 3 1 1 1 1 4 4 1 1 1 1 1 1 1	1 2 2 3 4 1 1 1 2 2 2	SURFICIAI GEOLOGY 3 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GEOLOGY 1 1 4 4 1 1 3 3 1 1 1	AGI #1 0.021 0.015 0.019 0 0.016 0.019 0.018 0.021 0.008 0.026 0.009 0.011 0.013 0.019 0.016 0.021 0.011	#2 0.012 0.008 013 0 0.008 0.010 0.010 0.015 0.007 0.003 0.007 0.009 0.013 0.012	AGI #3 0.019 0.012 019 0.026 0.026 0.026 0.007 0.029 0.010 0.012 0.020 0.012 0.020	#4 103.95 64.40 110.60 81.40 128.70 154.10 177.10 33.80 319.30 42.00 38.75 72.15 105.45 150.45 198.75 54.00
35B0 36A0 37A0 42A0 42B0 44B0 44B0 49B0 52A0 52B0 53B0 53B0 54B0	NO. 0.084 0.069 0.083 0.128 0.106 0.146 0.155 0.111 0.053 0.168 0.068 0.158 0.164 0.222 0.236 0.158 0.158 0.158	SLOPE 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.011 0.024 0.021 0.022 0.022 0.022 0.022 0.022 0.022	E 9 54 68 55 97 14 35 20 81 1	$\begin{array}{c} 1.019\\ 1.019\\ 1.025\\ 1.072\\ 1.069\\ 1.053\\ 1.069\\ 1.124\\ 1.124\\ 1.054\\ 1.124\\ 1.055\\ 1.060\\ 1.050\\ 1.050\\ 1.050\\ 1.050\\ 1.027\end{array}$	DR. TY DI	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82 6.32 3.74 4.27 4.27 4.27 4.69 4.60 4.70 4.63 2.43	0.65 0.63 0.51 0.49 0.34 0.43 0.57 0.44 0.67 0.44 0.66 0.44 0.44 0.44 0.44	7 PRECIS 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P. VEGI	ETATION 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2	SOIL . 3 1 1 3 1 1 1 1 4 4 1 1 1 1 1 1 1 1	1 2 3 4 1 1 2 2 3 3 4 3 3 4	SURFICIAL GEOLOGY 3 3 2 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0	GEOLOGY 1 1 4 4 1 1 3 3 1 1 1 1 1 1 1	AGI #1 0.021 0.015 0.019 0 0.016 0.021 0.008 0.021 0.009 0.011 0.013 0.019 0.011 0.021	#2 0.012 0.008 013 0 0.010 0.010 0.015 0.007 0.007 0.007 0.007 0.007 0.013 0.012 0.014 0.015	AGI #3 0.019 0.012 0.026 0.026 0.027 0.027 0.029 0.010 0.010 0.012 0.020 0.017 0.020 0.017 0.020 0.017	#4 103.95 64.40 110.60 81.40 128.70 154.10 177.10 33.80 319.30 42.00 38.75 72.15 105.45 150.45 198.75
3580 36A0 37A0 37B0 42A0 44B0 44B0 49B0 52A0 52B0 53B0 53B0 53C0 54B0 54B0	NO. 0.084 0.069 0.083 0.128 0.106 0.146 0.155 0.111 0.053 0.168 0.088 0.158 0.164 0.222 0.236 0.158 0.164 0.222 0.236 0.158 0.158 0.158 0.164 0.158 0.164 0.158 0.164 0.158 0.164 0.158 0.164 0.158 0.164 0.222 0.236 0.158 0.158 0.164 0.222 0.236 0.158 0.158 0.164 0.253 0.158 0.158 0.158 0.164 0.253 0.158 0.158 0.158 0.164 0.253 0.158 0.158 0.158 0.164 0.253 0.158 0.119 0.158 0.158 0.158 0.119 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.119 0.1588 0.1588 0.1588 0.1588 0.1588 0.1588 0.1588 0.1588 0.1	SLOPE 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.015 0.022 0.011 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.034	E 9 53 68 55 97 14 35 20 81 14	$\begin{array}{c} 1.019\\ 1.019\\ 1.025\\ 1.072\\ 1.072\\ 1.074\\ 1.054\\ 1.054\\ 1.124\\ 1.054\\ 1.105\\ 1.056\\ 1.056\\ 1.056\\ 1.056\\ 1.026\\ 1.056\\ 1.026\\ 1.056\\ 1.026\\ 1.056\\ 1.0$	DR. TY D	ENSITY CI 3.29 2.60 3.15 3.55 2.88 3.35 3.57 4.50 1.82 6.32 3.74 4.27 4.69 4.27 4.69 4.60 4.70 4.63 2.43 3.48	0.65 0.63 0.51 0.34 0.34 0.43 0.44 0.44 0.67 0.44 0.66 0.44 0.44 0.44 0.44 0.44	7 PRECI 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P. VEGI	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SOIL . 3 1 3 1 1 1 1 4 4 1 1 1 1 1 1 1 1	1 2 3 4 1 1 1 2 2 3 3 3 3 3 3 3 3 3	SURFICIAN GEOLOGY 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GEOLOGY 1 1 4 4 1 1 4 3 3 1 1 1 1 1 2	AGI #1 0.021 0.015 0.019 0 0.016 0.018 0.021 0.008 0.026 0.009 0.011 0.013 0.019 0.011 0.013 0.019 0.016 0.021 0.017 0.017	#2 0.012 0.008 013 0 0.008 0.010 0.015 0.007 0.023 0.007 0.007 0.009 0.013 0.012 0.014 0.015 0.013	AGI #3 0.019 0.012 019 0.022 0.020 0.027 0.027 0.027 0.010 0.012 0.020 0.012 0.020 0.012 0.020 0.012 0.020 0.016	#4 103.95 64.40 110.60 81.40 128.70 154.10 177.10 33.80 319.30 42.00 38.75 72.15 105.45 150.45 198.75 54.00 81.65 68.40
35B0 36A0 37A0 42A0 42B0 44B0 44B0 49B0 52B0 53B0 53B0 53B0 53C0 54A0 56C0	NO. 0.084 0.069 0.083 0.128 0.106 0.146 0.155 0.111 0.053 0.168 0.088 0.158 0.164 0.222 0.236 0.158 0.053 0.119 0.110	SLOPE 0.016 0.016 0.016 0.019 0.019 0.019 0.029 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022	E 9 53668559711433520811149	$\begin{array}{c} 1.019\\ 1.019\\ 1.025\\ 1.072\\ 1.104\\ 1.053\\ 1.069\\ 1.114\\ 1.124\\ 1.025\\ 1.065\\ 1.114\\ 1.022\\ 1.065\\ 1.060\\ 1.050\\ 1.038\\ 1.027\\ 1.064\\ 1.030\end{array}$	DR. TY D	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82 6.32 3.74 4.50 1.82 6.32 3.74 4.69 4.69 4.60 4.63 2.43 3.48 3.05	0.65 0.63 0.51 0.34 0.34 0.49 0.34 0.46 0.46 0.44 0.67 0.46 0.44 0.66 0.44 0.44 0.44 0.44 0.44	7 PRECI 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P. VEGI	ETATION 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2	SOIL . 3 1 3 1 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1	1 2 3 4 1 1 1 2 2 3 4 3 4 3 4 3	SURFICIAI GEOLOGY 3 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GEOLOGY 1 1 4 4 1 1 4 3 3 1 1 1 1 1 1 1 1 2 3	AGI #1 0.021 0.015 0.019 0 0.016 0.018 0.021 0.008 0.026 0.009 0.011 0.013 0.013 0.019 0.016 0.021 0.017 0.017 0.018	#2 0.012 0.008 013 0 0.008 0.010 0.010 0.015 0.007 0.023 0.007 0.009 0.013 0.014 0.014 0.014 0.015 0.014 0.015 0.013 0.013 0.017	AGI #3 0.019 0.012 0.022 0.026 0.027 0.027 0.027 0.027 0.012 0.012 0.012 0.010 0.012 0.020 0.017 0.020 0.017 0.020 0.018 0.018 0.021	$\begin{array}{r} \#4\\ 103.95\\ 64.40\\ 110.60\\ 81.40\\ 128.70\\ 154.10\\ 177.10\\ 33.80\\ 319.30\\ 42.00\\ 319.30\\ 42.00\\ 38.75\\ 72.15\\ 105.45\\ 150.45\\ 198.75\\ 54.00\\ 81.65\\ 68.40\\ 108.30\\ \end{array}$
35B0 36A0 37A0 42B0 42B0 44B0 44B0 49B0 52B0 52B0 53B0 53B0 54B0 54B0 56B0 56C0 57A0	NO. 0.084 0.069 0.083 0.128 0.106 0.146 0.155 0.111 0.053 0.168 0.068 0.158 0.164 0.222 0.236 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.153 0.119 0.110 0.157	SLOPE 0.016 0.016 0.016 0.019 0.019 0.019 0.019 0.019 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.033 0.022 0.033	E 9 53668 555 559 714 3552 08 114 99 9	1.019 1.019 1.025 1.072 1.104 1.053 1.069 1.036 1.114 1.124 1.054 1.054 1.060 1.055 1.060 1.058 1.027 1.064 1.027 1.064 1.062	DR. TY DI	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82 6.32 3.74 4.69 4.69 4.69 4.60 4.70 4.63 2.43 3.48 3.05 3.38	0.65 0.63 0.51 0.34 0.34 0.43 0.57 0.46 0.44 0.66 0.44 0.66 0.44 0.44 0.44 0.44 0.44 0.44 0.44	7 PRECIS 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P. VEGI	ETATION 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2	SOIL . 3 1 3 3 1 1 1 1 4 4 4 1 1 1 1 1 1 1 1 1	1 2 2 3 4 1 1 1 2 2 3 3 4 3 4 3 4 3 4 3	SURFICIAL GEOLOGY 3 3 2 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0	GEOLOGY 1 1 4 4 1 1 3 3 1 1 1 1 1 2 3 2	AGI #1 0.021 0.015 0.019 0.016 0.019 0.018 0.026 0.009 0.011 0.013 0.019 0.013 0.019 0.011 0.017 0.017 0.018 0.018 0.018	$\begin{array}{c} \# 2 \\ 0.012 \\ 0.008 \\ 013 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.015 \\ 0.007 \\ 0.023 \\ 0.007 \\ 0.007 \\ 0.009 \\ 0.013 \\ 0.012 \\ 0.014 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.014 \\ \end{array}$	AGI #3 0.019 0.012 019 0.014 0.022 0.026 0.027 0.027 0.027 0.027 0.020 0.010 0.012 0.020 0.017 0.020 0.017 0.020 0.017	$\begin{array}{r} \#4\\ 103.95\\ 64.40\\ 110.60\\ 81.40\\ 128.70\\ 154.10\\ 177.10\\ 33.80\\ 319.30\\ 422.00\\ 38.75\\ 72.15\\ 105.45\\ 150.45\\ 150.45\\ 198.75\\ 54.00\\ 81.65\\ 68.40\\ 108.30\\ 176.40\\ \end{array}$
35B0 36A0 37A0 42A0 42B0 44A0 49B0 52A0 52B0 53B0 53C0 54B0 54B0 56B0 56B0 57B0	NO. 0.084 0.069 0.128 0.128 0.146 0.155 0.111 0.053 0.158 0.164 0.222 0.236 0.158 0.157 0.111	SLOPE 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.012 0.022 0.011 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.016 0.03 0.022 0.03 0.023 0.03 0.022	E : 5368555971433520811149993	$\begin{array}{c} 1.019\\ 1.019\\ 1.025\\ 1.072\\ 1.069\\ 1.036\\ 1.036\\ 1.124\\ 1.054\\ 1.124\\ 1.055\\ 1.060\\ 1.055\\ 1.060\\ 1.055\\ 1.060\\ 1.038\\ 1.027\\ 1.064\\ 1.030\\ 1.062\\ 1.074\end{array}$	DR. TY D	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82 6.32 3.74 4.27 4.60 4.27 4.60 4.60 4.70 4.60 4.60 4.70 4.63 3.48 3.05 3.38 3.90	0.65 0.63 0.51 0.49 0.34 0.43 0.57 0.44 0.67 0.44 0.66 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.42 0.63	7 PRECI 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P. VEGI	2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2	SOIL . 3 1 3 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1	1 2 2 3 4 1 1 2 2 3 4 1 1 2 2 3 3 4 3 4 3 3 3	SURFICIAN GEOLOGY 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GEOLOGY 1 1 4 4 1 1 4 3 3 1 1 1 1 1 2 3 2 2	AGI #1 0.021 0.015 0.019 0 0.018 0.021 0.008 0.026 0.009 0.011 0.013 0.019 0.011 0.013 0.019 0.011 0.017 0.017 0.017 0.018 0.026	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	AGI #3 0.019 0.012 019 0.014 0.022 0.020 0.027 0.027 0.010 0.012 0.010 0.012 0.021 0.020 0.016 0.021 0.021 0.027	$\begin{array}{r} \#4\\ 103.95\\ 64.40\\ 110.60\\ 81.40\\ 128.70\\ 154.10\\ 177.10\\ 33.80\\ 319.30\\ 42.00\\ 38.75\\ 72.15\\ 105.45\\ 198.75\\ 54.00\\ 81.65\\ 68.40\\ 108.30\\ 176.40\\ 180.00\\ \end{array}$
35B0 36A0 37A0 42B0 42B0 44B0 44B0 49B0 52B0 52B0 53B0 53B0 54B0 54B0 56B0 56C0 57A0	NO. 0.084 0.069 0.083 0.128 0.106 0.146 0.155 0.111 0.053 0.168 0.068 0.158 0.164 0.222 0.236 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.153 0.119 0.110 0.157	SLOPE 0.016 0.016 0.016 0.019 0.019 0.019 0.019 0.019 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.033 0.022 0.033	E : 53 56 55 55 57 71 43 35 52 08 11 14 99 36	1.019 1.019 1.025 1.072 1.104 1.053 1.069 1.036 1.114 1.124 1.054 1.054 1.060 1.055 1.060 1.058 1.027 1.064 1.027 1.064 1.062	DR. TY D	ENSITY CI 3.29 2.60 3.15 3.65 2.88 3.35 3.57 4.50 1.82 6.32 3.74 4.69 4.69 4.69 4.60 4.70 4.63 2.43 3.48 3.05 3.38	0.65 0.63 0.51 0.34 0.34 0.43 0.57 0.46 0.44 0.66 0.44 0.66 0.44 0.44 0.44 0.44 0.44 0.44 0.44	7 PRECIS 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P. VEGI	ETATION 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2	SOIL . 3 1 3 3 1 1 1 1 4 4 4 1 1 1 1 1 1 1 1 1	1 2 2 3 4 1 1 1 2 2 3 3 4 3 4 3 4 3 4 3	SURFICIAL GEOLOGY 3 3 2 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0	GEOLOGY 1 1 4 4 1 1 3 3 1 1 1 1 1 2 3 2	AGI #1 0.021 0.015 0.019 0 0.016 0.019 0.018 0.026 0.009 0.011 0.013 0.019 0.013 0.019 0.011 0.017 0.017 0.018 0.018 0.018	$\begin{array}{c} \# 2 \\ 0.012 \\ 0.008 \\ 013 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.015 \\ 0.007 \\ 0.023 \\ 0.007 \\ 0.007 \\ 0.009 \\ 0.013 \\ 0.012 \\ 0.014 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.014 \\ \end{array}$	AGI #3 0.019 0.012 019 0.014 0.022 0.026 0.027 0.027 0.027 0.027 0.020 0.010 0.012 0.020 0.017 0.020 0.017 0.020 0.017	$\begin{array}{r} \#4\\ 103.95\\ 64.40\\ 110.60\\ 81.40\\ 128.70\\ 154.10\\ 177.10\\ 33.80\\ 319.30\\ 422.00\\ 38.75\\ 72.15\\ 105.45\\ 150.45\\ 150.45\\ 198.75\\ 54.00\\ 81.65\\ 68.40\\ 108.30\\ 176.40\\ \end{array}$

Table	3.	(cont.)	Second or	der	drainage	basins	listed	by	classification a	stratum.	Stratum
			С.					-			

BASNUM	LOCATION CODE	ORDER	САТ	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH		NUMBER OF FIRSTS	TOTAL CHANNEL LENGTH	MAXIMUM USED RELIEF	USED	USEDREL	RELIEF RATIO
05A0	RS517313AAR	2	с	0.63	1.10	3.42	4435	4250	185	1.04	1.00	2	1.64	4370	4270	100	168
0580	RS517313AAL	2	С	1.83	2.32	6.06	4655	4250	405	2.51	2.38	7	6.44	4445	4280	165	175
06A0	RS517310AAR	2	С	2.64	2.59	8.48	4590	4270	320	2.67	2.43	6	6.51	4425	4295	130	123
06B0	RS517310AAL	2	С	0.74	1.71	4.62	4585	4270	315	1.57	1.50	3	2.77	4395	4295	100	185
07D0	GW507301CBR	2	С	0.87	1.52	4.65	4695	4440	255	1.50	1.41	4	2.89	4595	4460	135	168
07E0	GW507301CBL	2	С	1.30	2.51	6.30	4825	4440	385	2.67	2.49	3	4.15	4660	4460	200	154
1280	GW507311DDR	2	С	0.69	1.50	4.01	4765	4535	230	1.30	1.27	2	1.90	4650	4550	100	154
12C0	GW507311DDL	2	с	0.43	1.10	2.92	4870	4535	335	1.03	0.96	3	2.10	4675	4550	125	304
1380	GE517131CCR	2	С	0.48	1.05	3.34	4470	4335	135	1.01	0.97	2	1.28	4435	4345	90	128
13C0	GE517131CCL	2	С	1.52	2.36	6.87	4585	4335	250	2.26	2.06	4	4.51	4490	4355	135	106
14A0	GE507201CBR	2	с	0.37	0.96	2.71	4545	4360	185	0.92	0.88	2	1.42	4490	4370	120	194
14B0	GE507201CBL	2	С	2.21	2.26	8.91	4565	4360	205	2.71	2.46	6	5.36	4485	4375	110	91
16C0	TG497115BBR	2	С	1.34	1.07	5.28	4745	4530	215	1.49	1.36	4	3.05	4620	4535	85	201
16D0	TG497115BBL	2	с	0.45	0.63	3.15	4675	4530	145	0.80	0.75	2	1.11	4600	4540	60	230
22B0	SR477228CCR	2	с	0.66	1.10	3.67	4970	4790	180	0.90	0.83	3	1.95	4900	4800	100	163
22C0	SR477228CCL	2	С	0.64	1.16	3.43	4945	4790	155	1.11	1.05	2	1.82	4885	4810	75	134
23B0	SR477219CCR	2	с	1.07	1.80	4.80	4950	4740	210	2.40	1.91	4	3.82	4870	4755	115	117
23C0	SR477219CCL	2	С	2.04	1.83	7.03	4945	4740	205	2.78	2.34	2	4.53	4855	4750	105	112
25A0	GS477212DAR	2	č	0.83	1.62	4.30	4715	4565	150	1.16	1.11	2	1.73	4630	4570	60	92
25B0	GS477212DAL	2	С	3.35	2.89	11.12	4745	4565	180	3.34	3.13	2	4.79	4655	4575	80	62

	RUGGEDNESS	CHANNEL		DRAINAGE						SURFICIAL		AGI	AGI	AGI	AGI
BASNUM	NO.	SLOPE	SINUOSITY	DENSITY	CIRCULARITY	PRECIP.	VEGETATION	SOIL	ASPECT	GEOLOGY	GEOLOGY	#1	#2	#3	#4
05A0	0.091	0.026	1.039	2.59	0.68	3	4	1	4	2	1	0.021	0.016	0.020	116.55
05B0	0.270	0.018	1.053	3.52	0.63	3	3	1	1	1	1	0.056	0.033	0.061	741.15
06A0	0.149	0.013	1.097	2.46	0.46	2	4	3	2	2	1	0.060	0.034	0.062	844.80
0680	0.223	0.017	1.050	3.75	0.44	2	3	3	3	1	1	0.028	0.013	0.026	233.10
0700	0.160	0.024	1.064	3.32	0.51	3	3	1	1	1	1	0.028	0.021	0.028	221.85
07E0	0.233	0.020	1.070	3.20	0.41	3	3	1	1	1	1	0.036	0.026	0.038	500.50
12B0	0.119	0.021	1.022	2.73	0.54	3	3	1	4	1	1	0.023	0.014	0.020	158.70
12C0	0.311	0.033	1.074	4.90	0.63	3	3	1	1	3	1	0.026	0.014	0.025	144.05
13B0	0.069	0.024	1.044	2.68	0.54	4	5	1	4	0	1	0.012	0.012	0.012	64.80
13C0	0.140	0.016	1.096	2.97	0.40	4	3	1	1	1	1	0.032	0.024	0.031	380.00
14A0	0.135	0.035	1.049	3.86	0.63	4	3	1	4	1	1	0,014	0.013	0.014	68.45
14B0	0.094	0.011	1.103	2.42	0.35	4	2	1	1	0	1	0.032	0.024	0.038	453.05
16C0	0.093	0.015	1.090	2.28	0.60	5	3	3	1	1	2	0.037	0.020	0.051	288.10
16D0	0,067	0.020	1.066	2.43	0.58	5	3	3	2	0	2	0.015	0.009	0.020	65.25
22B0	0.101	0.030	1.089	2.97	0.61	3	4	1	4	0	1	0.025	0.020	0.020	118.80
22C0	0.084	0.018	1.060	2.85	0.68	3	4	1	1	0	1	0.017	0.012	0.016	99.20
23B0	0.142	0.013	1.257	3.56	0.58	3	3	1	1	0	1	0.018	0.014	0.024	224.70
23C0	0.086	0.010	1.188	2.22	0.52	3	4	1	1	0	1	0.028	0.020	0.043	418.20
25A0	0.059	0.014	1.040	2.08	0.57	3	3	1	4	0	1	0.020	0.012	0.014	124.50
25B0	0.049	0.006	1.070	1.43	0.34	3	3	1	1	0	1	0.034	0.020	0.039	603.00

Table	3.	(cont.)) Second order drainage basins listed by classification stratum.	Stratum
			C (cont.).	

BASNUM	LOCATION CODE	ORDER	САТ	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH		NUMBER OF FIRSTS	TOTAL CHANNEL LENGTH	MAXIMUM USED RELIEF	USED	USEDREL	RELIEF RATIO	
27A0	SH477113DDR	2	С		1.50	4.36	4750	4515	235	1.46	1.36	2	1.82	4660	4530	130	157	
27B0	SH477113DDL	2	С	1.20	1.64	4.71	4725	4515	210	1.75	1.57	3	3.26	4635	4530	105	128	
28A0	SH477031DAB	2	С	1.05	1.84	5.58	4680	4490	190	1.96	1.75	3	3.04	4600	4505	95	103	
28B0	SH477031DAL	2	с	2.57	3.18	9.16	4735	4490	245	3.97	3.54	2	4.56	4645	4530	115	77	
29A0	SH477123BCR	2	С	1.70	1.58	6.91	4690	4535	155	1.62	1.44	2	1.98	4610	4525	85	98	
29B0	SH477123BCL	2	С	1.26	1.75	5.35	4685	4535	150	1.30	1.18	2	1.92	4605	4550	55	86	
31A0	ER467129BAR	2	С	1.67	2.79	7.21	4895	4625	270	3.08	2.87	2	3.58	4770	4645	125	97	
31B0	ER467129BAL	2	с	2.89	3.70	11.00	4855	4625	230	4.60	3.83	3	6.48	4755	4645	110	62	
32A0	RJ457120BCR	2	С	0.31	0.74	2.98	4950	4745	205	0.79	0.76	2	1.35	4830	4755	75	277	
32B0	RJ457120BCL	2	С	6.85	4.22	15.28	4985	4745	240	7.39	6.17	9	15.03	4875	4760	115	57	
40A0	LT437128ABR	2	С	4.25	4.17	10.80	4975	4795	180	5.07	4.32	6	11.14	4890	4805	85	43	
40B0	LT437128ABL	2	С	0.82	1.58	4.24	4970	4795	175	1.68	1.54	3	2.84	4890	4800	90	111	
41A0	LT437236DDR	2	с	0.67	1.63	3.95	5090	4890	200	1.78	1.61	2	2.86	5005	4900	105	123	
BASNUM	RUGGEDNESS NO.	CHANNE SLOPE		GINUOSI		AINAGE ENSITY CIE	RCULARITY	PRECI	P. VEGE	ETATION	SOIL		RFICIAL EOLOGY	GEOLOGY	AGI #1	AGI ∦2	AGI #3	AGI #4
27A0	0.114	0.024	1	1.075		2.56	0.47	3		3	1	2	2	2	0.022	0.017	0.021	166.85
27B0	0.108	0.016		1.112		2.71	0.68	3		3	1	2	2	2	0.027		0.029	252.00
28A0	0.104	0.013	3	1.119) :	2.90	0.42	2		3	1	4	3	4	0.019	0.014	0.020	199.50
28B0	0.082	0.008	8	1.124	1	1.78	0.38	2		2	1	1	3	4	0.030	0.021	0.037	629.65
29A0	0.034	0.014	1	1.129) :	1.16	0.45	3		3	1	2	0	4	0.031	0.024	0.032	263.50
29B0	0.043	0.011	1	1.096	5 :	1.53	0.55	3		3	1	3	0	4	0.028	0.014	0.021	189.00
31A0	0.110	0.011	1	1.071	. :	2.14	0.40	2		5	1	4	0	1	0,028	0.018	0.031	450.90
3180	0.098	0.006	6	1.200) :	2.24	0.30	2		5	1	1	0	1	0.027	0.017	0.034	664.70
32A0	0.167	0.026	6	1.050		1.31	0.44	2		5	1	1	1	1	0.015	0.008	0.016	63.55
32B0	0.100	0.004		1.198		2.19	0.37	2		5	1	3	2	1	0.042	0.027	0.074	1644.00
40A0	0.089	0.005		1.174		2.62	0.46	1		3	1	1	0	1	0.029		0.035	765.00
4080	0.114	0.015		1.089		3.45	0.58	1		4	1	1	0	1	0.016	0.012	0.017	143.50
41A0	0.161	0.016	6	1.103	<u>ا</u>	4.26	0.54	1		2	1	4	0	1	0.014	0.011	0.016	134.00

270

Table 3. (cont.)	Second order drainage basins listed by classification stratum.	Stratum
	C (cont.).	

...

,

BASNUM	LOCATION CODE	ORDER	САТ	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.		BASIN RELIEF			NUMBER OF FIRSTS	TOTAL CHANNEL LENGTH		USED	USEDREL	RELIEF RATIO	
41B0	LT437236DDL	2	С	1.06	1.03	5.67	4970	4890	80	1.50	1.36	3	3.36	4940	4895	45	78	
4 3 A O	RJ447119ADR	2	С	0.25	0.87	2.87	5015	4875	140	0.58	0.58	2	0.97	4935	4880	55	161	
43B0	RJ447119ADL	2	С	0.50	1.03	3.71	4945	4875	70	0.93	0.90	2	1.50	4900	4870	30	68	
51A0	PN427001DCR	2	С	4.34	2.86	11.06	4880	4665	215	4.05	3.29	10	11.13	4845	4680	165	75	
51B0	PN427010DCL	2	С	0.64	1.51	4.74	4885	4665	220	1.73	1.56	3	2.75	4790	4675	115	146	
55B0	TS427130AAR	2	С	1.82	1.96	7.40	5005	4855	150	2.33	2.09	4	4.87	4975	4875	100	77	
55C0	TS427130AAL	2	С	0.51	0.92	2.95	5015	4855	160	0.98	0.85	3	1.71	4935	4865	70	174	
58A0	TK427034BBR	2	С	0.90	1.14	4.63	4965	4835	130	0.79	0.71	2	1.23	4875	4830	45	114	
58B0	TK427034BBL	2	С	0.91	1.18	3.94	4945	4835	110	1.13	1.06	2	1.65	4890	4835	55	93	
61B0	PS417003DBR	2	С	0.88	1.00	4.08	4905	4735	170	0.99	0.90	3	2.35	4840	4745	95	170	
61C0	PS417003DBL	2	С	0.29	1.01	2.61	4930	4735	195	0.92	0.88	2	1.32	4865	4750	115	193	
BASNUM	RUGGEDNESS NO.	CHANNE SLOPE		SINUOSI		AINAGE ENSITY CI	RCULARITY	PRECIE	. VEGI	ETATION	SOIL		JRFICIAL GEOLOGY	GEOLOGY	AGI #1	AGI #2	AGI #3	AG I #4
41B0	0.048	0.008		1.108		3.16	0.41	1		2	1	3	0	1	0.011	0.008	0.016	84.80
4 3 A O	0.102	0.025		1.008		3.83	0.38	2		2	1	3	5	1	0.011	0.006	0.008	35.00
43B0	0.040	0.009		1.039		2.99	0.46	2		2	1	3	4	1	0.007	0.005	0.006	35.00
51A0	0.104	0.011		1.232		2.56	0.45	1		3	1	2	3	2	0.044	0.048	0.062	933.10
51B0	0.178	0.018		1.104	4	1.28	0.36	1		2	1	2	5	4	0.015	0.012	0.018	140.80
55B0	0.076	0.012		1.116		2.68	0.42	1		2	1	1	0	1	0.022	0.022	0.027	273.00
55C0	0.102	0.019		1.153		3.35	0.74	1		2	1	2	0	1	0.016	0.010	0.017	81.60
58A0	0.034	0,015		1.112		1.37	0.53	1		4	1	3	0	2	0.028		0.019	117.00
58B0	0.038	0.013		1.069		1.81	0.74	1		4	1	4	0	2	0.017		0.016	100.10
61B0	0.086	0.026		1.105		2.67	0.66	1		5	4	3	0	2	0.029		0.028	149.60
61C0	0.167	0.034		1.053	<u>،</u>	1.52	0.54	1		5	4	4	0	3	0.012	0.010	0.011	56.55

.

Table 3. (cont.) Second order drainage basins listed by classification stratum. Stratum D.

. .

.

BASNUM	LOCATION CODE	ORDER	CAT	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH		NUMBE			USED	USEDREL	RELIEF RATIO	
33A0	RC466921CDR	2	D	0.92	1.63	4.40	5065	4770	295	1.99	1.57	3	3.58	4930	4795	135	181	
33B0	RC466921CDL	2	D	3.46	2.40	9.19	5110	4770	340	4.43	2.86	10	11.49	4960	4795	165	142	
34A0	RC466917BCR	2	D	0.83	1.17	4.05	5030	4805	225	1.27	1.06	3	2.77	4910	4820	90	192	
34B0	RC466917BCL	2	D	1.00	1.37	4.67	4970	4805	165	1.55	1.27	3	2.84	4920	4815	105	120	
BASNUM	RUGGEDNESS NO.	CHANNE SLOPE		SINUOS	-	AINAGE ENSITY CI	RCULARITY	PRECI	P. VEG	ETATION	SOIL	ASPECT	SURFICIAL GEOLOGY	GEOLOGY	AGI #1	AGI #2	AGI #3	AGI #4
33A0	0.217	0.018	3	1.263	2	3.88	0.60	2		1	3	1	0	4	0.026	0.017	0.032	271.40
33B0	0.214	0.010)	1.54	8	3.32	0.51	2		3	3	1	0	4	0.050	0.035	0.093	1176.40
34A0	0.143	0.019)	1.20	2	3.35	0.63	2		3	3	1	0	4	0.028	0.016	0.030	186.75
34B0	0.089	0.016	3	1.21	9	2.84	0.58	2		3	3	2	0	4	0.020	0.018	0.023	165.00

•

Table 4. First order drainage basins listed by classification stratum. Stratum A.

. **.**

BASNUM	LOCATION CODE	ORDER	САТ	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH	VALLEY LENGTH	MAXIMUM USED RELIEF	MINIMUM USED RELIEF	USEDREL	RELIEF RATIO	RUGGEDNESS NO.
01A1	CC547233BBR	1	А	0.55	1.46	4.45	4205	3930	275	1.41	1.30	4155	3930	225	189	0.132
01A2	CC547233BBL	1	А	0.24	0.99	2.51	4270	3930	340	0.90	0.85	4190	3930	260	343	0.243
01B1	PD547228DDR	1	A	0.28	0.99	2.63	4235	3950	285	0.94	0.91	4155	3950	205	287	0.183
02A2	CC547231ACR	1	А	0.14	0.72	2.01	4225	3990	235	0.67	0.65	4180	3990	190	324	0.212
02A3	CC547231ACL	1	Α	0.92	1.49	4.47	4265	3990	275	1.43	1.35	4175	3990	185	185	0.081
0282	CC547232CDR	1	А	0.15	0.86	2.37	4195	3920	275	0.57	0.55	4025	3920	105	319	0.201
03A1	CC537217AAR		Α	0.35	0.87	2.70	4305	3995	310	0.79	0.77	4145	3995	150	354	0.130
03A2	CC537217AAL		A	0.17	0.85	2.24	4285	3995	290	0.58	0.58	4115	3995	120	341	0.183
03B2	CC537217ACL		Α	0.18	0.83	1.97	4295	3980	315	0.74	0.71	4170	3980	190	378	0.247
08A1	RS527221ADR		Α	0.17	0.47	2.10	4210	4125	85	0.34	0.34	4145	4125	20	181	0.032
08B1	RS527221BCR		A	0.25	1.33	3.13	4395	4130	265	1.24	1.18	4345	4130	215	199	0.251
08B2	RS527221BCL		A	0.77	1.36	4.46	4350	4130	220	1.70	1.61	4290	4130	160	162	0.092
09C1	MS527121CBR		A	0.14	0.69	1.65	4510	4340	170	0.47	0.46	4425	4340	85	247	0.108
09C2	MS527121CBL		A	0.20	0.63	2.43	4470	4340	130	0.60	0.57	4445	4340	105	205	0.072
09D1	MS527128CBR		A	0.15	0.49	1.93	4445	4330	115	0.45	0.43	4400	4330	70	234	0.065
10A1	MS517105BCR		A	0.08	0.53	1.45	4490	4355	135	0.47	0.45	4450	4355	95	256	0.155
10A2	MS517105BCL		A	0.09	0.53	1.51	4525	4355	170	0.49	0.46	4455	4355	100	319	0.169
10B1	MS517105BCR		A	0.14	0.51	1.85	4415	4355	60	0.35	0.34	4395	4355	40	118	0.029
17A3	FD507008CAR		A	0.26	0.77	2.33	4750	4580	170	0.86	0.80	4700	4580	120	221	0.108
17A4	FD507008CAL		A	0.44	0.73	3.34	4715	4580	135	1.05	0.96	4670	4580	90	185	0.061
17B2	FD507021ACL	1	A	0.10	0.55	1.48	4630	4370	260	0.35	0.33	4430	4370	60	474	0.171
	CHANNEL		DR	AINAGE							SURFICIA	ΔΤ.	AC	I AGI	AGI	AGI
BASNUM		INUOSITY		ENSITY	CIRCUL	ARITY PRI	ECIP. VE	GETATION	SOIL	ASPECT	GEOLOGY			1 #2		#4
2	0.0010		-								010100		. ,		13	
01A1	0.030	1.082		2.54	Ο.	35	2	1	3	2	5	4	0.0	20 0.01	7 0.020) 151.25
01A2	0.055	1.061		3.78	0.	48	2	1	3	3	5	4	0.0		3 0.016	
01B1	0.041	1.030		3.38	0.	50	2	•	-						1 0.015	5 79.80
02A2	0.054	1.026		4.76				1	3	3	4	4	0.0	16 0.01		32.90
02A3	0 007			4./0	0.	44	2	5	3	3 2	4 3	43	0.0			
	0.025	1.056		4.76		44 58		-	-	-	-	•		0.00 0.00	8 0.009	
02B2	0.025	1.056 1.024		1.55 3.86	0. 0.	58 33	2 2 2	5	3	2	-	•	0.0	009 0.00 034 0.02	8 0.009 3 0.032	2 253.00
02B2 03A1				1.55	0. 0.	58	2 2 2 2	5	3	2 3	3	•	0.0 0.0	009 0.00 034 0.02 014 0.00	8 0.009 3 0.032 5 0.009	2 253.00 9 41.25
	0.035	1.024 1.016 1.010		1.55 3.86 2.22 3.33	0. 0. 0. 0.	58 33 61 44	2 2 2 2 2	5 5 1	3 3 3 3 3	2 3 3	3 5 3 3 1	3	0.0 0.0 0.0	009 0.00 034 0.02 014 0.00 026 0.01	8 0.009 3 0.032 5 0.009 3 0.023	2 253.00 9 41.25 3 108.50
03A1	0.035 0.036	1.024 1.016 1.010 1.032		1.55 3.86 2.22 3.33 4.14	0. 0. 0. 0.	58 33 61 44 58	2 2 2 2 2 2 2	5 5 1 1 1 1	3 3 3 3 3 3	2 3 3 4	3 5 3 3 1 2	3 3 3 3 3	0.0 0.0 0.0	009 0.00 034 0.02 014 0.00 026 0.01 016 0.00	8 0.009 3 0.032 95 0.009 3 0.023 97 0.011	2 253.00 9 41.25 3 108.50 1 49.30
03A1 03A2	0.035 0.036 0.039 0.049 0.011	1.024 1.016 1.010 1.032 1.021		1.55 3.86 2.22 3.33 4.14 2.01	0. 0. 0. 0. 0. 0.	58 33 61 44 58 49	2 2 2 2 2 2 2 2	5 5 1 1 1 3	3 3 3 3 3 3 3 3	2 3 4 4 1 4	3 5 3 1 2 5	3 3 3 3 3 3	0.0 0.0 0.0 0.0	009 0.00 034 0.02 014 0.00 026 0.01 016 0.00 015 0.00	8 0.009 3 0.032 5 0.009 3 0.023 7 0.011 9 0.013	2 253.00 9 41.25 3 108.50 4 49.30 3 56.70
03A1 03A2 03B2	0.035 0.036 0.039 0.049	1.024 1.016 1.010 1.032 1.021 1.052		1.55 3.86 2.22 3.33 4.14 2.01 5.01	0. 0. 0. 0. 0. 0. 0.	58 33 61 44 58 49 32	2 2 2 2 2 2 2 2 2 2	5 5 1 1 1 3 3	3 3 3 3 3 3 3 3 3	2 3 4 4 1 4 1	3 5 3 1 2 5 2	3 3 3 3 3 3	0.0 0.0 0.0 0.0 0.0	009 0.00 034 0.02 014 0.00 026 0.01 016 0.00 015 0.00 008 0.00	8 0.009 3 0.032 5 0.009 3 0.023 7 0.011 9 0.013 92 0.006	2 253.00 9 41.25 8 108.50 4 49.30 8 56.70 5 14.45
03A1 03A2 03B2 08A1	0.035 0.036 0.039 0.049 0.011	1.024 1.016 1.010 1.032 1.021		1.55 3.86 2.22 3.33 4.14 2.01	0. 0. 0. 0. 0. 0. 0.	58 33 61 44 58 49	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 1 3	3 3 3 3 3 3 3 3	2 3 4 4 1 4	3 5 3 1 2 5	3 3 3 3 3 3	0.0 0.0 0.0 0.0 0.0 0.0	009 0.00 034 0.02 014 0.00 026 0.01 016 0.00 015 0.00 008 0.00 010 0.00	8 0.009 3 0.032 5 0.009 3 0.023 7 0.011 9 0.013 9 0.006 9 0.009 0.009 0.006	2 253.00 9 41.25 3 108.50 4 9.30 3 56.70 5 14.45 9 66.25
03A1 03A2 03B2 08A1 08B1	0.035 0.036 0.039 0.049 0.011 0.033	1.024 1.016 1.010 1.032 1.021 1.052		1.55 3.86 2.22 3.33 4.14 2.01 5.01	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	58 33 61 44 58 49 32 48 64	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 1 3 3	3 3 3 3 3 3 3 3 3	2 3 4 4 1 4 1	3 5 3 1 2 5 2	3 3 3 3 3 3	0.0 0.0 0.0 0.0 0.0 0.0 0.0	009 0.00 034 0.02 014 0.00 026 0.01 016 0.00 015 0.00 008 0.00 010 0.00 0119 0.01	B 0.009 3 0.032 5 0.023 7 0.013 9 0.013 22 0.006 8 0.024 9 0.013 9 0.024 9 0.005 4 0.024	2 253.00 41.25 3 108.50 49.30 3 56.70 5 14.45 9 66.25 4 169.40
03A1 03A2 03B2 08A1 08B1 08B2 09C1 09C2	0.035 0.036 0.039 0.049 0.011 0.033 0.018 0.035 0.033	1.024 1.016 1.010 1.032 1.021 1.052 1.059 1.015 1.038		1.55 3.86 2.22 3.33 4.14 2.01 5.01 2.22 3.36 2.94	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	58 33 61 44 58 49 32 48 64 43	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 3 3 3 3 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 4 1 4 1 1 3 3 3	3 5 3 1 2 5 2 0 2 4	3 3 3 3 3 1 1 1 1 3 3 3		009 0.00 034 0.02 014 0.00 026 0.01 015 0.00 015 0.00 0108 0.00 019 0.01 019 0.01 019 0.01 0108 0.000	8 0.009 3 0.032 5 0.003 3 0.023 7 0.011 9 0.013 9 0.013 9 0.006 9 0.023 9 0.013 9 0.013 9 0.024 9 0.024 9 0.024 9 0.024 9 0.024 9 0.024 9 0.024	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
03A1 03A2 03B2 08A1 08B1 08B2 09C1	0.035 0.036 0.039 0.049 0.011 0.033 0.018 0.035 0.033 0.033	1.024 1.016 1.010 1.032 1.021 1.052 1.059 1.015 1.038 1.042		1.55 3.86 2.22 3.33 4.14 2.01 5.01 2.22 3.36 2.94 2.99	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	58 33 61 44 58 49 32 48 64 43 51	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 3 3 3 3 1 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 4 4 1 1 3 3 4	3 5 3 1 2 5 2 0 2 4 4	3 3 3 3 1 1 1 1 3 3 3 3 3 3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	009 0.00 034 0.02 014 0.00 026 0.01 015 0.00 015 0.00 0108 0.00 019 0.01 019 0.01 019 0.01 0108 0.000	8 0.009 3 0.032 5 0.003 3 0.023 7 0.011 9 0.013 9 0.013 9 0.006 9 0.023 9 0.013 9 0.013 9 0.024 9 0.024 9 0.024 9 0.024 9 0.024 9 0.024 9 0.024	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
03A1 03A2 03B2 08A1 08B1 08B2 09C1 09C2	0.035 0.036 0.039 0.049 0.011 0.033 0.018 0.035 0.033 0.030 0.038	1.024 1.016 1.010 1.032 1.021 1.052 1.059 1.015 1.038 1.042 1.035		1.55 3.86 2.22 3.33 4.14 2.01 5.01 2.22 3.36 2.94 2.99 6.06		58 33 61 44 58 49 32 48 64 43 51 47	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 3 3 3 1 3 3 3 3 3 3 3 3	333333333333333333333333333333333333333	2 3 4 1 1 1 3 3 4 3	3 5 3 1 2 5 2 0 2 4 4 5	3 3 3 3 3 3 1 1 1 3 3 3 3 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	009 0.00 034 0.02 014 0.00 026 0.01 016 0.00 015 0.00 010 0.00 0110 0.00 0110 0.00 0110 0.00 0100 0.00 0008 0.00 0008 0.00 0008 0.00 0008 0.00 0008 0.00 0007 0.00 004 0.00	8 0.009 3 0.032 5 0.023 7 0.011 9 0.013 12 0.006 13 0.023 14 0.014 15 0.005 14 0.024 15 0.007 16 0.007 17 0.006 15 0.007	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
03A1 03A2 03B2 08B1 08B1 08B2 09C1 09C2 09D1 10A1 10A2	0.035 0.036 0.039 0.049 0.011 0.033 0.018 0.035 0.035 0.033 0.030 0.038 0.039	1.024 1.016 1.010 1.032 1.052 1.059 1.015 1.038 1.042 1.035 1.074		1.55 3.86 2.22 3.33 4.14 2.01 5.01 2.22 3.36 2.94 2.99 6.06 5.24		58 33 41 44 58 49 32 48 64 43 51 47 52	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 4 4 1 1 3 3 4 3 3	3 5 3 1 2 5 2 0 2 4 4 5 5 5	3 3 3 3 3 1 1 1 1 3 3 3 2 2		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8 0.009 3 0.032 5 0.009 3 0.023 7 0.011 9 0.012 2 0.006 8 0.009 4 0.023 15 0.007 16 0.007 17 0.006 18 0.007 17 0.006 15 0.007 13 0.004 4 0.005	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
03A1 03A2 03B2 08A1 08B1 09C1 09C2 09D1 10A1 10A1 10A2 10B1	0.035 0.036 0.039 0.049 0.011 0.033 0.018 0.035 0.033 0.030 0.030 0.030 0.039 0.022	1.024 1.016 1.010 1.032 1.051 1.059 1.015 1.038 1.042 1.035 1.035 1.042		1.55 3.86 2.22 3.33 4.14 2.01 5.01 2.22 3.36 2.94 2.99 6.06 5.24 2.51		58 33 61 44 58 49 32 49 32 48 64 43 51 51 52 51	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3	333333333333333333333333333333333333333	2 3 4 4 1 1 3 3 4 3 4 3 4 3 4	3 5 3 1 2 5 2 0 2 4 4 5 5 5	3 3 3 3 3 3 1 1 1 1 3 3 2 2 2 2 2		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8 0.009 3 0.032 5 0.003 3 0.023 7 0.011 9 0.012 2 0.006 8 0.003 4 0.024 5 0.007 15 0.007 15 0.007 13 0.004 14 0.003 13 0.003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
03A1 03A2 03B2 08B1 08B1 09C1 09C1 09C1 10A1 10A2 10B1 17A3	0.035 0.036 0.039 0.049 0.011 0.033 0.018 0.035 0.033 0.030 0.038 0.039 0.022 0.027	1.024 1.016 1.010 1.032 1.021 1.059 1.015 1.038 1.042 1.035 1.074 1.074		1.55 3.86 2.22 3.33 4.14 2.01 5.01 2.22 3.36 2.94 2.99 6.06 5.24 2.51 3.36		58 33 61 44 58 32 48 64 43 55 51 47 55 55 59	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3	333333333333333333333333333333333333333	2 3 4 1 1 3 4 3 3 4 3 3 4 3 3 4 3 3	3 5 3 1 2 5 2 0 2 4 4 5 5 5 5 5 5	3 3 3 3 3 3 3 3 1 1 1 3 3 3 3 2 2 2 2 2		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8 0.009 3 0.032 5 0.009 3 0.023 7 0.013 9 0.133 19 0.013 12 0.006 18 0.023 15 0.007 15 0.007 16 0.007 13 0.004 14 0.003 17 0.003 17 0.003 17 0.003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
03A1 03A2 03B2 08A1 08B1 09C1 09C2 09D1 10A1 10A2 10B1 17A3 17A4	0.035 0.036 0.039 0.049 0.011 0.033 0.018 0.035 0.035 0.033 0.030 0.038 0.039 0.022 0.027 0.016	1.024 1.016 1.010 1.032 1.021 1.052 1.059 1.015 1.038 1.042 1.035 1.074 1.042 1.076 1.092		1.55 3.86 2.22 3.33 4.14 2.01 5.01 2.22 3.36 2.99 6.06 5.24 2.51 3.36 2.51 3.36 2.40		58 33 41 44 58 49 32 48 64 43 51 47 52 51 59 49	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3	333333333333333333333333333333333333333	2 3 4 4 1 3 3 4 3 3 4 3 3 4 3 3	3 5 3 1 2 5 2 0 2 4 4 5 5 5 5 5 5 5 5 5	3 3 3 3 3 3 1 1 1 1 3 3 3 2 2 2 2 2 3 3 3		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8 0.009 3 0.032 5 0.039 3 0.023 7 0.011 9 0.012 12 0.006 18 0.005 4 0.026 15 0.007 16 0.007 17 0.006 13 0.004 14 0.005 13 0.003 17 0.011	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
03A1 03A2 03B2 08B1 08B1 09C1 09C1 09C1 10A1 10A2 10B1 17A3	0.035 0.036 0.039 0.049 0.011 0.033 0.018 0.035 0.033 0.030 0.038 0.039 0.022 0.027	1.024 1.016 1.010 1.032 1.021 1.059 1.015 1.038 1.042 1.035 1.074 1.074		1.55 3.86 2.22 3.33 4.14 2.01 5.01 2.22 3.36 2.94 2.99 6.06 5.24 2.51 3.36		58 33 61 44 58 32 48 64 43 55 51 47 55 55 59	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3	333333333333333333333333333333333333333	2 3 4 1 1 3 4 3 3 4 3 3 4 3 3 4 3 3	3 5 3 1 2 5 2 0 2 4 4 5 5 5 5 5 5	3 3 3 3 3 3 3 3 1 1 1 3 3 3 3 2 2 2 2 2		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8 0.009 3 0.032 5 0.039 3 0.023 7 0.011 9 0.012 12 0.006 18 0.005 4 0.026 15 0.007 16 0.007 17 0.006 13 0.004 14 0.005 13 0.003 17 0.011	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table	4.	(cont.)	First order drainage basins listed by classification stratum. St	tratum
			A (cont.).	

BASNUM	LOCATION CODE	ORDER	САТ	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH	VALLEY LENGTH	MAXIMUM USED RELIEF	MINIMUM USED RELIEF	USEDREL	RELIEF RATIO	RUGGEDNESS NO.
38A2	RC456906DDL	1	А	0.72	1.84	4.22	5025	4890	135	1.42	1.31	4995	4890	105	74	0.051
38B2	RC456905DDR	1	Α	0.20	0.91	2.18	5100	4920	180	0.72	0.68	5035	4920	115	197	0.120
38B3	RC456905DDL	1	A	0.14	0.71	1.75	5105	4920	185	0.48	0.47	5015	4920	95	261	0.116
45A2	PN436904BBL	1	А	0.09	0.82	1.82	4985	4715	270	0.61	0.59	4815	4715	100	329	0.357
45B1	PN446933CCR	1	А	0.15	0.62	1.80	4985	4745	240	0.59	0.56	4930	4745	185	385	0.183
45B2	PN446933CCL	1	А	0.05	0.43	1.09	4985	4745	240	0.37	0.36	4880	4745	135	555	0.343
46A1	PN436909CDR	1	A	0.18	0.62	2.07	4930	4720	210	0.71	0.68	4840	4720	120	340	0.160
46A2	PN436909CDL	1	A	0.26	0.87	2.50	5000	4720	280	0.80	0.73	4885	4720	165	323	0.163
4682	PN436909BDR		A	0.08	0.77	1.51	4965	4675	290	0.40	0.39	4760	4675	85	376	0.287
47C2	PN436906AAR		A	0.27	0.74	2.50	4925	4790	135	0.68	0.63	4880	4790	90	183	0.065
47C3	PN436906AAL		A	0.12	0.58	1.63	4945	4790	155	0.40	0.39	4865	4790	75	269	0.098
47D2	PN436905DCL	1	A	0.12	0.91	2.14	4975	4720	255	0.70	0.66	4820	4720	100	280	0.275
48A1 48A2	PN426904CAR	1 1	A A	0.07	0.43	1.24 1.61	4920	4720	200	0.40	0.39	4850	4720	130	466	0.222
48A2 48B2	PN426904CAL PN426904CAL			0.10 0.08	0.52		4890	4720	170	0.50	0.46	4840	4720	120	330	0.168
4882 50A1	PN426904CAL PN436920DDR		A A	0.08	0.54	1.41 1.77	4905 4865	4685 4595	220 270	0.52	0.49	4800	4685	115	410	0.278
50A1	PN436920DDL	1	A	0.13	0.63	1.86	4875	4595	280	0.55 0.62	0.53	4780	4595	185	426	0.384
50B3	PN436920AAR		Ä	0.09	0.60	1.88	4920	4660	260	0.62	0.39	4790	4595	195	410	0.262
59B1	PS417011CAR		Â	0.12	0.68	1.81	4910	4715	195	0.58	0.46	4810 4825	4660	150	432	0.259
5901	PS417011DBR		A	0.09	0.53	1.45	4940	4755	185	0.41	0.36	4850	4715 4755	110 95	285 347	0.181
59C2	PS417011DBL		Â	0.11	0.45	1.42	4925	4755	170	0.41	0.30	4865	4755	110	347	0.170 0.126
5702	1011/011000	•	••	0.11	0.45	1.12	4725	4735	170	0.41	0.37	4005	4/33	110	377	0.126
	CHANNEL			AINAGE							SURFICIA	L	AG	I AGI	AGI	AGI
BASNUM	SLOPE S	INUOSITY	D	DENSITY	CIRCUL	ARITY PRI	ECIP. VI	EGETATION	SOIL	ASPECT	GEOLOGY	GEOL		1 #2		#4
38A2	0.014	1.084		1.99		50	2	2	3	3	0	4	0.0			0 97.20
3682	0.030	1.053		3.53		53	2	2	3	3	2	4	0.0			7 36.00
38B3	0.038	1.016		3.32		59	2	2	3	3	1	4	0.0			
45A2	0.031	1.043		6.98		33	1	1	3	2	4	4	0.0			
45B1	0.060	1.059		4.03		57	1	1	3	3	4	4	0.0			
45B2	0.068	1.047 1.039		7.54		53	1	1	3	3	3	4	0.0			
46A1 46A2	0.032 0.039	1.039		4.02 3.08		52 52	1 1	1 1	2	1	3	4	0.0			
46A2 46B2	0.039	1.044		5.22		42	1	1	2 2	1	5 3	4	0.0			
47C2	0.025	1.044		2.55		53	1	3	23	3	3	4	0.0			
4703	0.036	1.014		3.34		56	1	3	3	3	4	3	0.0			
4702	0.027	1.066		5.69		34	1	1	3	3	2	3	0.0			
48A1	0.061	1.049		5.86		57	1	6	4	2	4	4	0.0			
48A2	0.046	1.080		5.21		46	î	6	4	2	4	4	0.0			
4882	0.042	1.056		6.68		49	i	6	4	3	3	4	0.0			
50A1	0.064	1.032		7.51		29	1	4	2	2	3	4	0.0			
50A2	0.059	1.064		4.95		46	1	4	ã	3	3	4	0.0			
50B3	0.057	1.092		5.26		59	ī	i	2	3	5	4	0.0			
59B1	0.036	1.030		4.90		45	1	5	4	ž	3	4	0.0			
59C1							1		-			-				
	0.044	1.140		4.00	υ.	21	1	5	4	٤	3	4	0 0	UK U.OD	4 0 0 0 0	5 16 65
59C2	0.044 0.050	$1.140 \\ 1.118$		4.85 3.92		51 66	1	5	4	3 4	3 3	4	0.0			

,

Table	4.	(con	ıt.)	First	order	drainage	basins	listed	by	classification	stratum.	Stratum
				A (con	nt.).				-			

BASNUM	LOCATION CODE	ORDER	CAT	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH	VALLEY LENGTH	MAXIMUM USED RELIEF	MINIMUM USED RELIEF	USEDREL	RELIEF RATIO	RUGGEDNESS NO.
60C4	PS417001ACL	1	А	0.23	0.58	2.21	4960	4920	40	0.44	0.42	4945	4920	25	69	0.015
60D1	PS417012DDR	1	Α	0.50	1.12	3.35	4795	4795	180	0.83	0.77	4935	4795	140	160	0.057
60D2	PS417012DDL	1	Α	0.10	0.54	1.51	4945	4795	150	0.57	0.53	4920	4795	125	280	0.166
63D1	PS416905BCR	1	Α	0.22	0.69	2.30	4970	4835	135	0.59	0.56	4920	4835	85	195	0.071
63D2	PS416905BCL	1	A	0.29	1.10	2.79	4990	4835	155	0.93	0.91	4950	4835	115	141	0.095
63E1	PS416905AAR	1	А	0.41	1.12	3.17	4965	4845	120	1.08	1.01	4940	4845	95	107	0.060
64A2	PS246920AAL	1	А	0.44	1.72	4.01	5105	4900	205	1.76	1.59	5070	4900	170	119	0.154
64B1	PS426920DAR	1	А	0.28	0.89	2.30	5085	4895	190	0.78	0.71	4995	4895	100	214	0.102
64B2	PS426920DAL	1	A	0.05	0.48	1.09	5000	4895	105	0.34	0.33	4960	4895	65	220	0.126
65A2	PS426933DDR	1	A	0.31	0.93	2.72	5070	4925	145	0.97	0.90	5035	4925	110	156	0.084
65A3	PS426933DDL	1	A	0.19	0.62	1.97	5085	4925	160	0.56	0.51	5025	4925	100	259	0.090
65B2	PS426934CDR	1	A	0.21	0.73	2.21	5100	4950	150	0.68	0.65	5055	4950	105	205	0.092

	CHANNEL		DRAINAGE						SURFICIAL		AGI	AGI	AGI	AGI
BASNUM	SLOPE	SINUOSITY	DENSITY	CIRCULARITY	PRECIP.	VEGETATION	SOIL	ASPECT	GEOLOGY	GEOLOGY	#1	#2	#3	#4
60C4	0.011	1.039	1.92	0.58	1	4	4	1	0	3	0.004	0.003	0.003	9.20
60D1	0.032	1.073	1.66	0.56	1	4	4	3	0	4	0.021	0.016	0.015	90.00
60D2	0.042	1.074	5.85	0.53	1	5	4	4	1	4	0.005	0.004	0.005	15.00
63D1	0.027	1.055	2.76	0.51	1	5	4	2	3	4	0.010	0.006	0.008	29.70
63D2	0.023	1.021	3.22	0.47	1	5	4	3	5	4	0.009	0.007	0.008	44.95
63E1	0.017	1.065	2.65	0.51	1	5	4	3	5	4	0.009	0.007	0.008	49.20
64A2	0.018	1.104	3.97	0.35	1	5	4	4	4	4	0.010	0.008	0.010	90.20
64B1	0.024	1.094	2.82	0.66	1	5	4	4	5	4	0.013	0.007	0.011	53.20
64B2	0.037	1.006	6.33	0.56	1	5	4	4	5	4	0.003	0.002	0.002	5.25
65A2	0.022	1.076	3.07	0.53	1	5	4	3	5	4	0.009	0.007	0.009	44.95
65A3	0.034	1.096	2.96	0.61	1	5	4	3	5	4	0.010	0.006	0.009	30.40
65B2	0.029	1.050	3.24	0.54	1	5	4	4	5	4	0.009	0.006	0.008	31.50

,

Table 4. (cont.) First order drainage basins listed by classification stratum. Stratum B.

. .

.

BASNUM	LOCATION CODE	ORDER	CAT	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH	VALLEY LENGTH	MAXIMUM USED RELIEF	MINIMUM USED RELIEF	USEDREL	RELIEF RATIO	RUGGEDNESS NO.
04A1	RS527326CAR	۲ ۱	в	0.18	0.51	1.96	4440	4305	135	0.41	0.40	4365	4305	60	263	0.058
04A2	RS527326CAL	1	в	0.08	0.45	1.20	4485	4305	180	0.37	0.35	4395	4305	90	402	0.159
04B2	RS527336BAR	x 1	в	0.13	0.79	1.99	4525	4270	255	0.77	0.75	4425	4270	155	324	0.290
11A1	MS517115BAR		в	0.34	0.70	2.97	4570	4405	165	0.71	0.67	4505	4405	100	236	0.067
11B1	GH517115ADF		в	0.09	0.63	1.54	4605	4440	165	0.49	0.47	4535	4440	95	262	0.164
11B2	GH517115ADI		в	0.07	0.47	1.24	4560	4440	120	0.24	0.24	4465	4440	25	254	0.077
15A1	FD497102DCF		в	0.10	0.49	1.34	4580	4535	45	0.28	0.25	4565	4535	30	92	0.023
15B1	CD497111BCF		в	0.20	1.14	2.58	4675	4520	155	0.90	0.87	4635	4520	115	136	0.132
15B2	CD497111BCI		B	0.26	0.90	2.94	4615	4520	95	0.82	0.79	4615	4520	95	105	0.057
18A2	AB497231BAF		В	0.18	0.79	2.21	4935	4800	135	0.59	0.55	4885	4800	85	170	0.084
18A3	AB497231BAI		В	0.21	0.67	1.86	4925	4800	125	0.65	0.64	4920	4800	120	186	0.074
18B1	AB497232BAF		B	0.31	0.82	2.33	4910	4745	165	0.68	0.65	4815	4745	70	201	0.069
19A1	AB497233BDF		В	0.17	0.80	1.93	4895	4720	175	0.56	0.54	4815	4720	95	219	0.109
19A2	AB497233BDI		B	0.44	0.67	3.06	4855	4720	135	0.84	0.71	4840	4720	120	201	0.049
19B2	AB497233DCI		B B	0.17 0.37	0.83	2.26	4935	4715	220	0.61	0.59	4840	4715	125	265	0.151
20A1	AB487312CBF		В	0.37	0.91 0.80	2.64 1.91	4840 5000	4680 4680	160 320	0.82 0.72	0.74 0.61	4760 4780	4680 4680	80	175	0.067 0.341
20A2	AB487312CBI		В	0.13	0.54	1.91	4820	4680	85	0.72	0.61	4780	4680	100 45	399 157	0.029
20B2	AB487311DCI SR487322CAF		В	0.15	0.54	1.24	4820	4755	90	0.28	0.26	4805	4755	45 50	157	0.029
21A1	PL487321DBF		В	0.08	0.50	2.39	4890	4/55	85	0.52	0.48	4805	4805	45	96	0.030
21B2 21B3	PL487321DBF		B	0.44	0.80	3.08	4925	4805	120	0.98	0.85	4875	4805	70	150	0.050
	CHANNEL			AINAGE							SURFICIA	\L	AG	I AGI		AGI
BASNUM	SLOPE S	SINUOSITY		ENSITY	CIRCUL			EGETATION	SOIL	ASPECT	GEOLOGY	GEOL	ogy #	1 #2	#3	#4
04A1	0.028	1.017		2.25		59	2	4	1	3	1	1	0.0			
04A2	0.046	1.065		4.67		69	2	4	1	4	1	1	0.0			
04B2	0.038	1.027		6.01		41	2	4	1	3	1	1	0.0			
11A1	0.027	1.064		2.13		48	3	3	3	3	5	2	0.0			
1181	0.037	1.049		5.24		49	3	3	3	4	5	2	0.0			
1182	0.020	1.025		3.39		58 73	3 5	3	3	4	4	2	0.0			
15A1	0.020 0.024	1.094 1.037		2.65 4.49		38	5	3	3	4	0	2	0.0			
15B1 15B2	0.022	1.031		3.16		38	5	3	3	4	2	1	0.0			
18A2	0.027	1.082		3.28		47	4	5	1	2	1	1	0.0			
18A3	0.035	1.027		3.12		76	4	5	i	3	1	1	0.0			
1881	0.019	1,051		2.19		72	4	3	ĩ	3 3	1	1	0.0			
1981	0.032	1.037		3.30		58	4	3	ĩ	3	2	1	0.0			
19A2	0.027	1.186		1.91		59	4	4	1	š	2	î	0.0			
1982	0.039	1.030		3.62		42	4	3	1	4	2	ĩ	0.0			
20A1	0.019	1.102		2.21		67	4	5	1	1	0	1	0.0			
20A2	0.026	1.186		5.62		44	4	5	1	1	Ō	1	0.0			
2082	0.031	1.078		1.79		61	4	5	1	3	0	1	0.0			
21A1	0.025	1.037		4.89 .		64	4	5	1	1	0	1	0.0			
21B2	0.017	1.084		1.89	0	60	4	5	1	1	0	1	0.0	08 0.00	c 0.00	5 DD 05
21B3				2.21	•.		7	2	1	1	U	1	0.0	00 0.00	5 0.00	5 22.95

.

Table 4. (cont.) First order drainage basins listed by classification stratum. Stratum B.

.....

.

BASNUM	LOCATION CODE	ORDER	CAT	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH	VALLEY LENGTH	MAXIMUM USED RELIEF	MINIMUM USED RELIEF	USEDREL	RELIEF RATIO	RUGGEDNESS NO.
24A1	SR477303DAR	1	в	0.10	0.77	1.77	4885	4745	140	0.59	0.58	4815	4745	70	182	0.149
24A2	SR477303DAL	. 1	в	0.21	0.95	2.21	4885	4745	140	0.84	0.83	4850	4745	105	147	0.108
24B2	SR477303ACL		в	0.55	1.22	3.84	4855	4720	135	1.64	1.40	4820	4720	100	111	0.076
26A2	TG487222BAL		в	0.27	0.46	2.43	4730	4575	155	0.81	0.78	4695	4575	120	333	0.089
26B1	TG487215ACR		в	0.14	0.75	1.97	4820	4640	180	0.62	0.60	4755	4640	115	240	0.146
26B2	TG487215ACL		в	0.08	0.85	1.20	4800	4640	160	0.28	0.28	4700	4640	60	188	0.112
30A1	NB467101DAR		В	0.09	0.47	1.26	4755	4595	160	0.35	0.34	4695	4595	100	341	0.121
30A2	NB467101DAL		B	0.18	0.82	1.98	4785	4595	190	0.67	0.66	4725	4595	130	233	0.131
30B2	NB467107BBL		B B	0.09	0.55	1.37	4785	4640	145	0.36	0.35	4715	4640	75	265	0.116
35A2	RJ447213DDR		_	0.08	0.68	1.55	5085	4910	175	0.46	0.44	5000	4910	90	256	0.190
35A3 35B3	RJ447213DDL RJ447224ACL		B B	0.36 0.22	0.70 0.71	2.84 2.09	4995 5010	4910	85	0.47	0.46	4960	4910	50	121	0.021
36A2	RJ447225BDL		B	0.22	0.81	2.39	5060	4895 4940	115 120	0.56 0.61	0.55	4970	4895	75	163	0.055
3682	RJ447226DDR		В	0.10	0.53	1.43	5130	4980	120	0.81	0.60 0.36	5000 5055	4940	60 75	148	0.047
3683	RJ447226DDL		в	0.16	0.49	1.68	5060	4980	80	0.35	0.34	5035	4980 4980	50	283 163	0.102 0.033
37A2	RC456917BDL		в	0.14	0.78	2.15	5005	4825	180	0.64	0.59	4920	4980	95	231	0.151
37B1	RC456917BAR		в	0.14	0.72	1.88	5020	4830	190	0.58	0.56	4925	4830	95	263	0.148
37B2	RC456917BAL		в	0.40	0.97	3.24	4995	4830	165	0.83	0.76	4905	4830	75	170	0.064
42A2	LT427106CAL		в	0.34	1.24	3.65	5085	4865	220	1.39	1.32	4995	4865	130	178	0.168
42B1	LT427106DCR		в	0.32	1.02	2.76	5085	4870	215	1.19	1.14	5010	4870	140	211	0.150
42B2	LT427106DCL		в	0.32	0.91	2.95	4910	4870	40	0.80	0.78	4895	4870	25	44	0.019
BASNUM		SINUOSITY	D	AINAGE DENSITY	CIRCUL			EGETATION	SOIL	ASPECT	SURFICIA GEOLOGY	GEOL		1 #2		AGI #4
24A1 24A2	0.023 0.024	1.013 1.021		5.60 4.08		42 53	4	4	1	4	0	1	0.0			
2482	0.012	1.175		2.98		47	4	4	1	1	0	1	0.0			
2462 26A2	0.012	1.035		3.04		57	4	5	1	3	2	1	0.0			
26B1	0.035	1.029		4.29		47	4	5	1	3	2	1	C.O			
2682	0.040	1.015		3.69		67	4	5	1	3	2	1	0.0			
30A1	0.055	1.007		3.98		69	3	3	ī	4	ō	1	0.0			
30A2	0.037	1.019		3.65		59	3	3	1	4	Ō	ĩ	0.0			
30B2	0.039	1.031		4.22	0.	58	3	3	1	1	0	1	0.0	07 0.00	4 0.00	
35A2	0.037	1.046		5.73		42	2	2	3	3	3	1	0.0	06 0.00	3 0.004	4 14.00
35A3	0.020	1.030		1.30		56	2	2	3	4	4	1	0.0	12 0.00	7 0.00	8 30.60
35B3	0.025	1.020		2.52		64	2	2	3	1	3	1	0.0	09 0.00	6 0.00	7 25.30
36A2	0.019	1.015		2.05		65	2	2	1	1	2	1	0.0			
36B2	0.039	1.017		3.58		62	2	2	1	1	0	1	0.0			
3683	0.027	1.021		2.19		71	2	2	1	2	0	1	0.0			
37A2	0.028	1.096		4.44		39	2	2	3	2	1	4	0.0			
3781	0.031	1.041		4.11		50	2	2	3	2	2	4	0.0			
37B2	0.017	1.091		2.06		48 32	2 1	2	3	3	2	4	0.0			
42A2	0.018 0.022	1.056 1.044		4.04		32 53	1	4	1	4	0	1	0.0			
42B1	U. UZZ	1.044												11 0.00		
42B2	0.006	1.019		2.50		46	1	4	1	4	0	1	0.0 0.0			

277

Table 4. (cont.) First order drainage basins listed by classification stratum. Stratum B (cont.).

. .

BASNUM	LOCATION CODE	ORDER	CAT	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH	VALLEY LENGTH	MAXIMUM USED RELIEF	MINIMUM USED RELIEF	USEDREL	RELIEF RATIO	RUGGEDNESS NO.
44A1	RR437033ADR	1	в	0.09	0.49	1.54	4775	4700	75	0.39	0.39	4760	4700	60	154	0.065
44A2	RR437033ADL	1	в	0.10	0.63	1.61	4800	4700	100	0.46	0.44	4770	4700	70	160	0.085
44B2	RR427004ADL	1	в	0.19	0.88	2.19	4850	4775	75	0.58	0.58	4820	4775	45	85	0.042
49A2	PN4 3 7 0 3 5 DAR	1	в	0.05	0.41	1.03	4835	4715	120	0.39	0.38	4810	4715	95	293	0.188
49B1	PN4 37035ACR	1	в	0.18	0.66	1.83	4815	4695	120	0.50	0.48	4770	4695	75	181	0.064
4982	PN437035ACL	1	в	0.11	0.46	1.96	4850	4695	155	0.49	0.45	4810	4695	115	335	0.131
52A2	TS417117ABL	1	в	0.15	0.62	1.78	4945	4790	155	0.50	0.45	4870	4790	80	250	0.099
52B2	TS417108CAR	1	в	0.12	0.83	2.08	4935	4765	170	0.81	0.78	4910	4765	145	205	0.211
52B3	TS417108CAL	1	в	0.17	0.77	2.10	4945	4765	180	0.72	0.69	4890	4765	125	233	0.142
53B2	TS417105CCR	1	в	0.09	0.58	1.39	4955	4825	130	0.49	0.45	4910	4825	85	224	0.138
53C1	TS417106ADR	1	в	0.12	0.41	1.63	5005	4875	130	0.39	0.38	4935	4875	60	314	0.078
53C2	TS417106ADL	1	в	0.16	0.68	2.03	5025	4875	150	0.49	0.49	4960	4875	85	220	0.088

BASNUM	CHANNEL SLOPE	SINUOSITY	DRAINAGE	CIRCULARITY	DEPOTE	UDODONOTON	0077		SURFICIAL		AGI	AGI	AGI	AGI
BASNUM	SLOPE	SINUOSIII	DENSITY	CIRCULARITY	PRECIP.	VEGETATION	SOIL	ASPECT	GEOLOGY	GEOLOGY	#1	#2	#3	#4
44A1	0.029	1.021	4.59	0.46	1	2	1	1	0	4	0.003	0.003	0.003	6.75
44A2	0.029	1.037	4.46	0.49	1	2	1	1	0	4	0.004	0.003	0.003	10.00
44B2	0.015	1.002	2.99	0.51	1	2	1	1	0	3	0.005	0.003	0.003	14.25
49A2	0.046	1.029	8.28	0.56	1	2	4	4	4	3	0.003	0.002	0.003	6.00
49B1	0.029	1.038	2.82	0.66	1	2	4	1	0	3	0.008	0.005	0.006	21.60
4982	0.044	1.106	4.45	0.36	1	2	4	1	0	3	0.007	0.005	0.007	17.05
52A2	0.030	1.102	3.37	0.59	1	2	1	1	0	1	0.009	0.005	0.007	23.25
5282	0.034	1.046	6.54	0.36	1	2	1	1	0	1	0.005	0.004	0.005	20.40
52B3	0.033	1.044	4.16	0.49	1	2	1	2	0	1	0.008	0.006	0.008	30.60
53B2	0.033	1.096	5.61	0.57	1	2	1	2	0	1	0.005	0.003	0.004	11.70
53C1	0.029	1.025	3.16	0.59	1	2	1	3	0	1	0.008	0.003	0.007	15.60
53C2	0.033	1.013	3.10	0.48	1	2	1	3	0	1	0.009	0.005	0.007	24.00

.

Table	4.	(cont.)	First	order	drainage	basins	listed	by	classification	stratum.	Stratum
			B (cor	nt.).							

BASNUM	LOCATION CODE	ORDER	CAT	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH	VALLEY LENGTH	MAXIMUM USED RELIEF	MINIMU USED RELIE		RELIEF RATIO	RUGGEDNESS NO.
54A1	TS417105CAR	1	в	0.19	1.00	2.55	4990	4820	170	0.79	0.76	4955	4820	135	171	0.133
54A2	TS417105CAL	1	в	0.09	0.62	1.55	4965	4820	145	0.49	0.48	4920	4820	100	236	0.146
54B1	TS417105DAR	1	в	0.25	1.04	2.83	4985	4835	150	0.84	0.82	4950	4835	115	144	0.094
56B1	TK417114AAR	1	В	0.12	0.53	1.58	4900	4755	145	0.40	0.39	4860	4755	105	273	0.089
56B2	TK417114AAL	1	в	0.18	0.63	1.89	4930	4755	175	0.55	0.49	4860	4755	105	278	0.099
·	18117114DAL	1	в	0.19	0.71	2.12	4870	4775	95	0.60	0.58	4850	4775	75	133	0.057
57A2	TS417109ADL	1	в	0.27	0.88	2.72	4940	4800	140	0.75	0.69	4885	4800	85	159	0.073
57 B1	TS417110CDR	1	в	0.27	0.83	2.56	4895	4755	140	0.87	0.79	4895	4755	140	168	0.085
57B2	TS417110CDL	1	в	0.21	0.85	2.59	4955	4755	200	0.77	0.70	4955	4755	200	234	0.142
62A2	TK417112BDL	1	в	0.40	1.01	2.94	4930	4820	110	0.92	0.88	4895	4820	75	109	0.047
62B1	TK417102DCR	1	в	0.13	0.55	1.60	4905	4815	90	0.45	0.39	4880	4815	65	162	0.058
62B2	TK417102DCL	1	в	0.33	0.80	2.59	4920	4815	105	0.62	0.58	4855	4815	40	132	0.037
	CHANNEL			AINAGE					0011	10000	SURFICI			AGI AG		
BASNUM	SLOPE S	INUOSITY	נ ט	ENSITY	CIRCUL	ARITY PR	ECIP. VI	GETATION	SOIL	ASPECT	GEOLOG	Y GEOL	JUGY	#1 #	2 #3	#4
54A1	0.032	1.040		4.13	Ο.	37	1	2	1	3	0	1	. 0	.008 0.0	06 0.00	6 32.30
54A2	0.038	1.035		5.33	Ο.	48	1	2	1	3	0	1	. 0	.005 0.0	03 0.00	4 13.05
54B1	0.026	1.026		3.30	0.	40	1	2	1	3	0	1	. 0	.008 0.0	07 0.00	7 37.50
Smisl	0.049	1.039		3.24	0.	62	1	2	1	3	0	2	! O	.008 0.0	06 0.00	6 17.40
≤6B2	0.036	1.116		2.98	0.	64	1	2	1	4	0	2	e 0	.011 0 0	06 0.00	9 31.50
∍C2	0.024	1.038		3.17	υ.	53	1	2	1	4	0	2	. 0	.006 0.0	05 0.00	5 18.05
57A2	0.022	1.078		2.75	0.	46	1	2	1	3	3	1	. 0	.010 0.0	0.00	8 37.60
≲7B1	0.031	1.102		3.22	θ.		1	2	1	3	0	1		.008 0.0		
57B2	0.049	1.114		3.75	0.		1	2	1	3	0	1		.010 0.0		
62A2	0.015	1.036		2.27	0.		1	2	1	1	0	1		.009 0.0		
62B1	0.028	1.139		3.42	0.		1	2	1	1	0	1		.005 0.0		
62B2	0.012	1.075		1.88	0.	62	1	2	1	2	0	1	0	.011 0.0	04 0.00	34.65

Table 4. (cont.)

. • •

First order drainage basins listed by classification stratum. Stratum C.

.

BASNUM	LOCATION CODE	ORDER	CAT	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH	VALLEY LENGTH	MAXIMUM USED RELIEF	MINIMUM USED RELIEF	USEDREL	RELIEF RATIO	RUGGEDNESS NO.
DASING	CODE	OKDER	CAI	ANDA	BLIGIN	LENINETER	BDBV.	EDEV.	RELIEF	rengtu	LENGIN	REDIEF	RELIEF	USEDREL	RAIIO	NO.
05A1	RS517218BCR	1	С	0.25	0.70	2.19	4435	4300	135	0.60	0.57	4405	4300	105	192	0.060
05A2	RS517218BCL	1	С	0.19	0.71	1,90	4560	4300	260	0.60	0.59	4425	4300	125	368	0.160
05B4	RS517324DBL	1	С	0.08	0.44	1.42	4605	4395	210	0.35	0.34	4510	4395	115	482	0.181
06A3	ON517304BBR	1	С	0.14	0.67	1.83	4610	4395	215	0.50	0.48	4530	4395	135	323	0.150
06A4	ON517304BBL	1	С	0.13	0.56	1.86	4585	4395	190	0.48	0.47	4525	4395	130	339	0.128
06B1	RS517303BAR	1	С	0.17	0.71	1.88	4585	4355	230	0.52	0.51	4460	4355	105	325	0.136
07D3	GW507301DCR	1	C	0.11	0.53	1.64	4685	4510	175	0.40	0.38	4615	4510	105	331	0.125
07D4	GW507301DCL	1	С	0.35	0.94	2.77	4685	4510	175	0.85	0.81	4650	4510	140	186	0.082
07E3	GW507313ABL	1	С	0.10	0.62	1.81	4845	4590	255	0.48	0.46	4735	4590	145	409	0.243
12B1	GW507313BBR	1	С	0.31	1.00	2.56	4765	4580	185	0.80	0.78	4695	4580	115	185	0.089
1282	GW507313BBL	1	С	0.13	0.61	1.83	4865	4580	285	0.59	0.58	4790	4580	210	465	0.246
12C2	GW507314ABR	1	С	0.08	0.64	1.60	4875	4590	285	0.58	0.57	4780	4585	195	447	0.385
13B1	GE517131DDR	1	С	0.11	0.41	1.76	4470	4415	55	0.25	0.24	4450	4415	35	136	0.024
1382	GE517131DDL	1	С	0.10	0.46	1.34	4495	4415	80	0.27	0.27	4455	4415	40	174	0.043
13C3	GE507106CAR	1	С	0.22	0.67	1.95	4440	4400	40	0.51	0.43	4425	4400	25	60	0.017
14A2	GE507201CDL	1	С	0.18	0.50	1.68	4545	4420	125	0.43	0.41	4525	4420	105	248	0.057
14B2	GE507212DDR	1	С	0.39	0.80	2.93	4565	4475	90	0.56	0.54	4520	4475	45	112	0.025
14B3	GE507212DDL	1	С	0.16	0.78	1.90	4565	4475	90	0.38	0.35	4500	4475	25	115	0.041
16C1	TG497122ABR	1	С	0.29	0.61	2.09	4650	4590	60	0.52	0.50	4640	4590	50	98	0.020
16C2	TG497122ABL	1	С	0.40	0.56	3.04	4745	4590	155	0.47	0.45	4680	4590	90	279	0.035
16D1	TG497115BBR	1	С	0.07	0.50	1.29	4690	4540	150	0.36	0.35	4620	4540	80	298	0.144

BASNUM	CHANNEL SLOPE	SINUOSITY	DRAINAGE DENSITY	CIRCULARITY	PRECIP.	VEGETATION	SOIL	ASPECT	SURFICIAL GEOLOGY	GEOLOGY	AGI #1	AGI #2	AGI #3	AGI #4
05A1	0.033	1.044	2.36	0.66	3	4	1	4	2	1	0.011	0.008	0.009	33.75
05A2	0.039	1.028	3.26	0.65	3	3	1	1	2	1	0.016	0.007	0.013	49.40
05B4	0.062	1.033	4.54	0.48	3	3	1	2	0	1	0.009	0.005	0.007	16.80
06A3	0.051	1.041	3.68	0.51	2	4	3	2	3	1	0.011	0.007	0.009	30.10
06A4	0.051	1.026	3.55	0.49	2	3	3	3	3	1	0.010	0.007	0.008	24.70
06B1	0.038	1.026	3.12	0.59	2	3	3	3	1	1	0.014	0.006	0.010	39.10
07D3	0.050	1.033	3.76	0.49	3	3	1	4	1	1	0.009	0.006	0.007	19.25
07D4	0.031	1.053	2.46	0.57	3	3	1	1	1	1	0.014	0.011	0.012	61.25
07E3	0.057	1.051	5.03	0.37	3	3	1	1	1	1	0.010	0.006	0.008	25.50
12B1	0.039	1.025	2.55	0.60	3	3	1	1	1	1	0.014	0.012	0.011	57.35
12B2	0.067	1.022	4.56	0.49	3	3	1	1	2	1	0.012	0.009	0.011	37.05
12C2	0.064	1.018	7.14	0.40	3	3	1	1	3	1	0.007	0.005	0.007	22.80
13B1	0.027	1.023	2.27	0.44	4	5	1	4	0	1	0.005	0.003	0.003	6.05
13B2	0.028	1.001	2.86	0.67	4	5	1	1	0	1	0.006	0.003	0.003	8.00
13C3	0.009	1.164	2.29	0.73	4	5	1	4	0	1	0.003	0.002	0.003	8.80
14A2	0.046	1.053	2.41	0.79	4	3	1	4	0	1	0.010	0.008	0.008	22.50
14B2	0.015	1.045	1.46	0.56	4	2	1	4	0	1	0.012	0.006	0.008	35.10
14B3	0.012	1.083	2.38	0.56	4	5	1	1	0	1	0.007	0.002	0.003	14.40
16C1	0.018	1.046	1.80	0.83	5	3	3	4	0	2	0.006	0.005	0.005	17.40
16C2	0.036	1.052	1.19	0.54	5	3	3	2	0	2	0.025	0.014	0.021	62.00
16D1	0.042	1.023	5.07	0.54	5	3	3	1	0	2	0.006	0.003	0.004	10.50

Table	4.	(cont.)	First order	drainage b	basins	listed	by	classification	stratum.	Stratum
			C (cont.).	_			-			

.

22B1SR477228CDR1C0.090.441.39497048301400.400.36491548308522B2SR477228CDL1C0.090.481.36493048301000.300.28487548304522C2SR477228CCL1C0.501.123.42494547951501.071.014900479510523B2SR477230CBR1C0.090.631.51494548201250.400.37487048205023C2SR477325CCR1C0.180.831.93496548551100.520.464905485550	315 208 134 199 133 141 106 151 119 209 213	0.113 0.061 0.061 0.106 0.059 0.020 0.036 0.088 0.081 0.045
22B2 SR477228CDL 1 C 0.09 0.48 1.36 4930 4830 100 0.30 0.28 4875 4830 45 22C2 SR477228CCL 1 C 0.50 1.12 3.42 4945 4795 150 1.07 1.01 4900 4795 105 23B2 SR477230CBR 1 C 0.63 1.51 4945 4820 125 0.40 0.37 4870 4820 50 23C2 SR477325CCR 1 C 0.18 0.83 1.93 4965 4855 110 0.52 0.46 4905 4855 50	208 134 199 133 141 106 151 119 209	0.061 0.061 0.106 0.059 0.020 0.036 0.088 0.081 0.045
22C2 SR477228CCL 1 C 0.50 1.12 3.42 4945 4795 150 1.07 1.01 4900 4795 105 23B2 SR477230CBR 1 C 0.09 0.63 1.51 4945 4820 125 0.40 0.37 4870 4820 50 23C2 SR477325CCR 1 C 0.18 0.83 1.93 4965 4855 110 0.52 0.46 4905 4855 50	134 199 133 141 106 151 119 209	0.061 0.106 0.059 0.020 0.036 0.088 0.088 0.081 0.045
23B2 SR477230CBR 1 C 0.09 0.63 1.51 4945 4820 125 0.40 0.37 4870 4820 50 23C2 SR477325CCR 1 C 0.18 0.83 1.93 4965 4855 110 0.52 0.46 4905 4855 50	199 133 141 106 151 119 209	0.106 0.059 0.020 0.036 0.088 0.081 0.045
	141 106 151 119 209	0.059 0.020 0.036 0.088 0.081 0.081
	141 106 151 119 209	0.020 0.036 0.088 0.081 0.045
23C3 SR477325CCL 1 C 0.34 0.64 2.56 4945 4855 90 0.39 0.34 4890 4855 35	106 151 119 209	0.036 0.088 0.081 0.045
25A1 GS477107CAR 1 C 0.39 1.18 3.25 4715 4590 125 0.58 0.55 4640 4590 50	151 119 209	0.088 0.081 0.045
25A2 GS477212DDR 1 C 0.15 0.83 1.83 4715 4590 125 0.57 0.56 4655 4590 65	119 209	0.081 0.045
25B2 GS477212DDL 1 C 0.24 1.09 3.05 4785 4655 130 0.77 0.75 4725 4655 70	209	0.045
27A1 SH477113DDR 1 C 0.17 0.53 1.76 4630 4520 110 0.36 0.34 4570 4520 50		
27B1 SH477113ACR 1 C 0.14 0.75 1.91 4715 4555 160 0.61 0.58 4660 4555 105		0.132
27B2 SH477113ACL 1 C 0.48 1.14 3.15 4725 4555 170 1.03 1.00 4690 4555 135	149	0.069
28A2 NB467005CAR 1 C 0.24 0.66 2.28 4680 4585 95 0.55 0.49 4635 4585 50	145	0.041
28A3 NB467005CAL 1 C 0.20 0.74 2.32 4700 4585 115 0.71 0.67 4665 4585 80	155	0.077
28B2 SH477031DDL 1 C 0.24 0.76 2.54 4740 4515 225 0.59 0.56 4610 4515 95	296	0.103
29A1 GS477122BBR 1 C 0.14 0.56 1.68 4725 4605 120 0.35 0.34 4640 4605 35	213	0.057
29A2 GS477122BBL 1 C 0.25 0.65 2.26 4690 4605 85 0.34 0.34 4625 4605 20	131	0.022
29B2 SH477115DAL 1 C 0.41 0.80 2.79 4715 4580 135 0.62 0.59 4655 4580 75	168	0.039
CHANNEL DRAINAGE SURFICIAL AGI AGI BASNUM SLOPE SINUOSITY DENSITY CIRCULARITY PRECIP. VEGETATION SOIL ASPECT GEOLOGY GEOLOGY #1 #2		AGI #4
22B1 0.040 1.108 4.28 0.61 3 3 1 4 0 1 0.006 0.00		12.60
22B2 0.028 1.083 3.24 0.64 3 3 1 4 0 1 0.006 0.00		9.00
22C2 0.019 1.062 2.16 0.53 3 4 1 1 0 1 0.013 0.01		75.00
23B2 0.024 1.078 4.47 0.49 3 2 1 4 0 1 0.005 0.00		11.25
23C2 0.018 1.134 2.84 0.61 3 5 1 4 0 1 0.007 0.00		19.80
23C3 0.017 1.161 1.17 0.65 3 5 1 1 0 1 0.015 0.00		30.60
25A1 0.016 1.055 1.50 0.46 3 3 1 4 0 1 0.016 0.00		48.75
25A2 0.022 1.015 3.70 0.58 3 3 1 1 0 1 0.006 0.00		18.75
25B2 0.017 1.031 3.28 0.32 3 3 1 1 0 1 0.008 0.00		31.20
27A1 0.026 1.055 2.14 0.68 3 3 1 1 3 3 0.010 0.00		18.70
27B1 0.033 1.051 4.37 0.48 3 3 1 2 0 2 0.007 0.00		22.40
27B2 0.025 1.033 2.13 0.61 3 3 1 2 0 2 0.015 0.01		81.60
2882 0.017 1.108 2.26 0.58 2 2 1 4 3 4 0.008 0.00		22.80
2883 0.021 1.053 3.51 0.47 2 2 1 1 3 4 0.006 0.00		23.00
28B2 0.031 1.057 2.41 0.48 2 3 1 1 2 4 0.017 0.00 29B1 0.019 1.022 2.53 0.62 3 3 1 2 0 4 0.009 0.00		54.00
		16.80
		21.25
29B2 0.023 1.046 1.53 0.66 3 3 1 3 0 4 0.017 0.00	0.013	55.35

281

•

Table 4. (cont.) First order drainage basins listed by classification stratum. Stratum C (cont.)

. .

.

BASNUM	LOCATION CODE	ORDER	САТ	BASIN AREA	BASIN LENGTH	BASIN Perimeter	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH	VALLEY LENGTH	MAXIMUM USED RELIEF	MINIMUM USED RELIEF	USEDREL	RELIEF RATIO	RUGGEDNESS NO.
31A1	ER467133ACR	1	с	0.19	0.72	2.11	4855	4720	135	0.50	0.49	4795	4720	75	168	0.068
31A2	ER467133ACL	1	С	0.35	1.05	3.03	4895	4720	175	1.09	1.01	4835	4720	115	167	0.103
31B2	ER457104BDL	1	С	0.64	1.38	3.97	4855	4720	135	1.31	1.17	4825	4720	105	98	0.052
32A2	RJ457120BCL	1	С	0.10	0.68	1.84	4915	4755	160	0.56	0.54	4840	4755	85	234	0.164
32B7	RJ447104BCR	1	С	0.41	1.08	3.64	4985	4880	105	1.02	0.93	4940	4880	60	97	0.050
32B8	RJ447104BCL	1	с	0.24	0.92	2.79	4990	4880	110	0.75	0.72	4935	4880	55	119	0.065
40A2	RR427102BCL	1	С	0.26	1.18	2.89	4975	4875	100	1.12	1,07	4975	4800	175	85	0.080
40B1	LT417128ACR	1	С	0.13	0.67	1.78	4970	4820	150	0.60	0.57	4870	4820	50	223	0.133
40B2	LT417128ACL	1	С	0.23	0.92	2.51	4875	4820	55	0.83	0.81	4940	4820	120	60	0.037
41A1	LT437236DBL	1	С	0.35	1.47	3.71	5090	4900	190	1.56	1.42	5050	4900	150	130	0.159
41B1	LT437131BCR	1	С	0.25	0.74	2.64	4970	4915	55	0.72	0.69	4960	4915	45	74	0.030
41B2	LT437131BCL	1	С	0.16	0.47	1.88	4985	4915	70	0.59	0.55	4940	4915	25	148	0.048
43A2	RJ447119AAL	1	С	0.17	0.80	2.44	5015	4880	135	0.49	0.49	4950	4880	70	169	0.072
43B1	RJ447117CCR	1	С	0.14	0.84	2.02	5015	4880	135	0.56	0.56	4950	4880	70	161	0.104
43B2	RJ447117CCL	1	С	0.20	0.50	2.37	4945	4880	65	0.54	0.52	4915	4880	35	131	0.033
	CHANNEL		DR	AINAGE							SURFICIA	L	AG	I AGI	AGI	AGI
BASNUM		INUOSITY		ENSITY	CIRCUL	ARITY PR	ECIP. V	EGETATION	SOIL	ASPECT	GEOLOGY					#4
31A1	0.028	1.036		2.66	0.	53	2	5	1	4	0	1	0.0	10 0.00	5 0.00	7 25.65
31A2	0.020	1.081		3.11	0.		2	5	ī	i	Ō	1	0.0			
31B2	0.015	1.121		2.05	0.		2	5	1	4	0	1	0.0			
32A2	0.029	1.028		5.42	Ο.	38	2	5	1	2	1	1	0.0			
32B7	0.011	1.103		2.51	Ο.	39	2	2	1	3	4	1	0.0	08 0.00		
32B8	0.014	1.048		3.11	Ο.	39	2	2	1	4	3	1	0.0	07 0.00	3 0.009	
40A2	0.030	1.039		4.21	Ο.	40	1	3	1	1	0	1	0.0	04 0.00	8 0.004	
40B1	0.016	1.045		4.68	Ο.	51	1	3	1	1	0	1	0.0	06 0.00	2 0.009	
4082	0.027	1.026		3.59	0.	46	1	4	1	1	0	1	0.0	03 0.00	6 0.003	3 12.65
41A1	0.018	1.097		4.43	0.	32	1	2	1	3	0	1	0.0	08 0.00	6 0.009	9 66.50
41B1	0.012	1.042		2.86		45	1	2	1	3	0	1	0.0	04 0.00	3 0.004	
41B2	0.008	1.087		3.62		59	1	2	1	3	0	1	0.0	04 0.00	1 0.004	
43A2	0.027	1.009		2.82	0.		2	2	1	3	5	1	0.0	09 0.00	5 0.009	5 22.95
43B1	0.024	1.011		4.08		42	2	2	1	3	5	1	0.0	06 0.00	3 0.004	1 18.90
43B2	0.012	1.046		2.66	0.	46	2	2	1	3	3	1	0.0	05 0.00	2 0.009	5 13.00

,

Table	4.	(cont.)	First order	drainage	basins	listed	by	classification	stratum.	Stratum
			C (cont.).	-			•			

BASNUM	LOCATION CODE	ORDER	САТ	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH	VALLEY LENGTH	MAXIMUM USED RELIEF	MINIM USE RELI	D	SEDREL	RELIEF RATIO	RUGGEDNESS NO.
51A5	PN427010ADR	1	С	0.62	1.54	3.83	4900	4770	130	1.35	1.32	4880	477	0	110	84	0.053
51A6	PN427010ADL	1	С	0.91	1.21	4.81	4880	4770	110	1.33	1.29	4875	477	0	105	91	0.030
51B2	PN427001BBL	1	С	0.08	0.45	1.16	4810	4735	75	0.40	0.39	4795	473	5	60	169	0.071
55B2	TS427130DCR	1	С	0.55	1.04	3.26	5005	4930	75	0.95	0.93	4995	493	0	65	72	0.025
55C2	TS427130BAR	1	С	0.21	0.62	1.90	5015	4885	130	0,60	0.51	4975	488	5	90	208	0.070
55C3	TS427130BAL	1	С	0.05	0.40	1.13	4945	4885	60	0.35	0.33	4935	488	5	50	152	0.087
58A2	TK427027CDL	1	с	0.43	0.84	3.22	4965	4850	115	0.41	0.38	4990	485	0	140	137	0.021
58B1	TK427034ABR		С	0.49	0.89	3.18	4945	4845	100	0.75	0.69	4900	484		55	112	0.029
58B2	TK427034ABL		С	0.29	0.70	2.40	4910	4845	65	0.51	0.46	4895	484		50	93	0.021
61B1	PS417003ADR		С	0.33	0.70	2.81	4905	4770	155	0.63	0.59	4875	477		105	221	0.057
61B2	PS417003ADL		С	0.21	0.84	2.14	4930	4770	160	0.59	0.53	4880	477	0	110	191	0.086
61C2	PS417003DAL	1	С	0.11	0.48	1.44	4910	4780	130	0.40	0.39	4850	478	0	70	269	0.093
BASNUM	CHANNEL SLOPE S	INUOSITY		AINAGE DENSITY	CIRCUL	ARITY PRI	SCIP. VE	GETATION	SOIL	ASPECT	SURFICI GEOLOG		OGY	AGI #1	AGI #2	AGI #3	AG I #4
51A5	0.015	1.021		2.15	0.	54	1	3	1	1	0	1		0.011	0.009	0.010	80.60
51A6	0.015	1.031		1.46	0.	49	1	3	1	1	0	1		0.014	0.014	0.016	100.10
51B2	0.028	1.025		5.03	Ο.	74	1	2	1	3	5	4		0.003	0.003	2 0.003	6.00
55B2	0.013	1.029		1.75	0.	64	1	2	1	1	0	1		0.008	0.00'	7 0.008	41.25
55C2	0.028	1.168		2.86	0.	73	1	2	1	3	0	1		0.009	0.006	5 0.008	27.30
55C3	0.027	1.062		7.70	0.	45	1	2	1	2	0	1		0.002	0.001	L 0.001	3.00
58A2	0.064	1.095		0.96	0.	52	1	4	1	3	0	2		0.023	0.028	3 0.011	49.45
58B1	0.014	1.092		1.54	0.	61	1	4	1	4	0	2		0.012	0.00	7 0.010	49.00
58B2	0.018	1.104		1.74	0.		1	4	1	4	0	2		0.007	0.005	5 0.005	18.85
61B1	0.032	1.068		1.93	0.	52	1	4	4	3	0	2		0.015	0.011	1 0.014	51.15
61B2	0.035	1.117		2.85	Ο.		1	4	4	4	0	2		0.011	0.00	7 0.008	33.60
61C2	0.033	1.016		3.78	0.	64	1	5	4	4	0	3		0.007	0.004	0.006	14.30

Table 4. (cont.) First order drainage basins listed by classification stratum. Stratum D.

....

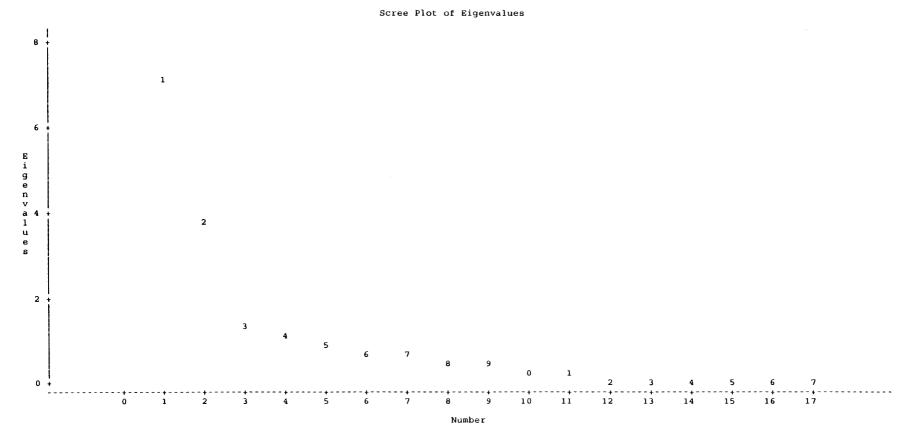
BASNUM	LOCATION CODE	ORDER	САТ	BASIN AREA	BASIN LENGTH	BASIN PERIMETER	MAXIMUM ELEV.	MINIMUM ELEV.	BASIN RELIEF	MAIN CHANNEL LENGTH	VALLEY LENGTH	MAXIMUM USED RELIEF	MINIMUM USED RELIEF	USEDREL	RELIEF RATIO	RUGGEDNESS NO.
33A2	RE466928DB	R 1	D	0.16	0.73	1.87	5060	4850	210	0.62	0.59	4980	4850	130	287	0.156
33B3	RC466932BD	R 1	D	0.21	0.79	2.21	5090	4955	135	0.61	0.59	5030	4955	75	170	0.073
33B4	RC466932BD	և 1	D	0.26	0.93	2.25	5110	4955	155	0.71	0.69	5040	4955	85	167	0.081
34A2	RC466917CB	L 1	D	0.24	0.94	2.52	5045	4835	210	0.87	0.79	4955	4835	120	223	0.144
34B2	RC466918BA	R 1	D	0.15	0.50	1.96	4960	4875	85	0.39	0.34	4920	4875	45	169	0.042
34B3	RC466918BA	L 1	D	0.18	0.71	2.00	4970	4875	95	0.61	0.57	4945	4875	70	133	0.060
BASNUM	CHANNEL SLOPE	SINUOSITY		AINAGE DENSITY	CIRCUL	ARITY PR	ECIP. VI	GETATION	SOIL	ASPECT	SURFICIA GEOLOGY		AG OGY #	I AGI 1 #2		AGI #4
33A2	0.040	1.042		3.91	0.	57	2	1	3	1	0	4	0.0	10 0.00	6 0.00	9 33.60
33B3	0.023	1,033		2.86	0.	55	2	2	3	4	0	4	0.0			
33B4	0.023	1.030		2.74	0.	64	2	1	3	1	0	4	0.0	11 0.00	6 0.00	8 40.30
34A2	0.026	1.100		3.62	0.	48	2	3	3	1	0	4	0.0	11 0.00	6 0.01	
34B2	0.022	1.129		2.62	0.	49	2	3	3	3	0	4	0.0	06 0.00	3 0.00	5 12.75
34B3	0.022	1.063		3.32	0.	57	2	3	3	з	0	4	0.0	05 0.00	4 0.00	5 17.10

APPENDIX IV

SECOND ORDER CLASSIFICATION STRATA STATISTICS, CORRELATION TABLES, ANALYSIS OF VARIANCE RESULTS, AND CATEGORICAL DATA PRESENTATION

Table 1. Results of the Principal Components Analysis of the second order drainage basins. Eigenvalues, and the proportion of the variability within the data set that they represent are presented. Factors 1,2, and 3 were retained for the cluster analysis. These first three components retain 74.14 % of the variability contained within 18 variables used in the principal components analysis.

Initial Factor Method: Principal Components


. .

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total = 17 Average = 1

	1	2	3	4	5	6	7	8	9
Eigenvalue	7.1071	3.7339	1.3038	1.0661	0.9747	0.6951	0.6279	0.4279	0.3675
Difference	3.3731	2.4301	0.2378	0.0914	0.2796	0.0672	0.2000	0.0604	0.0787
Proportion	0.4181	0.2196	0.0767	0.0627	0.0573	0.0409	0.0369	0.0252	0.0216
Cumulative	0.4181	0.6377	0.7144	0.7771	0.8344	0.8753	0.9123	0.9374	0.9590
	10	11	12	13	14	15	16	17	
Eigenvalue	0.2887	0.2352	0.0818	0.0376	0.0210	0.0149	0.0114	0.0055	
Difference	0.0535	0.1534	0.0442	0.0166	0.0062	0.0034	0.0060		
Proportion	0.0170	0.0138	0.0048	0.0022	0.0012	0.0009	0.0007	0.0003	
Cumulative	0.9760	0.9899	0.9947	0.9969	0.9981	0.9990	0.9997	1.0000	

6 factors will be retained by the NFACTOR criterion.

Initial Factor Method: Principal Components

Figure 1. A scree plot of the eigenvalues of each principal component derived from the second order basin principal component analysis, plotted against the number of the component. The break in slope at 3 indicates a possible point at which the selection of components should cease.

Table 3. (cont). Summary statistics for second order drainage basins investigated in the Powder River Basin Coal Field identified in Classification Stratum A.

<u>Stratum</u> A n = 36	No. of Firsts	Rugged- ness Number	Circularity Ratio	AGI#1 ¹ (miles ² x ft./ft.)	AGI#2 ^{††} (miles²x ft./ft.)	AGI#3 [‡] (miles²x ft./ft.)	AGI#4 ^{‡‡} (miles²x feet)	Maximum Elevation (feet)	Minimum Elevation (feet)	Maximum Used Relief (feet)	Minimum Used Relief (feet)
Mean ¹	3	0.20	0.51	0.024	0.016	0.027	238.67	4755.40	4485.60	4627.40	4502.40
Lower 90% C.L. ²	3	0.18	0.48	0.021	0.014	0.023	178.82	4666.60	4391.60	4534.70	4408.10
Upper 90% C.L. ³	3	0.23	0.54	0.027	0.019	0.031	298.52	4844.20	4579.60	4720.00	4596.60
S.D. ⁴	2	0.08	0.11	0.009	0.009	0.014	212.54	315.30	333.81	329.09	334.84
C.V. (%) ⁵	53	41	21	39	53	52	89	7	7	7	7
Median	2	0.17	0.52	0.024	0.016	0.025	182.16	4920.00	4672.50	4790.00	4687.50
Minimum	2	0.10	0.29	0.011	0.004	0.010	30.06	4200.00	3885.00	4040.00	3895.00
Maximum	9	0.40	0.78	0.048	0.037	0.063	855.16	5145.00	4875.00	5035.00	4900.00
Range	7	0.30	0.48	0.037	0.032	0.053	825.11	945.00	990.00	995.00	1005.00

1 Arithmetic mean

2 Lower 90% confidence interval of the arithmetic mean

.

. .

3 Upper 90% confidence interval of the arithmetic mean

4 Standard deviation of the arithmetic mean

5 Coefficient of variation, in percent

,

Table 4. (cont). Summary statistics for second order drainage basins investigated in the Powder River Basin Coal Field identified in Classification Stratum B.

<u>Stratum</u> <u>B</u> n = 44	No. of Firsts	Rugged- ness Number	Circularity Ratio	AGI#1 [†] (miles ² x ft./ft.)	AGI#2 ^{††} (miles²x ft./ft.)	AGI#3 [‡] (miles ² x ft./ft.)	AGI#4 ^{‡‡} (miles²x feet)	Maximum Elevation (feet)	Minimum Elevation (feet)	Maximum Used Relief (feet)	Minimum Used Relief (feet)
Mean ¹	2	0.12	0.54	0.018	0.012	0.019	129.40	4869.00	4682.50	4785.80	4694.90
Lower 90% C.L. ²	2	0.11	0.51	0.016	0.011	0.017	111.61	4829.90	4641.50	4745.50	4654.00
Upper 90% C.L. ³	3	0.14	0.56	0.019	0.013	0.022	147.18	4908.10	4723.50	4826.10	4735.80
S.D.4	1	0.05	0.11	0.005	0.004	0.010	70.18	154.31	161.87	158.93	161.52
C.V. (%) ⁵	27	37	20	27	32	53	54	3	3	3	3
Median	2	0.12	0.53	0.018	0.012	0.018	120.12	4905.00	4710.00	4827.50	4722.50
Minimum	2	0.05	0.33	0.008	0.007	0.004	31.76	4440.00	4200.00	4310.00	4215.00
Maximum	4	0.24	0.77	0.026	0.024	0.071	330.51	5085.00	4920.00	5000.00	4935.00
Range	2	0.18	0.44	0.017	0.017	0.067	298.75	645.00	720.00	690.00	720.00

1 Arithmetic mean

2 Lower 90% confidence interval of the arithmetic mean

. .

3 Upper 90% confidence interval of the arithmetic mean

.

4 Standard deviation of the arithmetic mean

5 Coefficient of variation, in percent

Table 5. Summary statistics for second order drainage basins investigated in the Powder River Basin Coal Field identified in Classification Stratum C.

<u>Stratum</u> <u>C</u> n = 44	Basin Area (miles²)	Basin Length (miles)	Basin Perimeter (miles)	Basin Relief (feet)	Main Channel Length (miles)	Valley Length (miles)	Total Channel Length (miles)	Used Relief (feet)	Relief Ratio (ft./mile)	Channel Slope (ft./ft.)	Sinuosity	Drainage Density (miles/ miles ²)
Mean ¹	1.41	1.77	5.69	203.86	1.99	1.78	3.56	99.32	132.39	0.017	1.10	2.85
Lower 90% C.L. ²	1.08	1.55	4.97	186.10	1.64	1.49	2.82	90.73	118.00	0.015	1.08	2.63
Upper 90% C.L. ³	1.74	2.00	6.41	221.63	2.33	2.07	4.29	107.91	146.77	0.019	1.11	3.07
S.D.4	1.30	0.89	2.84	70.09	1.36	1.13	2.90	33.91	56.77	0.008	0.05	0.87
C.V.(%) ^s	92	50	50	34	68	64	82	34	43	46	5	31
Median	0.90	1.58	4.68	197.50	1.54	1.42	2.81	100.00	122.97	0.016	1.09	2.70
Minimum	0.25	0.63	2.61	70.00	0.58	0.58	0.97	30.00	43.17	0.004	1.01	1.16
Maximum	6.85	4.22	15.28	405.00	7.39	6.17	15.03	200.00	304.35	0.035	1.26	4.90
Range	6.60	3.59	12.66	335.00	6.80	5.59	14.06	170.00	261.18	0.031	0.25	3.73

1 Arithmetic mean

2 Lower 90% confidence interval of the arithmetic mean

. .

3 Upper 90% confidence interval of the arithmetic mean

.

4 Standard deviation of the arithmetic mean

5 Coefficient of variation, in percent

Table 5. (cont). Summary statistics for second order drainage basins investigated in the Powder River Basin Coal Field identified in Classification Stratum C.

<u>Stratum</u> <u>C</u> n = 44	No. of Firsts	Rugged- ness Number	Circularity Ratio	AGI#1 [†] (miles²x ft./ft.)	AGI#2 ^{††} (miles²x ft./ft.)	AGI#3 [‡] (miles²x ft./ft.)	AGI#4 ^{‡‡} (miles²x feet)	Maximum Elevation (feet)	Minimum Elevation (feet)	Maximum Used Relief (feet)	Minimum Used Relief (feet)
Mean ¹	3	0.11	0.51	0.025	0.018	0.028	305.68	4811.80	4608.00	4720.20	4620.90
Lower 90% C.L. ²	3	0.10	0.48	0.022	0.015	0.024	225.66	4769.60	4558.00	4674.90	4572.10
Upper 90% C.L. ³	4	0.13	0.54	0.028	0.020	0.031	385.70	4854.00	4657.90	4765.60	4669.70
S.D.4	2	0.06	0.11	0.011	0.008	0.015	315.75	166.54	197.09	179.04	192.67
C.V. (%) ^s	58	54	22	45	47	56	103	3	4	4	4
Median	3	0.10	0.51	0.026	0.016	0.022	177.60	4862.50	4595.00	4715.00	4610.00
Minimum	2	0.03	0.30	0.007	0.004	0.006	35.05	4435.00	4250.00	4370.00	4270.00
Maximum	10	0.31	0.74	0.060	0.048	0.074	1645.00	5090.00	4890.00	5005.00	4900.00
Range	8	0.28	0.44	0.053	0.044	0.067	1609.95	655.00	640.00	635.00	630.00

.

1 Arithmetic mean

2 Lower 90% confidence interval of the arithmetic mean

3 Upper 90% confidence interval of the arithmetic mean

.

. .

4 Standard deviation of the arithmetic mean

5 Coefficient of variation, in percent

Table 6. Results of analysis of variance and multiple comparisons performed on second-order drainage basins comparing means of strata A, B, and C.

Differences between stratum detected using a Scheffe's test (alpha=0.10) are indicated with a '+'. Comparisons for which no significant difference was found are marked with a '-'.

The p-value for the Analysis of variance is given under ANOVA P-value. All tests performed with the SAS software package on data transformed to the Log base 10.

Variable/ Units	ANOVA P-Value	Strata A v. B	Strata A v. B	Strata B v. C
Area (mile ²)	0.0006	-	+	+
Basin Length (miles)	0.0091	_		+
Main Channel Length (miles)	0.0340	-	-	+
Total Channel Length (miles)	0.0286	-	-	+
Number of 1st order streams	0.0741	_	-	+
Basin Relief (ft)	0.0001	+	+	-
Used Relief (ft)	0.0004	+	+	-
Relief Ratio (ft/mile)	0.0001	+	+	+
Channel Slope (ft/ft)	0.0002	-	+	+
Drainage Density (miles/mile ²)	0.0001	-	+	+
Sinuosity (unitless)	0.0515	+	-	-
Circularity (unitless)	0.4777	-	-	-

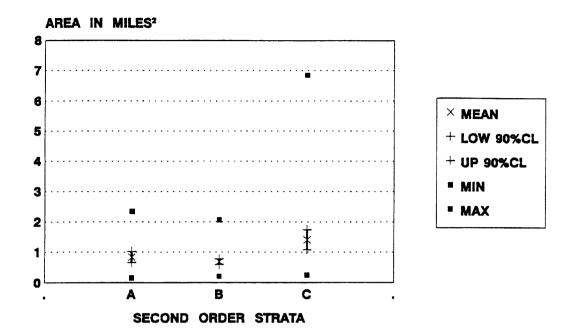


Figure 2. Means, 90% confidence limits, and ranges of area in each of the three strata of second order drainage basins in the Powder River Basin. (LOW 90%CL = Lower 90% confidence limit, UP 90%CL = Upper 90% confidence limit.)

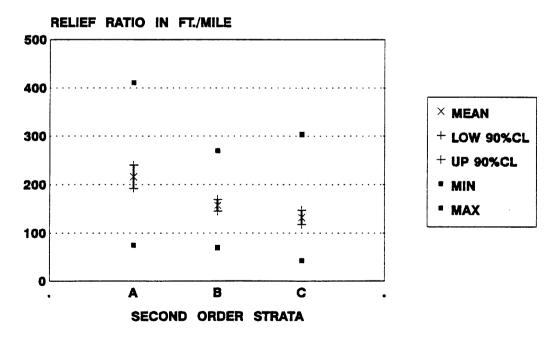


Figure 3. Means, 90% confidence limits, and ranges of relief ratio in each of the three strata of second order drainage basins in the Powder River Basin. (LOW 90%CL = Lower 90% confidence limit, UP 90%CL = Upper 90% confidence limit.)

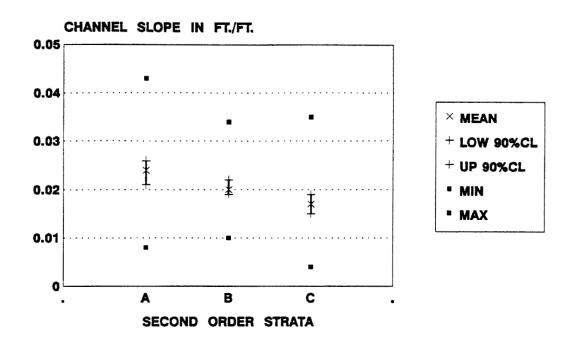


Figure 4. Means, 90% confidence limits, and ranges of channel slope in each of the three strata of second order drainage basins in the Powder River Basin. (LOW 90%CL = Lower 90% confidence limit, UP 90%CL = Upper 90% confidence limit.)

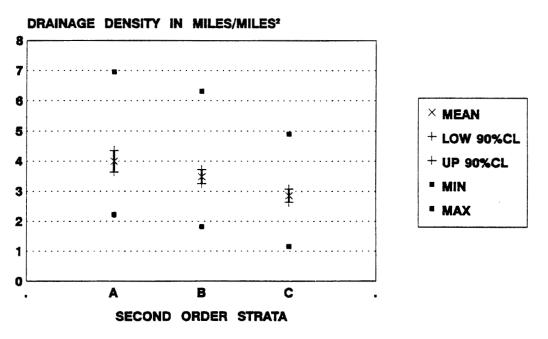


Figure 5. Means, 90% confidence limits, and ranges of drainage density in each of the three strata of second order drainage basins in the Powder River Basin. (LOW 90%CL = Lower 90% confidence limit, UP 90%CL = Upper 90% confidence limit.)

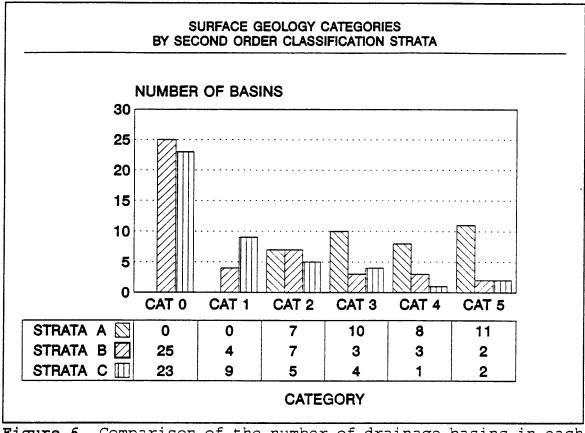


Figure 6. Comparison of the number of drainage basins in each surface geology category, in each strata, for investigated second order drainage basins in the Powder River Basin Coal Field.

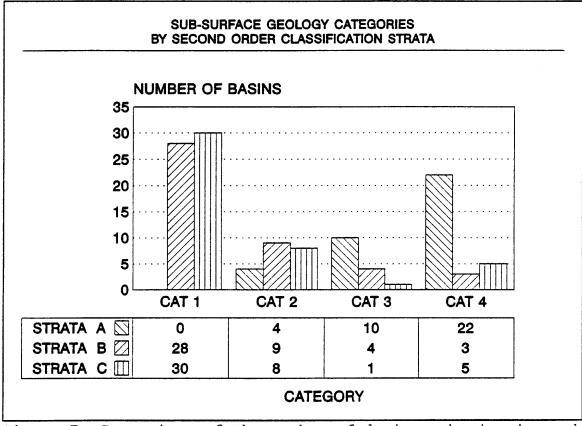
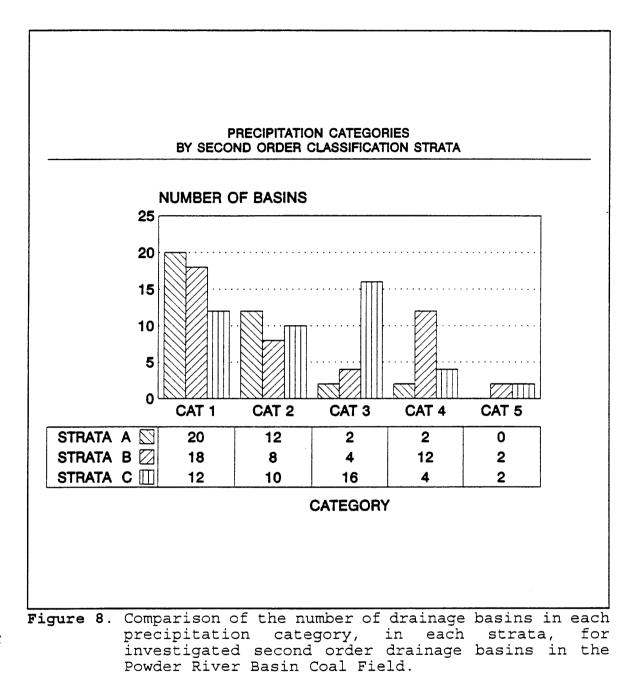



Figure 7. Comparison of the number of drainage basins in each geology category, in each strata, for investigated second order drainage basins in the Powder River Basin Coal Field.

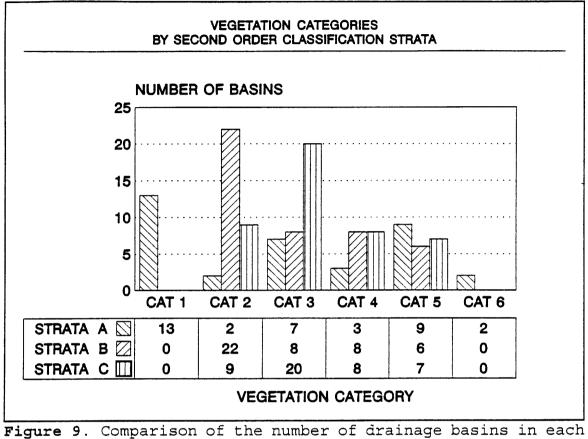
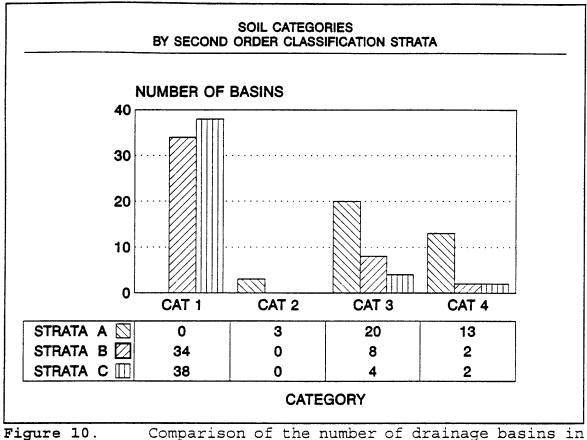



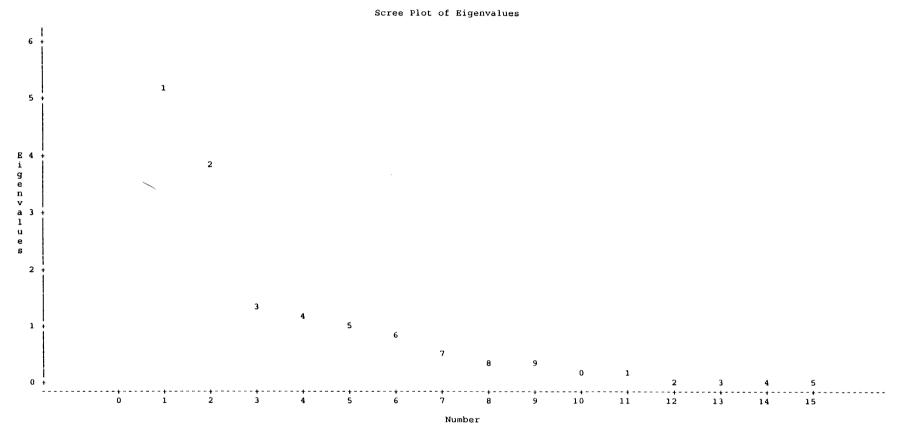
Figure 9. Comparison of the number of drainage basins in each vegetation category, in each strata, for investigated second order drainage basins in the Powder River Basin Coal Field.

ure 10. Comparison of the number of drainage basins in each soil category, in each strata, for investigated second order drainage basins in the Powder River Basin Coal Field.

APPENDIX V

FIRST ORDER CLASSIFICATION STRATA STATISTICS, CORRELATION TABLES, ANALYSIS OF VARIANCE RESULTS, AND CATEGORICAL DATA PRESENTATION

Table 1. Results of the Principal Components Analysis of the first order drainage basins. Eigenvalues, and the proportion of the variability within the data set that they represent are presented. Factors 1,2, and 3 were retained for the cluster analysis. These first three components retain 74.14 % of the variability contained within 18 variables used in the principal components analysis.


Initial Factor Method: Principal Components

. .

		Pri	or Communali	ty Estimat	es: ONE			
	Eigen	values of th	ne Correlatio	n Matrix:	Total = 15	Average = 1		
	1	2	3	4	5	6	7	8
Eigenvalue	5.2067	3.8436	1.3684	1.2088	0.9708	0.7975	0.4895	0.3909
Difference	1.3631	2.4752	0.1596	0.2380	0.1733	0.3080	0.0986	0.0704
Proportion	0.3471	0.2562	0.0912	0.0806	0.0647	0.0532	0.0326	0.0261
Cumulative	0.3471	0.6034	0.6946	0.7752	0.8399	0.8931	0.9257	0.9518
	9	10	11	12	13	14	15	
Eigenvalue	0.3205	0.1846	0.1119	0.0557	0.0298	0.0131	0.0078	
Difference	0.1359	0.0727	0.0562	0.0259	0.0167	0.0053		
Proportion	0.0214	0.0123	0.0075	0.0037	0.0020	0.0009	0.0005	
Cumulative	0.9731	0.9854	0.9929	0.9966	0.9986	0.9995	1.0000	

6 factors will be retained by the NFACTOR criterion.

304

Initial Factor Method: Principal Components

. .

Figure 1. A scree plot of the eigenvalues of each principal component derived from the first order basin principal component analysis, plotted against the number of the component. The break in slope at 3 indicates a possible point at which the selection of components should cease.

305

Table 2. The coefficients derived for the first 6 principal components, from the first order drainage basins. The values in each Factor column were used as coefficients of the corresponding variable for the indicated principal component. The coefficients and variables were combined in a linear equation to derive the values later put into the cluster analysis.

Initial Factor Method: Principal Components

. . .

Standardized Scoring Coefficients

	FACTOR 1	FACTOR2	FACTOR 3	FACTOR4	FACTOR5	FACTOR6
AREA	-0.14425	0.13801	-0.02336	0.19742	-0.08190	-0.11465
BL	-0.10328	0.19848	0.05764	-0.08441	-0.05969	-0.01746
PER	-0.13783	0.17277	-0.00004	0.03305	-0.06233	0.01071
BASREL	0.11370	0.17486	0.10476	0.20844	-0.06764	-0.00742
MCL	-0.09224	0.21346	0.04783	-0.03367	0.04694	0.02319
USEDREL	0.07556	0.20765	0.10845	0.15889	-0.05173	-0.22271
RR	0.17108	0.03551	0.06573	0.23924	0.00411	-0.04818
RUG	0.15738	0.11783	0.11694	-0.07583	0.10192	0.11418
CHANSLOP	0.16179	0.03640	0.09904	0.20394	-0.05850	-0.30136
SIN	-0.04157	0.02846	-0.02362	0.31419	0.86024	0.35967
DD	0.15067	0.02878	0.07099	-0.34442	0.19999	0.15112
CIRC	-0.03267	-0.14725	-0.06340	0.52580	-0.04926	-0.34483
PRECIP	-0.02855	-0.07125	0.41855	0.29316	-0.29955	0.67492
SURFGEO	0.06704	0.06681	-0.40855	0.09706	-0.34679	0.59658
SSGEO	0.05848	0.05735	-0.56777	0.12835	0.01360	0.03705

Table 3.	Summary statistics for first order drainage basins investigated in the Powder River
	Basin Coal Field identified in Classification Stratum A.

<u>Stratum</u> <u>A</u> n = 54	Basin Area (miles²)	Basin Length (miles)	Basin Perimeter (miles)	Basin Relief (feet)	Main Channel Length (miles)	Valley Length (miles)	Used Relief (feet)	Relief Ratio (ft./mile)	Channel Slope (ft./ft.)	Sinuosity	Drainage Density (miles/ miles ²)
Mean ¹	0.23	0.80	2.26	199.54	0.71	0.67	122.31	272.21	0.035	1.06	3.93
Lower 90% C.L. ²	0.18	0.72	2.06	183.76	0.63	0.60	110.98	247.55	0.032	1.05	3.58
Upper 90% C.L. ³	0.27	0.87	2.45	215.32	0.79	0.74	133.65	296.86	0.039	1.06	4.27
S.D. ⁴	0.18	0.32	0.86	69.26	0.34	0.31	49.75	108.23	0.014	0.03	1.53
C.V.(%) ⁵	81	40	38	35	48	47	41	40	39	3	39
Median	0.17	0.72	2.08	187.50	0.60	0.58	110.00	264.53	0.034	1.05	3.43
Minimum	0.05	0.43	1.09	40.00	0.34	0.33	20.00	68.83	0.011	1.01	1.55
Maximum	0.92	1.84	4.47	340.00	1.76	1.61	260.00	554.86	0.068	1.14	7.54
Range	0.87	1.41	3.38	300.00	1.42	1.28	240.00	486.03	0.057	0.13	6.00

1 Arithmetic mean

2 Lower 90% confidence interval of the arithmetic mean

. .

3 Upper 90% confidence interval of the arithmetic mean

4 Standard deviation of the arithmetic mean

5 Coefficient of variation, in percent

307

Table 3. (cont.) Summary statistics for first order drainage basins investigated in the Powder River Basin Coal Field identified in Classification Stratum A.

<u>Stratum</u> <u>A</u> n = 54	Rugged- ness Number	Circularity Ratio	Length of Overland Flow (miles)	AGI#1 [†] (miles ² x ft./ft.)	AGI#2 ^{tt} (miles²x ft./ft.)	AGI#3 [‡] (miles ² x ft./ft.)	AGI#4 ^{‡‡} (miles²x feet)	Maximum Elevation (feet)	Minimum Elevation (feet)	Maximum Used Relief (feet)	Minimum Used Relief (feet)
Mean ¹	0.15	0.50	0.15	0.011	0.007	0.010	45.56	4746.90	4550.60	4673.00	4550.60
Lower 90% C.L. ²	0.13	0.48	0.13	0.009	0.006	0.008	35.38	4676.00	4473.10	4599.50	4473.10
Upper 90% C.L. ³	0.17	0.52	0.16	0.012	0.008	0.011	55.73	4817.70	4628.20	4746.40	4628.20
S.D.⁴	0.09	0.09	0.06	0.006	0.004	0.006	44.66	311.18	340.20	322.42	340.20
C.V. (%) ⁵	56	17	40	52	60	58	98	7	7	7	7
Median	0.14	0.51	0.15	0.009	0.006	0.008	31.47	4915.00	4715.00	4817.50	4715.00
Minimum	0.01	0.29	0.07	0.003	0.002	0.002	5.59	4195.00	3920.00	4025.00	3920.00
Maximum	0.38	0.66	0.32	0.034	0.023	0.032	253.70	5105.00	4950.00	5070.00	4950.00
Range	0.37	0.37	0.26	0.031	0.021	0.030	248.11	910.00	1030.00	1045.00	1030.00

1 Arithmetic mean

2 Lower 90% confidence interval of the arithmetic mean

. .

3 Upper 90% confidence interval of the arithmetic mean

4 Standard deviation of the arithmetic mean

5 Coefficient of variation, in percent

<u>Stratum</u> <u>B</u> n = 66	Basin Area (miles²)	Basin Length (miles)	Basin Perimeter (miles)	Basin Relief (feet)	Main Channel Length (miles)	Valley Length (miles)	Used Relief (feet)	Relief Ratio (ft./mile)	Channel Slope (ft./ft.)	Sinuosity	Drainage Density (miles/ miles ²)
Mean ¹	0.20	0.73	2.12	143.86	0.63	0.59	89.17	206.05	0.029	1.06	3.59
Lower 90% C.L. ²	0.18	0.69	1.99	134.18	0.57	0.54	82.31	190.73	0.027	1.05	3.32
Upper 90%C.L. ³	0.22	0.77	2.25	153.55	0.68	0.64	96.03	221.36	0.031	1.06	3.86
\$.D.4	0.11	0.20	0.62	47.16	0.25	0.23	33.40	74.57	0.010	0.04	1.31
C.V.(%) ⁵	55	27	29	33	41	39	37	36	34	4	36
Median	0.17	0.74	2.01	145.00	0.59	0.58	87.50	194.63	0.028	1.04	3.34
Minimum	0.05	0.41	1.03	40.00	0.24	0.24	25.00	43.77	0.006	1.00	1.30
Maximum	0.55	1.24	3.84	320.00	1.64	1.40	200.00	401.95	0.055	1.19	8.28
Range	0.50	0.83	2.81	280.00	1.40	1.16	175.00	358.18	0.049	0.18	6.97

.

Table 4. Summary statistics for first order drainage basins investigated in the Powder River Basin Coal Field identified in Classification Stratum B.

1 Arithmetic mean

2 Lower 90% confidence interval of the arithmetic mean

. .

3 Upper 90% confidence interval of the arithmetic mean

4 Standard deviation of the arithmetic mean

5 Coefficient of variation, in percent

Table 4. (cont). Summary statistics for first order drainage basins investigated in the Powder River Basin Coal Field identified in Classification Stratum B.

<u>Stratum</u> <u>B</u>	Rugged- ness Number	Circularity Ratio	Length of Overland Flow (mile	AGI#1 [†] (miles ² * ft./ft.)	AGI#2 ^{††} (miles ^{2*} ft./ft.)	AGI#3 [‡] (miles ² * ft./ft.)	AGI#4 ^{‡‡} (miles ² * feet)	Maximum Elevation (feet)	Minimum Elevation (feet)	Maximum Used Relief (feet)	Minimum Used Relief (feet)
n = 66			s)	1.711.)	11.711.)	11./11.j	1001	(ieel)	(ieer)	(ieer)	(ieer)
Mean ¹	0.10	0.54	0.16	0.008	0.005	0.007	28.29	4871.10	4727.20	4816.40	4727.20
Lower 90% C.L. ²	0.09	0.52	0.15	0.008	0.005	0.006	24.74	4839.80	4695.40	4784.70	4695.40
Upper 90% C.L. ³	0.11	0.56	0.17	0.009	0.005	0.008	31.84	4902.30	4759.00	4848.10	4759.00
S .D. ⁴	0.06	0.11	0.06	0.003	0.002	0.003	17.27	152.21	154.69	154.28	154.69
C.V. (%) ⁵	58	20	38	35	39	48	61	3	3	3	3
Median	0.09	0.55	0.15	0.008	0.005	0.007	25.08	4902.50	4755.00	4850.00	4755.00
Minimum	0.02	0.32	0.06	0.003	0.001	0.002	4.73	4440.00	4270.00	4365.00	4270.00
Maximum	0.34	0.76	0.38	0.015	0.012	0.017	75.81	5130.00	4980.00	5055.00	4980.00
Range	0.32	0.44	0.32	0.012	0.011	0.015	71.08	690.00	710.00	690.00	710.00

.

1 Arithmetic mean

2 Lower 90% confidence interval of the arithmetic mean

. .

3 Upper 90% confidence interval of the arithmetic mean

.

4 Standard deviation of the arithmetic mean

5 Coefficient of variation, in percent

Table	5.	Summary statistics for first order drainage basins investigated in the Powder River
		Basin Coal Field identified in Classification Stratum C.

<u>Stratum</u> <u>C</u> n = 66	Basin Area (miles²)	Basin Length (miles)	Basin Perimeter (miles)	Basin Relief (feet)	Main Channel Length (miles)	Valley Length (miles)	Used Relief (feet)	Relief Ratio (ft./mile)	Channel Slope (ft./ft.)	Sinuosity	Drainage Density (miles/ miles ²)
Mean ¹	0.25	0.76	2.32	133.86	0.62	0.59	84.32	191.51	0.028	1.06	3.06
Lower 90% C.L. ²	0.21	0.71	2.16	122.34	0.57	0.54	75.68	171.01	0.025	1.05	2.79
Upper 90% C.L. ³	0.28	0.82	2.48	145.39	0.68	0.65	92.96	212.00	0.031	1.06	3.34
S.D.4	0.16	0.26	0.77	56.10	0.28	0.26	42.08	99.78	0.015	0.04	1.35
C.V.(%) ⁵	65	34	33	42	45	45	50	52	52	4	44
Median	0.21	0.70	2.13	130.00	0.56	0.53	77.50	167.47	0.027	1.05	2.84
Minimum	0.05	0.40	1.13	40.00	0.25	0.24	20.00	59.76	0.008	1.00	0.96
Maximum	0.91	1.54	4.81	285.00	1.56	1.42	210.00	481.92	0.067	1.17	7.70
Range	0.87	1.15	3.68	245.00	1.31	1.18	190.00	422.16	0.059	0.17	6.73

1 Arithmetic mean

2 Lower 90% confidence interval of the arithmetic mean

. .

3 Upper 90% confidence interval of the arithmetic mean

.

4 Standard deviation of the arithmetic mean

5 Coefficient of variation, in percent

Table 5. (cont). Summary statistics for first order drainage basins investigated in the Powder River Basin Coal Field identified in Classification Stratum C.

<u>Stratum</u> <u>C</u> n = 66	Rugged- ness Number	Circularity Ratio	Length of Overland Flow (mile s)	AGI#1 [†] (miles ² * ft./ft.)	AGI#2 ^{††} (miles ² * ft./ft.)	AGI#3 [‡] (miles ² * ft./ft.)	AGI#4 ^{‡‡} (miles ² * feet)	Maximum Elevation (feet)	Minimum Elevation (feet)	Maximum Used Relief (feet)	Minimum Used Relief (feet)
Mean ¹	0.08	0.54	0.20	0.009	0.006	0.007	31.94	4802.30	4668.80	4751.90	4667.60
Lower 90% C.L. ²	0.07	0.52	0.18	0.008	0.005	0.007	27.41	4767.80	4631.60	4715.50	4630.60
Upper 90% C.L. ³	0.10	0.57	0.22	0.010	0.007	0.008	36.48	4836.90	4706.00	4788.30	4704.60
S.D.4	0.06	0.11	0.09	0.005	0.004	0.004	22.10	168.13	181.07	177.27	180.03
C.V. (%) ⁵	77	20	46	49	67	50	69	4	4	4	4
Median	0.07	0.54	0.18	0.009	0.005	0.007	24.05	4855.00	4687.50	4792.50	4687.50
Minimum	0.02	0.32	0.07	0.001	0.001	0.001	2.74	4435.00	4300.00	4405.00	4300.00
Maximum	0.39	0.83	0.52	0.025	0.028	0.021	100.20	5090.00	4930.00	5050.00	4930.00
Range	0.37	0.52	0.45	0.023	0.026	0.020	97.46	655.00	630.00	645.00	630.00

1 Arithmetic mean

2 Lower 90% confidence interval of the arithmetic mean

. .

3 Upper 90% confidence interval of the arithmetic mean

.

4 Standard deviation of the arithmetic mean

5 Coefficient of variation, in percent

Table 6. Results of analysis of variance and multiple comparisons performed on first-order drainage basins comparing means of strata A, B, and C.

Differences between strata detected using a Scheffe's test (alpha=0.10) are indicated with a '+'. Comparisons for which no significant difference was found are marked with a '-'.

The p-value for the Analysis of variance is given under ANOVA P-value.

All tests performed with the SAS software package on data transformed to the Log base 10.

Variable/ Units	ANOVA P-Value	Strata A v. B	Strata A v. C	Strata B v. C
Area (mile ²)	0.2053	-	-	-
Basin Length (miles)	0.6633	-	-	-
Main Channel Length (miles)	0.2280	-	-	-
Basin Relief (ft)	0.0001	+	+	-
Used Relief (ft)	0.0001	+	+	-
Relief Ratio (ft/mile)	0.0001	+	+	-
Channel Slope (ft/ft)	0.0021	+	+	-
Drainage Density (miles/mile ²)	0.0010	-	+	+
Sinuosity (unitless)	0.9992	-	-	-
Circularity (unitless)	0.1238	-	-	- ·

ţ

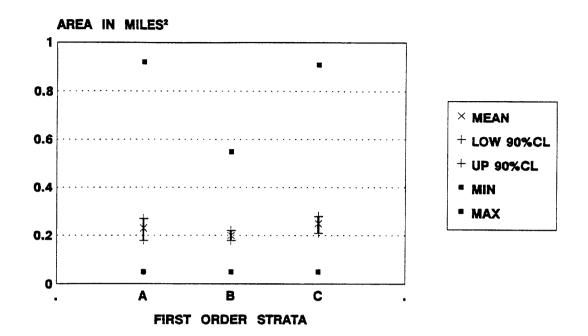


Figure 2. Means, 90% confidence limits, and ranges of area in each of the three strata of first order drainage basins in the Powder River Basin. (LOW 90%CL = Lower 90% confidence limit, UP 90%CL = Upper 90% confidence limit.)

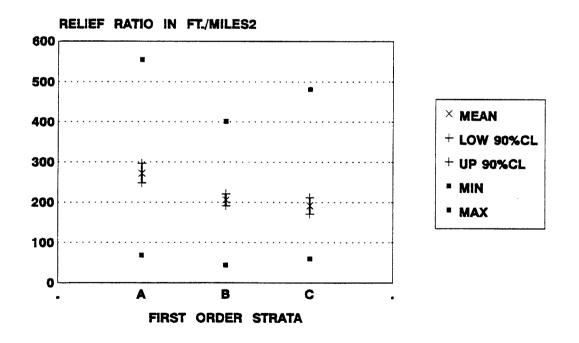


Figure 3. Means, 90% confidence limits, and ranges of relief ratio in each of the three strata of first order drainage basins in the Powder River Basin. (LOW 90%CL = Lower 90% confidence limit, UP 90%CL = Upper 90% confidence limit.)

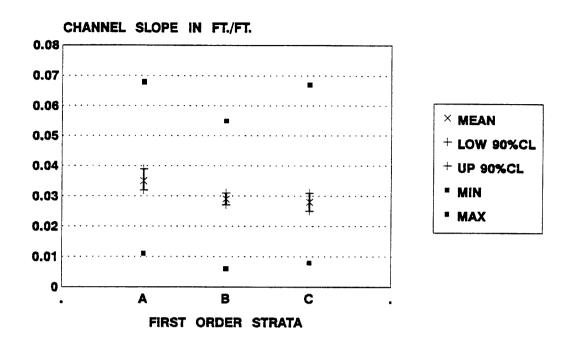


Figure 4. Means, 90% confidence limits, and ranges of channel slope in each of the three strata of first order drainage basins in the Powder River Basin. (LOW 90%CL = Lower 90% confidence limit, UP 90%CL = Upper 90% confidence limit.)

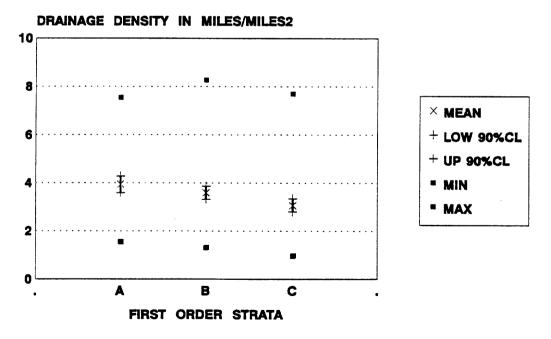


Figure 5. Means, 90% confidence limits, and ranges of drainage density in each of the three strata of first order drainage basins in the Powder River Basin. (LOW 90%CL = Lower 90% confidence limit, UP 90%CL = Upper 90% confidence limit.)

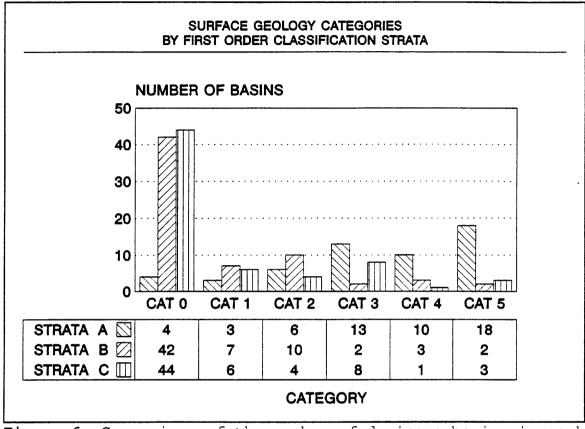


Figure 6. Comparison of the number of drainage basins in each subsurface geology category, in each strata, for investigated first order drainage basins in the Powder River Basin Coal Field.

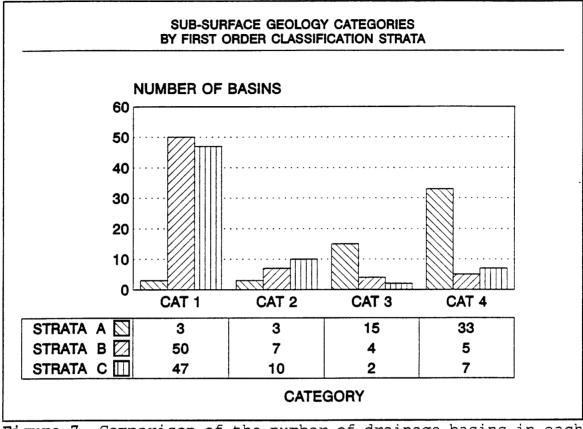


Figure 7. Comparison of the number of drainage basins in each geology category, in each strata, for investigated first order drainage basins in the Powder River Basin Coal Field.

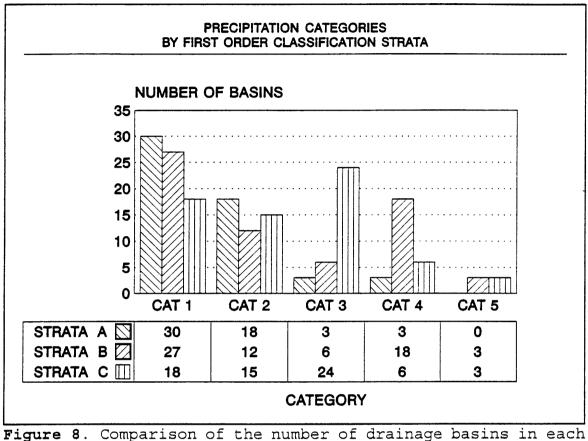


Figure 8. Comparison of the number of drainage basins in each precipitation category, in each strata, for investigated first order drainage basins in the Powder River Basin Coal Field.

:

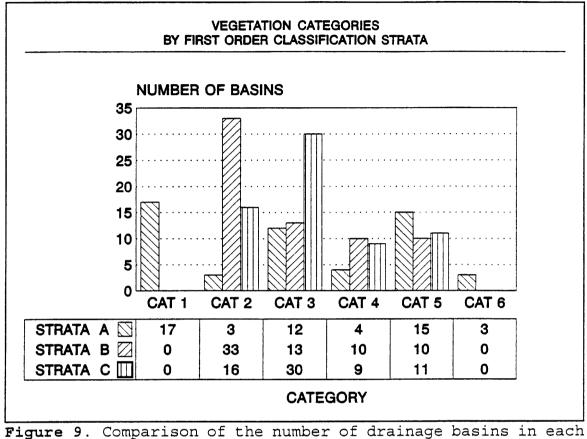
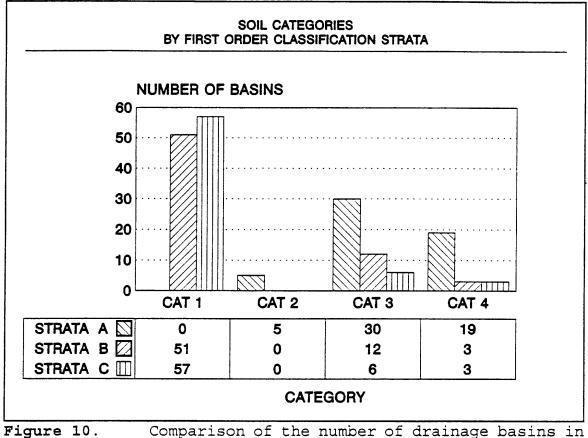
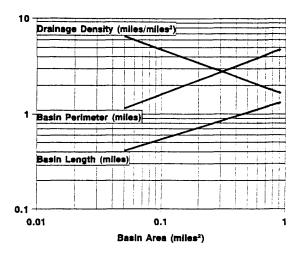
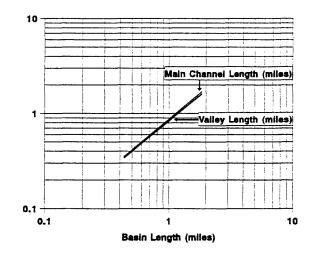


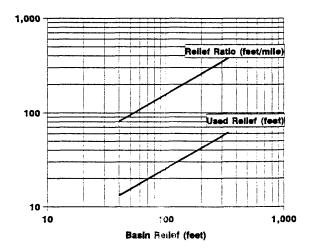
Figure 9. Comparison of the number of drainage basins in each vegetation category, in each strata, for investigated first order drainage basins in the Powder River Basin Coal Field.

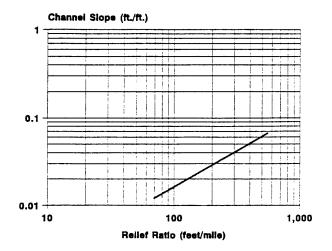
:

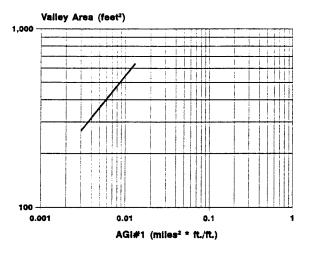


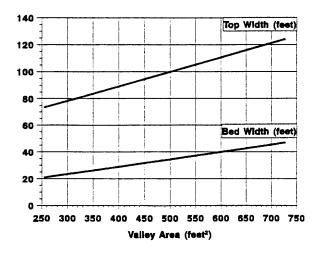

Figure 10. Comparison of the number of drainage basins in each soil category, in each strata, for investigated first order drainage basins in the Powder River Basin Coal Field.

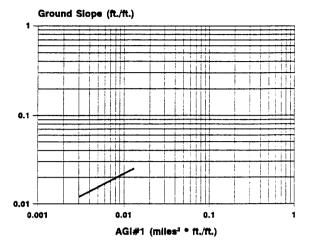

1

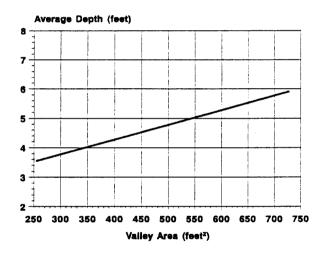

APPENDIX A-1


STRATA "A" - FIRST ORDER

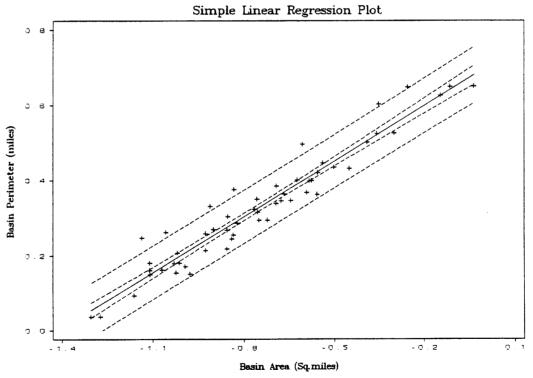

Description of Contents	Page
Geomorphic Relationships in Graph Format	322 - 324
Simple and Multiple Linear Regression Output Tables and Simple Linear Regression Plots with 90% Confidence Belts	325 - 339
Descriptive Statistics by Study Reach and by Bank	340 - 346
Cross-Section Plots by Study Site and Study Reach	347 - 356
Longitudinal Profiles by Study Reach	357 - 357
Raw Field Data	359 - 360
Representative Photographs	361 - 363



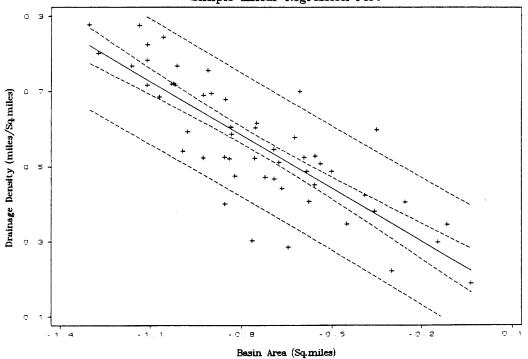




:

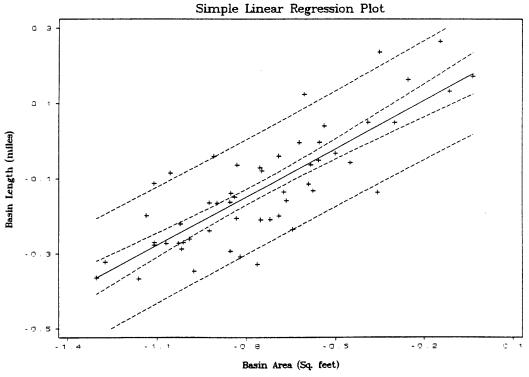


:

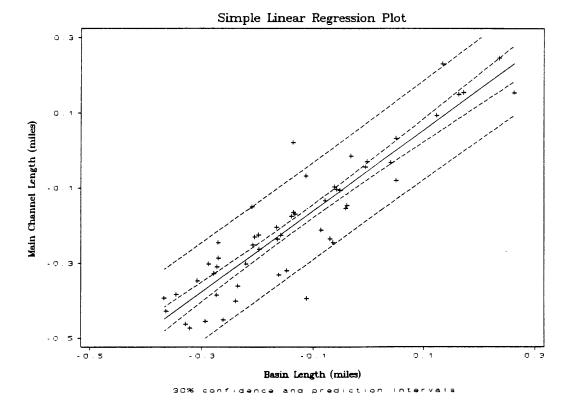

UNWEIGHTED L	EAST SQ	UARES :	LINEAR	REGRES	SION (OF BASIN	PERIM	ETER
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	Т	Р
CONSTANT BA		9772 9401	-	.01564 .01937	_	44.61 25.51		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.926 0.924				SQUARE VIATION	(MSE)	0.00174 0.04175
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 52 53	1.13 0.09 1.22	063	1.13		650.54	0.00	00
CASES INCLUD	ED 54	MISSI	NG CAS	ES 0				

Strata "A" first order regression output for basin perimeter versus basin area.

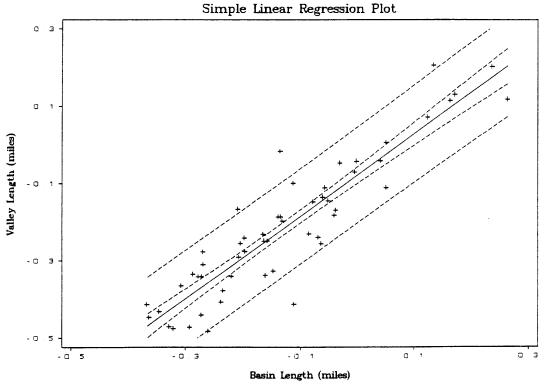
UNWEIGHTED L	EAST SQ	UARES LI	NEAR	REGRESSI	ON OF DRAIN	AGE DENS	SITY
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STUDENT'S	т	P
CONSTANT BA	0.2 -0.4	0664 7228		.03652 .04523	5.66 -10.44		0000 0000
R-SQUARED ADJUSTED R-S	QUARED	0.6771 0.6709			1EAN SQUARE DEVIATION	(MSE)	0.00950 0.09749
SOURCE	DF	SS		MS	F	P	
REGRESSION RESIDUAL TOTAL	1 52 53	1.0362 0.4942 1.5305	5	1.0362 0.0095		0.0000	-
CASES INCLUD	ED 54	MISSING	CASE	ES 0			


Strata "A" first order regression output for drainage density versus basin area.

Simple Linear Regression Plot


UNWEIGHTED I	least sq	UARES L	INEAR	REGRES	SION	OF BASIN	LENGT	H
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	Т	Р
CONSTANT BA		9496 2865	-	.03394 .04204		5.74 10.20		0.0000 0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.6666 0.6602				N SQUARE EVIATION	(MSE)	0.00821 0.09061
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 52 53	0.853 0.426 1.280	97	0.85		103.96	0.00	00
CASES INCLU	DED 54	MISSIN	G CASI	ES O				

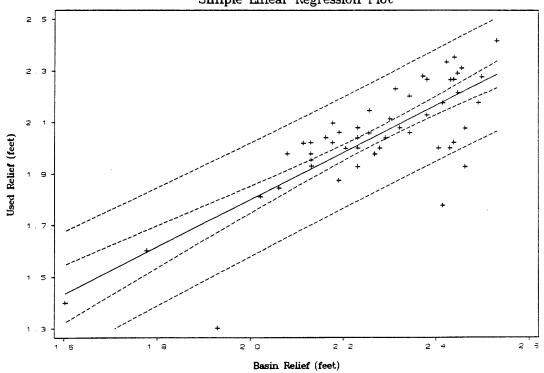
Strata "A" first order regression output for basin length versus basin area.


UNWEIGHTED I	LEAST SQ	UARES	LINEAR	REGRES	SION OF	MAIN	CHANNEL	LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	БТ	P
CONSTANT BL		5311 7638		01352		-3.93 15.92		0003 0000
R-SQUARED ADJUSTED R-S	SQUARED	0.829 0.826		RESID. STANDA	MEAN S RD DEVI	-	(MSE)	0.00585 0.07651
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 52 53	1.48 0.30 1.78	439	1.48	• • • –	53.47	0.0000	
CASES INCLU	DED 54	MISSI	NG CASE	IS 0				

Strata "A" first order regression output for main channel length versus basin length.

UNWEIGHTED L	EAST SQ	UARES LI	NEAR	REGRES	SION	OF VALLE	Y LEN	GTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	5 T	Ρ
CONSTANT BL		7757 6713	-	.01292 .06461		-6.01 16.52		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.8399 0.8368		RESID. STANDA		N SQUARE EVIATION	(MSE)	0.00535 0.07312
SOURCE	DF	SS		MS		F	I	9
REGRESSION RESIDUAL TOTAL	1 52 53	1.4583 0.2779 1.7363	9	1.45 0.00		272.79	0.00	000
CASES INCLUD	ED 54	MISSING	CASE	ES O				

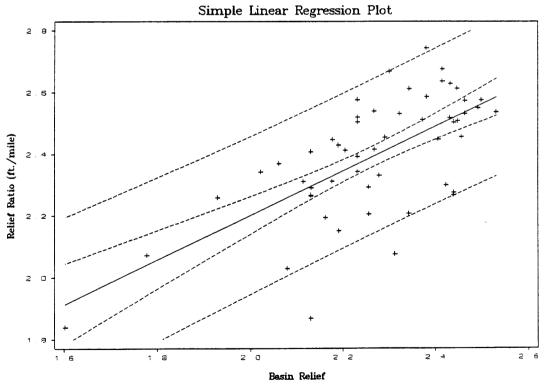
Strata "A" first order regression output for valley length versus basin length.



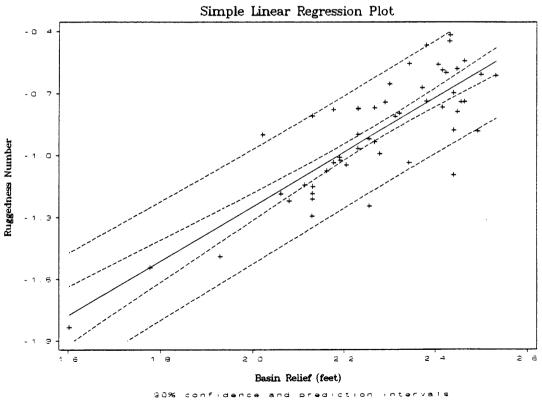
UNWEIGHTED	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF BASIN	RELIEF	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	Т	P
CONSTANT BA BL	-0.5	3080 1518 7699	0.	07173 12035 22924		28.31 -4.28 5.13	Ο.	0000 0001 0000
R-SQUARED ADJUSTED R-	SQUARED	0.3410 0.3151				SQUARE VIATION	(MSE)	0.02244 0.14979
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	2 51 53	0.5920 1.1442 1.7362	8	0.290		13.19	0.0000	
CASES INCLU	DED 54	MISSING	CASE	S O				

Strata "A" first order regression output of basin relief versus basin area and basin length.

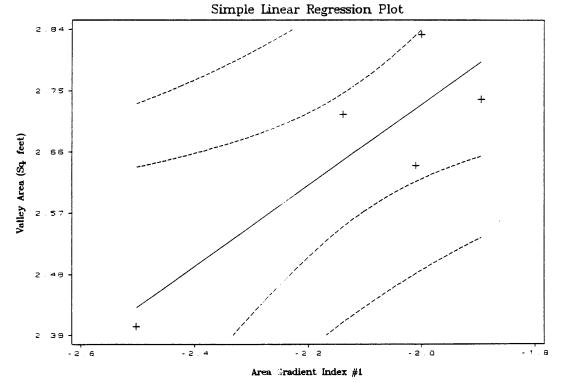
UNWEIGHTED L	east sq	UARES LI	NEAR	REGRES	SION	OF USED	RELIEF	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	:	STUDENT' S	Т	P
CONSTANT BR	-0.0 0.9	3109 1567		22079 09704	-	-0.14 9.44		0.8886 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.6313 0.6242				N SQUARE EVIATION	(MSE)	0.01635 0.12786
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 52 53	1.4558 0.8501 2.3059	5	1.45		89.04	0.000	00
CASES INCLUD	ED 54	MISSING	CASE	<u>s o</u>				


Strata "A" first order regression output for used relief versus basin relief.

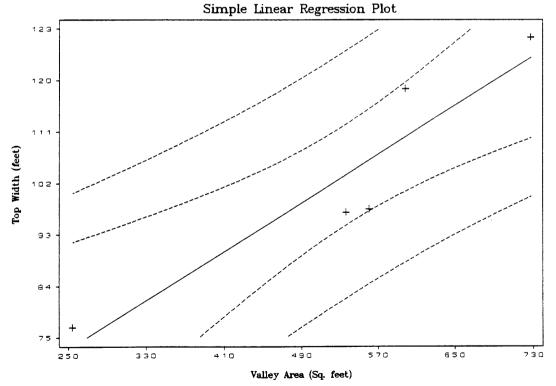
Simple Linear Regression Plot


		······						
UNWEIGHTED L	east SQ	UARES LI	NEAR	REGRES	SION	I OF RELIE	F RATI	0
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	S T	P
CONSTANT BR		5627 2280	-	.25648 .11272		2.95 6.41		0.0048 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.4416 0.4308				N SQUARE	(MSE)	0.02206 0.14853
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 52 53	0.9071 1.1472 2.0543	0	0.90 0.02		41.12	0.00	00
CASES INCLUD	ED 54	MISSING	CASI	ES O				

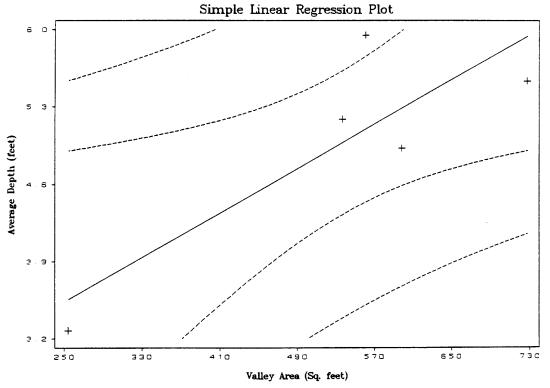
Strata "A" first order regression output for relief ratio versus basin relief.


UNWEIGHTED I	LEAST SQ	UARES L	INEAR	REGRES	SION OF	RUGGE	DNESS	NUMBER
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	dent's	БТ	Ρ
CONSTANT BR		9834 2519		27791 12214		14.03 10.85		0.0000 0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.6936 0.6877			MEAN S RD DEVI.	~	(MSE)	0.02590 0.16094
SOURCE	DF	SS		MS		F	F	>
REGRESSION RESIDUAL TOTAL	1 52 53	3.049 1.346 4.396	93	3.04 0.02		17.72	0.00	000
CASES INCLU	DED 54	MISSIN	G CASE	S 0				

Strata "A" first order regression output for ruggedness number versus ______basin relief.

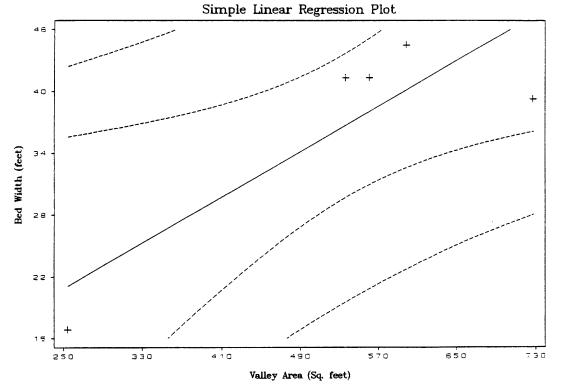

UNWEIGHTED L	EAST SQ	UARES L	INEAR	REGRES	SION OI	F VALLE	Y AREA	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	ST	JDENT'S	5 T	P
CONSTANT AGI1		91713 59357		41489 19577		9.44 3.03		0025 0562
R-SQUARED ADJUSTED R-S	QUARED	0.7539 0.6719		RESID. STANDAJ		SQUARE IATION	(MSE)	0.00858 0.09265
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 3 4	0.0789 0.025 0.1046	75	0.07		9.19	0.0562	- -
CASES INCLUD	ED 5	MISSING	CASES	1				

Strata "A" first order regression output for valley area versus area gradient index #1.

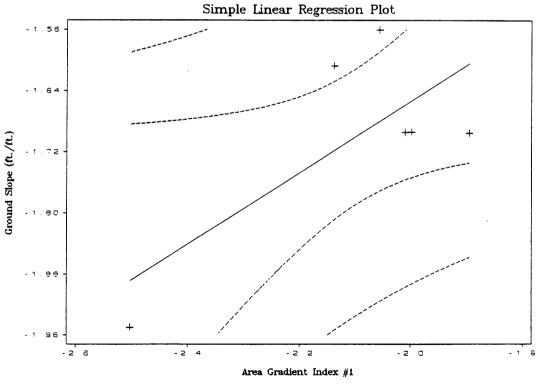

UNWEIGHTED L	EAST SQ	UARES	LINEA	R REGRESS	SION (OF TOP W	IDTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STI	D ERROR	ST	rudent' s	T	P
CONSTANT A		2594 0684		13.4772 0.02418	_	3.43 4.42		0415
R-SQUARED ADJUSTED R-S	QUARED	0.866 0.822				SQUARE /IATION	(MSE)	70.4815 8.39533
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 3 4	1376 211. 1588	445	1376 70.48		19.53	0.0215	-
CASES INCLUD	ED 5	MISSIN	G CASI	ES 1				

Strata "A" first order regression output for top width versus valley area.

UNWEIGHTED I	LEAST SQ	UARES LI	INEAR	REGRES	SION	OF AVERA	GE DEP	ТН
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	Т	Р
CONSTANT A		7848 0503		99207 00178	-	2.30 2.83		0.1053 0.0663
R-SQUARED ADJUSTED R-S	QUARED	0.7272 0.6363				N SQUARE EVIATION	(MSE)	0.38191 0.61799
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 3 4	3.0547 1.1457 4.2004	4	3.05 0.38		8.00	0.06	63
CASES INCLUE	ED 5	MISSING	CASES	3 1				


Strata "A" first order regression output for average depth versus valley area.

337


UNWEIGHTED L	EAST SQ	UARES L	INEAR	REGRES	SION	OF BE	D WI	IDTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	i	STUDEN	T'S	Ť	P
CONSTANT A		0693		.6906 01918			66 89		0.5590 0.0631
R-SQUARED ADJUSTED R-S	QUARED	0.7355 0.6473		RESID. STANDAI		_		(MSE)	44.3490 6.65950
SOURCE	DF	SS		MS		F	I.	P	
REGRESSION RESIDUAL TOTAL	1 3 4	369.93 133.04 502.96	17	369. 44.3		8.	34	0.06	31
CASES INCLUD	ED 5	MISSING	CASES	1					

Strata "A" first order regression output of bed width versus valley area.

UNWEIGHTED I	LEAST SO	UARES LI	NEAR	REGRESS	SION	OF GROUN	ID SLOPE	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	T	P
CONSTANT		2043	0.	45277	-	-1.59	0.	1868
AGI1	0.4	6673	0.	21471		2.17	0.	0954
R-SQUARED ADJUSTED R-S	SQUARED	0.5416 0.4270				SQUARE	(MSE)	0.01043 0.10213
SOURCE	DF	SS		MS		F	P	
REGRESSION	1	0.0492	9	0.049	29	4.73	0.0954	
RESIDUAL	4	0.0417	3	0.010	43			
TOTAL	5	0.0910	2					
CASES INCLUE	DED 6	MISSING	CASES	6 0				

Strata "A" first order regression output for ground slope versus area gradient index #1.

BASIN ID 09D1	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4	4	4	4	4	4	2	2
MEAN	560.77	102.88	97.53	5.58	5.95	17.47	41.35	0.026
S.D.	243.14	49.45	50.46	0.77	1.05	11.91	16.90	0.012
C.V. (%)	43	48	52	14	18	68	41	47
MINIMUM	315.80	61.20	57.00	4.70	4.70	8.95	29.40	0.018
MAXIMUM	770.70	164.90	163.50	6.40	7.00	34.79	53.30	0.035
RANGE	454.90	103.70	106.50	1.70	2.30	25.83	23.90	0.017
								11
BASIN ID 47C2	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
47C2	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
47C2	(ft. ²)	PERIMETER (ft.) 3	WIDTH (ft.) 3	RADIUS 3	DEPTH (ft.) 3	RATIO 3	WIDTH (ft.) 4	SLOPE (ft/ft) 4
47C2 n MEAN	(ft. ²) 3 727.57	PERIMETER (ft.) 3 130.83	WIDTH (ft.) 3 127.50	RADIUS 3 5.37	DEPTH (ft.) 3 5.53	RATIO 3 23.60	WIDTH (ft.) 4 39.28	SLOPE (ft/ft) 4 0.021
47C2 n MEAN S.D.	(ft. ²) 3 727.57 347.13	PERIMETER (ft.) 3 130.83 22.49	WIDTH (ft.) 3 127.50 22.07	RADIUS 3 5.37 1.59	DEPTH (ft.) 3 5.53 1.63	RATIO 3 23.60 3.29	WIDTH (ft.) 4 39.28 18.45	SLOPE (ft/ft) 4 0.021 0.007
47C2 n MEAN S.D. C.V. (%)	(ft. ²) 3 727.57 347.13 48	PERIMETER (ft.) 3 130.83 22.49 17	WIDTH (ft.) 3 127.50 22.07 17	RADIUS 3 5.37 1.59 30	DEPTH (ft.) 3 5.53 1.63 29	RATIO 3 23.60 3.29 14	WIDTH (ft.) 4 39.28 18.45 47	SLOPE (ft/ft) 4 0.021 0.007 32

High bank reach means reach for Strata "A" first orders.

. .

.

,

BASIN ID 64A2	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	8	8	8	8	8	8	4	4
MEAN	536.54	100.27	96.99	4.98	5.19	22.43	41.35	0.023
S.D.	400.14	23.84	22.44	2.60	2.80	10.74	4.54	0.013
C.V. (%)	75	24	23	52	54	48	11	58
MINIMUM	213.30	67.90	66.00	2.50	2.50	11.01	34.90	0.011
MAXIMUM	1377.90	143.40	135.90	9.60	10.10	45.16	45.30	0.041
RANGE	1164.60	75.50	69.90	7.10	7.60	34.15	10.40	0.030
r		1		r				1
BASIN ID 64B1	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
64B1	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
64B1	(ft. ²) 5	PERIMETER (ft.) 5	WIDTH (ft.) 5	RADIUS 5	DEPTH (ft.) 5	RATIO	WIDTH (ft.) 4	SLOPE (ft/ft) 4
64B1 n MEAN	(ft. ²) 5 598.00	PERIMETER (ft.) 5 121.38	WIDTH (ft.) 5 118.46	RADIUS 5 4.80	DEPTH (ft.) 5 4.92	RATIO 5 25.95	WIDTH (ft.) 4 44.45	SLOPE (ft/ft) 4 0.023
64B1 n MEAN S.D.	(ft. ²) 5 598.00 271.94	PERIMETER (ft.) 5 121.38 22.50	WIDTH (ft.) 5 118.46 22.35	RADIUS 5 4.80 1.73	DEPTH (ft.) 5 4.92 1.82	RATIO 5 25.95 6.80	WIDTH (ft.) 4 44.45 27.26	SLOPE (ft/ft) 4 0.023 0.011
64B1 n MEAN S.D. C.V. (%)	(ft. ²) 5 598.00 271.94 45	PERIMETER (ft.) 5 121.38 22.50 19	WIDTH (ft.) 5 118.46 22.35 19	RADIUS 5 4.80 1.73 36	DEPTH (ft.) 5 4.92 1.82 37	RATIO 5 25.95 6.80 26	WIDTH (ft.) 4 44.45 27.26 61	SLOPE (ft/ft) 4 0.023 0.011 49

BASIN ID 64B2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4	4	4	4	4	4	4	4
MEAN	254.15	77.90	76.85	3.28	3.28	23.46	16.88	0.012
S.D.	24.97	5.29	5.28	0.13	0.13	1.13	9.51	0.005
C.V. (%)	10	7	7	4	4	5	56	39
MINIMUM	218.30	70.80	69.80	3.10	3.10	22.52	10.60	0.005
MAXIMUM	274.80	83.60	82.60	3.40	3.40	25.03	31.00	0.016
RANGE	56.50	12.80	12.80	0.30	0.30	2.51	20.40	0.010

BASIN ID 47C2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	155.90	59.85	58.50	2.60	2.70	22.70
S.D.	28.14	5.30	5.23	0.71	0.71	7.88
C.V. (%)	18.05	8.86	8.94	27.20	26.19	34.73
MINIMUM	136.00	56.10	54.80	2.10	2.20	17.13
MAXIMUM	175.80	63.60	62.20	3.10	3.20	28.27
RANGE	39.80	7.50	7.40	1.00	1.00	11.15
BASIN ID 47C3	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
		PERIMETER	WIDTH		DEPTH	
47C3	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO
47C3	(ft. ²) 4.00	PERIMETER (ft.) 4.00	WIDTH (ft.) 4.00	RADIUS 4.00	DEPTH (ft.) 4.00	RATIO 4.00
47C3 n MEAN	(ft. ²) 4.00 129.82	PERIMETER (ft.) 4.00 42.05	WIDTH (ft.) 4.00 40.03	RADIUS 4.00 3.05	DEPTH (ft.) 4.00 3.20	RATIO 4.00 12.63
47C3 n MEAN S.D.	(ft. ²) 4.00 129.82 35.45	PERIMETER (ft.) 4.00 42.05 5.50	WIDTH (ft.) 4.00 40.03 4.94	RADIUS 4.00 3.05 0.51	DEPTH (ft.) 4.00 3.20 0.56	RATIO 4.00 12.63 1.21
47C3 n MEAN S.D. C.V. (%)	(ft. ²) 4.00 129.82 35.45 27.31	PERIMETER (ft.) 4.00 42.05 5.50 13.09	WIDTH (ft.) 4.00 40.03 4.94 12.35	RADIUS 4.00 3.05 0.51 16.61	DEPTH (ft.) 4.00 3.20 0.56 17.49	RATIO 4.00 12.63 1.21 9.61

Medium bank reach means for Strata "A" first orders.

. .

BASIN ID 64A2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	6.00	6.00	6.00	6.00	6.00	6.00
MEAN	9.98	10.98	10.20	0.82	0.88	11.59
S.D.	6.55	4.73	4.39	0.27	0.34	2.16
C.V. (%)	65.66	43.10	43.03	33.24	38.17	18.63
MINIMUM	2.20	5.30	5.00	0.40	0.40	9.25
MAXIMUM	18.10	17.70	16.80	1.10	1.20	15.27
RANGE	15.90	12.40	11.80	0.70	0.80	6.02
(
BASIN ID 64B1	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	3.00	3.00	3.00	3.00	3.00	3.00
MEAN	29.27	20.83	19.63	1.50	1.60	25.38
S.D.	17.85	3.07	3.93	0.96	1.06	30.20
C.V. (%)	60.98	14.72	20.02	64.29	66.14	118.99
			4.6 5.0	0.40	0.40	
MINIMUM	9.50	18.20	16.70	0.40	0.40	7.54

7.40

. .

RANGE

34.70

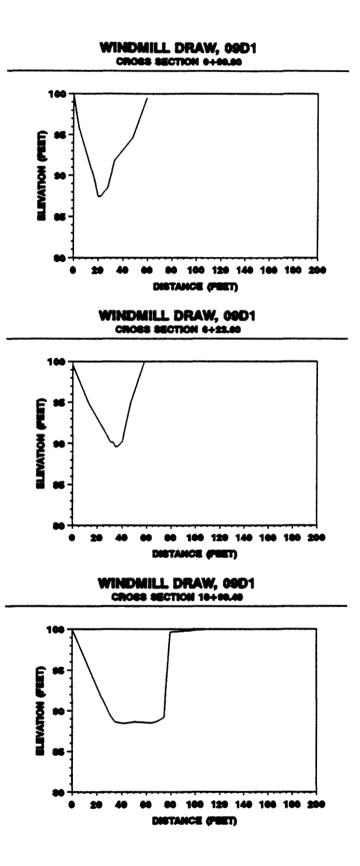
.

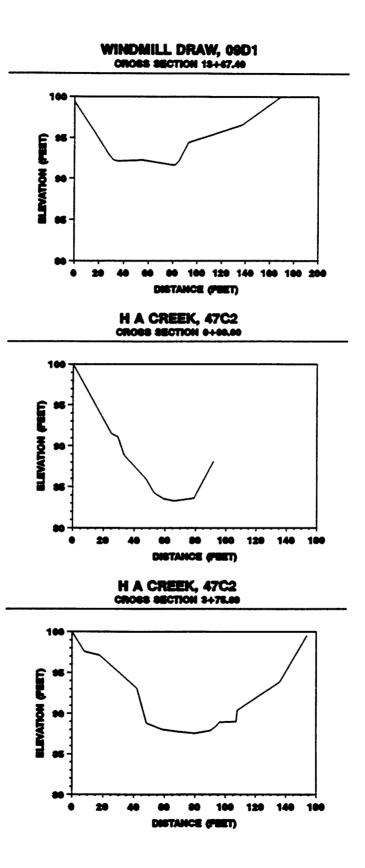
6.00

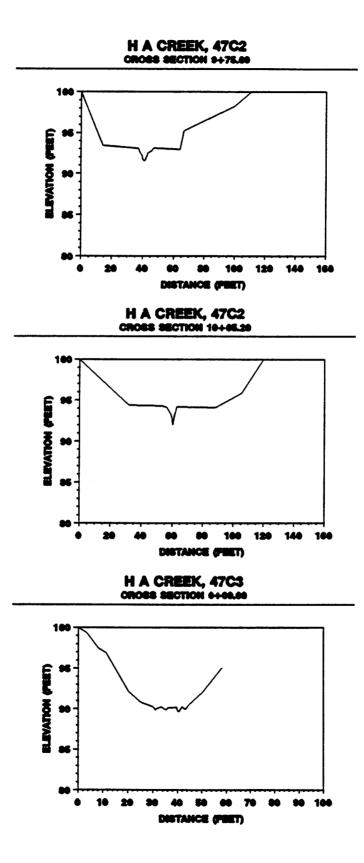
1.80

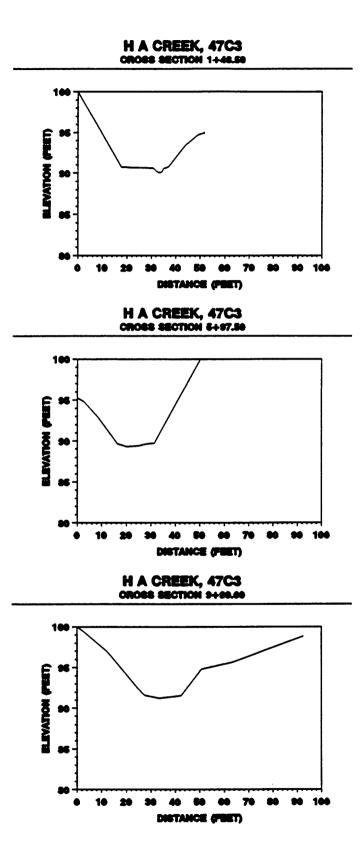
2.00

52.71

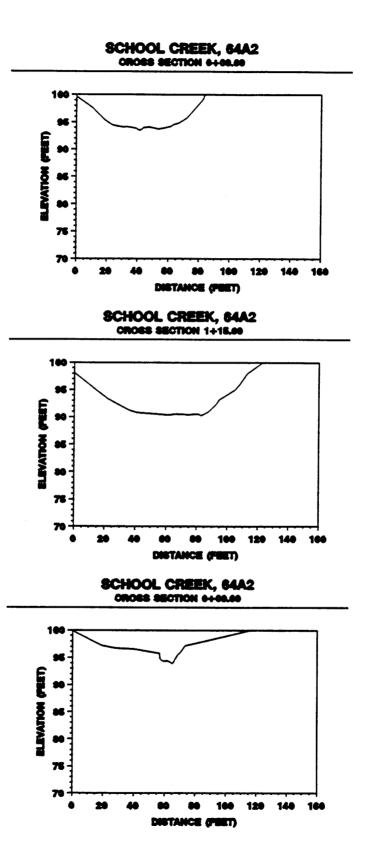

BASIN ID 09D1	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2	2	2	2	2	2
MEAN	1.70	6.00	5.85	0.20	0.20	25.17
S.D.	2.26	5.94	5.87	0.14	0.14	11.55
C.V. (%)	133.10	99.00	100.32	70.71	70.71	45.89
MINIMUM	0.10	1.80	1.70	0.10	0.10	17.00
MAXIMUM	3.30	10.20	10.00	0.30	0.30	33.33
RANGE	3.20	8.40	8.30	0.20	0.20	16.33
BASIN ID	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
BASIN ID 47C2		PERIMETER	WIDTH			
		PERIMETER	WIDTH		DEPTH	
47C2	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO
47C2	(ft. ²)	PERIMETER (ft.) 2	WIDTH (ft.) 2	RADIUS 2	DEPTH (ft.) 2	RATIO
47C2 n MEAN	(ft. ²) 2 7.50	PERIMETER (ft.) 2 30.15	WIDTH (ft.) 2 28.95	RADIUS 2 0.25	DEPTH (ft.) 2 0.25	RATIO 2 124.58
47C2 n MEAN S.D.	(ft. ²) 2 7.50 1.13	PERIMETER (ft.) 2 30.15 7.14	WIDTH (ft.) 2 28.95 6.72	RADIUS 2 0.25 0.07	DEPTH (ft.) 2 0.25 0.07	RATIO 2 124.58 62.11
47C2 n MEAN S.D. C.V. (%)	(ft. ²) 2 7.50 1.13 15.09	PERIMETER (ft.) 2 30.15 7.14 23.69	WIDTH (ft.) 2 28.95 6.72 23.20	RADIUS 2 0.25 0.07 28.28	DEPTH (ft.) 2 0.25 0.07 28.28	RATIO 2 124.58 62.11 49.85

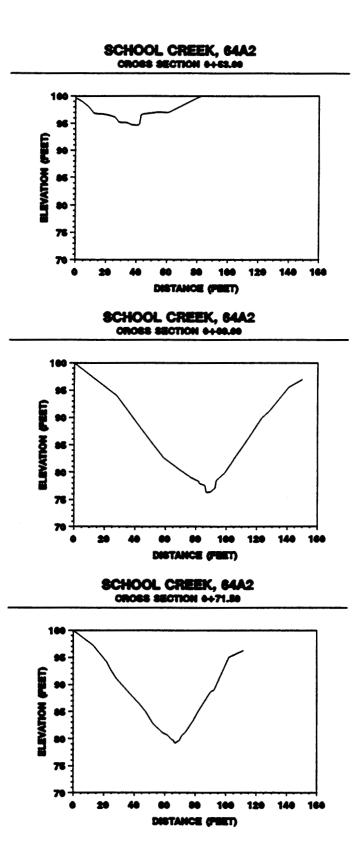

Low bank reach means for Strata "A" first orders.

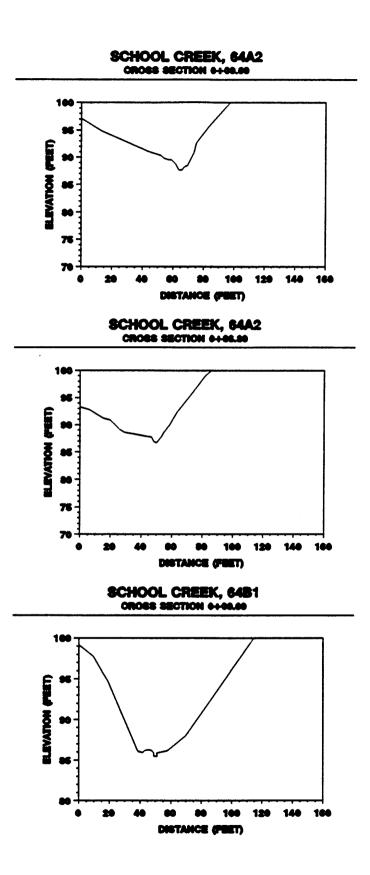

. .

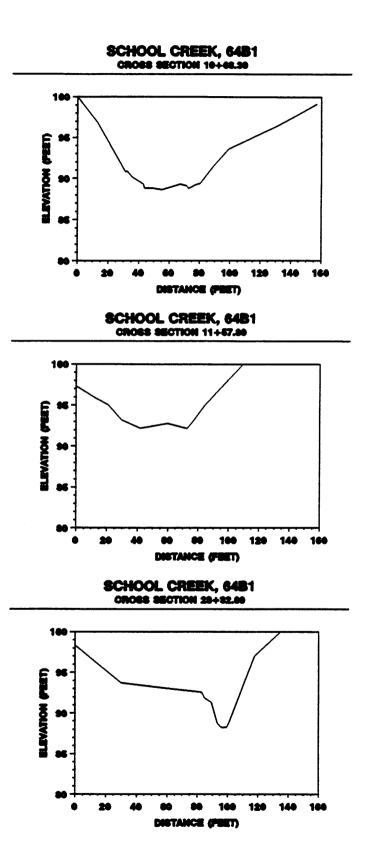

BASIN ID 64A2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2	2	2	2	2	2
MEAN	2.00	5.40	5.05	0.35	0.35	15.95
S.D.	1.56	1.84	1.63	0.21	0.21	5.02
C.V. (%)	77.78	34.05	32.21	60.61	60.61	31.48
MINIMUM	0.90	4.10	3.90	0.20	0.20	12.40
MAXIMUM	3.10	6.70	6.20	0.50	0.50	19.50
RANGE	2.20	2.60	2.30	0.30	0.30	7.10

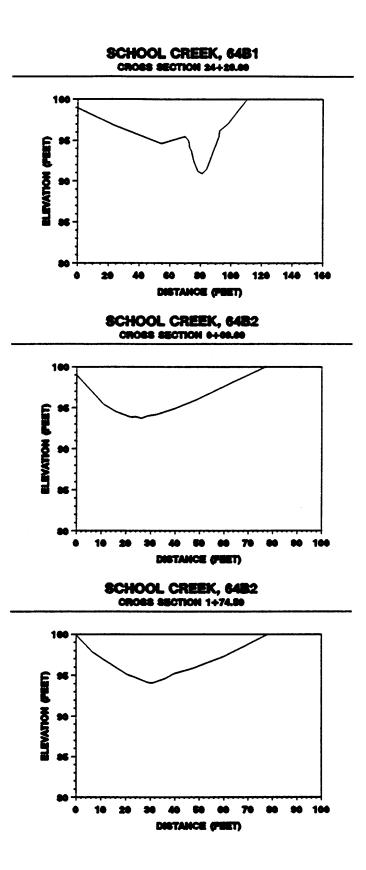
. .

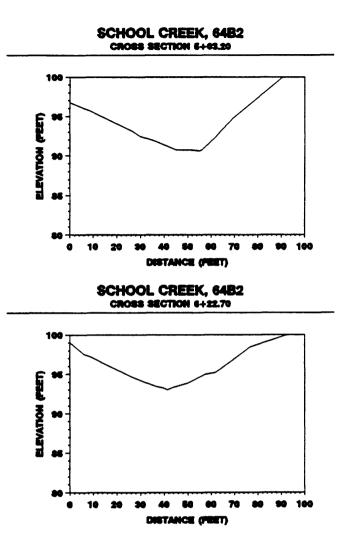


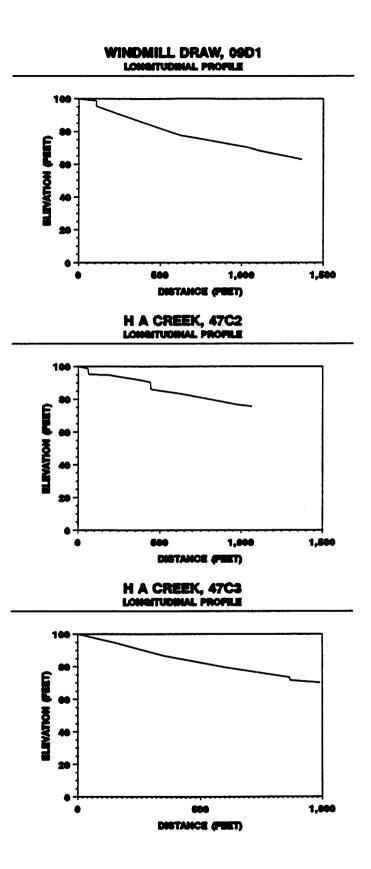


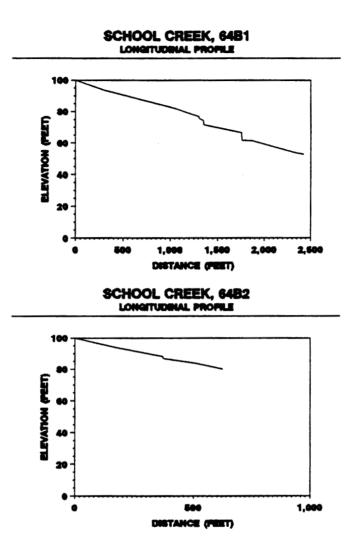





;

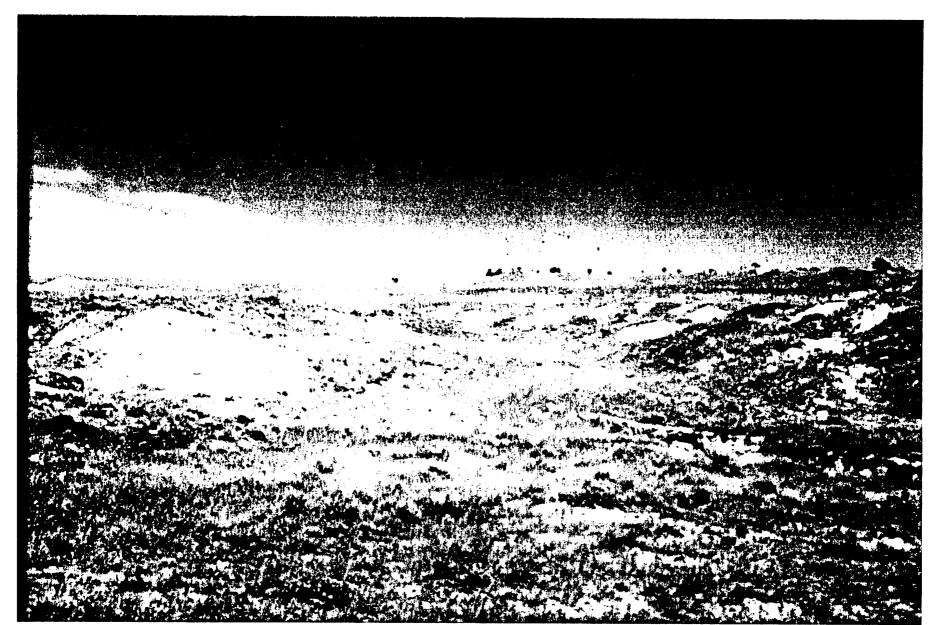






	identification.						
BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	BED WIDTH (feet)	
09D1	0+00.00	HIGH	387.70	59.10	6.60		
09D1	6+23.90	HIGH	315.80	57.00	5.50		
09D1	10+99.40	HIGH	770.70	110.50	7.00	29.40	
09D1	13+67.4	HIGH	768.90	163.50	4.70	53.30	
47C2	3+75.60	HIGH	1128.40	152.50	7.40	26.80	
47C2	9+75.60	HIGH	526.20	110.70	4.80	50.40	
47C2	10+65.20	HIGH	528.10	119.30	4.40	59.20	
64A2	0+00.00A	HIGH	348.60	83.40	4.20	34.90	
64A2	1+15.00A	HIGH	615.10	113.20	5.40	45.30	
64A2	0+00.00B	HIGH	284.40	112.90	2.50	43.50	
64A2	0+53.00B	HIGH	213.30	80.50	2.70	41.70	
64A2	0+00.00C	HIGH	1377.90	135.90	10.10		
64A2	0+71.50C	HIGH	828.60	95.80	8.70		
64A2	0+00.00D	HIGH	405.40	88.20	4.60		
64A2	0+66.80D	HIGH	219.00	66.00	3.30		
64B1	0+00.00	HIGH	835.10	111.30	7.50	15.20	
64B1	10+68.30	HIGH	905.20	153.60	5.90	38.40	
64B1	11+57.80	HIGH	317.60	96.00	3.30	43.20	
64B1	23+32.60	HIGH	592.10	125.50	4.70	81.00	
64B1	24+20.60	HIGH	340.00	105.90	3.20		
64B2	0+00.00	HIGH	218.30	69.80	3.10	13.80	
64B2	1+74.50	HIGH	257.10	77.50	3.30	31.00	
64B2	5+03.20	HIGH	266.40	77.50	3.40	12.10	
64B2	6+22.70	HIGH	274.80	82.60	3.30	10.60	

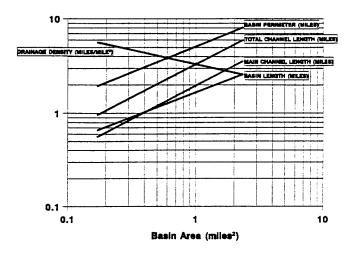
Strata "A" first order raw data by study reach, cross section, and bank identification.

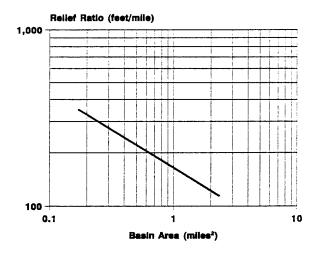

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)
47C2	0+00.00	MEDIUM	175.80	54.80	3.20
47C2	3+75.60	MEDIUM	136.00	62.20	2.20
47C3	0+00.00	MEDIUM	154.70	43.50	3.60
47C3	1+48.50	MEDIUM	128.10	42.20	3.00
47C3	5+97.50	MEDIUM	156.20	41.70	3.70
47C3	9+90.00	MEDIUM	80.30	32.70	2.50
64A2	0+00.00B	MEDIUM	15.50	12.80	1.20
64A2	0+53.00B	MEDIUM	18.10	16.80	1.10
64A2	0+00.00C	MEDIUM	13.10	11.10	1.20
64A2	0+71.50C	MEDIUM	7.50	9.50	0.80
64A2	0+00.00D	MEDIUM	2.20	5.00	0.40
64A2	0+66.80D	MEDIUM	3.50	6.00	0.60
64B1	10+68.30	MEDIUM	9.50	24.10	0.40
64B1	23+32.60	MEDIUM	34.10	16.70	2.00
64B1	24+20.60	MEDIUM	44.20	18.10	2.40
09D1	0+00.00	LOW	0.10	1.70	0.10
09D1	6+23.90	LOW	3.30	10.00	0.30
47C2	9+75.60	LOW	8.30	24.20	0.30
47C2	10+65.20	LOW	6.70	33.70	0.20
54A2	0+00.00	LOW	3.10	6.20	0.50
64A2	0+71.50	LOW	0.90	3.90	0.20

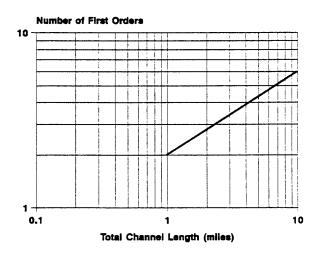
•

•

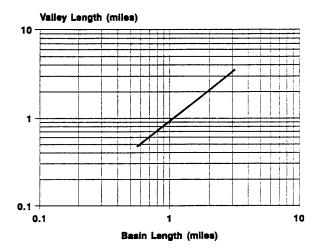
•

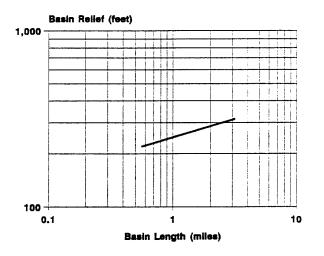


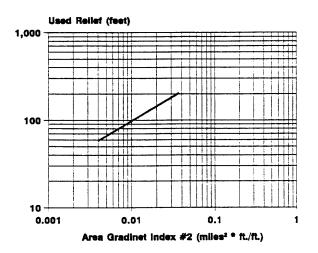


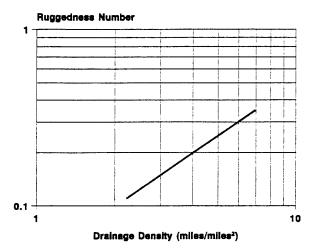

APPENDIX A-2

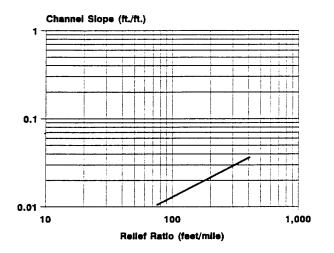
STRATA "A" - SECOND ORDER

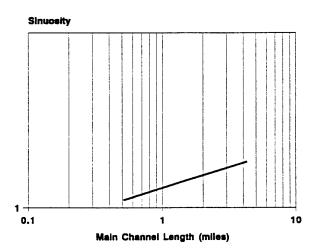

Description of Contents	Page
Geomorphic Relationships in Graph Format	365 - 369
Simple and Multiple Linear Regression Output Tables and Simple Linear Regression Plots with 90% Confidence Belts	370 - 391
Descriptive Statistics by Study Reach and by Bank	392 - 397
Cross-Section Plots by Study Site and Study Reach	398 - 404
Raw Field Data	405 - 406
Representation Photographs	407 - 409

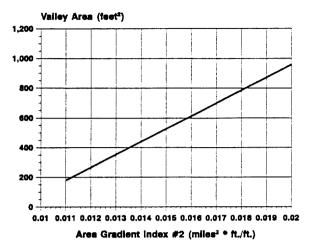


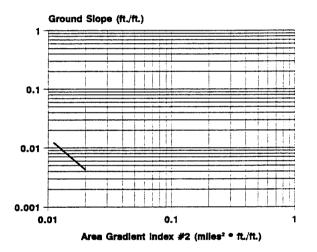


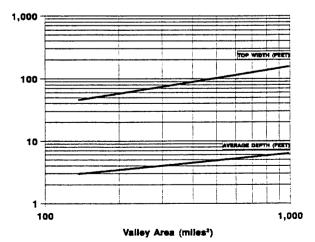


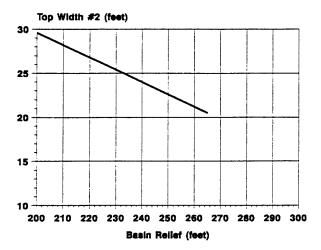

÷

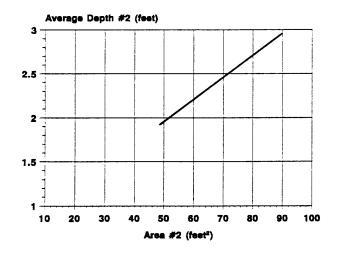


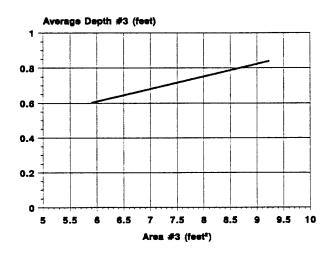






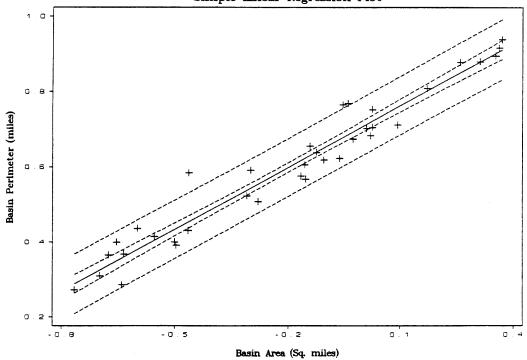






.

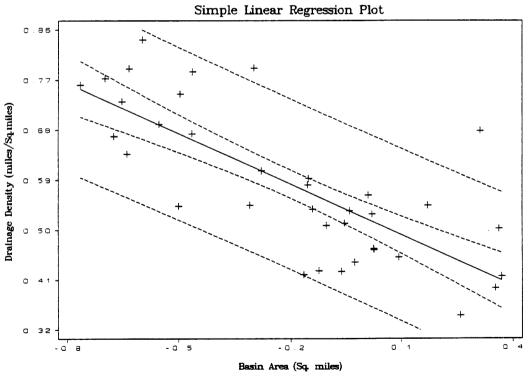
. :



-

UNWEIGHTED I	LEAST SQ	UARES LI	INEAR	REGRES	SION	OF BASIN	PERIN	IETER
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	т	P
CONSTANT BA		0849 4943		00868 02251	-	81.63 24.40		0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.9460 0.9444				N SQUARE EVIATION	(MSE)	0.00201 0.04484
SOURCE	DF	SS		MS		F	I)
REGRESSION RESIDUAL TOTAL	1 34 35	1.1974 0.0683 1.2658	37	1.19 0.00		595.54	0.00	000
CASES INCLUE	ED 36	MISSING	CASE	s o		<u></u>		

Strata "A" second order regression output for basin perimeter versus basin area.

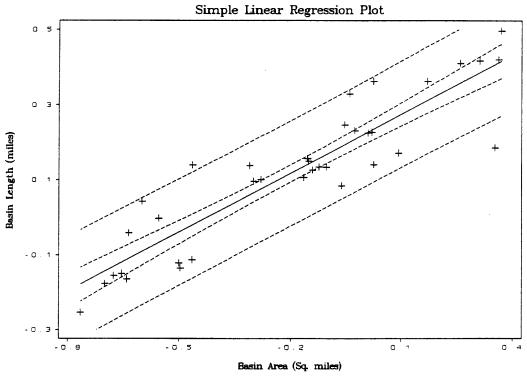


Simple Linear Regression Plot

90% confidence and prediction intervals

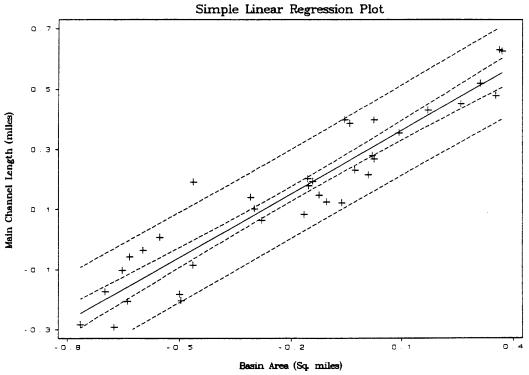
UNWEIGHTED 1	LEAST SQ	UARES	LINEAR	REGRES	SION OF	DRAIN	AGE DE	NSITY
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	P
CONSTANT BA		2157 0327		01731		30.13 -6.75		0.0000 0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.573 0.560		RESID. STANDAI		-	(MSE)	0.00800 0.08943
SOURCE	DF	SS		MS		F	₽	
REGRESSION RESIDUAL TOTAL	1 34 35	0.36 0.27 0.63	192	0.36		45.62	0.00	00
CASES INCLU	DED 36	MISSI	NG CASI	ES O				

Strata "A" second order regression output for drainage density versus basin area.

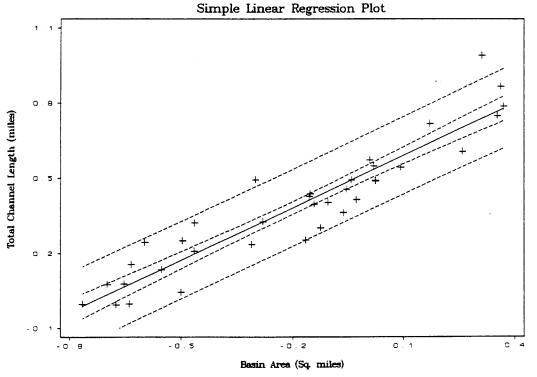


90% confidence and prediction intervals

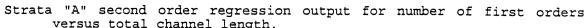
Figure 17

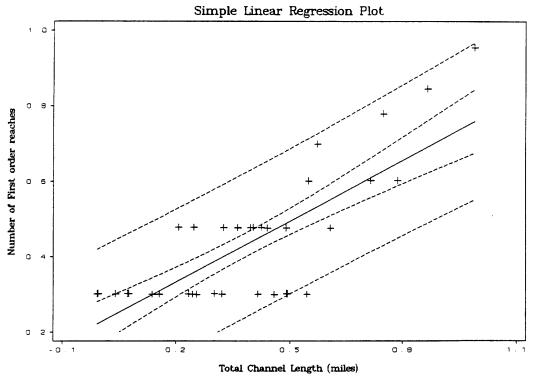

UNWEIGHTED	LEAST SÇ	UARES	LINEAR	REGRES	SION OF	BASIN	LENGTH	I
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	P
CONSTANT BA		2272 2403		.01585 .04111		14.05 12.75		0.0000
R-SQUARED ADJUSTED R-	SQUARED	0.827 0.821		RESID. STANDA	MEAN S RD DEVI	~	(MSE)	0.00670 0.08188
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 34 35	1.08 0.22 1.31	792	1.08		62.49	0.000	00
CASES INCLU	DED 36	MISSI	NG CASE	ES O				

Strata "A" second order regression output for basin length versus basin area.

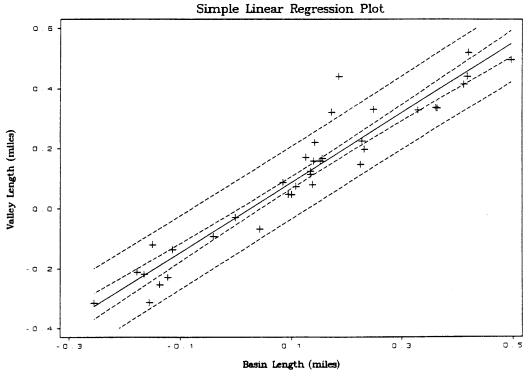

UNWEIGHTED	LEAST SQ	UARES	LINEAR	REGRES	SION OF	MAIN	CHANNEL	LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	зт	P
CONSTANT BA		9340 0529	-	.01676 .04347		17.51 16.23	-	.0000 .0000
R-SQUARED ADJUSTED R-S		0.885 0.882			MEAN S RD DEVI	-	(MSE)	0.00749 0.08657
SOURCE	DF	SS	;	MS		F	P	_
REGRESSION RESIDUAL TOTAL	1 34 35	1.97 0.25 2.22	482	1.97 0.00		63.28	0.000	2
CASES INCLU	DED 36	MISSI	NG CAS	ES O				

Strata "A" second order regression output for main channel length versus basin area.

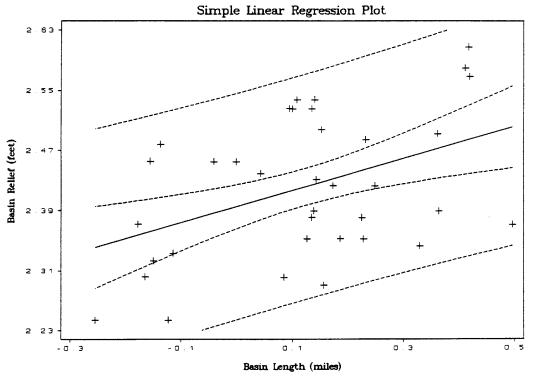



UNWEIGHTED I	EAST SQ	UARES	LINE	4R	REGRES	SION	OF	TOTAL	CHAN	NEL	LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	ST	۳D	ERROR		STUI	Dent's	т		P
CONSTANT BA		2157 9673			01731 04490		-	80.13 .5.52			0000
R-SQUARED ADJUSTED R-S	QUARED	0.876 0.872			RESID. STANDA			-	(MSE)		0.00800 0.08943
SOURCE	DF	SS	5		MS			F		P	
REGRESSION RESIDUAL TOTAL	1 34 35	1.92 0.27 2.19	192		1.92 0.00		24	0.77	0.0	000	
CASES INCLUD	ED 36	MISSI	NG CA	ASE	S 0						<u></u>

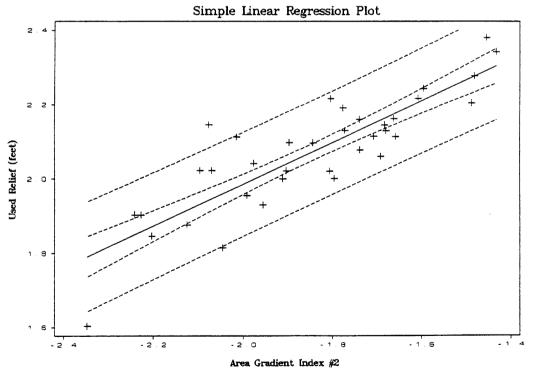
Strata "A" second order regression output for total channel length versus basin area.


versus	total c	nannel le	engtr	1.			
UNWEIGHTED 1	EAST SQ	UARES LI	NEAR	REGRESSI	ON OF NUMBE	R OF FIR	STS
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STUDENT'S	т	P
CONSTANT TCHL		2491 3946	-	.03462 .07569	6.50 7.13		0000 0000
R-SQUARED ADJUSTED R-S		0.5991 0.5873			EAN SQUARE	(MSE)	0.01259 0.11220
SOURCE	DF	SS		MS	F	P	
REGRESSION RESIDUAL TOTAL	1 34 35	0.6395 0.4279 1.0675	9	0.6395 0.0125		0.0000	
CASES INCLUD	ED 36	MISSING	CASI	ES O			<u></u>

UNWEIGHTED I	LEAST SQ	UARES :	LINEAR	REGRES	SION	I OF VALLE	IY LENGTI	H
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	5 T	P
CONSTANT BL		2948 6532	-	.01387 .06143		-2.13 18.97	-	.0409 .0000
R-SQUARED ADJUSTED R-S	QUARED	0.913 0.911				N SQUARE DEVIATION	(MSE)	0.00497 0.07051
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 34 35	1.78 0.16 1.95	902	1.78 0.00		359.83	0.0000	 D
CASES INCLU	DED 36	MISSI	NG CASI	ES O			· · · · · · · · · · · · · · · · · · ·	

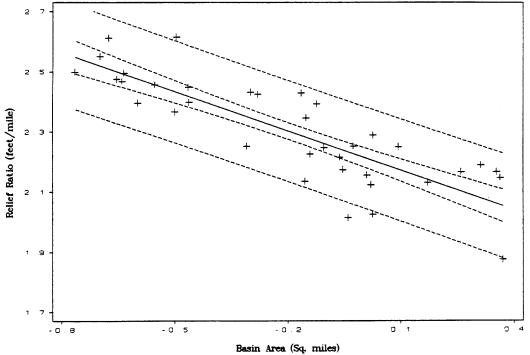

Strata "A" second order regression output for valley length versus basin length.

376

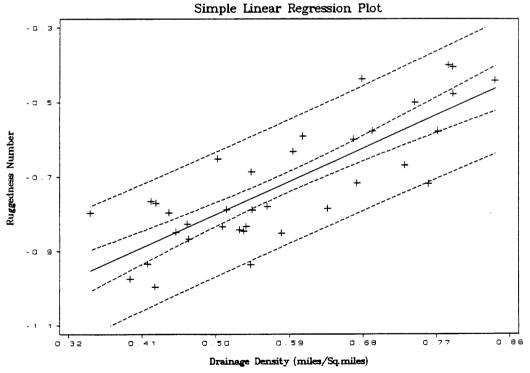

UNWEIGHTED I	EAST SQ	UARES LI	NEAR	REGRES	SION	OF BASIN	RELIE	F
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT BL		9525 1360		.01723 .07632		138.98 2.80		0.0000 0.0084
R-SQUARED ADJUSTED R-S	QUARED	0.1872 0.1633		RESID. STANDA		N SQUARE EVIATION	(MSE)	0.00767 0.08760
SOURCE	DF	SS		MS		F	₽	
REGRESSION RESIDUAL TOTAL	1 34 35	0.0601 0.2608 0.3209	9	0.06 0.00		7.83	0.008	34
CASES INCLUD	ED 36	MISSING	CASE	ES O			1.20 a. (

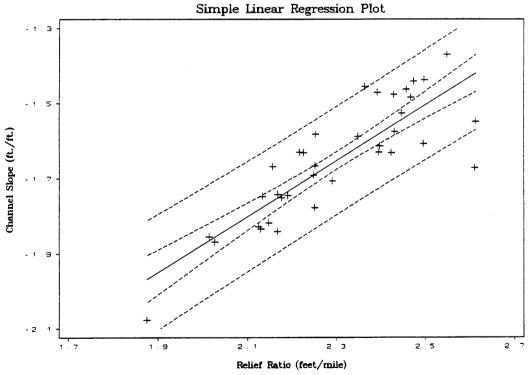
Strata "A" second order regression output of basin relief versus basin length.

UNWEIGHTED L	east sq	UARES LI	NEAR	REGRES	SION	OF USED	RELIEF	,
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT AGI2		1128 6282	-	.10820 .05811		28.75 9.69		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.7340 0.7261				N SQUARE EVIATION	(MSE)	0.00662 0.08134
SOURCE	DF	SS		MS		F	P)
REGRESSION RESIDUAL TOTAL	1 34 35	0.6205 0.2249 0.8455	3	0.62		93.80	0.00	00
CASES INCLUD	ED 36	MISSING	CASI	ES O	والمراجعة المراجع			

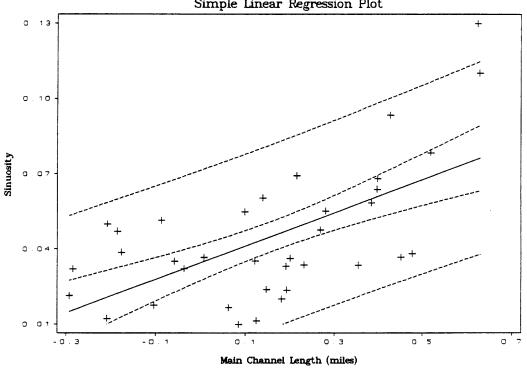

Strata "A" second order regression output for used relief versus area gradient index #2.

UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRESS	SION	OF RELIE	F RATI	:0
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	т	P
CONSTANT BA	2.2 -0.4	1569 3464	-	.01896 .04918	-	116.87 -8.84		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.6968 0.6878				N SQUARE EVIATION	(MSE)	0.00959 0.09794
SOURCE	DF	SS		MS		F	P)
REGRESSION RESIDUAL TOTAL	1 34 35	0.7493 0.3261 1.0755	4	0.749		78.12	0.00	000
CASES INCLU	DED 36	MISSING	CASE	ES O				


Strata "A" second order regression output for relief ratio versus basin area.


F	de densi	4						
UNWEIGHTED	LEAST SO	UARES	LINEAR	REGRES	SION OF	RUGGE	DNESS	NUMBER
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	Т	P
CONSTANT DD		9530 8890	_	.07257 .12175	-	17.85 8.12		0.0000 0.0000
R-SQUARED ADJUSTED R-	SQUARED	0.659 0.649			MEAN S RD DEVI	-	(MSE)	0.00944 0.09715
SOURCE	DF	SS	;	MS		F	F)
REGRESSION RESIDUAL TOTAL	1 34 35	0.62 0.32 0.94	091	0.62 0.00		65.98	0.00	000
CASES INCLU	DED 36	MISSI	NG CASI	ES O				

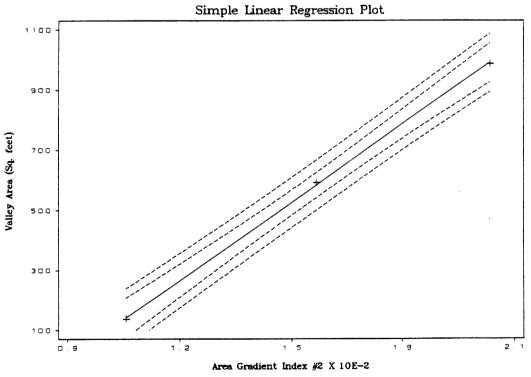
Strata "A" second order regression output for ruggedness number versus drainage density.


UNWEIGHTED L	EAST SQ	UARES	LINEAR	REGRES	SION OF	CHANN	IEL SL	OPE	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	P	
CONSTANT RR		6195 4347	-	.18724 .08115	-	17.96 9.16		0.0000	
R-SQUARED ADJUSTED R-S	QUARED	0.711 0.703			MEAN S RD DEVI	~	(MSE)	0.00708 0.0841	
SOURCE	DF	SS		MS		F	_	P	
REGRESSION RESIDUAL TOTAL	1 34 35	0.59 0.24 0.83	080	0.59 0.00		83.94	0.0	000	
CASES INCLUD	ED 36	MISSI	NG CAS	ES O					

Strata "A" second order regression output for channel slope versus relief ratio.

UNWEIGHTED 1	LEAST SQ	UARES	LINEAR	REGRES	SION	OF SINUC	SITY	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	т	P
CONSTANT MCHL		3450 6635	-	.00420 .01434	-	8.20 4.63		.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.386 0.368				I SQUARE VIATION	(MSE) 4	4.583E-04 0.02141
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 34 35	0.00	558	0.00 4.583E	981 -04	21.40	0.0001	-
CASES INCLU	DED 36	MISSI	NG CAS	ES O				

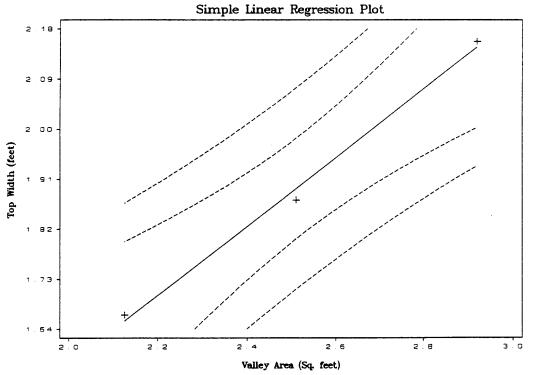
Strata "A" second order regression output for sinuosity versus main channel length.



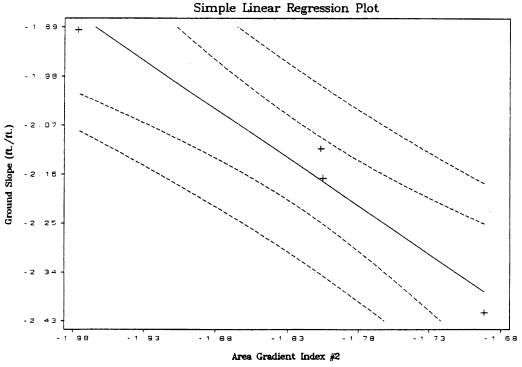
Simple Linear Regression Plot

^{90%} confidence and prediction intervals

UNWEIGHTED I	LEAST S	QUARES LIN	IEAR	REGRES	SION	OF VALLE	Y AREA	ł
PREDICTOR VARIABLES	COEFFI	ICIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT AGI2		5.140 318.7		5.3895 546.13		-29.41 52.74	_	0.0216 0.0121
R-SQUARED ADJUSTED R-S		0.9996 0.9993				N SQUARE EVIATION	(MSE)	129.786 11.3924
SOURCE	DF	SS		MS		F	I	2
REGRESSION RESIDUAL TOTAL	1 1 2	3.610E+05 129.786 3.611E+05	5	3.610E 129.		2781.61	0.01	121
CASES INCLUE	DED 3	MISSING C	ASES	5 1				


Strata "A" second order regression output for valley area versus area gradient index #2.

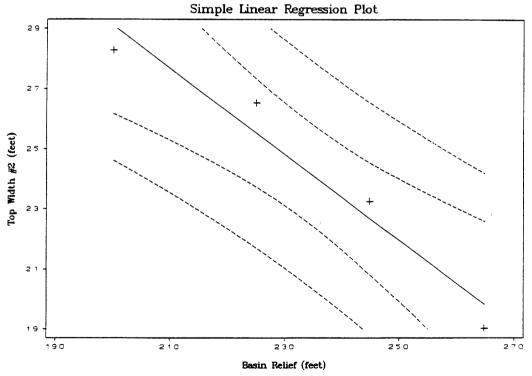
383


UNWEIGHTED 1	EAST SQ	QUARES LIN	IEAR	REGRESS	ION	OF TOP W	IDTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	s	TUDENT'S	т	P
CONSTANT A		3641 52028		11256 04434	_	2.99 13.99		0.2056 0.0454
R-SQUARED ADJUSTED R-S	QUARED	0.9949 0.9898				SQUARE VIATION	(MSE)	6.194E-04 0.02489
SOURCE	DF	SS		MS		F	I	2
REGRESSION RESIDUAL TOTAL	1 1 2	0.12123 6.194E-04 0.12184	Ł	0.121 6.194E-		195.72	0.04	154
CASES INCLUE	ED 3	MISSING C	ASES	5 1				

Strata "A" second order regression output for top width versus valley area.

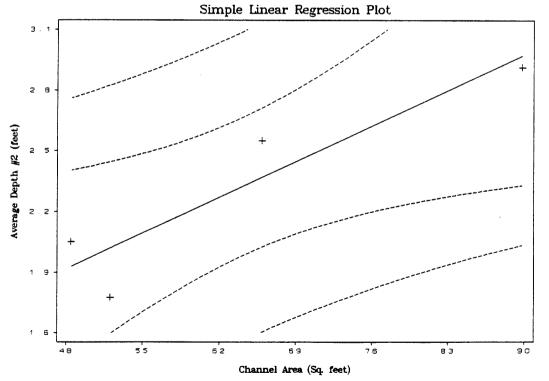
UNWEIGHTED I	LEAST SQ	QUARES LI	NEAR	REGRESSIC	N OF GROUN	D SLOPE	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STUDENT'S	т	P
CONSTANT AGI2		8804 8060		.47683 .26160	-11.30 -6.81		.0077 .0209
R-SQUARED ADJUSTED R-S	QUARED	0.9586 0.9379			AN SQUARE DEVIATION	(MSE)	0.00283 0.05317
SOURCE	DF	SS		MS	F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	0.1309 0.0056 0.1366	5	0.13098 0.00283		0.020	9
CASES INCLUE	ED 4	MISSING	CASES	5 0			

Strata "A" second order regression output for ground slope versus area gradient index #2.


UNWEIGHTED I	LEAST SQ	UARES LIN	IEAR	REGRES	SION	OF AREA	#2	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT		.200		.6655		19.19		0.0331
MCHL CHS		9641 9.90		21158 2.204		-11.51 -14.73		0.0552 0.0431
R-SQUARED ADJUSTED R-S	QUARED	0.9955 0.9864				N SQUARE EVIATION	(MSE)	4.77825 2.18592
SOURCE	DF	SS		MS		F	P	
REGRESSION	2	1049.85		524.9		109.86	0.06	73
RESIDUAL TOTAL	1 3	4.77825 1054.63		4.778	325			
CASES INCLUE	ED 4	MISSING C	ASES	0				

.

Strata "A" second order regression output of area #2 versus main channel length and channel slope.


UNWEIGHTED	LEAST SQ	UARES LI	NEAR	REGRES	SION	I OF TOP W	IDTH #	2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	5 T	P
CONSTANT BR		5923 4253		65040 02405		10.19 -5.93		0.0095 0.0273
R-SQUARED ADJUSTED R-	SQUARED	0.9461 0.9192		RESID. STANDA		N SQUARE DEVIATION	(MSE)	1.34068 1.15788
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	47.107 2.6813 49.788	6	47.1 1.34		35.14	0.02	73
CASES INCLU	DED 4	MISSING	CASES	0				

Strata "A" second order regression output for top width #2 versus basin relief.

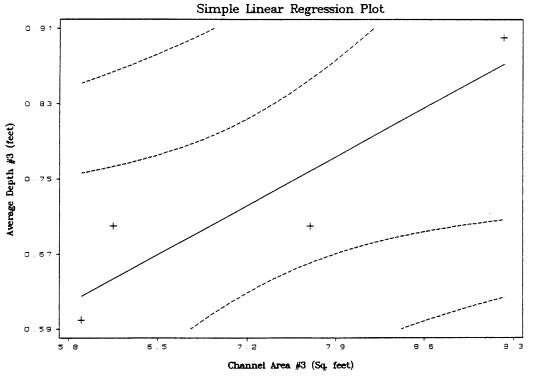
UNWEIGHTED L	EAST SÇ	UARES	LINEAR	REGRES	SION OF	AVERA	GE DEF	PTH #2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU.	DENT'S	т	P
CONSTANT A2		70926 02519		.47628 .00721		1.49 3.50		0.2749 0.0730
R-SQUARED ADJUSTED R-S	QUARED	0.859 0.789			MEAN S RD DEVI	-	(MSE)	0.05478 0.23406
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	0.66 0.10 0.77	957	0.66		12.22	0.07	30
CASES INCLUD	ED 4	MISSIN	G CASES	5 0				

Strata "A" second order regression output for average depth #2 versus area #2.

^{90%} confidence and prediction intervals

Strata "A" second order regression output for channel area #3 versus basin area and basin relief.

UNWEIGHTED	LEAST SQ	UARES LI	NEAR	REGRES	SION OF	CHANN	EL AR	EA #3	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	P	
CONSTANT BA BR	-5.0	0795 9582 2490	0.	23847 10138 95E-04	-	23.52 50.26 28.97		0.0271 0.0127 0.0220	
R-SQUARED ADJUSTED R-		0.9998 0.9993			MEAN S RD DEVI	~	(MSE)	0.00	
SOURCE	DF	SS		MS		F		P	
REGRESSION RESIDUAL TOTAL	2 1 3	7.1338 0.0015 7.1354	8	3.56		51.77	0.0	149	
CASES INCLU	DED 4	MISSING	CASES	5 0					


Strata "A" second order regression output for top width #3 versus channel slope and sinuosity.

UNWEIGHTED	LEAST SC	QUARES LIN	VEAR	REGRES	SION	OF TOP W	IDTH #3	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	1	STUDENT'S	T	P
CONSTANT CHS SIN	-223	80588 8.095 80509	11	49622 .4119 19907		2.88 -19.55 7.34	0.	2129 0325 0862
R-SQUARED ADJUSTED R	-SQUARED	0.9988 0.9965				N SQUARE EVIATION	(MSE)	0.00396 0.06292
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	2 1 3	3.43292 0.00396 3.43687	5	1.71 0.00		433.57	0.0339	
CASES INCLU	JDED 4	MISSING C	CASES	0				

. :

UNWEIGHTED I	LEAST SO	QUARES LI	NEAR	REGRES	SION	OF AVERA	GE DEI	PTH #3
PREDICTOR VARIABLES	COEFFI	ICIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT A3		L8632 07436		17484 02374		1.07 3.13		0.3982 0.0886
R-SQUARED ADJUSTED R-S	QUARED	0.8307 0.7461				N SQUARE EVIATION	(MSE)	0.00402 0.06340
SOURCE	DF	SS		MS		F	I	2
REGRESSION RESIDUAL TOTAL	1 2 3	0.0394 0.0080 0.0475	4	0.03		9.82	0.08	386
CASES INCLUE	ED 4	MISSING	CASES	5 0				

Strata "A" second order regression output for average depth #3 versus area
#3.

BASIN ID 09D0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00	2.00	2.00
MEAN	985.53	162.85	158.03	5.70	5.90	26.01	119.90	0.004
S.D.	573.30	76.65	75.22	1.21	1.27	9.01	16.97	0.003
C.V. (%)	58.17	47.07	47.60	21.25	21.57	34.64	14.15	61.19
MINIMUM	315.40	81.30	78.00	3.90	4.00	17.34	107.90	0.002
MAXIMUM	1515.40	239.20	233.50	6.50	6.70	35.92	131.90	0.006
RANGE	1200.00	157.90	155.50	2.60	2.70	18.58	24.00	0.004
BASIN ID 64A0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
64A0	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
64A0	(ft. ²) 6.00	PERIMETER (ft.) 6.00	WIDTH (ft.) 6.00	RADIUS 6.00	DEPTH (ft.) 6.00	RATIO 6.00	WIDTH (ft.) 2.00	SLOPE (ft/ft) 3.00
64A0 n MEAN	(ft. ²) 6.00 593.23	PERIMETER (ft.) 6.00 83.58	WIDTH (ft.) 6.00 78.42	RADIUS 6.00 5.62	DEPTH (ft.) 6.00 6.08	RATIO 6.00 20.79	WIDTH (ft.) 2.00 21.40	SLOPE (ft/ft) 3.00 0.007
64A0 n MEAN S.D.	(ft. ²) 6.00 593.23 691.55	PERIMETER (ft.) 6.00 83.58 32.49	WIDTH (ft.) 6.00 78.42 27.38	RADIUS 6.00 5.62 4.93	DEPTH (ft.) 6.00 6.08 5.58	RATIO 6.00 20.79 13.77	WIDTH (ft.) 2.00 21.40 0.14	SLOPE (ft/ft) 3.00 0.007 0.001
64A0 n MEAN S.D. C.V. (%)	(ft. ²) 6.00 593.23 691.55 116.57	PERIMETER (ft.) 6.00 83.58 32.49 38.87	WIDTH (ft.) 6.00 78.42 27.38 34.92	RADIUS 6.00 5.62 4.93 87.85	DEPTH (ft.) 6.00 6.08 5.58 91.68	RATIO 6.00 20.79 13.77 66.26	WIDTH (ft.) 2.00 21.40 0.14 0.66	SLOPE (ft/ft) 3.00 0.007 0.001 15.32

High bank reach means for Strata "A" second order

.....

.

.

BASIN ID 64B0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00		2.00
MEAN	136.47	53.30	50.25	2.73	2.95	19.18		0.014
S.D.	33.17	22.01	22.66	0.50	0.70	12.19		0.010
C.V. (%)	24.31	41.30	45.09	18.32	23.57	63.56		66.32
MINIMUM	102.90	33.30	29.40	2.20	2.30	8.40		0.008
MAXIMUM	171.80	72.80	70.20	3.20	3.60	30.22		0.021
RANGE	68.90	39.50	40.80	1.00	1.30	21.82		0.014

BASIN ID 09D0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00	2.00	2.00
MEAN	52.03	31.03	28.28	1.53	1.78	20.26	119.90	0.004
S.D.	48.02	25.32	23.77	1.19	1.48	14.24	16.97	0.003
C.V. (%)	92.31	81.62	84.05	78.03	83.10	70.29	14.15	61.19
MINIMUM	6.70	12.60	11.90	0.50	0.60	5.59	107.90	0.002
MAXIMUM	101.70	68.00	63.40	3.20	3.90	39.63	131.90	0.006
RANGE	95.00	55.40	51.50	2.70	3.30	34.04	24.00	0.004
L								
BASIN ID 47C0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
47C0	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
47C0	(ft. ²) 6.00	PERIMETER (ft.) 6.00	WIDTH (ft.) 6.00	RADIUS 6.00	DEPTH (ft.) 6.00	RATIO 6.00	WIDTH (ft.) 6.00	SLOPE (ft/ft) 3.00
47C0 n MEAN	(ft. ²) 6.00 89.80	PERIMETER (ft.) 6.00 29.60	WIDTH (ft.) 6.00 26.55	RADIUS 6.00 2.47	DEPTH (ft.) 6.00 2.92	RATIO 6.00 8.28	WIDTH (ft.) 6.00 16.17	SLOPE (ft/ft) 3.00 0.008
47C0 n MEAN S.D.	(ft. ²) 6.00 89.80 97.12	PERIMETER (ft.) 6.00 29.60 20.79	WIDTH (ft.) 6.00 26.55 21.43	RADIUS 6.00 2.47 0.96	DEPTH (ft.) 6.00 2.92 0.79	RATIO 6.00 8.28 4.87	WIDTH (ft.) 6.00 16.17 11.22	SLOPE (ft/ft) 3.00 0.008 0.004
47C0 n MEAN S.D. C.V. (%)	(ft. ²) 6.00 89.80 97.12 108.16	PERIMETER (ft.) 6.00 29.60 20.79 70.24	WIDTH (ft.) 6.00 26.55 21.43 80.71	RADIUS 6.00 2.47 0.96 38.86	DEPTH (ft.) 6.00 2.92 0.79 26.95	RATIO 6.00 8.28 4.87 58.78	WIDTH (ft.) 6.00 16.17 11.22 69.37	SLOPE (ft/ft) 3.00 0.008 0.004 48.27

Medium bank reach means for Strata "A" second order

.

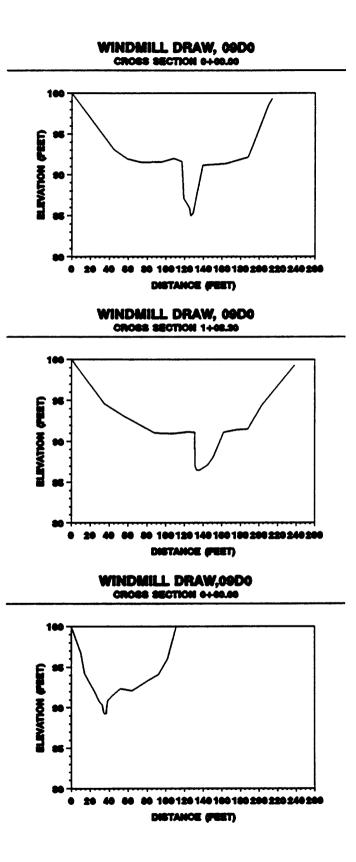
. . .

BASIN ID 64A0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00	2.00	3.00
MEAN	48.45	20.70	19.03	1.88	2.05	10.21	21.40	0.007
S.D.	45.17	11.23	10.07	1.14	1.29	2.81	0.14	0.001
C.V. (%)	93.23	54.25	52.91	61.02	63.04	27.52	0.66	15.32
MINIMUM	7.50	10.60	10.10	0.70	0.70	8.76	21.30	0.006
MAXIMUM	95.70	32.00	28.90	3.00	3.30	14.43	21.50	0.008
RANGE	88.20	21.40	18.80	2.30	2.60	5.67	0.20	0.002

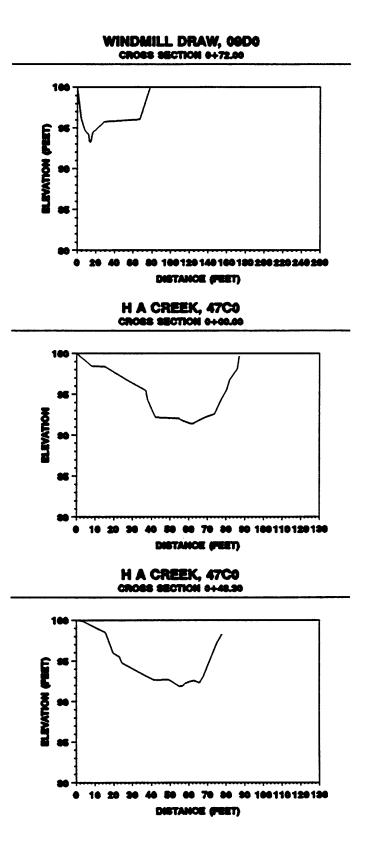
BASIN ID 64B0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00		2.00
MEAN	65.95	25.58	23.25	2.35	2.55	9.54		0.014
S.D.	39.72	10.01	8.99	1.00	1.17	2.15		0.010
C.V. (%)	60.22	39.15	38.65	42.34	45.79	22.56		66.32
MINIMUM	10.40	10.70	10.00	1.00	1.00	7.26		0.008
MAXIMUM	99.40	32.40	29.30	3.10	3.50	12.30		0.021
RANGE	89.00	21.70	19.30	2.10	2.50	5.05		0.014

BASIN ID 09D0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	4	4	4	4	4	4
MEAN	6.15	9.20	8.60	0.65	0.70	16.57
S.D.	5.01	4.67	4.76	0.29	0.29	16.84
C.V. (%)	81.42	50.78	55.33	44.41	42.06	101.58
MINIMUM	2.80	4.70	4.00	0.30	0.30	5.71
MAXIMUM	13.60	13.90	13.00	1.00	1.00	41.33
RANGE	10.80	9.20	9.00	0.70	0.70	35.62
BASIN ID 47C0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
		PERIMETER	WIDTH		DEPTH	· ·
47C0	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO
47C0	(ft. ²)	PERIMETER (ft.) 4	WIDTH (ft.) 4	RADIUS	DEPTH (ft.) 4	RATIO
47C0 n MEAN	(ft. ²) 4 5.90	PERIMETER (ft.) 4 11.55	WIDTH (ft.) 4 11.00	RADIUS 4 0.55	DEPTH (ft.) 4 0.60	RATIO 4 24.58
47C0 n MEAN S.D.	(ft. ²) 4 5.90 2.50	PERIMETER (ft.) 4 11.55 2.30	WIDTH (ft.) 4 11.00 2.62	RADIUS 4 0.55 0.26	DEPTH (ft.) 4 0.60 0.32	RATIO 4 24.58 17.05
47C0 n MEAN S.D. C.V. (%)	(ft. ²) 4 5.90 2.50 42.36	PERIMETER (ft.) 4 11.55 2.30 19.90	WIDTH (ft.) 4 11.00 2.62 23.78	RADIUS 4 0.55 0.26 48.11	DEPTH (ft.) 4 0.60 0.32 52.71	RATIO 4 24.58 17.05 69.38

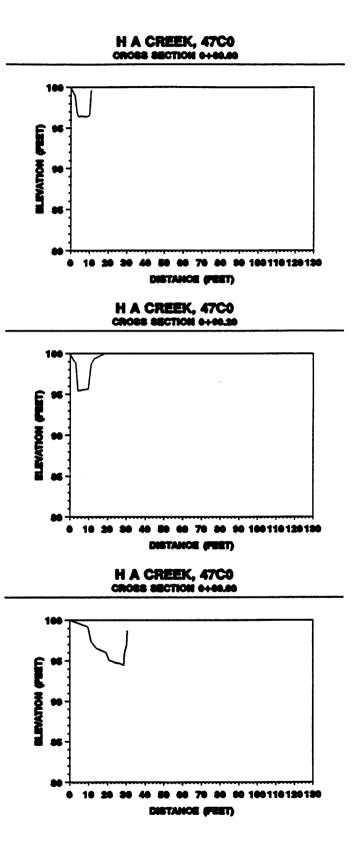
Low bank reach means for Strata "A" second order

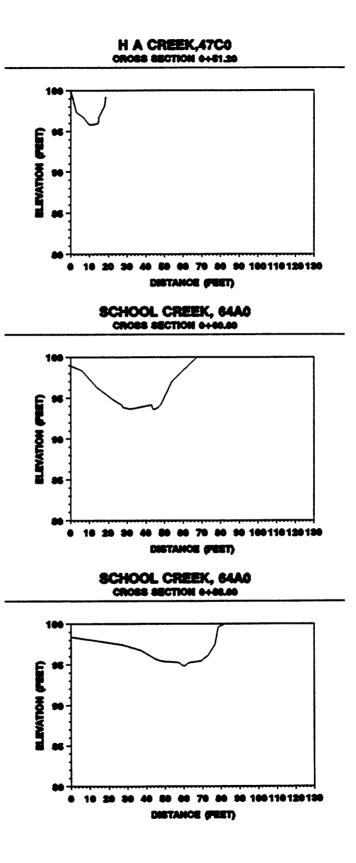

. .

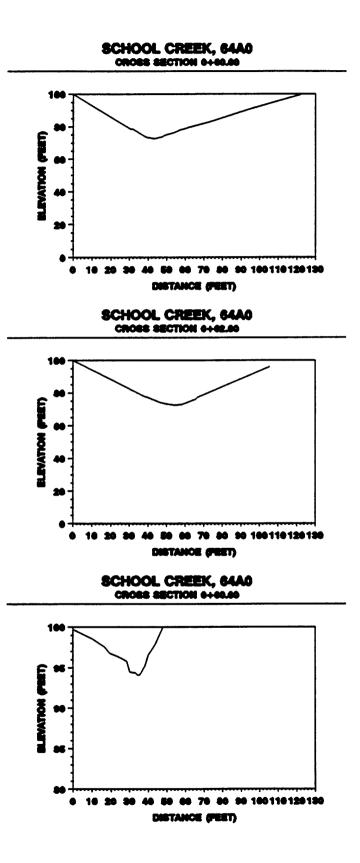
BASIN ID 64A0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	3	3	3	3	3	3
MEAN	7.70	11.00	10.60	0.67	0.70	15.09
S.D.	2.91	2.03	2.00	0.15	0.10	0.82
C.V. (%)	37.73	18.45	18.84	22.91	14.29	5.41
MINIMUM	4.90	9.20	8.90	0.50	0.60	14.43
MAXIMUM	10.70	13.20	12.80	0.80	0.80	16.00
RANGE	5.80	4.00	3.90	0.30	0.20	1.57

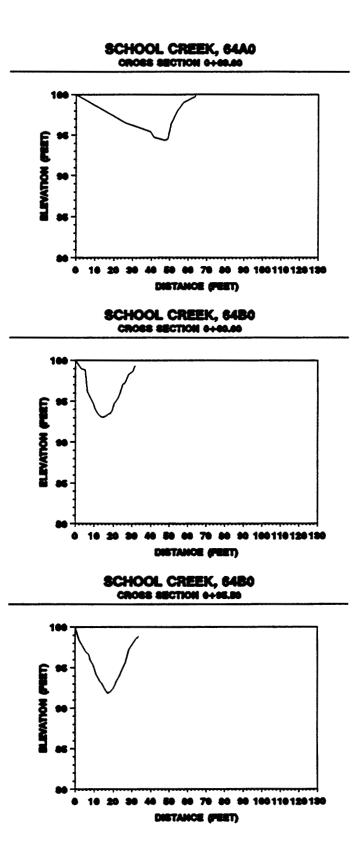

. .

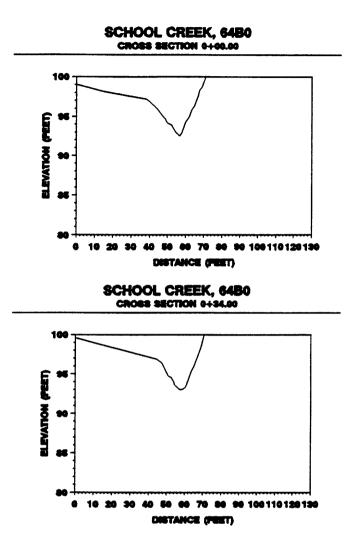
.


BASIN ID 64B0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	4	4	4	4	4	4
MEAN	9.23	10.30	9.65	0.85	0.90	10.71
S.D.	4.81	2.92	2.67	0.24	0.23	0.82
C.V. (%)	52.10	28.38	27.68	28.01	25.66	7.64
MINIMUM	5.10	7.60	7.10	0.60	0.70	9.91
MAXIMUM	14.50	13.80	12.80	1.10	1.10	11.64
RANGE	9.40	6.20	5.70	0.50	0.40	1.73


:


•




:

•

Strata "A" second order raw data by study reach, cross section, and bank identification.

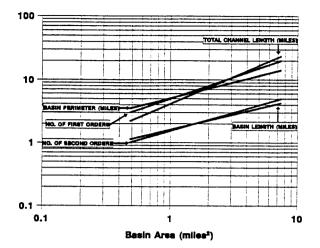
BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA	TOP WIDTH	AVERAGE DEPTH	FLOOD- PLAIN WIDTH
			(feet ²)	(feet)	(feet)	(feet)
0900	0+00.00A	HIGH	1406.60	209.60	6.70	131.90
09D0	1+03.30A	HIGH	1515.40	233.50	6.50	107.90
0900	0+00.00B	HIGH	704.70	111.00	6.40	
09D0	0+72.00B	HIGH	315.40	78.00	4.00	
64A0	0+00.00A	HIGH	195.90	62.40	3.10	21.30
64A0	0+88.00A	HIGH	135.10	77.60	1.70	21.50
64A0	0+00.00B	HIGH	1673.10	121.70	13.70	
64A0	0+62.00B	HIGH	1266.70	98.70	12.80	
64A0	0+00.00C	HIGH	125.40	47.50	2.60	
64A0	0+69.00C	HIGH	163.20	62.60	2.60	
64B0	0+00.00A	HIGH	102.90	29.40	3.50	
64B0	0+95.50A	HIGH	114.10	31.90	3.60	
64B0	0+00.00B	HIGH	157.10	69.50	2.30	
64B0	0+34.00B	HIGH	171.80	70.20	2.40	
0900	0+00.00A	MEDIUM	84.40	21.80	3.90	
09D0	1+03.30A	MEDIUM	101.70	63.40	1.60	
09D0	0+00.00B	MEDIUM	15.30	16.00	1.00	
09D0	0+72.00B	MEDIUM	6.70	11.90	0.60	
47C0	0+00.00A	MEDIUM	126.50	42.90	3.00	32.60
47C0	0+48.30A	MEDIUM	271.10	61.80	4.40	25.80
47C0	0+00.00B	MEDIUM	18.60	8.30	2.20	4.20
47C0	0+90.20B	MEDIUM	21.50	8.20	2.60	5.50
47C0	0+00.00C	MEDIUM	58.70	20.40	2.90	15.70
47C0	0+51.20C	MEDIUM	42.40	17.70	2.40	13.20

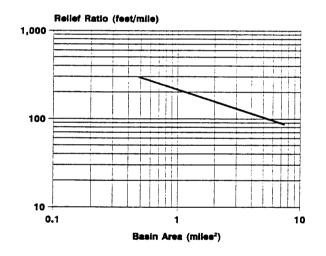

•

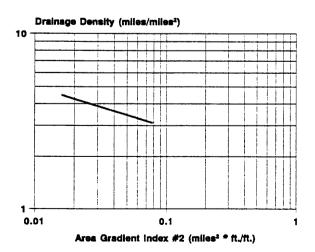
BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)
64A0	0+00.00B	MEDIUM	95.70	28.90	3.30
64A0	0+62.00B	MEDIUM	78.40	26.50	3.00
64A0	0+00.00C	MEDIUM	12.20	10.60	1.20
64A0	0+69.00C	MEDIUM	7.50	10.10	0.70
64B0	0+00.00A	MEDIUM	88.90	25.40	3.50
64B0	0+95.50A	MEDIUM	99.40	29.30	3.40
64B0	0+00.00B	MEDIUM	65.10	28.30	2.30
64B0	0+34.00B	MEDIUM	10.40	10.00	1.00
0900	0+00.00A	LOW	13.60	13.00	1.00
0900	1+03.30A	LOW	4.30	12.40	0.30
09D0	0+00.00B	LOW	3.90	5.00	0.80
09D0	0+72.00B	LOW	2.80	4.00	0.70
47C0	0+00.00A	LOW	4.80	12.90	0.40
47C0	0+48.30A	LOW	3.80	13.50	0.30
47C0	0+00.00C	LOW	9.50	9.50	1.00
47C0	0+51.20C	LOW	5.50	8.10	0.70
64A0	0+00.00B	LOW	4.90	8.90	0.60
64A0	0+62.00B	LOW	10.70	12.80	0.80
64A0	0+69.00C	LOW	7.50	10.10	0.70
64B0	0+00.00A	LOW	12.10	10.90	1.10
64B0	0+95.50A	LOW	5.10	7.10	0.70
64B0	0+00.00B	LOW	14.50	12.80	1.10
64B0	0+34.00B	LOW	5.20	7.80	0.70

•

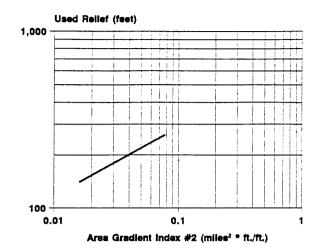
•

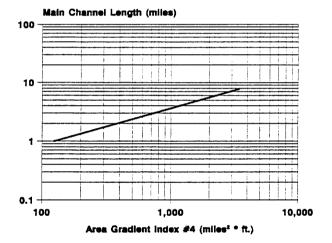


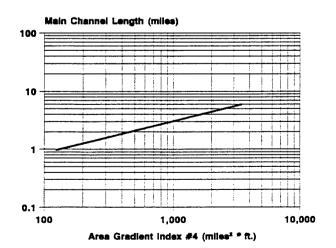

APPENDIX A-3

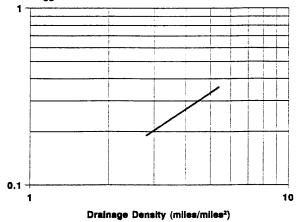

STRATA "A" - THIRD ORDER

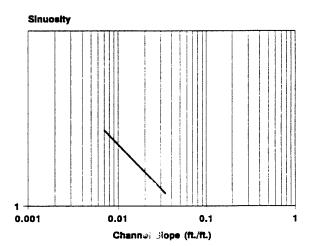
Description of Contents	Page
Geomorphic Relationships in Graph Format	411 - 416
Simple and Multiple Linear Regression Output Tables and Simple Linear Regression Plots with 90% Confidence Belts	417 - 443
Descriptive Statistics by Study Reach and by Bank	444 - 449
Cross-Section Plots by Study Site and Study Reach	450 - 456
Raw Field Data	457 - 458
Digitized Drainage Basin and Drainage Network	459 - 462
Representative Photographs	463 - 465

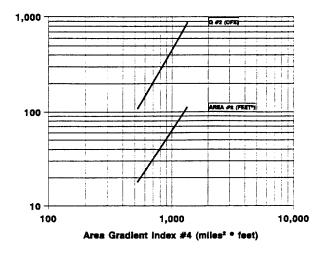

. .

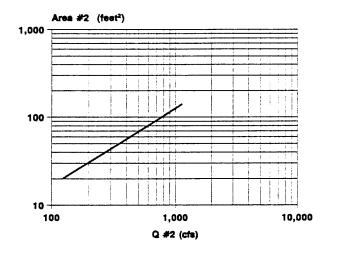


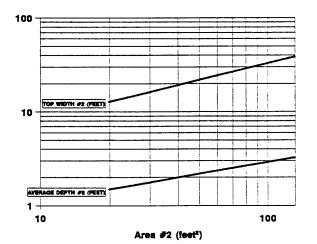


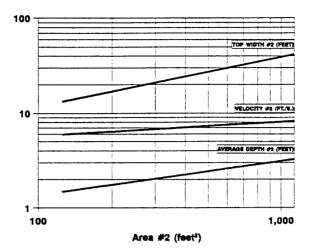

;

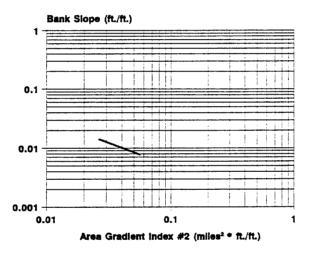


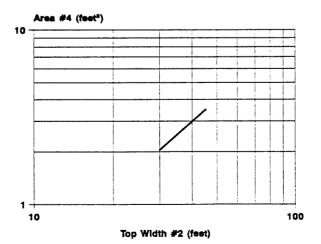

Ruggedness Number

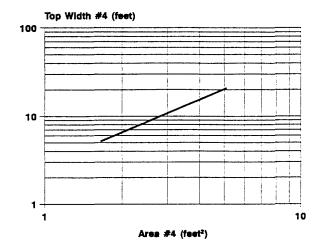


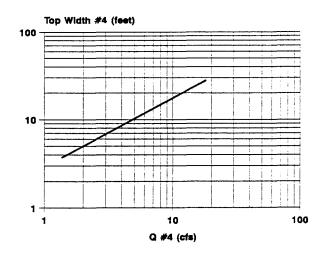

Channel Slope (ft./ft.)

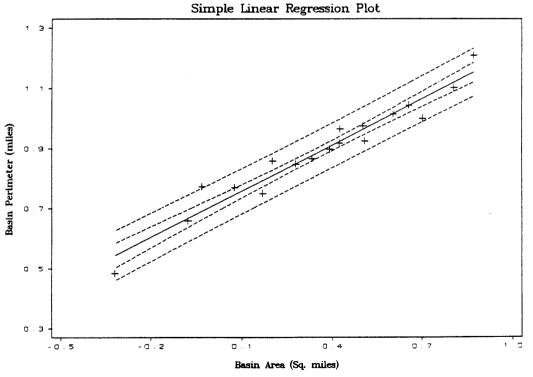

•

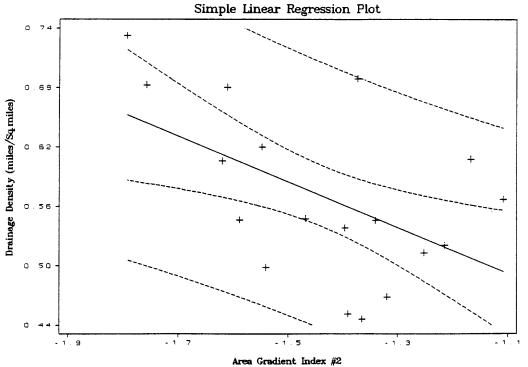




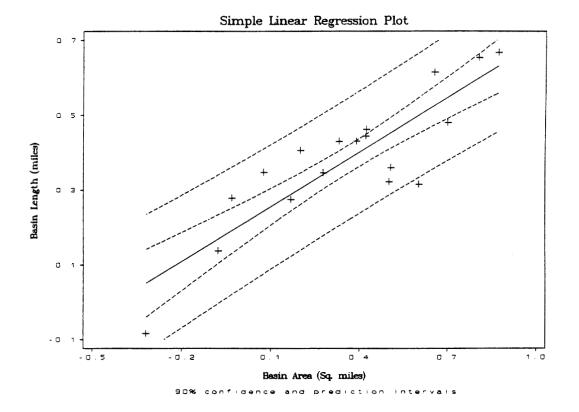

:




•

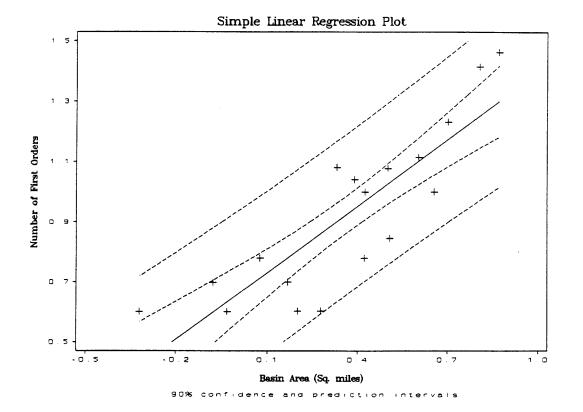

UNWEIGHTED L	EAST SQ	UARES	LINEA	R :	REGRES	SION	OF BASIN	PERIN	METER
PREDICTOR VARIABLES	COEFFI	CIENT	ST	D	ERROR		STUDENT'S	т	P
CONSTANT BA		0625 1238			01501 03149		47.05 16.27		0.0000
R-SQUARED ADJUSTED R-S	QUARED						N SQUARE EVIATION	(MSE)	0.00172 0.04144
SOURCE	DF	SS			MS		F	I	2
REGRESSION RESIDUAL TOTAL	1 16 17	0.45 0.02 0.48		-	0.454		264.72	0.00	000
CASES INCLUD	ED 18	MISSI	NG CA	SE	s <u>0</u>				

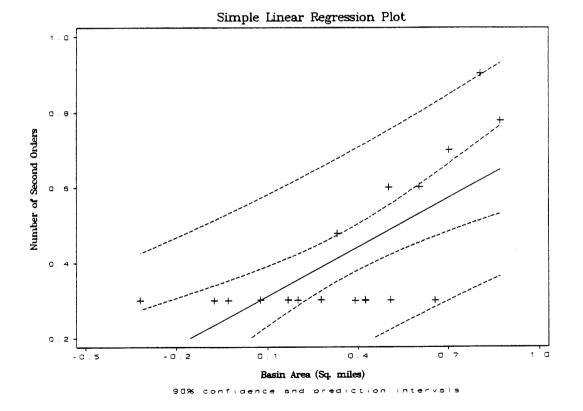
Strata "A" third order regression output for basin perimeter versus basin area.


UNWEIGHTED	LEAST SQ	UARES	LINEAR	R REGRES	SION OF	DRAIN	IAGE DEN	ISITY
PREDICTOR VARIABLES	COEFFI	CIENT	STI	D ERROR	STU	DENT'S	Т	P
CONSTANT AGI2		3829 3103		0.13584 0.09377		1.75 -2.46		0.0985
R-SQUARED ADJUSTED R-	SQUARED	0.275 0.229			MEAN SO RD DEVI	-	(MSE)	0.00563 0.07505
SOURCE	DF	SS	;	MS		F	P	
REGRESSION RESIDUAL TOTAL	1 16 17	0.03 0.09 0.12	011	0.03		6.07	0.025	5
CASES INCLU	DED 18	MISSI	NG CAS	SES O				

Strata "A" third order regression output for drainage density versus area gradient index #2.

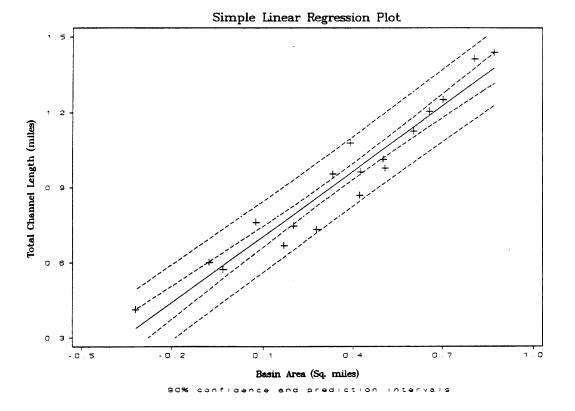
UNWEIGHTED 1	LEAST SQ	UARES	LINEAR	REGRES	SION OF	BASIN	LENGI	TH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	P
CONSTANT BA		0668 8799	÷ .	.03305 .06935		6.25 7.04		0.0000 0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.755 0.740			MEAN S RD DEVI	~	(MSE)	0.00833 0.09125
SOURCE	DF	SS		MS		F	P)
REGRESSION RESIDUAL TOTAL	1 16 17	0.41 0.13 0.54	324	0.41		49.51	0.00	000
CASES INCLU	DED 18	MISSI	NG CASE	ES O				


Strata "A" third order regression output for basin length versus basin area.

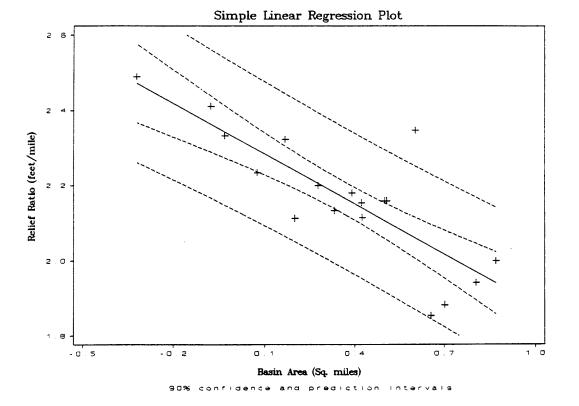

419

UNWEIGHTED I	LEAST SQ	UARES	LINEAF	REGI	ESSIC	ON OF F	IRST	S	
PREDICTOR VARIABLES	COEFFI	CIENT	STI	ERRO	R	STUDE	NT'S	т	P
CONSTANT BA		5657 3851		.0539			.17 .53		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.726 0.709				EAN SQU DEVIAT		(MSE)	0.02217 0.14890
SOURCE	DF	SS	5		MS	:	F	P	
REGRESSION RESIDUAL TOTAL	1 16 17	0.94 0.35 1.29	5476		94428 02217		.59	0.00	00
CASES INCLUE	ED 18	MISSI	NG CAS	ES O					

Strata "A" third order regression output for number of first orders versus basin area.

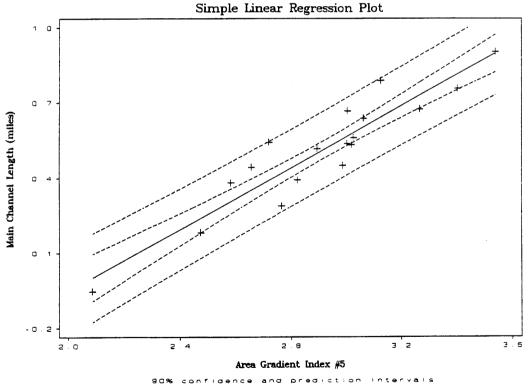


UNWEIGHTED I	LEAST SQ	UARES	LINE	EAR	REGRES	SION	OF SECON	DS	
PREDICTOR VARIABLES	COEFFI	CIENT	S	STD	ERROR		STUDENT'S	т	P
CONSTANT BA		6852 3603	-		05349 11224		5.02 3.88		0.0001 0.0013
R-SQUARED ADJUSTED R-S	QUARED	0.489 0.453					N SQUARE EVIATION	(MSE)	0.02181 0.14769
SOURCE	DF	SS	5		MS		F		?
REGRESSION RESIDUAL TOTAL	1 16 17	0.32 0.34 0.67		_	0.32 0.02		15.09	0.00)13
CASES INCLUI	DED 18	MISS	ING C	CASE	IS O				

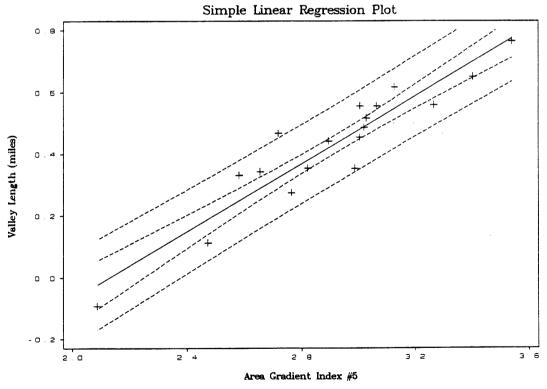

UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRESS	SION OF	TOTAL	CHAN	NEL LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	P
CONSTANT BA		1598 7321		02812 05901		21.90 14.80		0.0000 0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.9319 0.9277		RESID. STANDAR		-	(MSE)	0.00603 0.07764
SOURCE	DF	SS		MS		F	1	<u>p</u>
REGRESSION RESIDUAL TOTAL	1 16 17	.32016 0.0964 1.4166	6	1.32016 0.006		.98	0.0000	0
CASES INCLUI	DED 18	MISSING	CASE	S 0				

Strata "A" third order regression output for total channel length versus basin area.

UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF RELIE	F RATI	0
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	₽
CONSTANT BA		2919 4568		.03797 .07967		61.34 -5.59		0.0000 0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.6617 0.6405				N SQUARE EVIATION	(MSE)	0.01099 0.10483
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 16 17	0.3439 0.1758 0.5197	4	0.34 0.01		31.29	0.00	00
CASES INCLU	DED 18	MISSING	CASE	ES O				


Strata "A" third order regression output for relief ratio versus basin area.

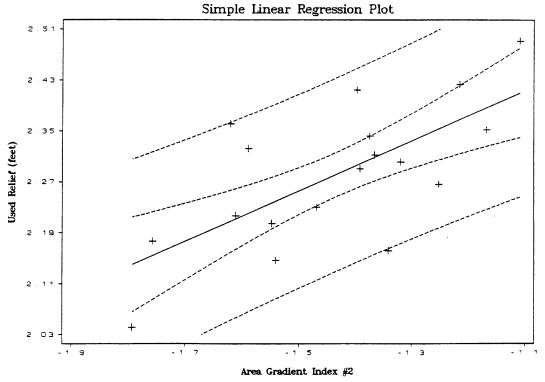
423


UNWEIGHTED I	LEAST SQ	UARES	LINEA	R R	EGRES	SION	OF MA	IN CH	HANNEL	LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	ST	DE	RROR	S	TUDEN	T'S 1	Г — — — — — — — — — — — — — — — — — — —	P
CONSTANT AGI4		8837 1777			7797 6070	-	-7. 10.			0000
R-SQUARED ADJUSTED R-S	QUARED	0.866 0.857			ESID. TANDAI		~	•	MSE)	0.00733 0.08561
SOURCE	DF	SS	3		MS		F		P	
REGRESSION RESIDUAL TOTAL	1 16 17	0.75 0.11 0.87	728	-	0.75		103.	59	0.0000	
CASES INCLUE)ED 18	MISSI	ING CA	SES	0	i and a lenter				

Strata "A" third order regression output for main channel length versus area gradient index #4.

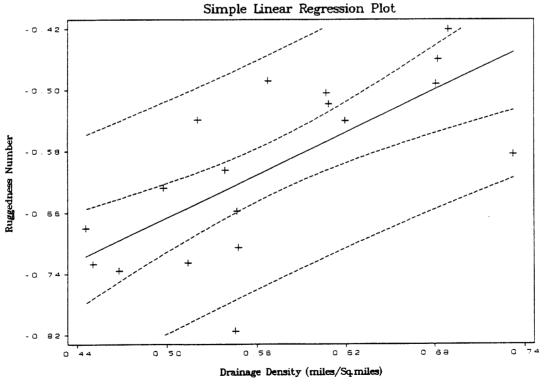
UNWEIGHTED I	LEAST SQ	UARES L	INEAR	REGRESS	SION	OF VALLE	Y LEN	GTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	Т	P
CONSTANT AGI4		6877 4869	-	.14794 .05046	-	-7.90 10.87		0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.8808 0.8734				N SQUARE EVIATION	(MSE)	0.00507 0.07117
SOURCE	DF	SS		MS		F]	P
REGRESSION RESIDUAL TOTAL	1 16 17	0.598 0.081 0.680	05	0.598		118.25	0.0	000
CASES INCLUI	DED 18	MISSIN	G CASI	ES O				

Strata "A" third order regression output for valley length versus area ______ gradient index #4.

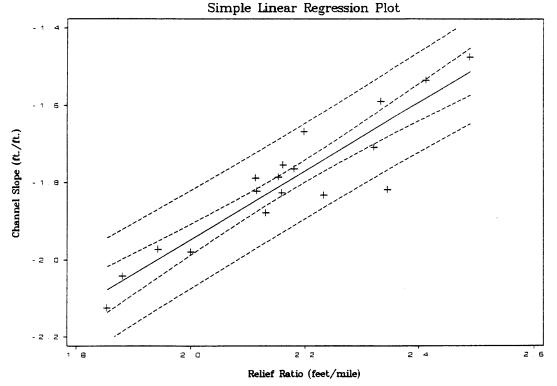


Strata	"A"	third	order	regressio	on output	of	basin	relief	versus	main
c	channe	el leng	,th and	channel	slope.					

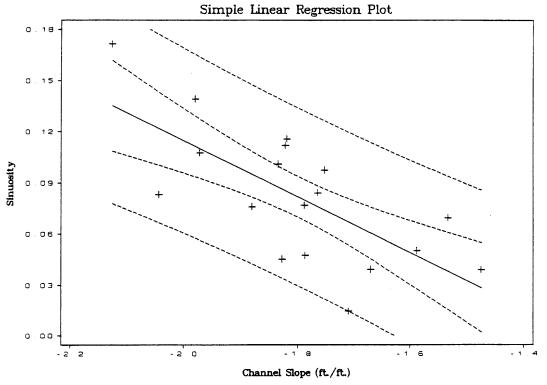
UNWEIGHTED	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF BASIN	RELI	EF
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT MCHL CHS	0.5	6768 5035 6618	0.	25973 13111 17592		13.35 4.20 3.79		0.0000 0.0008 0.0018
R-SQUARED ADJUSTED R-	SQUARED	0.5407 0.4795				N SQUARE DEVIATION	(MSE)	0.00342 0.05845
SOURCE	DF	SS		MS		F	I	2
REGRESSION RESIDUAL TOTAL	2 15 17	0.0603 0.0512 0.1116	5	0.03		8.83	0.00	029
CASES INCLU	DED 18	MISSING	CASE	s o				


UNWEIGHTED L	EAST SQ	UARES	LIN	EAR	REGRES	SION	I OF U	SED	RELIE	F	
PREDICTOR VARIABLES	COEFFI	CIENT		STD	ERROR		STUDE	NT'S	5 T		P
CONSTANT AGI2		4782 9477			.15327 .10581			.58 .73		0.0	000
R-SQUARED ADJUSTED R-S	QUARED	0.469 0.43			RESID. STANDA		N SQU EVIAT		(MSE)		0.00717 0.08468
SOURCE	DF	SS	5		MS			F]	P	
REGRESSION RESIDUAL TOTAL	1 16 17	0.09 0.11 0.21	L472		0.09		13	. 92	0.00	018	
CASES INCLUD	ED 18	MISSI	ING	CASE	ES 0						

Strata "A" third order regression output for used relief versus area gradient index #2.

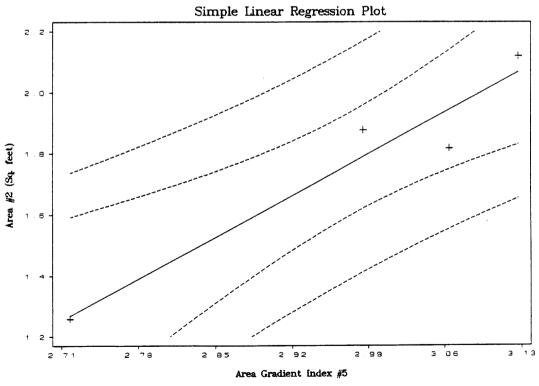

UNWEIGHTED :	LEAST SQ	UARES	LINEAR	REGRES	SION OF	RUGGE	DNESS 1	NUMBER
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	Т	P
CONSTANT DD	-1.1 0.9	3012 2749		13608 23619		-8.31 3.93		0.0000 0.0012
R-SQUARED ADJUSTED R-	SQUARED	0.490 0.458			MEAN SO RD DEVI	-	(MSE)	0.00693 0.08327
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 16 17	0.10 0.11 0.21	094	0.10		15.42	0.00	12
CASES INCLU	DED 18	MISSI	NG CASE	IS 0				

Strata "A" third order regression output for ruggedness number versus drainage density.


UNWEIGHTED :	LEAST SQ	UARES	LIN	EAR	REGRES	SION	I OF CHANN	EL S	LOPE	
PREDICTOR VARIABLES	COEFFI	CIENT		STD	ERROR		STUDENT'S	т		P
CONSTANT RR		2509 8887	·		20816 09572		-17.90 9.29			0000
R-SQUARED ADJUSTED R-	SQUARED	0.843 0.833					N SQUARE EVIATION	(MSE)	0.00476 0.06901
SOURCE	DF	SS	5		MS		F		P	
REGRESSION RESIDUAL TOTAL	1 16 17	0.41 0.07 0.48	7620		0.41		86.22	0.	0000	
CASES INCLU	DED 18	MISSI	ING	CASE	S 0					

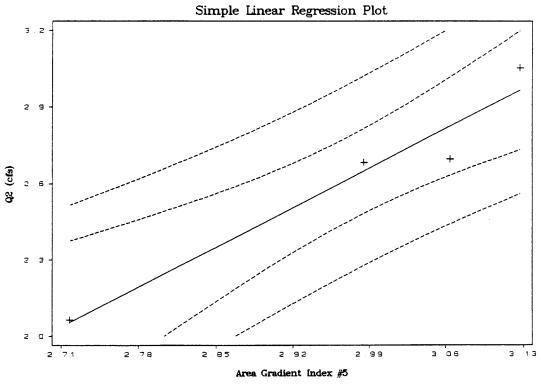
Strata "A" third order regression output for channel slope versus relief ratio.

stope.								
UNWEIGHTED	LEAST SQ	UARES L	INEAR	REGRES	SION	OF SINUO	SITY	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	т	P
CONSTANT CHS	-0.2 -0.1	1336 6404		.07537 .04174	_	-2.83 -3.93		.0120 .0012
R-SQUARED ADJUSTED R-		0.4912 0.4594				SQUARE VIATION	(MSE)	8.483E-04 0.02913
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 16 17	0.013 0.013 0.026	57	0.01 8.483E		15.44	0.001	2
CASES INCLU	DED 18	MISSIN	G CASE	ES O				·····


Strata "A" third order regression output for sinuosity versus channel slope.

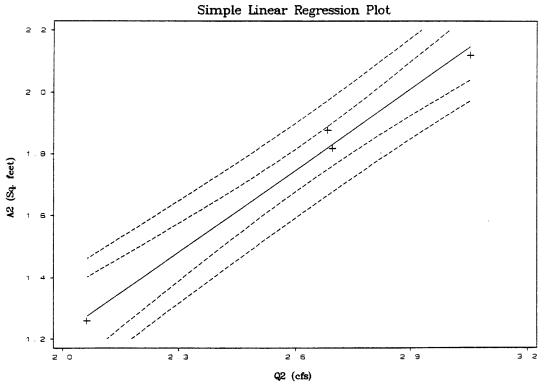
90% confidence and prediction intervals

UNWEIGHTED L	EAST SQ	UARES I	LINEAR	REGRES	SION	OF A2		
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	TUDENT'S	Т	P
CONSTANT AGI4		3890 5281		.10342 .37056	-	-3.66 5.27		0.0672 0.0342
R-SQUARED ADJUSTED R-S		0.9328 0.8992				N SQUARE EVIATION	(MSE)	0.01337 0.11564
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	0.373 0.026 0.398	574	0.37 0.01	137 337	27.77	0.034	42
CASES INCLUD	ED 4	MISSING	G CASES	50				

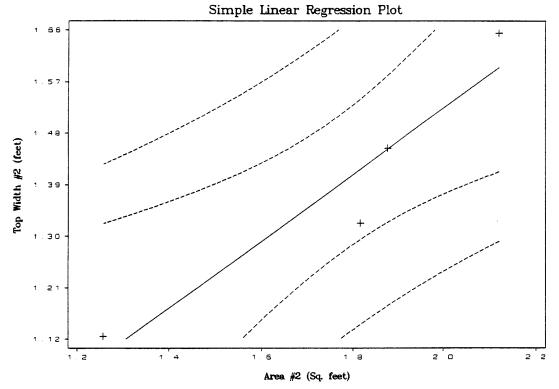

Strata "A" third order regression output for area #2 versus area gradient _________

;

UNWEIGHTED L	EAST SQ	UARES	LIN	EAR	REGRES	SION	OF Q2			
PREDICTOR VARIABLES	COEFFI	CIENT	ŝ	STD	ERROR		STUDENT'S	т	P	
CONSTANT AGI4		8492 2257	-		08577 36463		-3.67 6.10		0.0669 0.0259	
R-SQUARED ADJUSTED R-S	QUARED	0.948 0.923			RESID. STANDA		N SQUARE EVIATION	(MSE)	0.0129 0.113	
SOURCE	DF	SS	5		MS		F	I	<u></u>	
REGRESSION RESIDUAL TOTAL	1 2 3		3106 2590 0696		0.48		37.15	0.02	259	
CASES INCLUD	ED 4	MISSI	NG CZ	ASES	0					

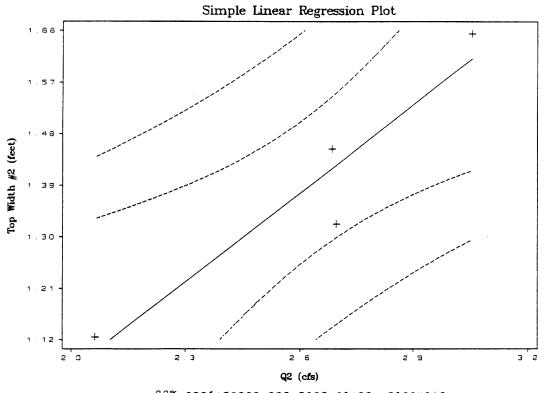

Strata "A" third order regression output for Q2 versus area gradient index #4.

^{90%} confidence and prediction intervals

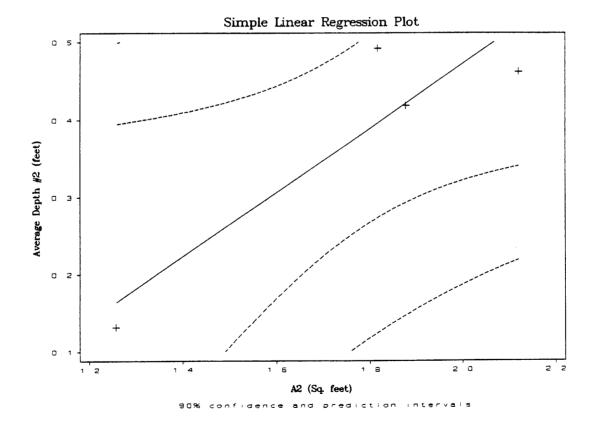

UNWEIGHTED L	LEAST SO	UARES LI	NEAR	REGRES	SION	I OF A2		
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT Q2		4449 8124		17490 06604		-3.11 13.34		0.0895 0.0056
R-SQUARED ADJUSTED R-S	QUARED	0.9889 0.9833				N SQUARE DEVIATION	(MSE)	0.00221 0.04702
SOURCE	DF	SS		MS		F	I	<u>p</u>
REGRESSION RESIDUAL TOTAL	1 2 3	0.3936 0.0044 0.3981	2	0.39 0.00		178.05	0.00	056
CASES INCLUD	ED 4	MISSING	CASES	<u> </u>				

Strata "A" third order regression output for area #2 versus Q2.

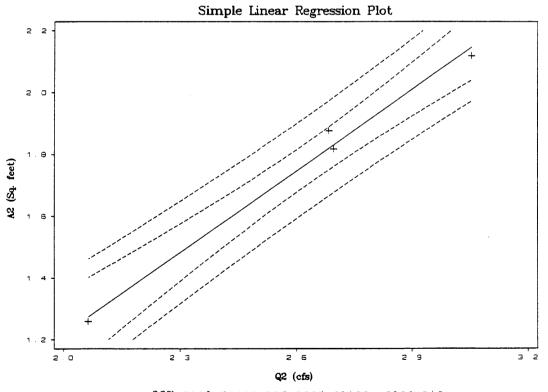
UNWEIGHTED	LEAST SÇ	UARES	LINEAR	REGRES	SION OF	TOP W	VIDTH #2	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	dent's	зт	P
CONSTANT A2		5675 8388		.23664 .13176		1.51 4.43		.2707 .0473
R-SQUARED ADJUSTED R-	SQUARED	0.907 0.861			MEAN SO RD DEVI		(MSE)	0.00691 0.08314
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	0.13 0.01 0.14	382	0.13		19.64	0.047	3
CASES INCLU	DED 4	MISSIN	G CASE	S 0				


Strata "A" third order regression output for top width #2 versus area #2.

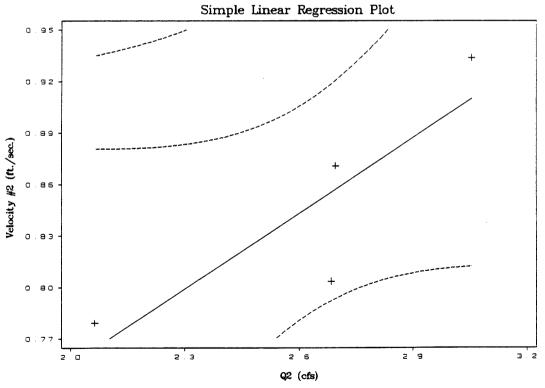
90% confidence and prediction intervals


UNWEIGHTED	LEAST SQ	UARES	LINEAR	REGRES	SION OF	TOP W	IDTH #	2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	JDENT'S	т	P
CONSTANT Q2)3457 51616		.31651 .11952		0.11 4.32		0.9230 0.0497
R-SQUARED ADJUSTED R-	SQUARED	0.903 0.854			MEAN S RD DEVI	~	(MSE)	0.00724 0.08510
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	0.13 0.01 0.14	448	0.13 0.00		18.65	0.04	97
CASES INCLU	DED 4	MISSIN	G CASES	5 0				

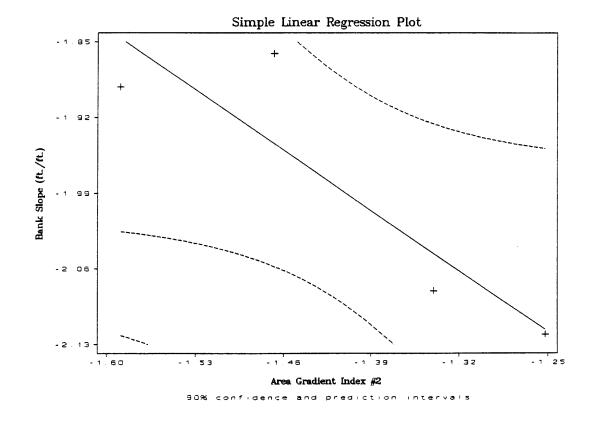
Strata "A" third order regression output of top width #2 versus Q2.


UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF AVERA	GE DEPT	H #2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT A2		5752 1484	-	.23621 .13152		-1.51 3.15		.2693 .0875
R-SQUARED ADJUSTED R-S	QUARED	0.8326 0.7489				N SQUARE EVIATION	(MSE)	0.00689 0.08298
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	0.0685 0.0137 0.0822	7	0.06 0.00		9.95	0.087	5
CASES INCLU	DED 4	MISSING	CASES	<u> </u>				

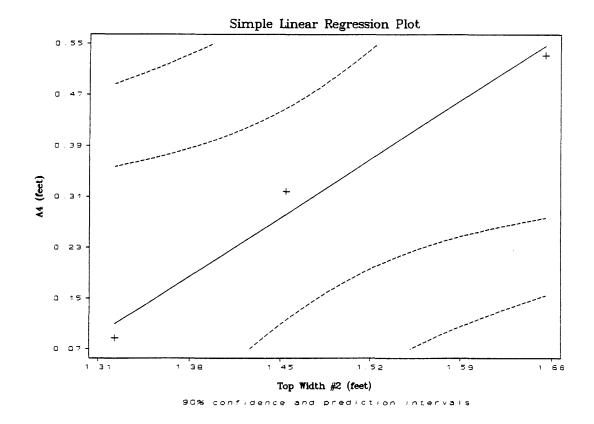
Strata "A" third order regression output for average depth #2 versus area #2.


UNWEIGHTED L	LEAST SO	QUARES L	INEAR	REGRES	SION O	F AVERA	GE DE	PTH #2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	ST	UDENT'S	т	Ρ
CONSTANT Q2		57976 16419		32261 12182		-1.80 2.99	_	0.2141 0.0960
R-SQUARED ADJUSTED R-S	QUARED	0.8171 0.7257		RESID. STANDA			(MSE)	0.00752 0.08674
SOURCE	DF	SS		MS		F		P
REGRESSION RESIDUAL TOTAL	1 2 3	0.067 0.015 0.082	05	0.06 0.00		8.94	0.0	960
CASES INCLUE	ED 4	MISSING	CASES	5 0				

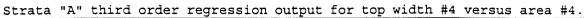
Strata "A" third order regression output for average depth #2 versus Q2.

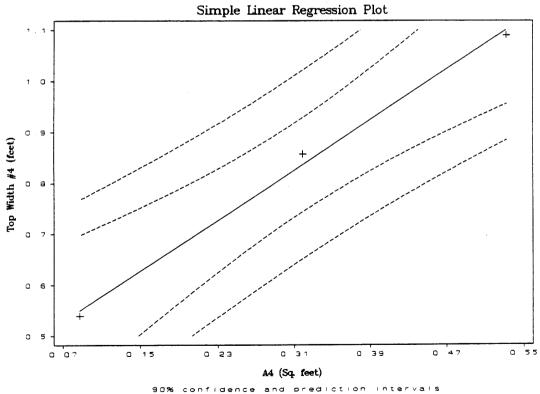

UNWEIGHTED I	LEAST SÇ	UARES :	LINEAF	REGRES	SION C	OF VELOC	ITY #2	<u></u>
PREDICTOR VARIABLES	COEFFI	CIENT	STI	ERROR	SI	rudent's	т	P
CONSTANT Q2		6087 4707	-).15883).05998		2.90 2.45		1011 1337
R-SQUARED ADJUSTED R-S	QUARED	0.750 0.625				SQUARE /IATION	(MSE)	0.00182 0.04270
SOURCE	DF	SS		MS		F	P	_
REGRESSION RESIDUAL TOTAL	1 2 3	0.01	365	0.01		6.01	0.1337	-
CASES INCLUI	DED 4	MISSIN	G CASE	s o				

Strata "A" third order regression output for velocity #2 versus Q2.


UNWEIGHTED I	LEAST SÇ	QUARES L	INEAR	REGRES	SION OF 1	BANK S	SLOPE	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STUDI	ent's	Т	P
CONSTANT AGI2		1542 79813		.39699 .27997		7.85 2.85		0159 1042
R-SQUARED ADJUSTED R-S	SQUARED	0.0025 0.038			MEAN SQU RD DEVIA		(MSE)	0.00510 0.07144
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	0.0414 0.0102 0.0516	21	0.04		3.13	0.1042	-
CASES INCLU	DED 4	MISSING	CASES	5 O				

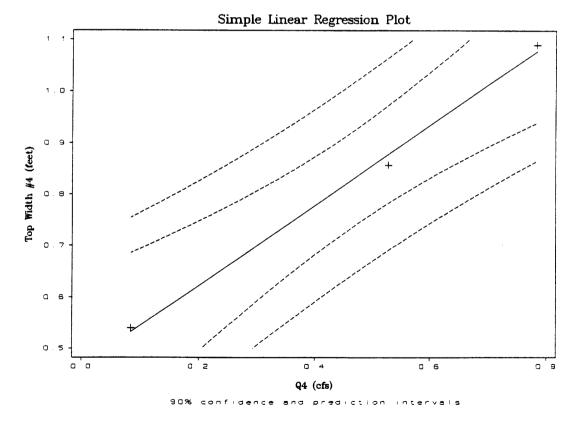
Strata "A" third order regression output for bank slope versus area gradient index #2.




Strata "A" third order regression output for area #4 versus top width #2.

UNWEIGHTED L	EAST SQ	UARES LI	NEAR	REGRES	SION	OF A4		
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT TW2		3033 1514		28216 19018		-5.78 6.92		1091 0914
R-SQUARED ADJUSTED R-SQ	QUARED	0.9795 0.9590				N SQUARE EVIATION	(MSE)	0.00203 0.04506
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 1 2	0.0970 0.0020 0.0991	3	0.09 0.00		47.82	0.0914	
CASES INCLUD	ED 3	MISSING	CASES	5 1				

UNWEIGHTED	LEAST S	QUARES L	INEAR	REGRES	SION	OF TOP	WIDTH	#4	
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR	5	STUDENT'	SТ	P	
CONSTANT A4		44178 23841	-	.02914 .08059	-	15.16 15.37		0.0419 0.0414	
R-SQUARED ADJUSTED R-		0.9958 0.9916				N SQUARE EVIATION	-) 6.436E-04 0.02537	
SOURCE	DF	SS		MS		F		P	
REGRESSION RESIDUAL TOTAL	1 1 2	0.152 6.436E- 0.152	04	0.15 6.436E	200 -04	236.15	0.	0414	
CASES INCLU	IDED 3	MISSING	CASES	31				<u> </u>	



:

UNWEIGHTED L	EAST S	QUARES L	INEAR	REGRES	SION	OF TOP V	VIDTH #4	1
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR	5	STUDENT'S	5 T	P
CONSTANT Q4		16531 78101		.02795 .05106	-	16.65 15.30		0.0382 0.0416
R-SQUARED ADJUSTED R-SQ	QUARED	0.9957 0.9915				N SQUARE	(MSE)	6.496E-04 0.02549
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 1 2	0.151 6.496E- 0.152	04	0.15 6.496E		233.98	0.041	.6
CASES INCLUD	ED 3	MISSING	CASES	3 1				

Strata "A" third order regression output for top width #4 versus Q4.

Basin ID 0900	Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)
n	2	2	2	2	2	2	2
Mean	1136.20	235.30	232.05	4.35	4.40	69.71	0.007
S.D.	983.06	41.58	40.16	3.11	3.18	45.14	0.001
C.V. (%)	86.52	17.67	17.31	71.52	72.32	64.75	19.46
Minimum	441.05	205.90	203.65	2.15	2.15	37.79	0.006
Maximum	1831.30	264.70	260.45	6.55	6.65	101.63	0.008
Range	1390.25	58.80	56.80	4.40	4.50	63.84	0.002
iL							
Basin ID 6400	Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)
Basin ID		Perimeter	Width		Depth	· ·	Slope
Basin ID 6400	(ft ²)	Perimeter (ft)	Width (ft)	Radius	Depth (ft)	Ratio	Slope (ft/ft)
Basin ID 6400 n	(ft ²) 2	Perimeter (ft) 2	Width (ft) 2	Radius 2	Depth (ft) 2	Ratio	Slope (ft/ft) 2
Basin ID 6400 n Mean	(ft ²) 2 323.83	Perimeter (ft) 2 129.70	Width (ft) 2 127.80	Radius 2 2.53	Depth (ft) 2 2.60	Ratio 2 51.91	Slope (ft/ft) 2 0.006
Basin ID 6400 n Mean S.D.	(ft ²) 2 323.83 297.16	Perimeter (ft) 2 129.70 119.64	Width (ft) 2 127.80 120.21	Radius 2 2.53 0.04	Depth (ft) 2 2.60 0.14	Ratio 2 51.91 50.12	Slope (ft/ft) 2 0.006 0.002
Basin ID 6400 n Mean S.D. C.V. (%)	(ft ²) 2 323.83 297.16 91.77	Perimeter (ft) 2 129.70 119.64 92.25	Width (ft) 2 127.80 120.21 94.06	Radius 2 2.53 0.04 1.40	Depth (ft) 2 2.60 0.14 5.44	Ratio 2 51.91 50.12 96.56	Slope (ft/ft) 2 0.006 0.002 34.42

High bank reach means for Strata "A" third order

.

. . .

Basin ID 0900	Area (ft²)	Wetted Perimete r (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	4	4	4	4	4	4	4	4	4	4	4
Mean	86.35	32.96	29.90	2.60	2.90	13.36	0.010	0.011	0.04	7.88	856.34
S.D.	52.73	9.85	9.56	1.20	1.42	10.23	0.004	0.010	0.00	5.38	913.76
C.V. (%)	61.07	29.88	31.99	46.13	49.07	76.53	36.94	86.35	5.25	68.27	106.71
Minimum	40.35	22.35	20.75	1.45	1.50	6.39	0.006	0.003	0.04	3.21	129.68
Maximum	160.85	42.70	40.60	4.05	4.55	28.44	0.014	0.022	0.04	12.98	2088.40
Range	120.50	20.35	19.85	2.60	3.05	22.05	0.008	0.019	0.00	9.77	1958.72
Basin ID	Area	Wetted Perimeter	Top Width	Hydraulic Radius	Average Depth	W/D Ratio	Bed Slope	Bank Slope	Manning's "n"	Velocity	Q
3800	(ft²)	(ft)	(ft)		(ft)		(ft/ft)	(ft/ft)		(ft/s)	(cfs)
n	1	1	1	1	1	1	1	1	1	1	1
Mean	131.85	47.90	45.25	2.75	2.90	15.64	0.005	0.014	0.04	8.59	1132.20
S.D.	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00
C.V. (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00
Minimum	131.85	47.90	45.25	2.75	2.90	15.64	0.005	0.014	0.04	8.59	1132.20
Maximum	131.85	47.90	45.25	2.75	2.90	15.64	0.005	0.014	0.04	8.59	1132.20
Range	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00

-

Medium bank reach means for Strata "A" third order

....

.

,

Basin ID 4700	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	3	3	3	3	3	3	3	3	3	3	3
Mean	69.23	26.95	22.25	2.57	3.20	7.72	0.005	0.023	0.03	9.17	659.31
S.D.	21.12	8.05	8.50	0.50	0.85	5.01	0.006	0.034	0.00	7.58	588.25
C.V. (%)	30.51	29.86	38.22	19.61	26.70	64.81	105.32	150.02	2.94	82.69	89.22
Minimum	46.15	18.35	13.90	2.10	2.30	4.22	0.001	0.003	0.03	4.50	207.49
Maximum	87.60	34.30	30.90	3.10	4.00	13.46	0.012	0.062	0.04	17.91	1324.50
Range	41.45	15.95	17.00	1.00	1.70	9.24	0.011	0.059	0.00	13.41	1117.01

Basin ID 6400	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
		Perimeter			Depth			Slope		-	
6400	(ft²)	Perimeter (ft)	(ft)	Radius	Depth (ft)	Ratio	(ft/ft)	Slope (ft/ft)	"n"	(ft/s)	(cfs)
6400 n	(ft²) 2	Perimeter (ft) 2	(ft) 2	Radius 2	Depth (ft) 2	Ratio	(ft/ft) 2	Slope (ft/ft) 2	"n" 2	(ft/s) 2	(cfs) 2
6400 n Mean	(ft²) 2 19.73	Perimeter (ft) 2 14.93	(ft) 2 13.75	Radius 2 1.28	Depth (ft) 2 1.38	Ratio 2 9.99	(ft/ft) 2 0.006	Slope (ft/ft) 2 0.014	"n" 2 0.03	(ft/s) 2 6.10	(cfs) 2 124.73
6400 n Mean S.D.	(ft²) 2 19.73 5.90	Perimeter (ft) 2 14.93 3.57	(ft) 2 13.75 3.46	Radius 2 1.28 0.04	Depth (ft) 2 1.38 0.04	Ratio 2 9.99 2.11	(ft/ft) 2 0.006 0.002	Slope (ft/ft) 2 0.014 0.006	"n" 2 0.03 0.00	(ft/s) 2 6.10 1.48	(cfs) 2 124.73 65.18
6400 n Mean S.D. C.V. (%)	(ft²) 2 19.73 5.90 29.93	Perimeter (ft) 2 14.93 3.57 23.93	(ft) 2 13.75 3.46 25.20	Radius 2 1.28 0.04 2.77	Depth (ft) 2 1.38 0.04 2.57	Ratio 2 9.99 2.11 21.14	(ft/ft) 2 0.006 0.002 34.42	Slope (ft/ft) 2 0.014 0.006 43.73	"n" 2 0.03 0.00 0.00	(ft/s) 2 6.10 1.48 24.21	(cfs) 2 124.73 65.18 52.25

....

Basin ID 3800	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	1	1	1	1	1	1	1	1	1	1	1
Mean	70.30	29.50	27.65	2.40	2.50	11.69	0.005	0.015	0.036	9.01	633.38
S .D.	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00
C.V. (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Minimum	70.30	29.50	27.65	2.40	2.50	11.69	0.005	0.015	0.036	9.01	633.38
Maximum	70.30	29.50	27.65	2.40	2.50	11.69	0.005	0.015	0.036	9.01	633.38
Range	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00

Low bank reach means for Strata "A" third order

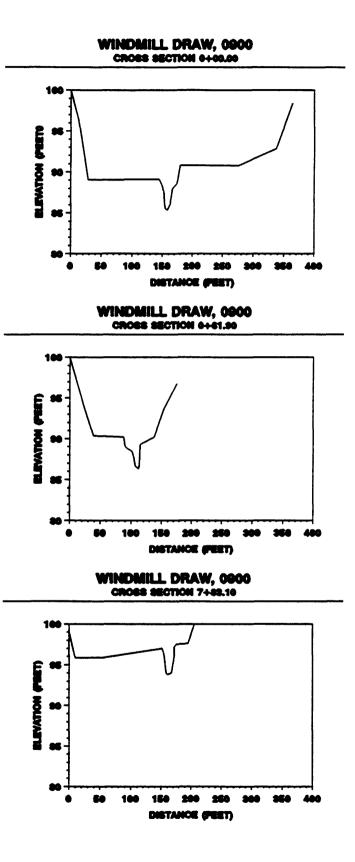
.

. .

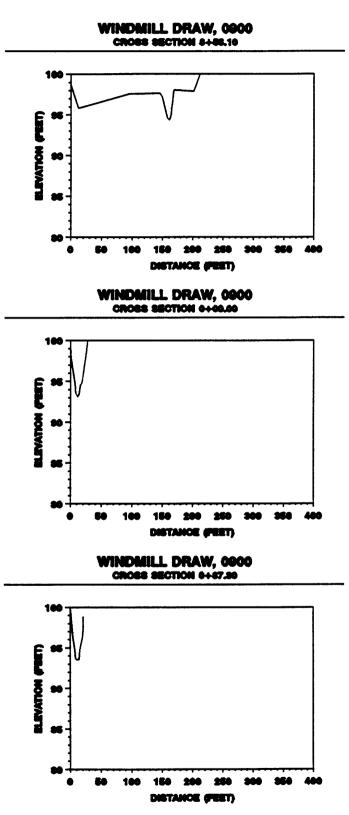
.

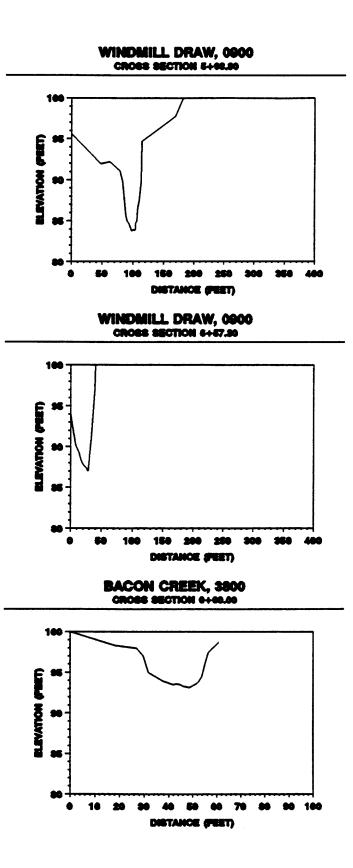
Basin ID 4700	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	3	3	3	3	3	3	3	3	3	3	3
Mean	17.60	13.93	11.50	1.27	1.53	7.54	0.005	0.013	0.034	5.48	93.59
S.D.	2.61	2.32	1.69	0.08	0.03	1.03	0.006	0.010	0.000	2.15	29.83
C.V. (%)	14.82	16.64	14.73	6.03	1.88	13.68	105.32	76.21	0.00	39.15	31.87
Minimum	15.60	11.80	10.15	1.20	1.50	6.68	0.001	0.004	0.034	3.29	67.57
Maximum	20.55	16.40	13.40	1.35	1.55	8.68	0.012	0.023	0.034	7.58	126.14
Range	4.95	4.60	3.25	0.15	0.05	2.01	0.011	0.019	0.000	4.29	58.57

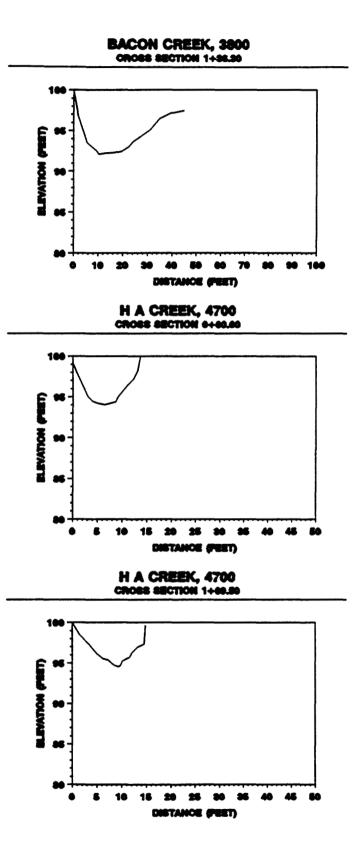
Basin ID 0900	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	4	4	4	4	4	4	4	4	4	4	4
Mean	5.10	8.63	8.16	0.44	0.49	36.40	0.010	0.009	0.036	2.21	18.14
S.D.	5.21	4.98	4.62	0.40	0.46	30.08	0.004	0.007	0.001	2.11	21.59
C.V. (%)	102.17	57.80	56.58	90.67	92.81	82.64	36.94	76.63	3.21	95.44	118.99
Minimum	0.35	3.95	3.90	0.07	0.07	8.75	0.006	0.003	0.035	0.50	0.18
Maximum	10.35	15.15	14.40	0.90	1.00	76.95	0.014	0.018	0.037	5.02	44.17
Range	10.00	11.20	10.50	0.83	0.93	68.20	0.008	0.015	0.002	4.52	44.00
Basin ID 3800	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slop e (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
		Perimeter			Depth		· ·	Slope		-	
3800	(ft²)	Perimeter (ft)		Radius	Depth (ft)	Ratio	(ft/ft)	Slope (ft/ft)	"n"	-	
3800 n	(ft²) 1	Perimeter (ft) 1	(ft) 1	Radius 1	Depth (ft) 1	Ratio 1	(ft/ft) 1	Slop e (ft/ft) 1	"n"1	(ft/s) 1	(cfs) 1
3800 n Mean	(ft²) 1 3.90	Perimeter (ft) 1 12.60	(ft) 1 12.50	Radius 1 0.30	Depth (ft) 1 0.30	Ratio 1 44.13	(ft/ft) 1 0.005	Slope (ft/ft) 1 0.008	"n" 1 0.038	(ft/s) 1 1.56	(cfs) 1 6.07
3800 n Mean S.D.	(ft²) 1 3.90 0.00	Perimeter (ft) 1 12.60 0.00	(ft) 1 12.50 0.00	Radius 1 0.30 0.00	Depth (ft) 1 0.30 0.00	Ratio 1 44.13 0.00	(ft/ft) 1 0.005 0.000	Slope (ft/ft) 1 0.008 0.000	"n" 1 0.038 0.000	(ft/s) 1 1.56 0.00	(cfs) 1 6.07 0.00
3800 n Mean S.D. C.V. (%)	(ft²) 1 3.90 0.00 0.00	Perimeter (ft) 1 12.60 0.00 0.00	(ft) 1 12.50 0.00 0.00	Radius 1 0.30 0.00 0.00	Depth (ft) 1 0.30 0.00 0.00	Ratio 1 44.13 0.00 0.00	(ft/ft) 1 0.005 0.000 0.00	Slope (ft/ft) 1 0.008 0.000 0.00	"n" 1 0.038 0.000 0.00	(ft/s) 1 1.56 0.00 0.00	(cfs) 1 6.07 0.00 0.00

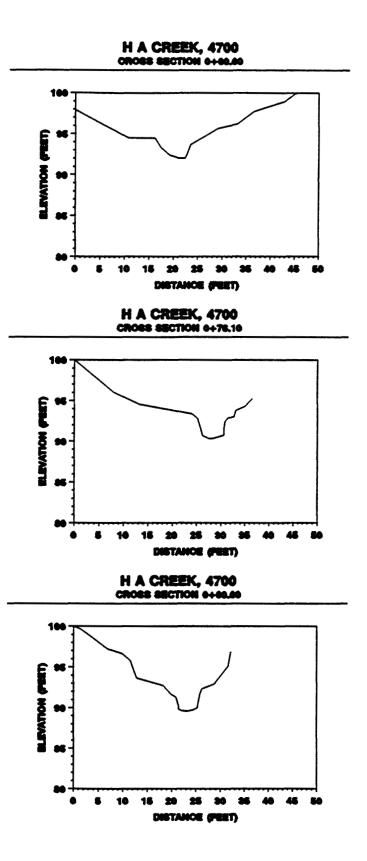

Low bank # 2 reach means for Strata "A" third order

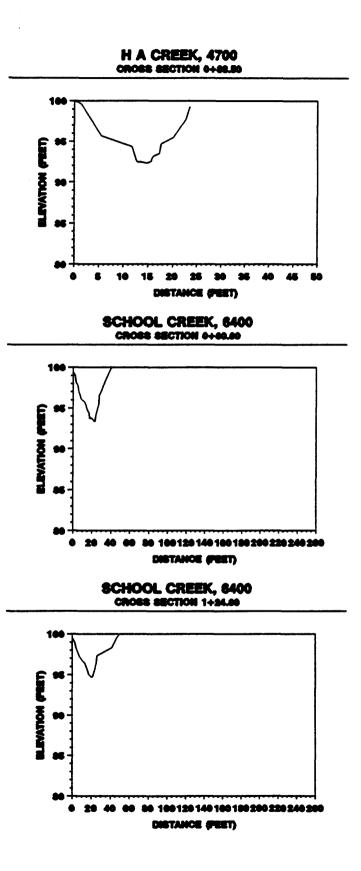
....

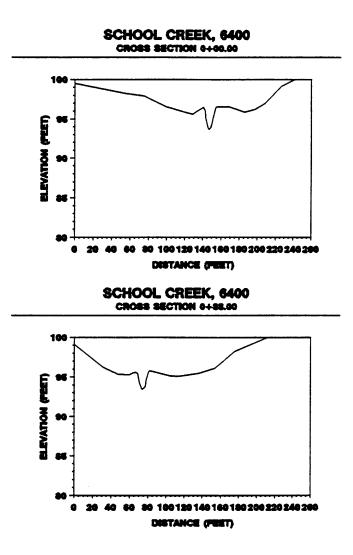

.


Basin ID 4700	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	3	3	3	3	3	3	3	3	3	3	3
Mean	1.65	4.07	3.62	0.35	0.40	12.12	0.005	0.002	0.035	0.88	1.36
S.D.	1.08	0.81	0.47	0.15	0.20	3.74	0.006	0.001	0.001	0.25	0.67
C.V. (%)	65.56	19.99	13.07	42.86	50.00	30.83	105.32	64.02	3.33	28.58	49.49
Minimum	0.75	3.35	3.25	0.20	0.20	8.97	0.001	0.001	0.034	0.67	0.61
Maximum	2.85	4.95	4.15	0.50	0.60	16.25	0.012	0.003	0.036	1.16	1.90
Range	2.10	1.60	0.90	0.30	0.40	7.28	0.011	0.003	0.002	0.49	1.30


. .


•



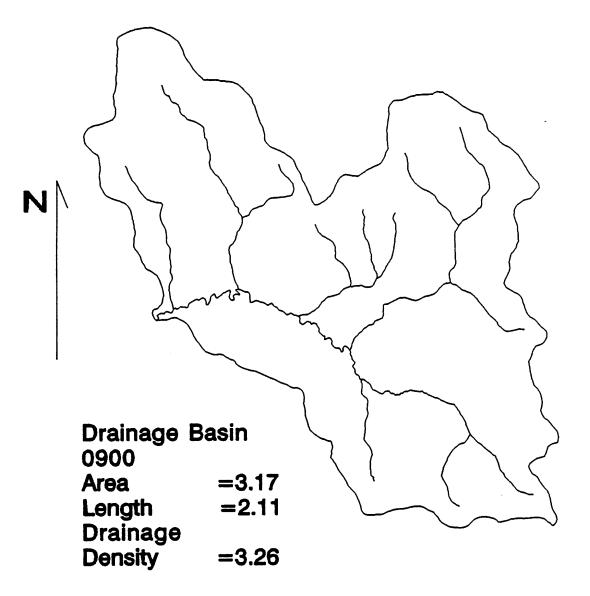


:

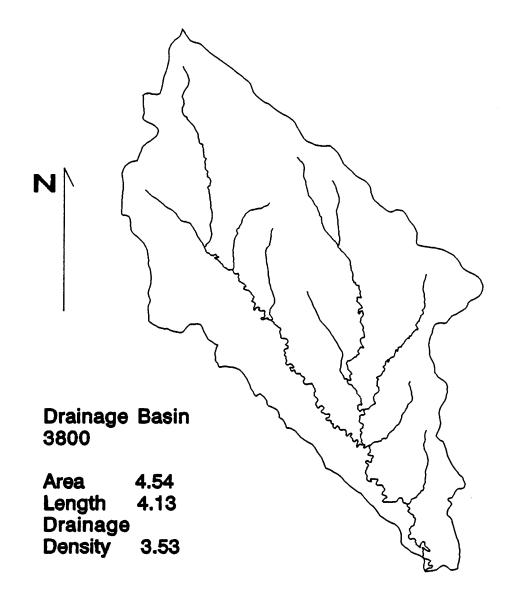
. .

:

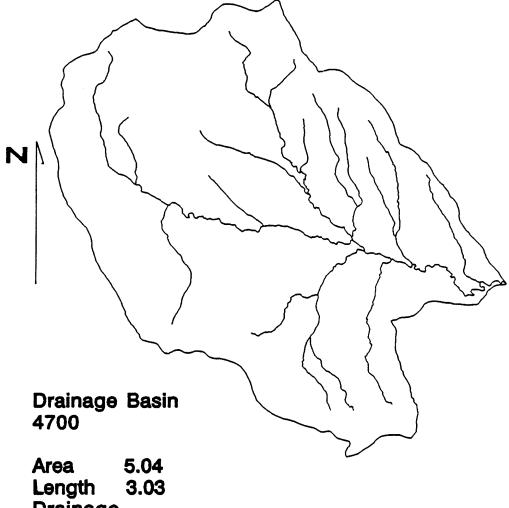
Strata	"A"	third	order	raw	data	by	study	reach,	cross	section,	and	bank
i	Ident	tificat	ion.									


BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	FLOOD- PLAIN WIDTH (feet)
0900	0+00.00A	HIGH	2751.20	357.90	7.70	154.40
0900	0+61.90A	HIGH	911.50	163.00	5.60	99.50
0900	7+83.10A	HIGH	547.10	201.50	2.70	190.40
0900	8+56.10A	HIGH	335.00	205.80	1.60	199.80
6400	0+00.00A	HIGH	118.90	38.20	3.10	
6400	1+24.00A	HIGH	108.50	47.40	2.30	
6400	0+00.00B	HIGH	522.50	233.00	2.20	
6400	0+88.00B	HIGH	545.40	192.60	2.80	
0900	0+00.00A	MEDIUM	53.10	30.80	1.70	
0900	0+61.90A	MEDIUM	67.90	50.40	1.30	
0900	7+83.10A	MEDIUM	43.50	20.20	2.20	
0900	8+56.10A	MEDIUM	37.20	21.30	1.70	
0900	0+00.00B	MEDIUM	96.50	26.50	3.60	
0900	0+87.80B	MEDIUM	70.90	19.50	3.60	
0900	5+98.80B	MEDIUM	163.10	34.30	4.70	
0900	6+57.80B	MEDIUM	158.60	36.20	4.40	
3800	0+00.00A	MEDIUM	133.20	47.10	2.80	
3800	1+36.30A	MEDIUM	130.50	43.40	3.00	
4700	0+00.00A	MEDIUM	45.90	13.40	3.40	
4700	1+09.50A	MEDIUM	46.40	14.40	3.20	
4700	0+00.00B	MEDIUM	97.80	36.00	2.70	
4700	0+76.10B	MEDIUM	50.10	25.80	1.90	
4700	0+00.00C	MEDIUM	87.20	22.20	3.90	
4700	0+88.50C	MEDIUM	88.00	21.70	4.10	
6400	0+00.00A	MEDIUM	35.00	20.20	1.70	
6400	1+24.00A	MEDIUM	12.80	12.20	1.10	

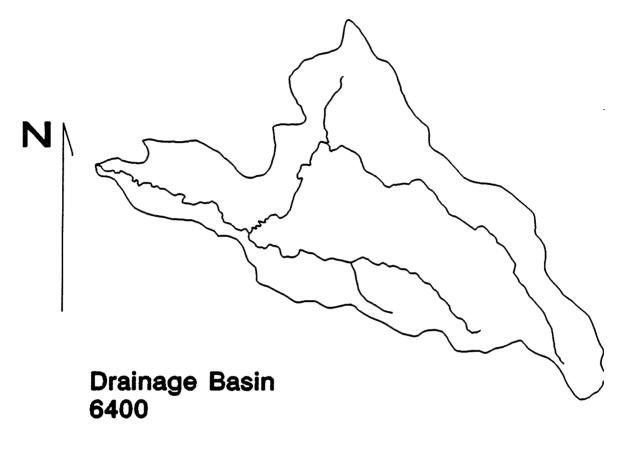
:


BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)
6400	0+00.00B	MEDIUM	16.60	11.00	1.50
6400	0+88.00B	MEDIUM	14.50	11.60	1.20
3800	0+00.00A	LOW	87.60	28.10	3.10
3800	1+36.30A	LOW	53.00	27.20	1.90
4700	0+00.00A	LOW	15.20	9.10	1.70
4700	1+09.50A	LOW	16.00	11.20	1.40
4700	0+00.00B	LOW	13.30	9.40	1.40
4700	0+76.10B	LOW	20.00	12.50	1.60
4700	0+00.00C	LOW	18.90	12.00	1.60
4700	0+88.50C	LOW	22.20	14.80	1.50
0900	0+00.00A	LOW #2	0.60	5.00	0.10
0900	0+61.90A	LOW #2	1.20	6.20	0.20
0900	7+83.10A	LOW #2	0.10	3.30	0.03
0900	8+56.10A	LOW #2	0.60	4.50	0.10
0900	0+00.00B	LOW #2	9.90	9.80	1.00
0900	0+87.80B	LOW #2	7.70	7.70	1.00
0900	5+98.80B	LOW #2	10.60	15.70	0.70
0900	6+57.80B	LOW #2	10.10	13.10	0.80
3800	0+00.00A	LOW #2	5.80	14.70	0.40
3800	1+36.30A	LOW #2	2.00	10.30	0.20
4700	0+00.00A	LOW #2	1.00	4.60	0.20
4700	1+09.50A	LOW #2	0.50	1.90	0.20
4700	0+00.00B	LOW #2	0.80	3.50	0.20
4700	0+76.10B	LOW #2	4.90	4.80	1.00
4700	0+00.00C	LOW #2	1.70	3.80	0.50
4700	0+88.50C	LOW #2	1.00	3.10	0.30

.


.

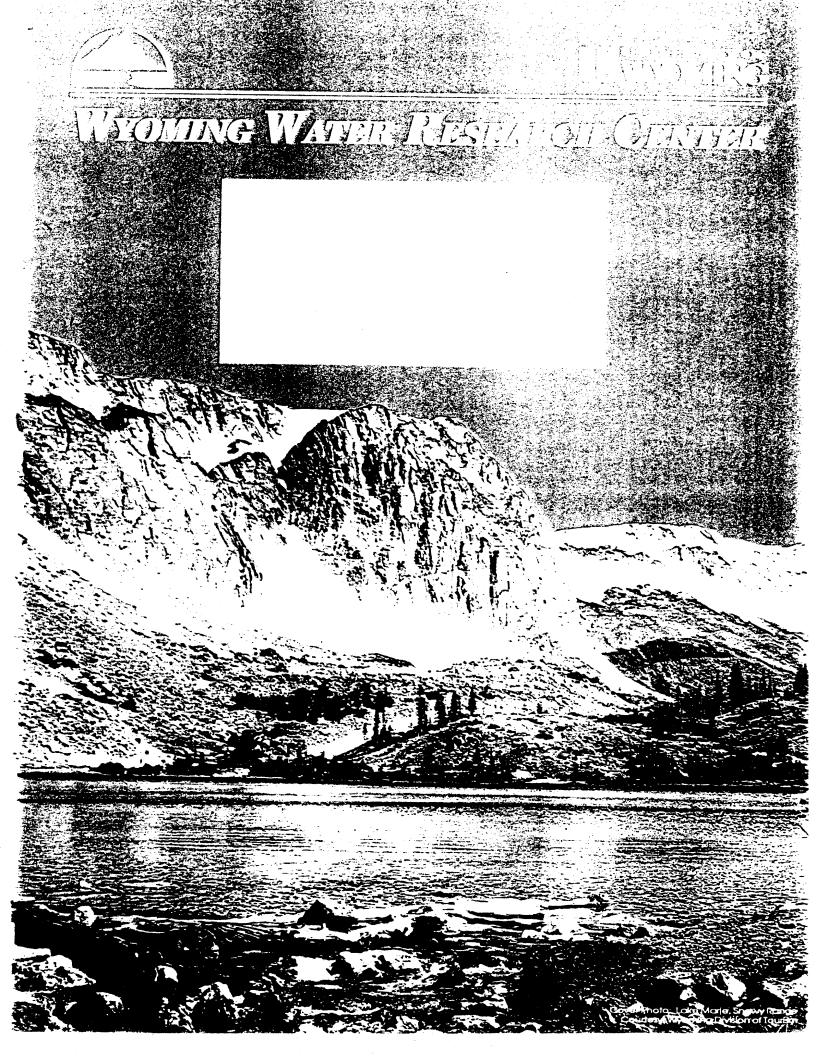
:



;

Length 3.03 Drainage Density 3.51

:


Area	1.58
Length	2.55
Drainage	
Density	3.52

•

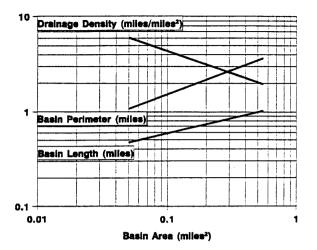
Methodology for the Geomorphic Classification and Design of Drainage Basins and Stream Channels in the Eastern Powder River Basin Coal Field of Wyoming

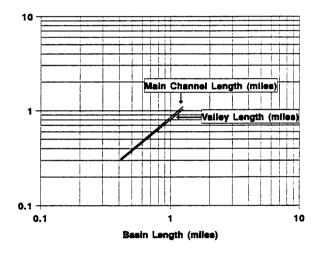
Anthony J. AndersonVolume 3 of 3Lee E. JensenAppendices (pgs. 466 - 812)Suzy L. NoeckerDecember 1995Thomas A. WescheWWRC-94-20

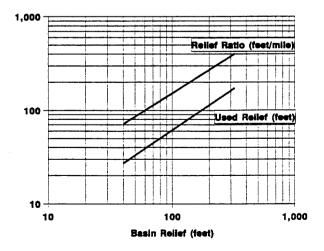
Technical Report Submitted to The Abandoned Coal Mine Lands Research Program

Prepared by

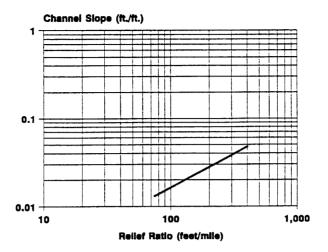
Anthony J. Anderson Lee E. Jensen Suzy L. Noecker Thomas A. Wesche Wyoming Water Resources Center University of Wyoming Laramie, Wyoming

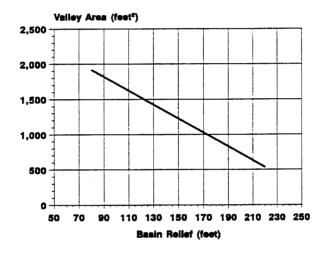

December, 1995

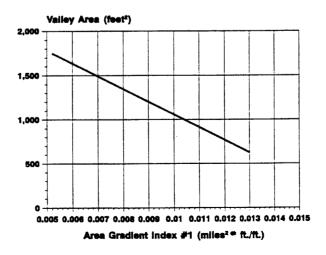

APPENDIX B-1


STRATA "B" - FIRST ORDER

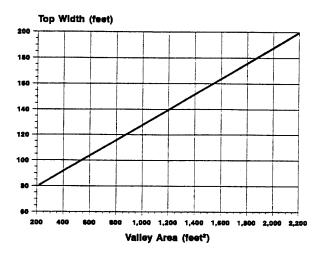
Description of Contents	Page
Geomorphic Relationships in Graph Format	467 - 469
Simple and Multiple Linear Regression Output Tables and Simple Linear Regression Plots with 90% Confidence Belts	470 - 485
Descriptive Statistics by Study Reach and by Bank	486 - 496
Cross-Section Plots by Study Site and Study Reach	497 - 513
Longitudinal Profiles by Study Reach	514 - 517
Raw Field Data	518 - 521
Representative Photographs	522 - 524

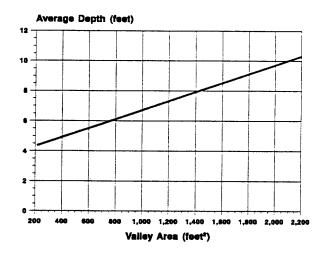

•





:

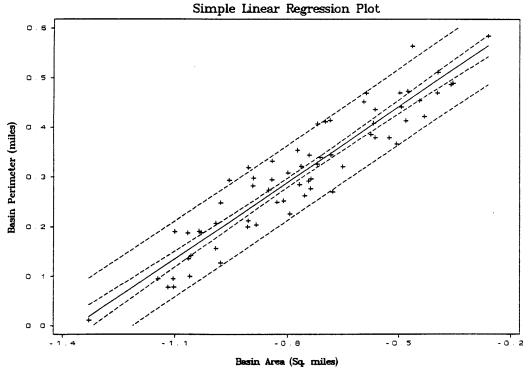






:

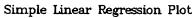
a.

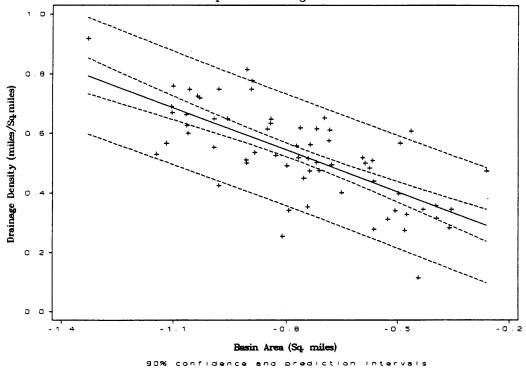


ł

UNWEIGHTED I	LEAST SQ	UARES	LINE	EAR	REGRES	SION	OF BASIN	PERIM	IETER
PREDICTOR VARIABLES	COEFFI	CIENT	S	TD	ERROR		STUDENT'S	т	P
CONSTANT BA		9749 1142	-		01875 02348		37.20 21.78	_	0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.881 0.879					N SQUARE EVIATION	(MSE)	0.00202 0.04490
SOURCE	DF	SS	5		MS		F	F)
REGRESSION RESIDUAL TOTAL	1 64 65	0.99 0.12 1.08	2901	-	0.95 0.00		474.36	0.00	000
CASES INCLUE	DED 66	MISSI	NG C	ASE	S 0				

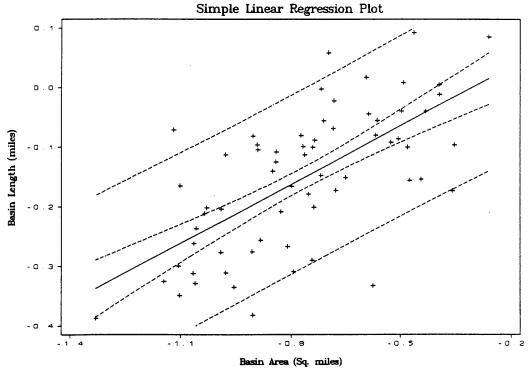
Strata "B" first order regression output for basin perimeter versus basin area.




90% confidence and prediction intervals

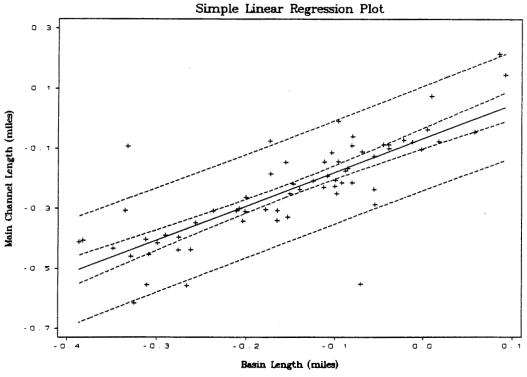
470

UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF DRAIN	iage dei	NSITY
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	T	P
CONSTANT BA	0.1	6886 6963	-	.04664 .05841		3.62 -8.04		0.0006
R-SQUARED ADJUSTED R-S	QUARED	0.5025 0.4947				N SQUARE EVIATION	(MSE)	0.01247 0.11169
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 64 65	0.8063 0.7983 1.6046	5	0.80		64.64	0.000	00
CASES INCLUI	DED 66	MISSING	CASE	ES O				


Strata "B" first order regression output for drainage density versus basin area.

UNWEIGHTED I	LEAST SQ	UARES	LINE	IAR	REGRES	SION	OF BASIN	LENGI	
PREDICTOR VARIABLES	COEFFI	CIENT	S	TD	ERROR		STUDENT'S	т	P
CONSTANT BA		0107 2954	-		03728		2.71 7.06		0.0086 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.43 0.428					N SQUARE EVIATION	(MSE)	0.00797 0.08928
SOURCE	DF	S	5		MS		F	F)
REGRESSION RESIDUAL TOTAL	1 64 65	0.39 0.5 0.90	L015	-	0.39		49.81	0.00	000
CASES INCLU	DED 66	MISS	ING C	ASE	IS 0				

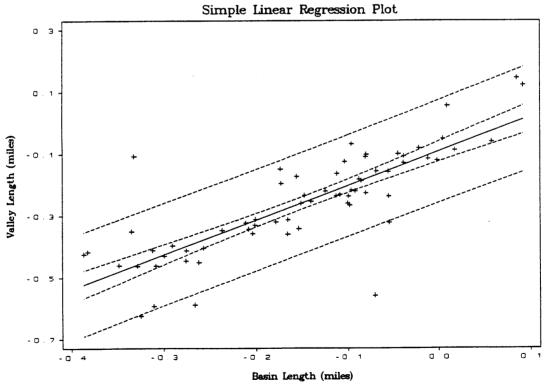
Strata "B" first order regression output for basin length versus basin area.



90% confidence and prediction intervals

472

UNWEIGHTED L	EAST SQ	UARES LI	NEAR	REGRES	SION O	F MAIN	CHANNEL	LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	ST	udent's	т	P
CONSTANT BL		6581 3048		02044 10721	*	-3.22 10.54		0020 0000
R-SQUARED ADJUSTED R-S	QUARED	0.6347 0.6290		RESID. STANDAI		-	(MSE)	0.01043 0.10212
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 64 65	1.1593 0.6673 1.8267	7	1.15		111.18	0.0000	
CASES INCLUD	ED 66	MISSING	CASE	S 0				

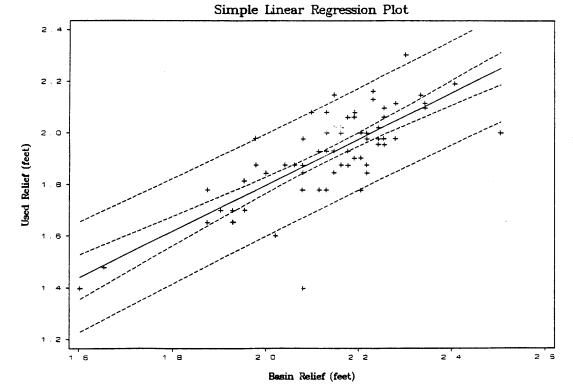

Strata "B" first order regression output for main channel length versus basin length.

90% confidence and prediction intervais

UNWEIGHTED L	EAST SQ	UARES LI	NEAR	REGRES	SION	OF VALLE	Y LENG	TH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	T	P
CONSTANT BL	-0.0 1.1	9190 1185	-	.01953 .10244		-4.71 10.85		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.6480 0.6425				N SQUARE EVIATION	(MSE)	0.00952 0.09757
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 64 65	1.1214 0.6092 1.7307	3	1.12 0.00		117.81	0.00	00
CASES INCLUD	ED 66	MISSING	CASI	ES 0				

Strata "B" first order regression output for valley length versus basin ______length.

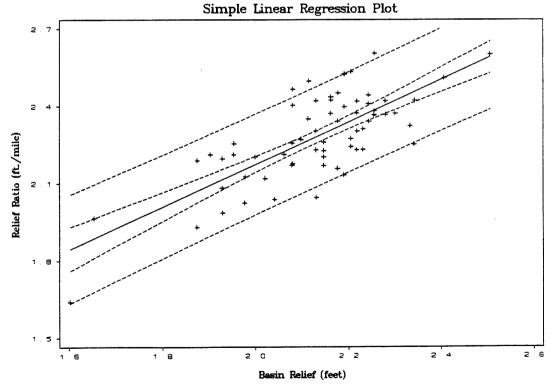
90% confidence and prediction intervals


474

UNWEIGHTED I	least sq	UARES LIN	NEAR	REGRES	SION C	OF BR		
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	SI	FUDENT'S	т	P
CONSTANT	2.0	5128	0.	06566		31.24		0.000
BA	-0.2	2635	Ο.	10385		-2.18	(0.0330
BL	0.6	0635	0.	20848		2.91	(0.0050
R-SQUARED ADJUSTED R-S	SQUARED	0.1198 0.0919				SQUARE VIATION	(MSE)	0.02217 0.14891
SOURCE	DF	SS		MS		F	P	
REGRESSION	2	0.19014	<u> </u>	0.09	507	4.29	0.01	77
RESIDUAL	63	1.39689	9	0.02	217			
TOTAL	65	1.58703	3					
CASES INCLUI	DED 66	MISSING	CASE	IS O				

•

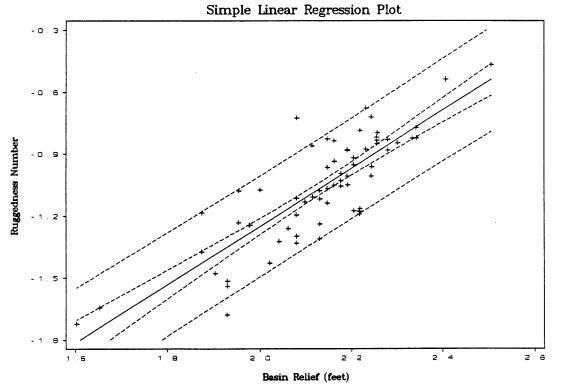
UNWEIGHTED I	LEAST SQ	UARES	LINE	AR	REGRES	SION	OF USED 1	RELIEF	
PREDICTOR VARIABLES	COEFFI	CIENT	s	TD	ERROR	:	STUDENT'S	т	P
CONSTANT BR		0918 9422	_		19941 09325	-	0.05 9.59		0.9634 0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.589 0.583					N SQUARE EVIATION	(MSE)	0.01380 0.11747
SOURCE	DF	SS	5		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 64 65	1.26 0.88 2.15	3319	-	1.26 0.01		91.96	0.00	
CASES INCLU	DED 66	MISSI	NG C	ASE	S 0				


Strata "B" first order regression output for used relief versus basin relief.

90% confidence and prediction intervals

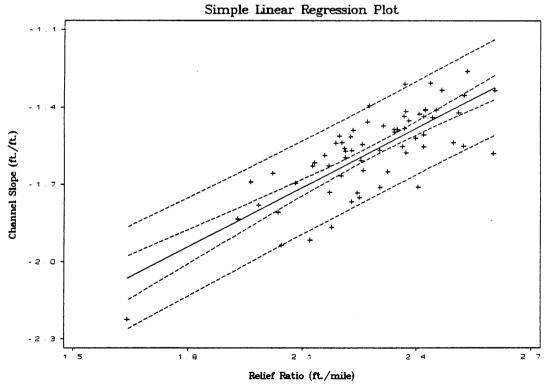
UNWEIGHTED I	LEAST SQ	UARES 1	LINEAR	REGRES	SION	I OF RELIE	F RATI	0
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT BR		2312 2523	-	.19662 .09195		2.66 8.97		0.0099 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.5572 0.5503				AN SQUARE DEVIATION	(MSE)	0.01342 0.11583
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 64 65	1.080 0.858 1.939	872	1.08 0.01		80.55	0.00	00
CASES INCLU	ED 66	MISSI	NG CAS	ES O				

Strata "B" first order regression output for relief ratio versus basin ______relief.

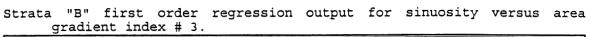


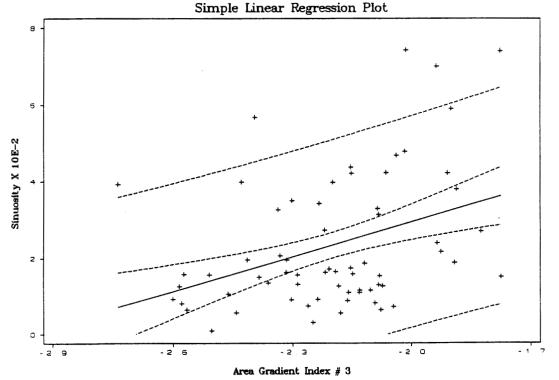
90% confidence and prediction intervals

477


UNWEIGHTED I	least sq	UARES L	INEAR	REGRES	SION OF	RUGGE	DNESS	NUMBER
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	P
CONSTANT BR		6963 0987		24544 11478		16.58 12.28		0.0000 0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.7022 0.6975			MEAN S RD DEVI		(MSE)	0.02091 0.14459
SOURCE	DF	SS		MS		F	F)
REGRESSION RESIDUAL TOTAL	1 64 65	3.154 1.338 4.492	08	3.15		50.88	0.00	000
CASES INCLU	DED 66	MISSIN	G CASE	IS O				

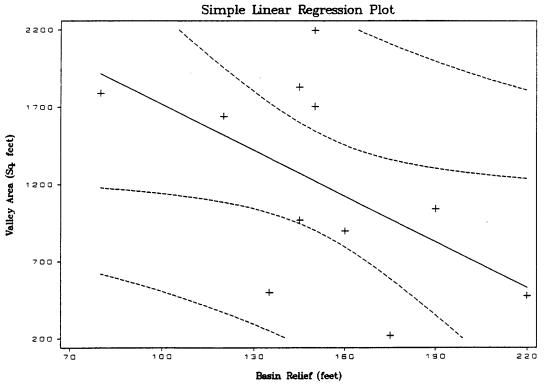
Strata "B" first order regression output for ruggedness number versus basin relief.




UNWEIGHTED L	EAST SQ	UARES	LIN	IEAR	REGRES	SION	I OF CHANN	IEL SLC)PE
PREDICTOR VARIABLES	COEFFI	CIENT		STD	ERROR		STUDENT'S	т	P
CONSTANT RR		2847 6999			17633 07701		-18.88 10.00		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.603					N SQUARE	(MSE)	0.01150 0.10726
SOURCE	DF	S	5		MS		F	P)
REGRESSION RESIDUAL TOTAL	1 64 65	1.14 0.73 1.88	3624		1.14 0.01		99.96	0.00	00
CASES INCLUD	ED 66	MISS	ING	CASE	IS O				

Strata "B" first order regression output for channel slope versus relief ratio.

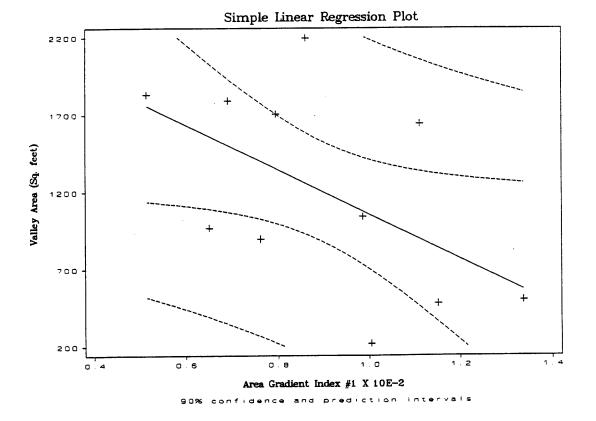
UNWEIGHTED L	EAST SQ	UARES	LINE	٩R	REGRES	SION	OF SINUOS	SITY	
PREDICTOR VARIABLES	COEFFI	CIENT	SI	۳D	ERROR		STUDENT'S	т	P
CONSTANT AGI3		8999 3028			02094 00946		4.30 3.20		0.0001 0.0021
R-SQUARED ADJUSTED R-S	QUARED	0.137 0.124					N SQUARE EVIATION	(MSE)	2.680E-04 0.01637
SOURCE	DF	SS			MS		F]	P
REGRESSION RESIDUAL TOTAL	1 64 65	0.00 0.01 0.01			0.003 2.680E		10.24	0.00	021
CASES INCLUD	ED 66	MISSI	NG CA	ASE	ES O				



480

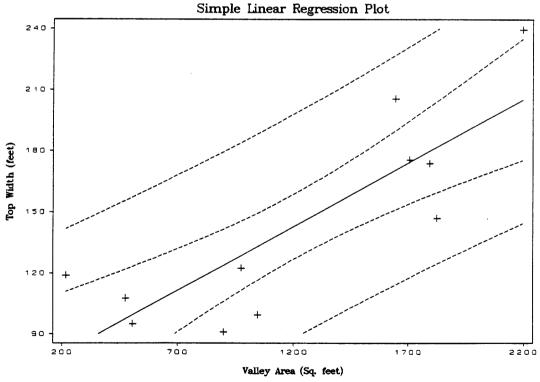
UNWEIGHTED L	EAST S	QUARES I	LINEAR	REGRES	SION	OF VALLE	Y ARE	A
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR	5	STUDENT'S	T	P
CONSTANT BR		06.46 38317		85.534 .04392	-	3.45 -1.96		0.0073 0.0817
R-SQUARED ADJUSTED R-SC	QUARED	0.2990 0.2211				N SQUARE EVIATION	(MSE)	3.374E+05 580.898
SOURCE	DF	SS		MS		F	1	P
REGRESSION RESIDUAL TOTAL	1 9 10	1.296E+ 3.037E+ 4.333E+	-06	1.296E 3.374E		3.84	0.08	817
CASES INCLUD	ED 11	MISSIN	IG CAS	ES 0				

Strata "B" first order regression output for valley area versus basin ______relief._____

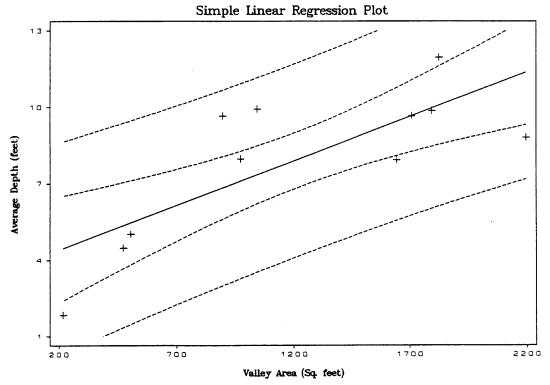


90% confidence and prediction intervals

481

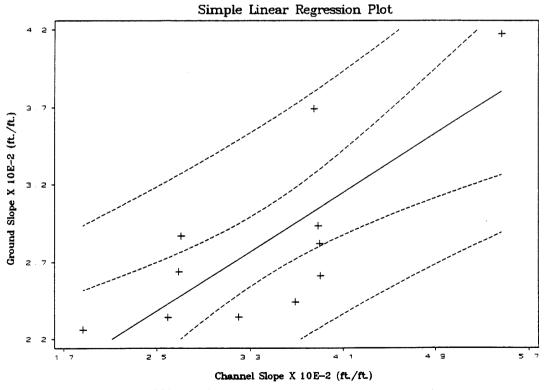

UNWEIGHTED L	EAST S	QUARES LIN	IEAR	REGRES	SION	OF VALLE	Y AREA	L
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR		STUDENT'S	Т	P
CONSTANT AGI1	249 -1.440	96.61 DE+05		98.714 5433.5		3.57 -1.91		0.0060 0.0886
R-SQUARED ADJUSTED R-S	QUARED	0.2882 0.2091				N SQUARE DEVIATION	(MSE)	3.426E+05 585.361
SOURCE	DF	SS		MS		F	F)
REGRESSION RESIDUAL TOTAL	1 9 10	1.249E+06 3.084E+06 4.333E+06	5	1.249E 3.426E		3.64	0.08	86
CASES INCLUI	DED 11	MISSING	CASI	ES 0				

Strata "B" first order regression output for valley area versus area gradient index #1.


UNWEIGHTED 1	EAST SQ	UARES LI	NEAR	REGRES	SION	OF TOP W	IDTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	Т	P
CONSTANT A		6820 6265		.8313 01385		3.59 4.52		0.0058 0.0014
R-SQUARED ADJUSTED R-S	QUARED	0.6945 0.6606				SQUARE VIATION	(MSE)	831.230 28.8311
SOURCE	DF	SS		MS		F	I	2
REGRESSION RESIDUAL TOTAL	1 9 10	17007. 7481.0 24488.	7	1700' 831.2		20.46	0.00)14
CASES INCLUD	ED 11	MISSING	CASE	S 0				

Strata "B" first order regression output for top width versus valley area.

UNWEIGHTED L	EAST SQ	UARES LII	NEAR	REGRES	SION	OF AVERA	GE DEP	ТН
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT A		1127 0348		.29711 11E-04		2.86 3.65		0.0187 0.0053
R-SQUARED ADJUSTED R-S	QUARED	0.5968 0.5520				N SQUARE EVIATION	(MSE)	3.94378 1.98590
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 9 10	52.536 35.494 88.030	5	52.5 3.94		13.32	0.00	53
CASES INCLUD	ED 11	MISSING	CASE	ES O			<u></u>	


Strata "B" first order regression output for average depth versus valley area.

484

UNWEIGHTED	LEAST S	QUARES	LINEA	R	REGRES	SION	I OF	GROUN	D SLO	PE	
PREDICTOR VARIABLES	COEFF	ICIENT	ST	D	ERROR		STUE	ENT'S	T		P
CONSTANT CHS		01185 47932			00468 13190			2.53 3.63			0322 055
R-SQUARED ADJUSTED R-	SQUARED	0.594 0.549			RESID. STANDA				(MSE)		616E-05 0.00402
SOURCE	DF	SS	5		MS			F	:	P	
REGRESSION RESIDUAL TOTAL	1 9 10	2.134E 1.454E 3.589E	5-04		2.134E 1.616E		1	3.21	0.0	055	
CASES INCLU	DED 11	MISSI	NG CA	SE	IS 0						

Strata "B" first order regression output for ground slope versus channel slope.

BASIN ID 19A1	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	5.00	5.00	5.00	5.00	5.00	5.00		6.00
MEAN	215.08	119.36	118.66	1.80	1.82	67.49		0.023
S.D.	100.05	53.46	53.47	0.29	0.29	36.50		0.007
C.V. (%)	46.52	44.79	45.07	16.20	15.73	54.08		31.86
MINIMUM	108.20	59.30	58.70	1.40	1.40	32.61		0.016
MAXIMUM	312.30	167.20	167.10	2.20	2.20	119.36		0.036
RANGE	204.10	107.90	108.40	0.80	0.80	86.75		0.019
BASIN ID 19A2	AREA (ft. ²)	WETTED Perimeter (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
19A2	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
19A2 n	(ft. ²) 5.00	PERIMETER (ft.) 5.00	WIDTH (ft.) 5.00	RADIUS 5.00	DEPTH (ft.) 5.00	RATIO 5.00	WIDTH (ft.) 3.00	SLOPE (ft/ft) 12.00
19A2 n MEAN	(ft. ²) 5.00 504.26	PERIMETER (ft.) 5.00 97.48	WIDTH (ft.) 5.00 95.20	RADIUS 5.00 4.96	DEPTH (ft.) 5.00 5.04	RATIO 5.00 19.35	WIDTH (ft.) 3.00 24.23	SLOPE (ft/ft) 12.00 0.029
19A2 n MEAN S.D.	(ft. ²) 5.00 504.26 235.57	PERIMETER (ft.) 5.00 97.48 21.76	WIDTH (ft.) 5.00 95.20 21.33	RADIUS 5.00 4.96 1.46	DEPTH (ft.) 5.00 5.04 1.46	RATIO 5.00 19.35 3.14	WIDTH (ft.) 3.00 24.23 2.05	SLOPE (ft/ft) 12.00 0.029 0.019
19A2 n MEAN S.D. C.V. (%)	(ft. ²) 5.00 504.26 235.57 46.72	PERIMETER (ft.) 5.00 97.48 21.76 22.32	WIDTH (ft.) 5.00 95.20 21.33 22.41	RADIUS 5.00 4.96 1.46 29.45	DEPTH (ft.) 5.00 5.04 1.46 28.88	RATIO 5.00 19.35 3.14 16.22	WIDTH (ft.) 3.00 24.23 2.05 8.46	SLOPE (ft/ft) 12.00 0.029 0.019 66.00

High bank reach means for **Strata "B"** first orders.

· . . •

.

BASIN ID 19B2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	5.00	5.00	5.00	5.00	5.00	5.00	4.00	9.00
MEAN	475.50	109.32	107.32	4.36	4.46	27.54	21.40	0.029
S.D.	194.34	4.43	4.36	1.84	1.89	10.69	12.11	0.007
C.V. (%)	40.87	4.05	4.07	42.19	42.29	38.82	56.58	23.95
MINIMUM	296.90	103.00	101.90	2.60	2.70	14.35	14.00	0.015
MAXIMUM	740.00	113.40	111.20	7.00	7.20	40.85	39.50	0.041
RANGE	443.10	10.40	9.30	4.40	4.50	26.51	25.50	0.025
has seen as the second s							A	
BASIN ID 30Al	AREA (ft. ²)	WETTED Perimeter (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio	BED WIDTH (ft.)	AVERAGE Slope (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
30A1	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
30A1	(ft. ²) 3.00	PERIMETER (ft.) 3.00	WIDTH (ft.) 3.00	RADIUS 3.00	DEPTH (ft.) 3.00	RATIO 3.00	WIDTH (ft.) 3.00	SLOPE (ft/ft) 5.00
30A1 n MEAN	(ft. ²) 3.00 895.67	PERIMETER (ft.) 3.00 98.00	WIDTH (ft.) 3.00 90.77	RADIUS 3.00 8.87	DEPTH (ft.) 3.00 9.63	RATIO 3.00 9.27	WIDTH (ft.) 3.00 25.43	SLOPE (ft/ft) 5.00 0.042
30A1 n MEAN S.D.	(ft. ²) 3.00 895.67 395.77	PERIMETER (ft.) 3.00 98.00 31.38	WIDTH (ft.) 3.00 90.77 32.18	RADIUS 3.00 8.87 1.21	DEPTH (ft.) 3.00 9.63 0.90	RATIO 3.00 9.27 2.48	WIDTH (ft.) 3.00 25.43 12.90	SLOPE (ft/ft) 5.00 0.042 0.016
30A1 n MEAN S.D. C.V. (%)	(ft. ²) 3.00 895.67 395.77 44.19	PERIMETER (ft.) 3.00 98.00 31.38 32.02	WIDTH (ft.) 3.00 90.77 32.18 35.45	RADIUS 3.00 8.87 1.21 13.60	DEPTH (ft.) 3.00 9.63 0.90 9.36	RATIO 3.00 9.27 2.48 26.73	WIDTH (ft.) 3.00 25.43 12.90 50.74	SLOPE (ft/ft) 5.00 0.042 0.016 38.69

BASIN ID 30A2	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
MEAN	1042.90	108.20	99.30	9.05	9.93	9.83	27.73	0.024
S.D.	575.99	35.93	36.86	2.62	2.49	2.45	6.72	0.004
C.V. (%)	55.23	33.21	37.12	28.99	25.07	24.88	24.23	17.43
MINIMUM	366.80	60.80	50.30	6.00	7.30	6.89	21.10	0.020
MAXIMUM	1743.40	141.00	131.40	12.40	13.30	12.88	35.40	0.030
RANGE	1376.60	80.20	81.10	6.40	6.00	5.98	14.30	0.010

.....

BASIN ID 30B2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00	4.00	7.00
MEAN	971.75	127.92	122.68	7.65	7.98	15.95	31.25	0.028
S.D.	151.06	9.83	10.60	1.42	1.56	3.92	7.18	0.014
C.V. (%)	15.55	7.69	8.64	18.56	19.60	24.59	22.98	48.42
MINIMUM	752.00	116.40	109.40	6.00	6.20	11.16	22.50	0.011
MAXIMUM	1077.40	140.10	135.30	9.30	9.80	19.71	39.60	0.044
RANGE	325.40	23.70	25.90	3.30	3.60	8.55	17.10	0.034

BASIN ID 36A2	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00	4.00	5.00
MEAN	1640.90	208.15	205.70	7.85	7.93	25.93	34.95	0.023
S.D.	471.36	54.97	55.70	0.56	0.59	6.79	9.30	0.013
C.V. (%)	28.73	26.41	27.08	7.09	7.38	26.16	26.61	56.88
MINIMUM	1036.40	145.70	143.10	7.10	7.20	19.88	26.90	0.014
MAXIMUM	2054.20	254.50	252.90	8.40	8.60	32.42	43.30	0.045
RANGE	1017.80	108.80	109.80	1.30	1.40	12.55	16.40	0.031
							l	1
BASIN ID 36B2	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
36B2	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
36B2	(ft. ²) 4.00	PERIMETER (ft.) 4.00	WIDTH (ft.) 4.00	RADIUS 4.00	DEPTH (ft.) 4.00	RATIO 4.00	WIDTH (ft.) 2.00	SLOPE (ft/ft) 7.00
36B2 n MEAN	(ft. ²) 4.00 1704.90	PERIMETER (ft.) 4.00 181.53	WIDTH (ft.) 4.00 175.68	RADIUS 4.00 9.33	DEPTH (ft.) 4.00 9.65	RATIO 4.00 18.34	WIDTH (ft.) 2.00 53.55	SLOPE (ft/ft) 7.00 0.026
36B2 n MEAN S.D.	(ft. ²) 4.00 1704.90 363.88	PERIMETER (ft.) 4.00 181.53 21.16	WIDTH (ft.) 4.00 175.68 19.86	RADIUS 4.00 9.33 1.20	DEPTH (ft.) 4.00 9.65 1.32	RATIO 4.00 18.34 2.27	WIDTH (ft.) 2.00 53.55 8.56	SLOPE (ft/ft) 7.00 0.026 0.010
36B2 n MEAN S.D. C.V. (%)	(ft. ²) 4.00 1704.90 363.88 21.34	PERIMETER (ft.) 4.00 181.53 21.16 11.66	WIDTH (ft.) 4.00 175.68 19.86 11.30	RADIUS 4.00 9.33 1.20 12.91	DEPTH (ft.) 4.00 9.65 1.32 13.71	RATIO 4.00 18.34 2.27 12.36	WIDTH (ft.) 2.00 53.55 8.56 15.98	SLOPE (ft/ft) 7.00 0.026 0.010 37.25

BASIN ID 36B3	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	6.00	6.00	6.00	6.00	6.00	6.00	4.00	9.00
MEAN	1793.10	177.97	174.08	9.63	9.87	18.03	25.70	0.026
S.D.	882.95	36.27	35.21	2.69	2.76	2.10	5.61	0.008
C.V. (%)	49.24	20.38	20.23	27.97	27.98	11.64	21.84	30.96
MINIMUM	1026.60	143.70	140.90	7.00	7.10	15.38	22.40	0.014
MAXIMUM	3294.70	242.60	237.30	13.60	13.90	21.44	34.10	0.043
RANGE	2268.10	98.90	96.40	6.60	6.80	6.06	11.70	0.029
							Г]
BASIN ID 54A2	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH	•	WIDTH	SLOPE
54A2	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
54A2	(ft. ²) 4.00	PERIMETER (ft.) 4.00	WIDTH (ft.) 4.00	RADIUS 4.00	DEPTH (ft.) 4.00	RATIO 4.00	WIDTH (ft.) 4.00	SLOPE (ft/ft) 5.00
54A2 n MEAN	(ft. ²) 4.00 1826.90	PERIMETER (ft.) 4.00 153.47	WIDTH (ft.) 4.00 146.82	RADIUS 4.00 11.43	DEPTH (ft.) 4.00 11.93	RATIO 4.00 12.64	WIDTH (ft.) 4.00 25.80	SLOPE (ft/ft) 5.00 0.037
54A2 n MEAN S.D.	(ft. ²) 4.00 1826.90 789.48	PERIMETER (ft.) 4.00 153.47 31.20	WIDTH (ft.) 4.00 146.82 29.10	RADIUS 4.00 11.43 3.31	DEPTH (ft.) 4.00 11.93 3.48	RATIO 4.00 12.64 1.59	WIDTH (ft.) 4.00 25.80 7.78	SLOPE (ft/ft) 5.00 0.037 0.005
54A2 n MEAN S.D. C.V. (%)	(ft. ²) 4.00 1826.90 789.48 43.21	PERIMETER (ft.) 4.00 153.47 31.20 20.33	WIDTH (ft.) 4.00 146.82 29.10 19.82	RADIUS 4.00 11.43 3.31 28.96	DEPTH (ft.) 4.00 11.93 3.48 29.16	RATIO 4.00 12.64 1.59 12.61	WIDTH (ft.) 4.00 25.80 7.78 30.14	SLOPE (ft/ft) 5.00 0.037 0.005 13.86

BASIN ID 54B1	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE Slope (ft/ft)
n	5.00	5.00	5.00	5.00	5.00	5.00	5.00	10.00
MEAN	2195.20	244.10	239.48	8.54	8.80	28.51	17.14	0.023
S.D.	1332.00	106.45	106.84	2.69	2.78	13.24	8.20	0.007
C.V. (%)	60.68	43.61	44.61	31.47	31.59	46.41	47.84	28.13
MINIMUM	723.40	97.00	91.40	4.80	4.90	11.57	6.30	0.014
MAXIMUM	3681.20	378.90	377.50	12.10	12.50	42.90	25.00	0.038
RANGE	2957.80	281.90	286.10	7.30	7.60	31.33	18.70	0.024

BASIN ID 19A1	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	5.00	5.00	5.00	5.00	5.00	5.00
MEAN	3.14	13.14	13.04	0.28	0.30	56.83
S.D.	1.14	6.26	6.37	0.13	0.17	38.34
C.V. (%)	36.35	47.62	48.83	46.57	57.74	67.47
MINIMUM	1.30	6.20	5.80	0.20	0.20	9.67
MAXIMUM	4.40	19.80	19.80	0.50	0.60	99.00
RANGE	3.10	13.60	14.00	0.30	0.40	89.33
		}	L			
BASIN ID 19A2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
		PERIMETER	WIDTH		DEPTH	•
19A2	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO
19A2 n	(ft. ²) 4.00	PERIMETER (ft.) 4.00	WIDTH (ft.) 4.00	RADIUS 4.00	DEPTH (ft.) 4.00	RATIO
19A2 n MEAN	(ft. ²) 4.00 46.15	PERIMETER (ft.) 4.00 26.25	WIDTH (ft.) 4.00 25.73	RADIUS 4.00 1.20	DEPTH (ft.) 4.00 1.23	RATIO 4.00 31.61
19A2 n MEAN S.D.	(ft. ²) 4.00 46.15 50.25	PERIMETER (ft.) 4.00 26.25 18.22	WIDTH (ft.) 4.00 25.73 17.66	RADIUS 4.00 1.20 1.10	DEPTH (ft.) 4.00 1.23 1.13	RATIO 4.00 31.61 17.33
19A2 n MEAN S.D. C.V. (%)	(ft. ²) 4.00 46.15 50.25 108.89	PERIMETER (ft.) 4.00 26.25 18.22 69.42	WIDTH (ft.) 4.00 25.73 17.66 68.63	RADIUS 4.00 1.20 1.10 91.54	DEPTH (ft.) 4.00 1.23 1.13 91.97	RATIO 4.00 31.61 17.33 54.84

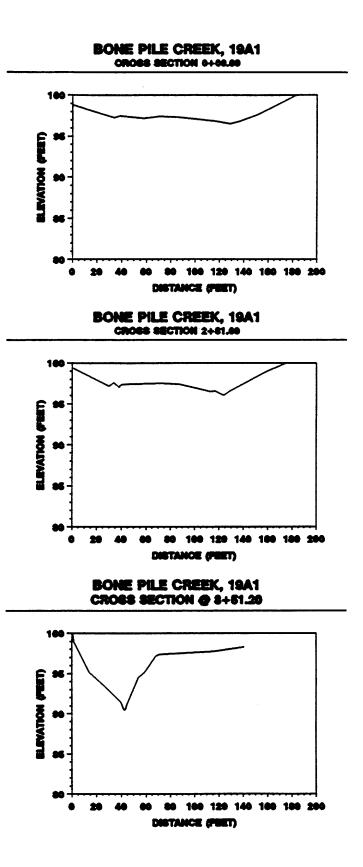
Medium bank reach means for Strata "B" first orders.

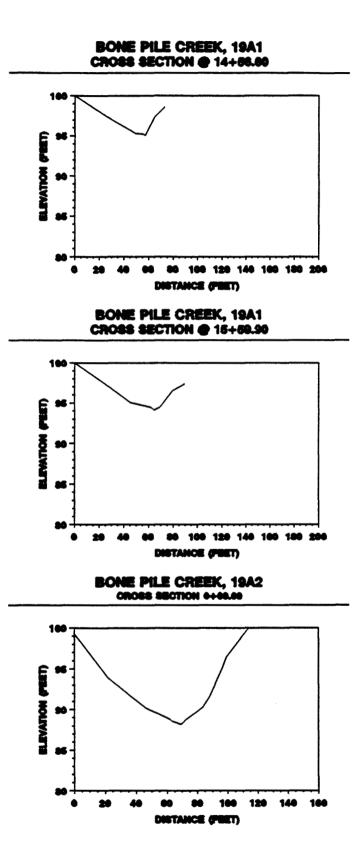
BASIN ID 19B2	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	3.00	3.00	3.00	3.00	3.00	3.00
MEAN	74.37	37.00	35.90	2.00	2.10	17.28
S. D.	20.28	11.52	11.96	0.10	0.10	6.56
C.V. (%)	27.27	31.14	33.30	5.00	4.76	37.97
MINIMUM	60.20	30.10	28.70	1.90	2.00	13.32
MAXIMUM	97.60	50.30	49.70	2.10	2.20	24.85
RANGE	37.40	20.20	21.00	0.20	0.20	11.53

BASIN ID 30A2	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	509.45	78.20	73.65	6.50	6.90	10.67
S.D.	7.00	0.99	1.20	0.00	0.00	0.17
C.V. (%)	1.37	1.27	1.63	0.00	0.00	1.63
MINIMUM	504.50	77.50	72.80	6.50	6.90	10.55
MAXIMUM	514.40	78.90	74.50	6.50	6.90	10.80
RANGE	9.90	1.40	1.70	0.00	0.00	0.25

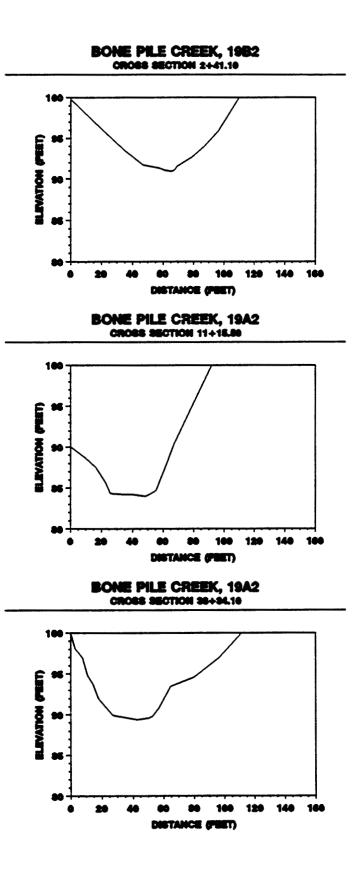
BASIN ID 30B2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	4.00	4.00	4.00	4.00	4.00	4.00
MEAN	339.60	71.28	68.23	4.70	4.93	13.81
S.D.	90.96	10.71	10.57	0.59	0.62	0.47
C.V. (%)	26.79	15.03	15.49	12.53	12.67	3.37
MINIMUM	222.00	57.20	54.10	3.90	4.10	13.20
MAXIMUM	442.70	83.20	79.70	5.30	5.60	14.23
RANGE	220.70	26.00	25.60	1.40	1.50	1.04

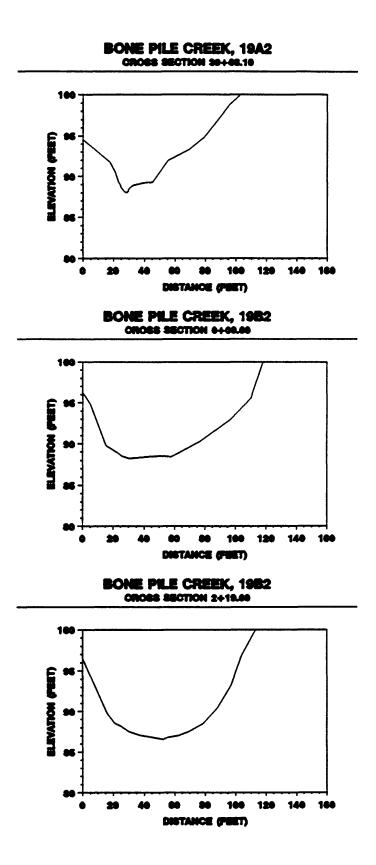
BASIN ID 36A2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	4.00	4.00	4.00	4.00	4.00	4.00
MEAN	167.10	78.60	78.15	2.05	2.08	37.84
S.D.	73.51	21.07	21.13	0.41	0.46	7.69
C.V. (%)	43.99	26.80	27.03	20.11	22.04	20.32
MINIMUM	97.90	58.90	58.30	1.60	1.60	29.15
MAXIMUM	258.90	97.80	97.30	2.60	2.70	47.75
RANGE	161.00	38.90	39.00	1.00	1.10	18.60

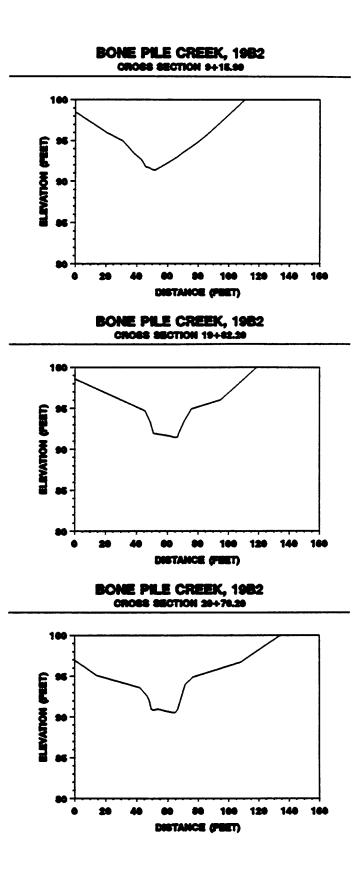

BASIN ID 36B2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	4.00	4.00	4.00	4.00	4.00	4.00
MEAN	4.20	8.88	8.10	0.53	0.68	19.37
S.D.	1.43	4.73	5.49	0.17	0.39	20.06
C.V. (%)	33.95	53.27	67.82	32.53	57.22	103.58
MINIMUM	2.50	4.50	3.10	0.30	0.30	2.58
MAXIMUM	5.90	13.90	13.80	0.70	1.20	46.00
RANGE	3.40	9.40	10.70	0.40	0.90	43.42


.

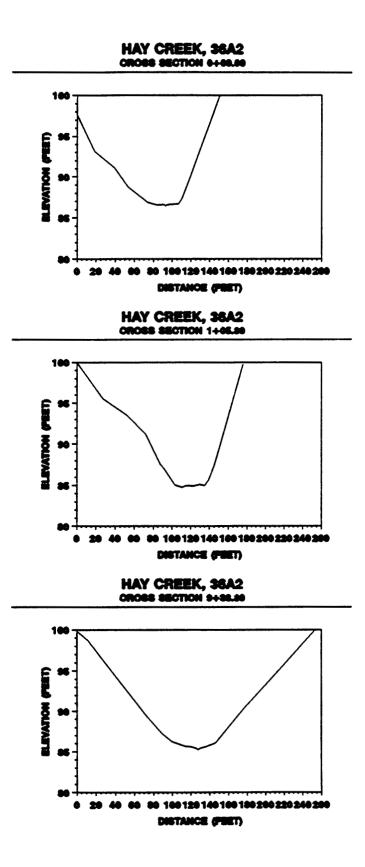
BASIN ID 36B3	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio
n	6.00	6.00	6.00	6.00	6.00	6.00
MEAN	2.80	9.07	8.95	0.30	0.30	31.03
S.D.	1.41	2.09	2.10	0.09	0.09	7.73
C.V. (%)	50.31	23.07	23.45	29.81	29.81	24.92
MINIMUM	1.10	5.60	5.50	0.20	0.20	20.50
MAXIMUM	5.10	11.70	11.60	0.40	0.40	43.50
RANGE	4.00	6.10	6.10	0.20	0.20	23.00

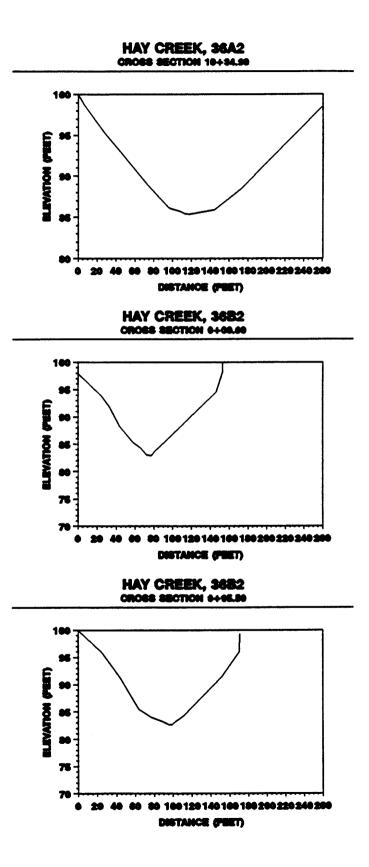

BASIN ID 54A2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	3.45	11.20	11.05	0.30	0.30	41.38
S.D.	1.63	0.14	0.07	0.14	0.14	19.27
C.V. (%)	47.14	1.26	0.64	47.14	47.14	46.57
MINIMUM	2.30	11.10	11.00	0.20	0.20	27.75
MAXIMUM	4.60	11.30	11.10	0.40	0.40	55.00
RANGE	2.30	0.20	0.10	0.20	0.20	27.25


BASIN ID 54B1	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	3.00	3.00	3.00	3.00	3.00	3.00
MEAN	326.03	65.97	62.73	4.60	4.87	12.93
S.D.	190.80	21.22	20.26	1.55	1.65	1.07
C.V. (%)	58.52	32.17	32.30	33.75	33.91	8.26
MINIMUM	128.50	42.30	40.00	3.00	3.20	12.14
MAXIMUM	509.30	83.30	78.90	6.10	6.50	14.14
RANGE	380.80	41.00	38.90	3.10	3.30	2.01

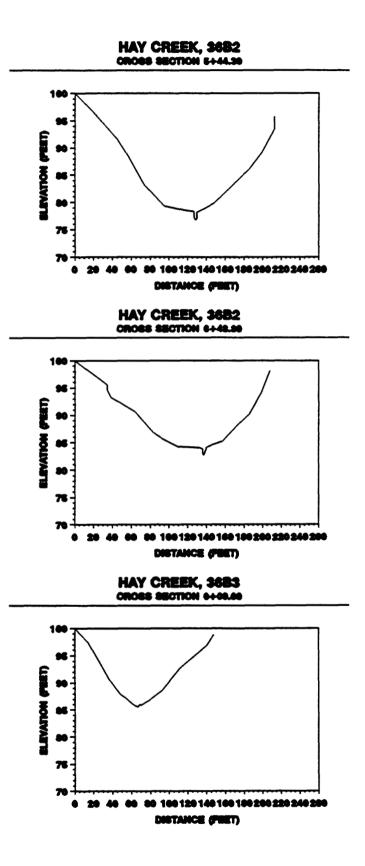


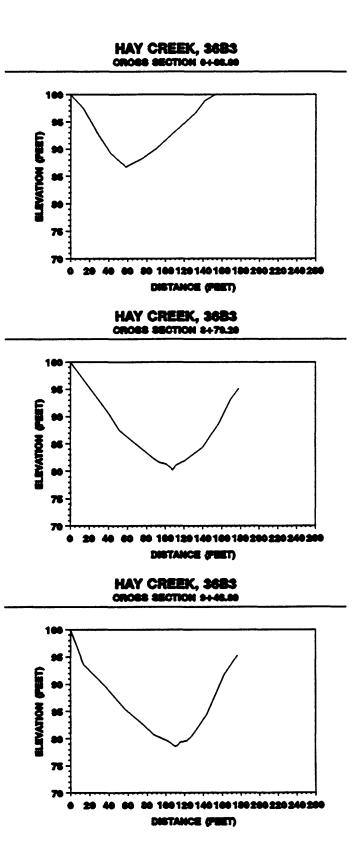
:

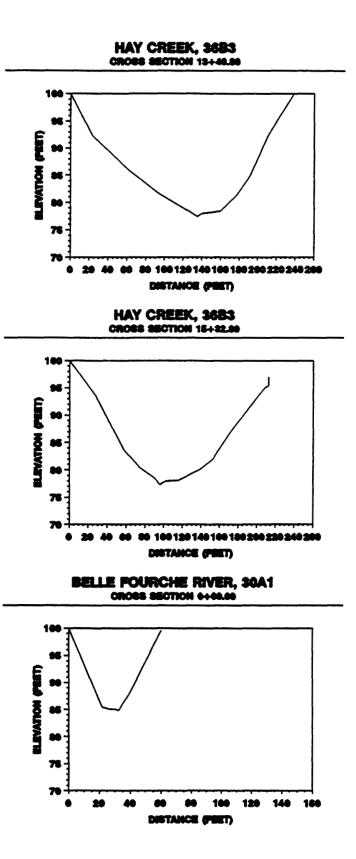


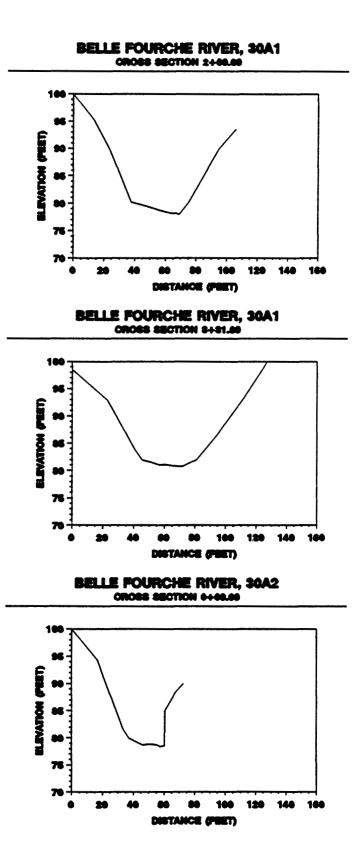


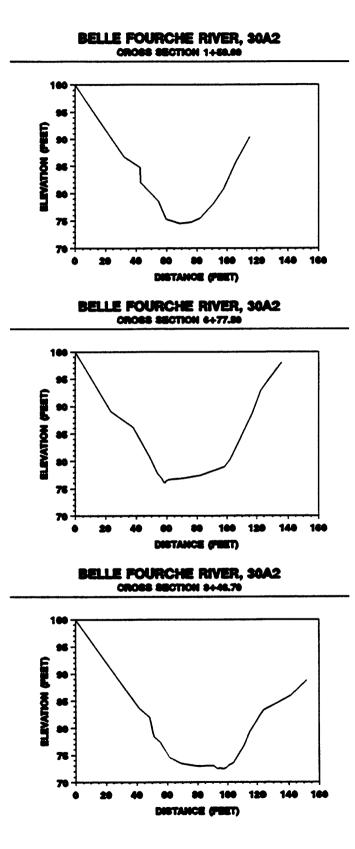
:

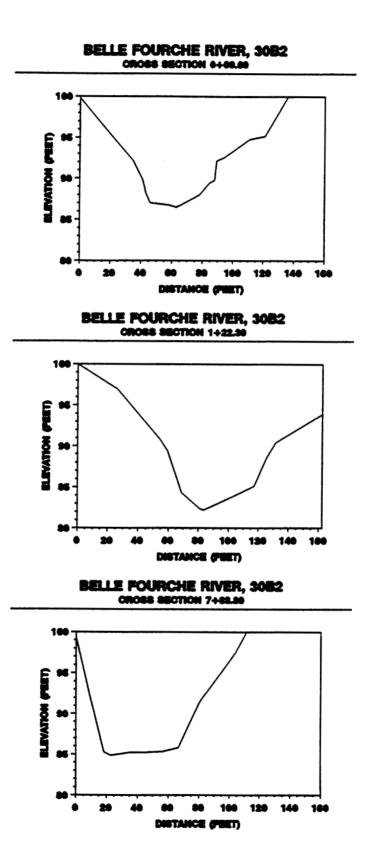

501

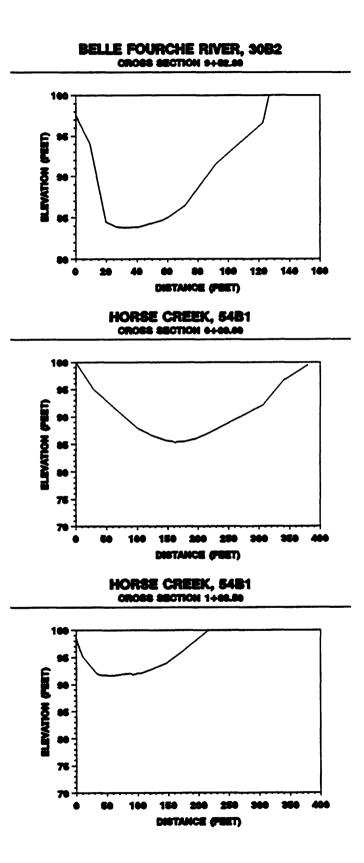


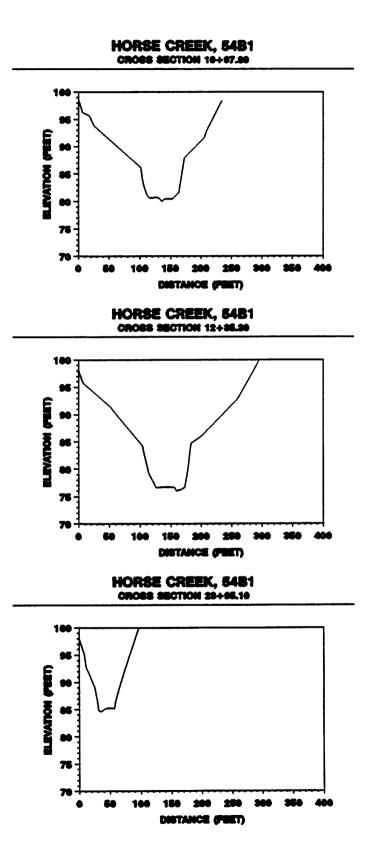

÷

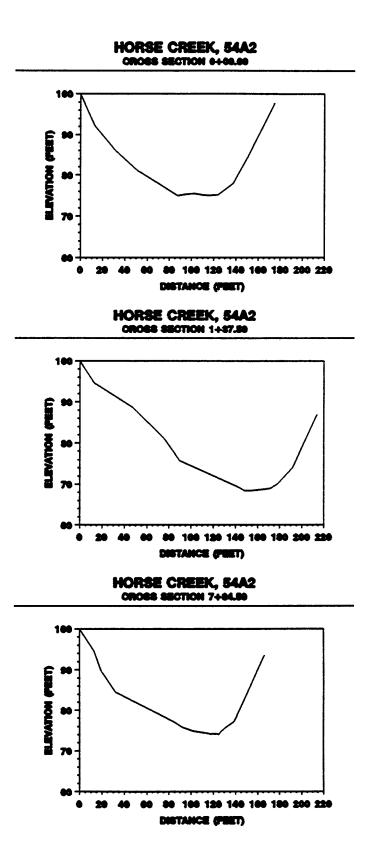


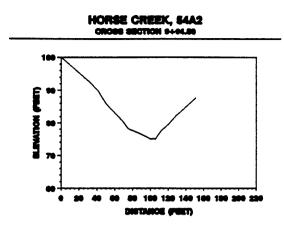

:

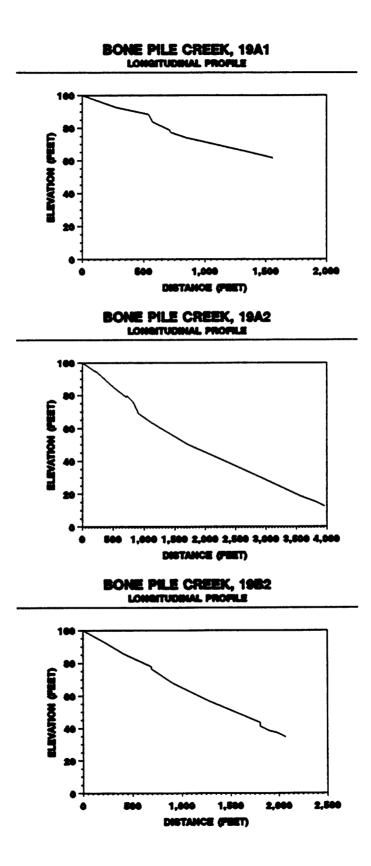


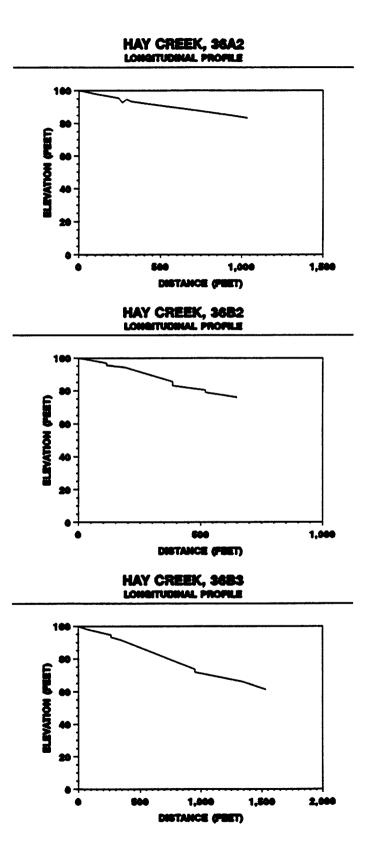




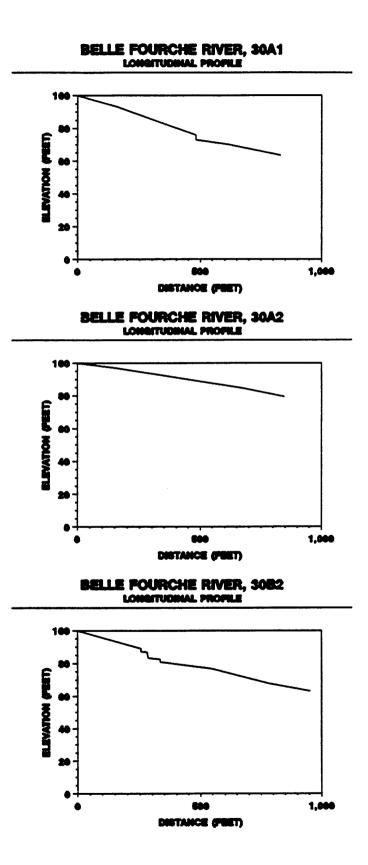

•

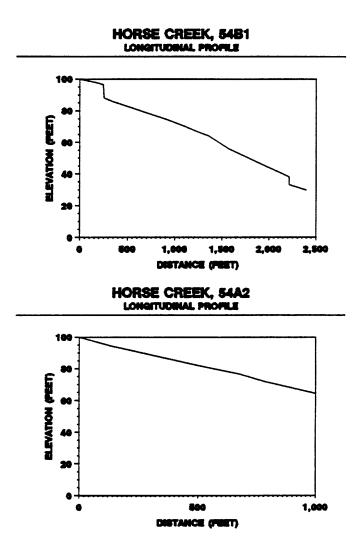

;


:



.


•


•

•

•

Strata "B" first order raw data by study reach, cross section, and bank identification.

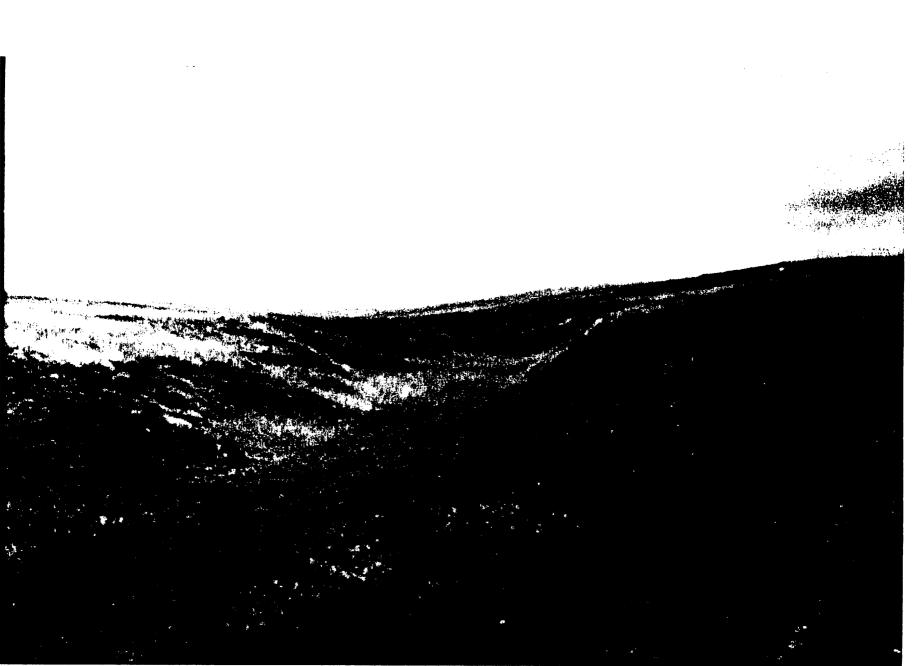
BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	BED WIDTH (feet)
19A1	0+00.00	HIGH	233.70	167.10	1.40	
19A1	2+81.00	HIGH	312.30	166.00	1.90	
19A1	8+51.20	HIGH	307.50	136.90	2.20	
19A1	14+56.60	HIGH	108.20	58.70	1.80	
19A1	15+59.90	HIGH	113.70	64.60	1.80	
19A2	0+00.00	HIGH	723.60	110.70	6.50	
19A2	2+41.10	HIGH	583.60	109.30	5.30	
19A2	11+15.50	HIGH	261.10	66.70	3.90	26.30
19A2	38+34.10	HIGH	707.70	111.50	6.30	24.20
19A2	39+68.10	HIGH	245.30	77.80	3.20	22.20
19B2	0+00.00	HIGH	622.90	111.20	5.60	14.00
19B2	2+19.00	HIGH	740.00	103.30	7.20	39.50
19B2	9+15.90	HIGH	370.60	101.90	3.60	
19B2	19+82.20	HIGH	347.10	109.90	3.20	16.40
19B2	20+70.20	HIGH	296.90	110.30	2.70	15.70
30A1	0+00.00	HIGH	514.40	59.40	8.70	11.90
30A1	2+00.60	HIGH	868.10	89.20	9.70	37.60
30A1	8+31.60	HIGH	1304.50	123.70	10.50	26.80
30A2	0+00.00	HIGH	366.80	50.30	7.30	23.20
30A2	1+50.00	HIGH	877.10	91.90	9.50	21.10
30A2	6+77.50	HIGH	1743.40	131.40	13.30	31.20
30A2	8+46.70	HIGH	1184.30	123.60	9.60	35.40
30B2	0+00.00	HIGH	993.50	135.30	7.30	22.50
30B2	1+22.30	HIGH	752.00	122.20	6.20	39.60
30B2	7+83.80	HIGH	1077.40	109.40	9.80	29.40
30B2	9+52.80	HIGH	1064.10	123.80	8.60	33.50

.

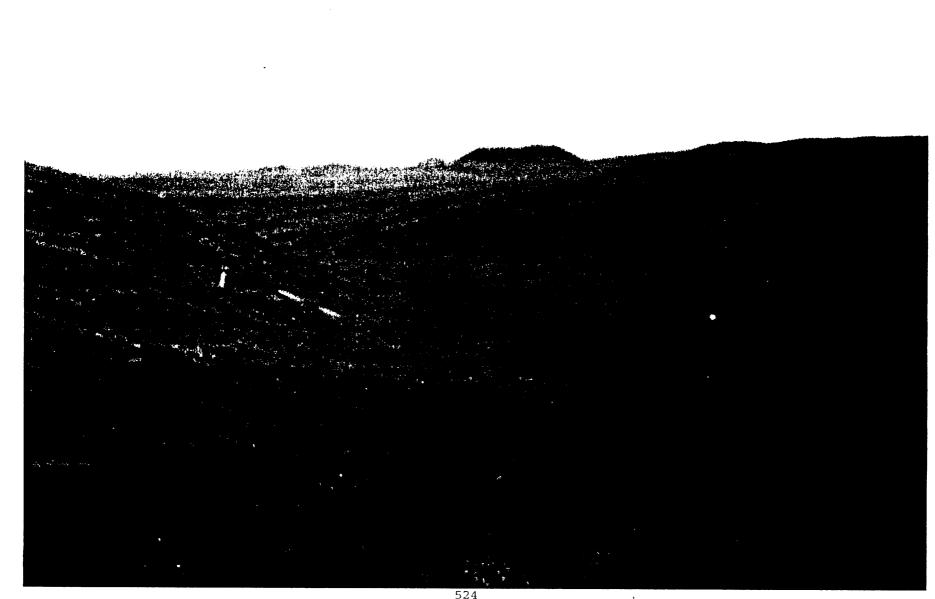
BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	BED WIDTH (feet)	
36A2	0+00.00	HIGH	1036.40	143.10	7.20	26.90	
36A2	1+05.80	HIGH	1499.90	174.40	8.60	26.90	
36A2	9+38.00	HIGH	2054.20	252.40	8.10	43.30	
36A2	10+34.90	HIGH	1973.20	252.90	7.80	42.70	
36B2	0+00.00	HIGH	1245.50	152.20	8.20		
36B2	0+95.50	HIGH	1672.70	166.70	10.00		
36B2	5+44.30	HIGH	2130.00	188.40	11.30	47.50	
36B2	6+48.80	HIGH	1771.40	195.40	9.10	59.60	
36B3	0+00.00	HIGH	1026.60	140.90	7.30		
36B3	0+66.60	HIGH	1078.00	152.20	7.10		
36B3	8+79.20	HIGH	1378.40	157.30	8.80	23.30	
36B3	9+46.60	HIGH	1606.90	166.10	9.70	22.40	
36B3	13+40.80	HIGH	3294.70	237.30	13.90	34.10	
36B3	15+32.80	HIGH	2374.20	190.70	12.40	23.00	
54A2	0+00.00	HIGH	2654.60	171.00	15.50	15.70	
54A2	1+37.50	HIGH	1923.50	159.70	12.00	27.20	
54A2	7+84.50	HIGH	1976.40	151.80	13.00	25.70	
54A2	9+54.50	HIGH	753.10	104.80	7.20	34.60	
54B1	0+00.00	HIGH	3306.40	377.50	8.80	6.30	
54B1	1+88.50	HIGH	978.70	201.10	4.90	24.30	
54B1	10+97.80	HIGH	2286.20	231.80	9.90	25.00	
54B1	12+35.30	HIGH	3681.20	295.60	12.50	18.90	
54B1	23+95.10	HIGH	723.40	91.40	7.90	11.20	

, ,

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)
19A1	0+00.00	MEDIUM	3.10	19.80	0.20
19A1	2+81.00	MEDIUM	3.60	18.70	0.20
19A1	8+51.20	MEDIUM	3.30	5.80	0.60
19A1	14+56.60	MEDIUM	4.40	13.50	0.30
19A1	15+59.90	MEDIUM	1.30	7.40	0.20
19A2	0+00.00	MEDIUM	3.30	10.30	0.30
19A2	2+41.10	MEDIUM	2.70	11.00	0.20
19A2	38+34.10	MEDIUM	97.30	44.40	2.20
19A2	39+68.10	MEDIUM	81.30	37.20	2.20
19B2	9+15.90	MEDIUM	97.60	49.70	2.00
19B2	19+82.20	MEDIUM	65.30	29.30	2.20
19B2	20+70.20	MEDIUM	60.20	28.70	2.10
30A2	6+77.50	MEDIUM	514.40	74.50	6.90
30A2	8+46.70	MEDIUM	504.50	72.80	6.90
30B2	0+00.00	MEDIUM	222.00	54.10	4.10
30B2	1+22.30	MEDIUM	335.50	69.10	4.90
30B2	7+83.80	MEDIUM	358.20	70.00	5.10
30B2	9+52.80	MEDIUM	442.70	79.70	5.60
36A2	0+00.00	MEDIUM	97.90	61.50	1.60
36A2	1+05.80	MEDIUM	118.80	58.30	2.00
36A2	9+38.00	MEDIUM	258.90	97.30	2.70
36A2	10+34.90	MEDIUM	192.80	95.50	2.00
36B2	0+00.00	MEDIUM	5.90	11.80	0.50
36B2	0+95.50	MEDIUM	4.60	13.80	0.30
36B2	5+44.30	MEDIUM	3.80	3.10	1.20
36B2	6+48.80	MEDIUM	2.50	3.70	0.70

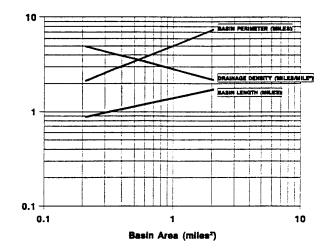

:

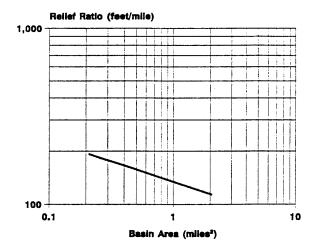
.

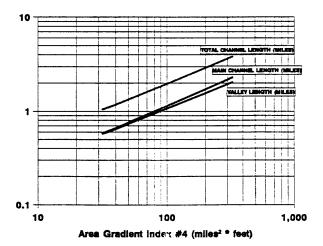

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)
36B3	0+00.00	MEDIUM	1.60	8.70	0.20
36B3	0+66.60	MEDIUM	1.10	5.50	0.20
36B3	9+46.60	MEDIUM	5.10	11.60	0.40
36B3	8+79.20	MEDIUM	3.30	8.20	0.40
36B3	13+40.80	MEDIUM	3.00	10.50	0.30
36B3	15+32.80	MEDIUM	2.70	9.20	0.30
54A2	7+84.50	MEDIUM	2.30	11.00	0.20
54A2	9+54.50	MEDIUM	4.60	11.10	0.40
54B1	10+97.80	MEDIUM	340.30	69.30	4.90
54B1	12+35.30	MEDIUM	509.30	78.90	6.50
54B1	23+95.10	MEDIUM	128.50	40.00	3.20
19A1	2+81.00	LOW	0.30	4.00	0.10
19A1	8+51.20	LOW	0.10	1.60	0.10
19A1	14+56.60	LOW	0.30	2.60	0.10
19A1	15+59.90	LOW	0.20	2.10	0.10
19A2	0+00.00	LOW	0.30	3.20	0.10
19A2	2+41.10	LOW	0.30	5.50	0.10
19A2	39+68.10	LOW	4.00	8.10	0.50
30A2	6+77.50	LOW	1.10	4.00	0.30
30A2	8+46.70	LOW	4.90	23.10	0.20
36A2	9+38.00	LOW	3.20	22.50	0.10
36A2	10+34.90	LOW	1.20	13.60	0.10

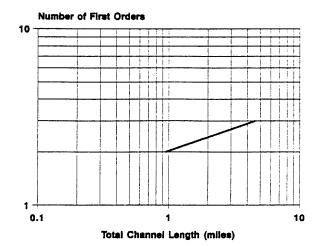
.

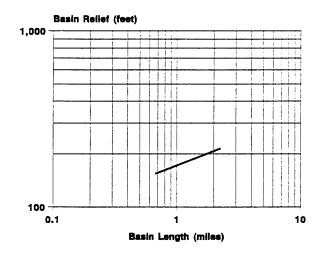
•

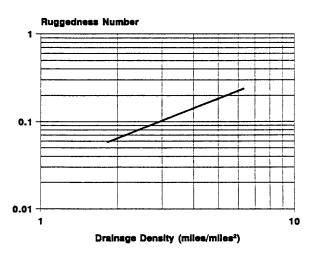

. . . .

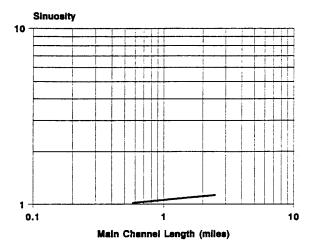

APPENDIX B-2

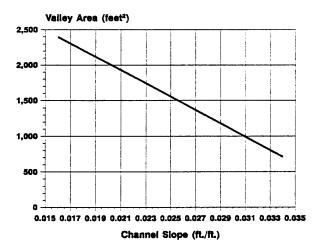

STRATA "B" - SECOND ORDER

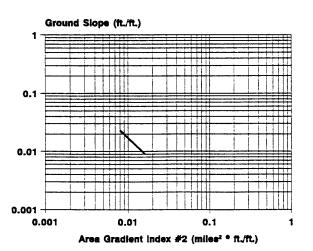

Description of Contents	Page
Geomorphic Relationships in Graph Format	526 - 530
Simple and Multiple Linear Regression Output Tables and Simple Linear Regression Plots with 90% Confidence Belts	531 - 554
Descriptive Statistics by Study Reach and by Bank	555 - 564
Cross-Section Plots by Study Site and Study Reach	565 - 572
Raw Field Data	573 - 574
Representative Photographs	575 - 577

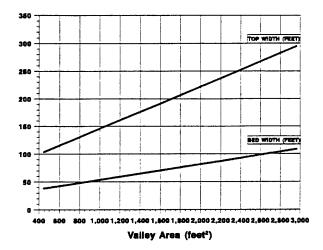

.

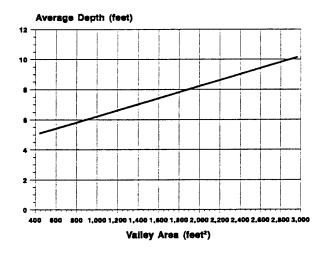


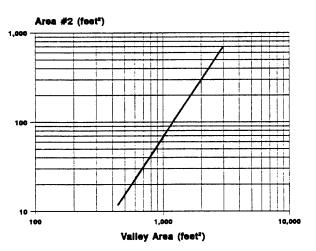




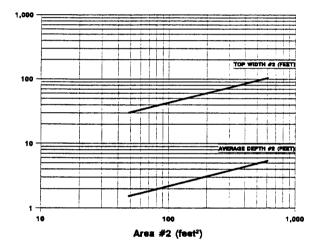


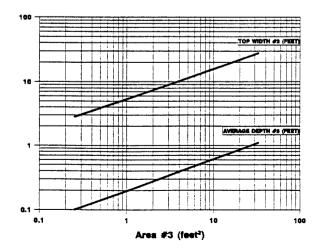

:



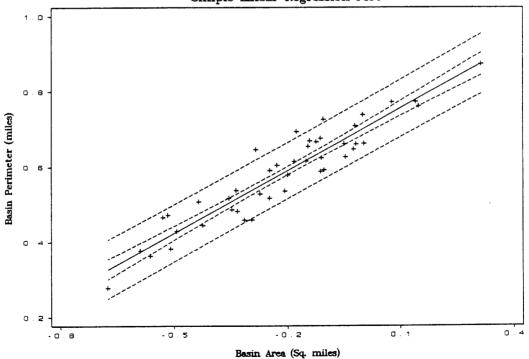


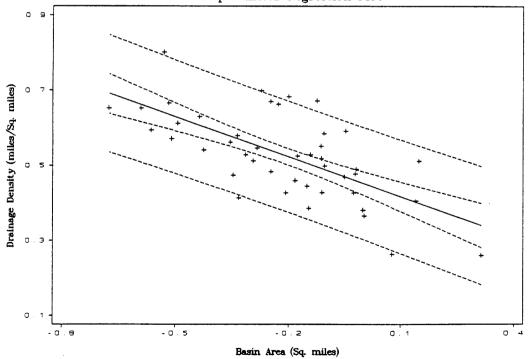

:



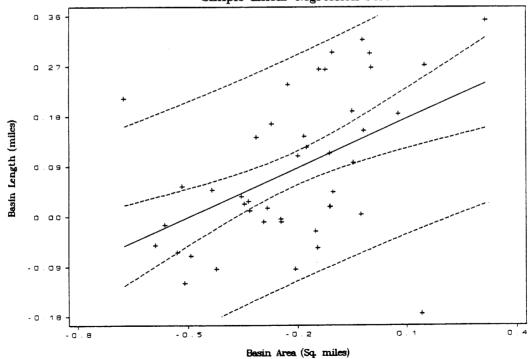


•

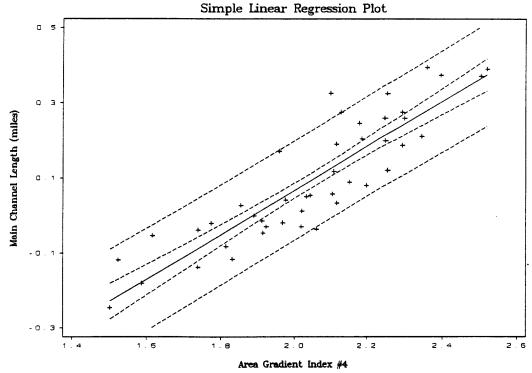



UNWEIGHTED L	EAST SQ	UARES L	INEAR	REGRES	SION	OF BASIN	PERIME	TER
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT BA		0066 5343	-	.00937 .03123		74.76 17.72		.0000
R-SQUARED ADJUSTED R-S	QUARED	0.8821 0.8793				N SQUARE EVIATION	(MSE)	0.00193 0.04389
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 42 43	0.605 0.080 0.686	91	0.60		314.11	0.000	0
CASES INCLUD	ED 44	MISSIN	G CASI	ES O				

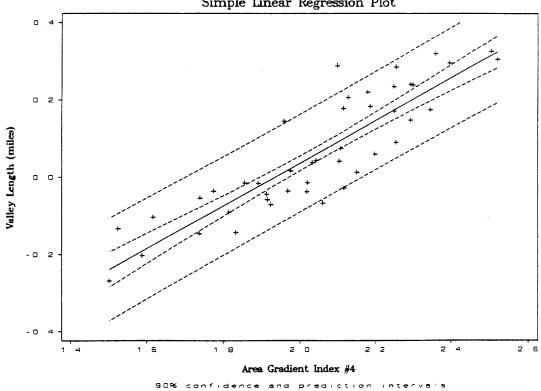
Strata "B" second order regression output for basin perimeter versus basin area.


UNWEIGHTED L	EAST SQ	UARES LI	NEAR	REGRES	SION	OF DRAIN	AGE DE	INSITY
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT BA		5189 5528		01860 06198		24.29 -5.73		0.0000 0.0000
R-SQUARED ADJUSTED R-SO	QUARED	0.4390 0.4256				N SQUARE EVIATION	(MSE)	0.00759 0.08711
SOURCE	DF	SS		MS		F	P	,
REGRESSION RESIDUAL TOTAL	1 42 43	0.24930 0.31872 0.5680	1	0.249		32.86	0.00	00
CASES INCLUD	ED 44	MISSING	CASE	S 0				

Strata "B" second order regression output for drainage density versus basin area.

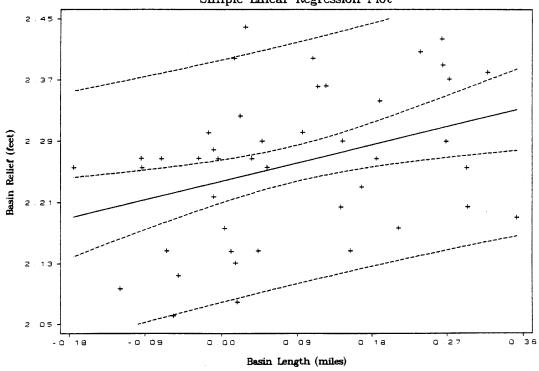

UNWEIGHTED	LEAST SQ	UARES L	INEAR	REGRESS	SION C	OF BASIN	LENGT	Ή
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	ST	TUDENT'S	т	Ρ
CONSTANT BA		4714 9594		02556 08515		5.76 3.48		0.0000 0.0012
R-SQUARED ADJUSTED R-S	SQUARED	0.2234 0.2049				SQUARE /IATION	(MSE)	0.01432 0.11968
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 42 43	0.173 0.601 0.774	.61	0.17: 0.014		12.08	0.00	
CASES INCLU	DED 44	MISSIN	IG CASE	S 0				

Strata "B" second order regression output for basin length versus basin area.


UNWEIGHTED I	LEAST SQ	UARES	LINEAR	REGRES	SION OF	MAIN	CHANNI	EL LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	dent's	т	P
CONSTANT AGI4		2050 9375		09842 04773		11.39 12.44		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.786 0.781			MEAN S RD DEVI	~	(MSE)	0.00604 0.07774
SOURCE	DF	SS	5	MS		F	I	ò
REGRESSION RESIDUAL TOTAL	1 42 43	0.93 0.25 1.18	380	0.93		54.75	0.00	
CASES INCLUE	ED 44	MISSI	NG CASE	S 0				<u></u>

Strata "B" second order regression output for main channel length versus area gradient index #4.

UNWEIGHTED I	LEAST SQ	UARES	LINEA	AR.	REGRES	SION	I OF VAL	LEY L	ENGTH	
PREDICTOR VARIABLES	COEFFI	CIENT	SI	D	ERROR		STUDENT	'S T		P
CONSTANT AGI4		6986 5324			09417 04567		-11.3 12.1			0000
R-SQUARED ADJUSTED R-S	SQUARED	0.777 0.772					N SQUAR	•	E)	0.00553 0.07438
SOURCE	DF	SS	5		MS		F		P	
REGRESSION RESIDUAL TOTAL	1 42 43	0.81 0.23 1.04	237		0.81		146.7	5 0	.0000	
CASES INCLU	DED 44	MISSI	ING CA	SE	S 0					

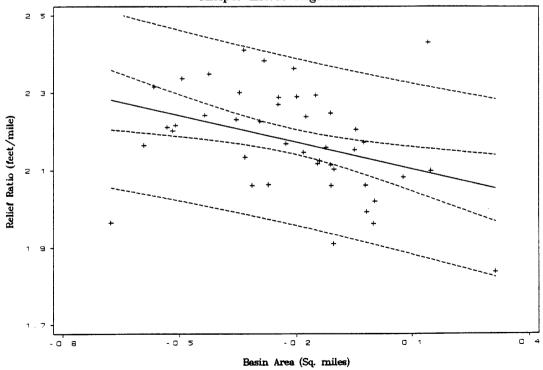

Strata "B" second order regression output for valley length versus area gradient index #4.

Simple Linear Regression Plot

UNWEIGHTED		QUARES	LINEAR	REGRES	SION OF	BASIN	RELIEF	
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR	STU	JDENT'S	т	P
CONSTANT BL		23745 26579		.01658 .10551	1	.34.93 2.52	-	.0000 .0157
R-SQUARED ADJUSTED R-	SQUARED	0.131 0.110			MEAN S RD DEVI		(MSE)	0.00862 0.09286
SOURCE	DF	SS	5	MS		F	P	
REGRESSION RESIDUAL TOTAL	1 42 43	0.05 0.36 0.41	216	0.05		6.35	0.015	7
CASES INCLU	DED 44	MISSI	NG CAS	ES O				

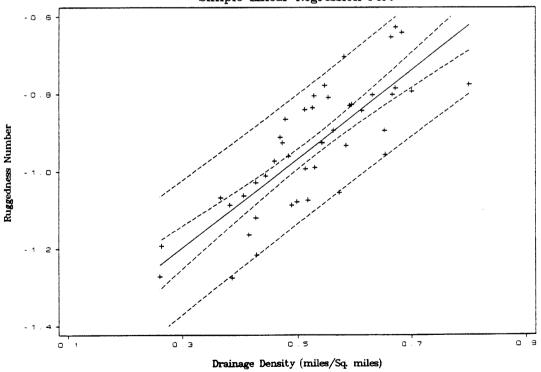
Strata "B" second order regression output of basin relief versus basin length.

Simple Linear Regression Plot


UNWEIGHTED L	EAST SQ	UARES LIN	IEAR	REGRES	SION	OF USED	RELIEF		
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P	
CONSTANT		4234	-	31391		10.33		0.0000	
BA CHS		7309 9677		11211 17127		4.22 4.07		0.0001 0.0002	
R-SQUARED ADJUSTED R-S		0.3188 0.2855				N SQUARE EVIATION	(MSE)	0.0091 0.0954	
SOURCE	DF	SS		MS		F	P		
REGRESSION	2	0.17490		0.08		9.59	0.00	04	
RESIDUAL TOTAL	41 43	0.37379 0.54869		0.00	912				
CASES INCLUE	ED 44	MISSING	CASE	ES O					

•

Strata "B" second order regression output for used relief versus basin area and channel slope.

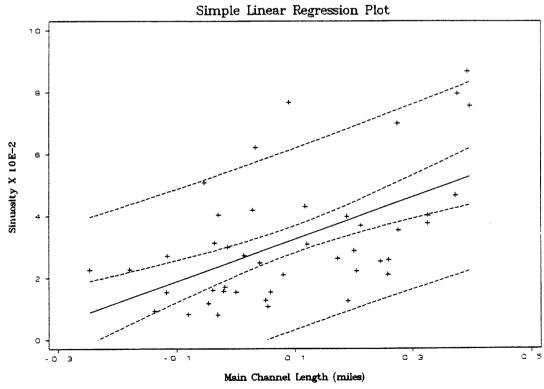

UNWEIGHTED	LEAST SQ	UARES	LIN	EAR	REGRES	SION	I OF RELIE	F RATI	0
PREDICTOR VARIABLES	COEFFI	CIENT	ŝ	STD	ERROR		STUDENT'S	т	P
CONSTANT BA		2669 3010	-		02707		78.55 -2.55		0.0000 0.0145
R-SQUARED ADJUSTED R-S	SQUARED	0.134 0.113					N SQUARE EVIATION	(MSE)	0.01607 0.12679
SOURCE	DF	SS	5		MS		F	I	<u>p</u>
REGRESSION RESIDUAL TOTAL	1 42 43	0.10 0.67 0.77	513		0.10 0.01		6.51	0.01	L45
CASES INCLU	DED 44	MISSI	NG (CASE	IS O				

Strata "B" second order regression output for relief ratio versus basin area.

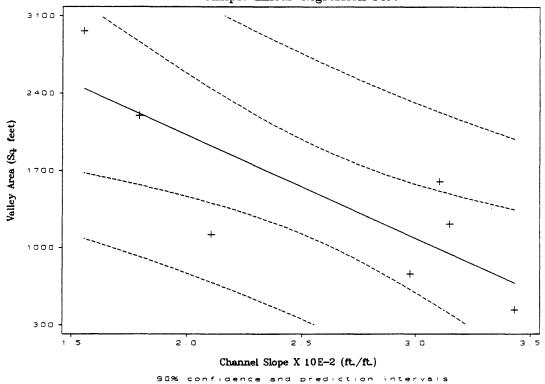
	je densit	-1.							
UNWEIGHTED	LEAST SQ	UARES I	INEAR	REGRES	SION OF	RUGGE	DNESS	NUMBER	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	ST	JDENT ' S	5 T	₽	
CONSTANT DD		4027 4689	-	.07026 .13023		·21.92 8.81		0.0000	
R-SQUARED ADJUSTED R-		0.6487 0.6404		RESID. STANDA			(MSE)	0.00963 0.09815	
SOURCE	DF	SS		MS		F	I	P	
REGRESSION RESIDUAL TOTAL	1 42 43	0.747 0.404 1.151	63	0.74 0.00	722 963	77.56	0.00	000	
CASES INCLU	DED 44	MISSIN	IG CASI	ES O					

Strata "B" second order regression output for ruggedness number versus drainage density.

Simple Linear Regression Plot


UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF CHANN	EL SI	JOPE	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P	
CONSTANT BA MCHL	-1.7 -0.3 -0.2		Ō.	.03522 .10263 .13230		-50.40 -3.63 -1.77		0.0000 0.0008 0.0841	
R-SQUARED ADJUSTED R-S	QUARED	0.6589 0.6423				N SQUARE DEVIATION	(MSE)	0.00 0.08	
SOURCE	DF	SS		MS		F		P	
REGRESSION RESIDUAL TOTAL	2 41 43	0.5578 0.2887 0.8465	3	0.27		39.61	0.0	0000	
CASES INCLUE	ED 44	MISSING	CASE	ES O					

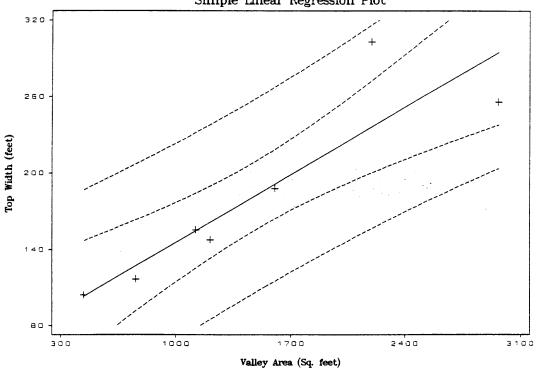
.


Strata "B" second order regression output for channel slope versus basin area and main channel length.

UNWEIGHTED	LEAST S		LINEA	R REC	RES	SION	OF SINUOS	SITY	
PREDICTOR VARIABLES	COEFF	ICIENT	ST	D ERF	ROR	s	TUDENT'S	T	P
CONSTANT MCHL		02579 06848		0.003			8.56 4.32		0.0000 0.0001
R-SQUARED ADJUSTED R-	SQUARED	0.307					SQUARE VIATION	(MSE)	2.991E-04 0.01729
SOURCE	DF	SS	5		MS		F]	P
REGRESSION RESIDUAL TOTAL	1 42 43	0.00		-).00 991E		18.64	0.00	
CASES INCLU	JDED 44	MISSI	ING CA	SES ()		2		

Strata "B" second order regression output for sinuosity versus main channel length.

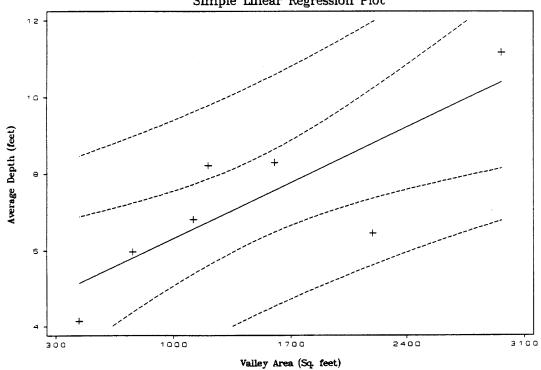
UNWEIGHTED L	EAST S	QUARES LI	NEAR	REGRES	SION	OF VALLE	Y AREA	
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR	S	TUDENT'S	т	₽
CONSTANT CHS		99.95 832.6		.3.798)353.6	-	4.79 -3.09		0.0049 0.0271
R-SQUARED ADJUSTED R-S	QUARED	0.6565 0.5878				SQUARE	(MSE)	3.116E+05 558.169
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 5 6	2.977E+0 1.558E+0 4.535E+0	6	2.977E 3.116E		9.56	0.02	71
CASES INCLUD	ED 7	MISSING	CASES	<u> </u>				



•

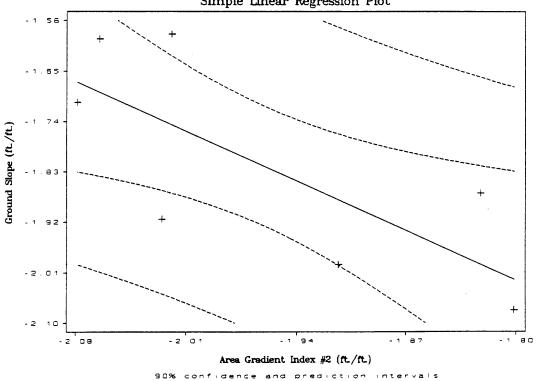
Simple Linear Regression Plot

area.								
UNWEIGHTED	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF TOP W	IDTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	Т	P
CONSTANT A		9525 7581		7.7992 01659		2.52 4.57		0.0534 0.0060
R-SQUARED ADJUSTED R-S	SQUARED	0.8069 0.7683				N SQUARE EVIATION	(MSE)	1247.43 35.3189
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 5 6	26064. 6237.1 32301.	.4	26064 1247		20.89	0.00	60
CASES INCLU	DED 7	MISSING	CASES	0				


Strata "B" second order regression output for top width versus valley area.

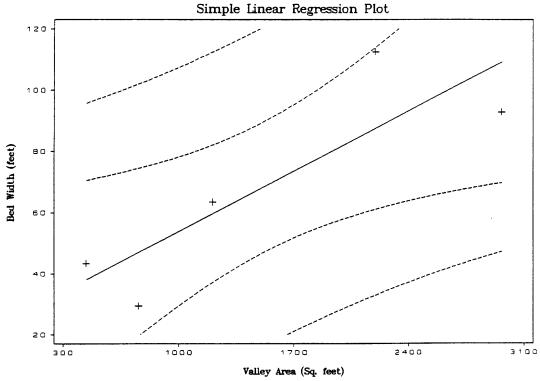
Simple Linear Regression Plot

UNWEIGHTED	LEAST SÇ	QUARES L	INEAR	REGRES	SION O	F AVERA	GE DEPT	н
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	ST	UDENT'S	т	₽
CONSTANT A		22396 00208		10688)4E-04		3.82 3.15		.0124 .0252
R-SQUARED ADJUSTED R-	SQUARED	0.6656 0.5987		RESID. STANDA		SQUARE IATION	(MSE)	1.97767 1.40630
SOURCE	DF	SS		MS		F	P	_
REGRESSION RESIDUAL TOTAL	1 5 6	19.68 9.888 29.57	35	19.6 1.97		9.95	0.025	2
CASES INCLU	DED 7	MISSING	CASES	5 0				

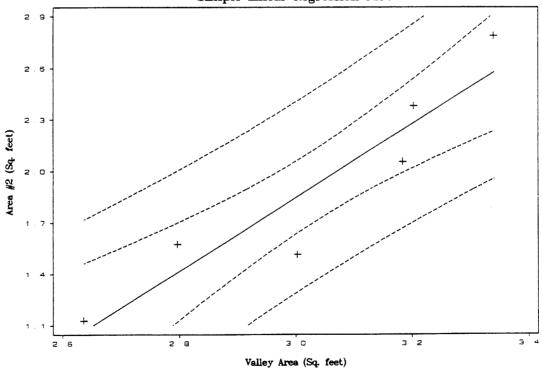

Strata "B" second order regression output for average depth versus valley area.

Simple Linear Regression Plot

UNWEIGHTED L	EAST SO	UARES LI	NEAR	REGRES	SION	OF GROUN	D SLOPI	Ξ
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	т	P
CONSTANT AGI2		0568		98342 50089	-	-4.38 -2.53		0.0072 0.0524
R-SQUARED ADJUSTED R-S	QUARED	0.5617 0.4741				I SQUARE EVIATION	(MSE)	0.01985 0.14089
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 5 6	0.1272 0.0992 0.2264	5	0.12		6.41	0.052	24
CASES INCLUD	ED 7	MISSING	CASES	; 0				

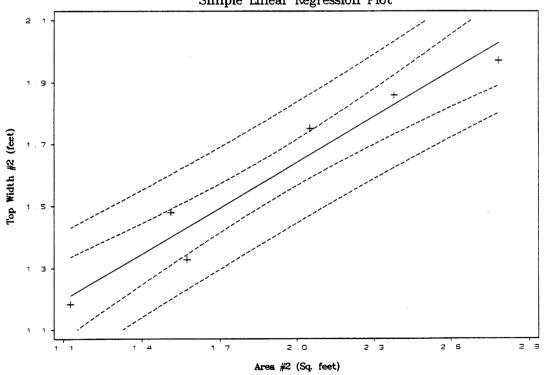

Strata "B" second order regression output for ground slope versus area gradient index #2.

Simple Linear Regression Plot


UNWEIGHTED I	LEAST SQ	UARES	LINEAR	REGRES	SION	OF BED W	IDTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	Т	₽
CONSTANT A		6475 2816		7.2425 .00969	-	1.49 2.91		.2336 .0622
R-SQUARED ADJUSTED R-S	SQUARED	0.737 0.650				N SQUARE EVIATION	(MSE)	411.52 20.286
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 3 4	3476 1234 4710	.56	3476 411.		8.45	0.062	2
CASES INCLU	DED 5	MISSIN	G CASE	S 2				

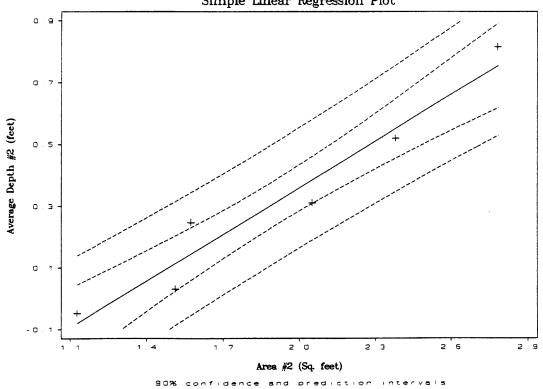
Strata "B" second order regression output for bed width versus valley area.

UNWEIGHTED	LEAST SO	UARES LI	NEAR	REGRES	SION	OF AREA	#2	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	Ρ
CONSTANT A		8585 4418		22546 40350		-3.74 5.31		0.0201 0.0060
R-SQUARED ADJUSTED R-	SQUARED	0.8759 0.8449				N SQUARE EVIATION	(MSE)	0.05860 0.24207
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 4 5	1.6546 0.2343 1.8890	8	1.65 0.05		28.24	0.00	60
CASES INCLU	JDED 6	MISSING	CASES	1				

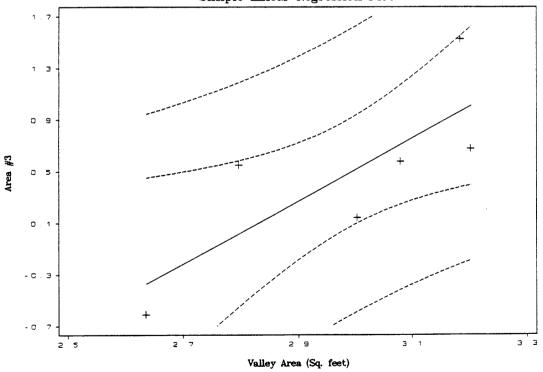

Strata "B" second order regression output of area #2 versus valley area.

Simple Linear Regression Plot

UNWEIGHTED I	LEAST SO	QUARES LI	NEAR	REGRES	SION C	F TOP W	IDTH	#2
PREDICTOR VARIABLES	COEFFI	ICIENT	STD	ERROR	SI	TUDENT'S	БТ	P
CONSTANT A2		5466 19333		12230 06158		5.35 8.01		0.0059 0.0013
R-SQUARED ADJUSTED R-S	SQUARED	0.9413 0.9267				SQUARE VIATION		0.00716 0.08464
SOURCE	DF	SS		MS		F		P
REGRESSION RESIDUAL TOTAL	1 4 5	0.4597 0.0286 0.4884	6	0.45		64.17	0.0	013
CASES INCLU	DED 6	MISSING	CASES	5 1			÷	


Strata "B" second order regression output for top width #2 versus area #2.

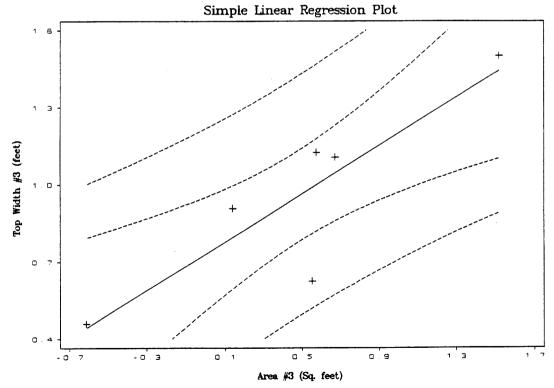
Simple Linear Regression Plot


UNWEIGHTED L	LEAST SÇ	UARES LI	NEAR	REGRES	SION	OF AVERA	GE DE	PTH #2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	т	P
CONSTANT A2		4990 0482		12220 06153	-	-5.32 8.20		0.0060 0.0012
R-SQUARED ADJUSTED R-S	QUARED	0.9439 0.9299				N SQUARE EVIATION	(MSE)	0.00715 0.08457
SOURCE	DF	SS		MS		F		P
REGRESSION RESIDUAL TOTAL	1 4 5	0.4814 0.0286 0.5100	1	0.48		67.30	0.0	012
CASES INCLUD	ED 6	MISSING	CASES	1		·		

Strata "B" second order regression output for average depth #2 versus area #2.

Simple Linear Regression Plot

UNWEIGHTED I	LEAST SQ	UARES L	INEAR	REGRES	SION OF AREA	#3	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STUDENT'S	БТ	P
CONSTANT A		0646 4015		.86432 .95773	-2.38 2.55		0763 0635
R-SQUARED ADJUSTED R-S		0.6187 0.5234			MEAN SQUARE RD DEVIATION		0.23223 0.48191
SOURCE	DF	SS		MS	F	P	
REGRESSION RESIDUAL TOTAL	1 4 5	1.5079 0.9289 2.4364	94	1.50 0.23		0.0635	
CASES INCLUE	DED 6	MISSING	CASES	51			



90% confidence and prediction intervals

Simple Linear Regression Plot

UNWEIGHTED	LEAST SO	UARES	LINEAR	REGRES	SION	OF TOP W	IDTH #3	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	T	P
CONSTANT A3		3032 6923		.10363 .13047	_	7.05 3.60		0021 0228
R-SQUARED ADJUSTED R-	SQUARED	0.763 0.704				I SQUARE EVIATION	(MSE)	0.04148 0.20366
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 4 5	0.53 0.16 0.70	590	0.53		12.93	0.0228	-
CASES INCLU	DED 6	MISSIN	G CASE	S 1				

Strata "B" second order regression output for top width #3 versus area #3.

:

90% confidence and prediction intervals

UNWEIGHTED I	LEAST SÇ	UARES LI	NEAR	REGRES	SION (OF AVGER	AGE DE	EPTH #3
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	rudent's	т	P
CONSTANT A3		0938 8859		10426 13126		-6.80 3.72		0.0024 0.0204
R-SQUARED ADJUSTED R-S	QUARED	0.7760 0.7200				SQUARE VIATION	(MSE)	0.04198 0.20488
SOURCE	DF	SS		MS		F	F)
REGRESSION RESIDUAL TOTAL	1 4 5	0.5816 0.1679 0.7495	l	0.582		13.86	0.02	204
CASES INCLU	DED 6	MISSING	CASES	1				

Strata "B" second order regression output for average depth #3 versus area #3.

1

90% confidence and prediction intervals

BASIN ID 19B0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	2.00	2.00	2.00	2.00	2.00	2.00	3.00	4.00
MEAN	439.80	105.90	104.40	4.15	4.15	25.14	43.30	0.009
S.D.	106.91	13.01	13.29	0.50	0.50	0.20	9.81	0.004
C.V. (%)	24.31	12.29	12.73	11.93	11.93	0.81	22.65	42.28
MINIMUM	364.20	96.70	95.00	3.80	3.80	25.00	37.00	0.006
MAXIMUM	515.40	115.10	113.80	4.50	4.50	25.29	54.60	0.014
RANGE	151.20	18.40	18.80	0.70	0.70	0.29	17.60	0.008
BASIN ID 30A0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
30A0	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
30A0 n	(ft. ²) 2.00	PERIMETER (ft.) 2.00	WIDTH (ft.) 2.00	RADIUS 2.00	DEPTH (ft.) 2.00	RATIO 2.00	WIDTH (ft.) 1.00	SLOPE (ft/ft) 1.00
30A0 n MEAN	(ft. ²) 2.00 1209.70	PERIMETER (ft.) 2.00 151.15	WIDTH (ft.) 2.00 147.25	RADIUS 2.00 8.00	DEPTH (ft.) 2.00 8.20	RATIO 2.00 18.15	WIDTH (ft.) 1.00	SLOPE (ft/ft) 1.00
30A0 n MEAN S.D.	(ft. ²) 2.00 1209.70 221.47	PERIMETER (ft.) 2.00 151.15 4.03	WIDTH (ft.) 2.00 147.25 3.04	RADIUS 2.00 8.00 1.27	DEPTH (ft.) 2.00 8.20 1.27	RATIO 2.00 18.15 2.45	WIDTH (ft.) 1.00	SLOPE (ft/ft) 1.00
30A0 n MEAN S.D. C.V. (%)	(ft. ²) 2.00 1209.70 221.47 18.31	PERIMETER (ft.) 2.00 151.15 4.03 2.67	WIDTH (ft.) 2.00 147.25 3.04 2.06	RADIUS 2.00 8.00 1.27 15.91	DEPTH (ft.) 2.00 8.20 1.27 15.52	RATIO 2.00 18.15 2.45 13.48	WIDTH (ft.) 1.00 63.40	SLOPE (ft/ft) 1.00 0.026

High bank reach means for Strata "B" second order

BASIN ID 30B0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00	4.00	6.000
MEAN	759.17	120.17	116.25	5.75	5.95	19.66	29.35	0.033
S.D.	573.88	43.84	44.37	2.23	2.22	3.98	18.88	0.032
C.V. (%)	75.59	36.48	38.17	38.85	37.34	20.25	64.31	96.898
MINIMUM	333.90	74.50	69.60	4.10	4.30	14.50	6.30	0.014
MAXIMUM	1584.70	175.70	171.80	9.00	9.20	23.49	50.90	0.099
RANGE	1250.80	101.20	102.20	4.90	4.90	8.99	44.60	0.084

....

BASIN ID 36A0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE Slope (ft/ft)
n	3.00	3.00	3.00	3.00	3.00	3.00	2.00	6.00
MEAN	2193.60	306.50	302.50	6.37	6.43	59.57	112.30	0.021
S.D.	2188.70	74.95	74.08	4.89	5.00	24.39	12.59	0.020
C.V. (%)	99.78	24.45	24.49	76.73	77.73	40.93	11.21	97.13
MINIMUM	854.10	259.00	255.60	3.30	3.30	31.80	103.40	-0.003
MAXIMUM	4719.30	392.90	387.90	12.00	12.20	77.46	121.20	0.051
RANGE	3865.20	133.90	132.30	8.70	8.90	45.66	17.80	0.055

BASIN ID 36B0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00	4.00	5.00
MEAN	2965.40	262.08	256.02	10.78	11.18	37.74	92.98	0.010
S.D.	2275.00	56.65	55.49	7.33	7.75	31.11	71.26	0.002
C.V. (%)	76.72	21.61	21.67	68.02	69.33	82.44	76.64	21.11
MINIMUM	553.60	209.30	207.60	2.60	2.60	14.52	27.60	0.007
MAXIMUM	6014.40	312.30	311.10	19.40	20.30	80.35	162.50	0.012
RANGE	5460.80	103.00	103.50	16.80	17.70	65.83	134.90	0.005

BASIN ID 54A0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	2.00	2.00	2.00	2.00	2.00	2.00		1.00
MEAN	1604.50	191.50	188.20	8.20	8.30	23.01		0.012
S.D.	690.77	32.67	31.40	2.26	2.26	2.49		
C.V. (%)	43.05	17.06	16.68	27.59	27.26	10.83		
MINIMUM	1116.10	168.40	166.00	6.60	6.70	21.25		0.012
MAXIMUM	2093.00	214.60	210.40	9.80	9.90	24.78		0.012
RANGE	976.90	46.20	44.40	3.20	3.20	3.52		

BASIN ID 54B0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00		4.00
MEAN	1119.60	158.60	155.28	6.70	6.80	23.31		0.014
S.D.	647.84	37.41	35.91	2.16	2.23	2.61		0.006
C.V. (%)	57.86	23.59	23.12	32.24	32.82	11.21		38.43
MINIMUM	630,70	119.70	117.90	5.30	5.30	20.21		0.008
MAXIMUM	2071.00	209.50	204.10	9.90	10.10	26.13		0.021
RANGE	1440.30	89.80	86.20	4.60	4.80	5.92		0.013

BASIN ID 19BO	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	48.30	31.55	31.10	1.00	1.05	22.19
S.D.	65.62	38.40	38.33	0.85	0.78	20.06
C.V. (%)	135.86	121.70	123.23	84.85	74.08	90.43
MINIMUM	1.90	4.40	4.00	0.40	0.50	8.00
MAXIMUM	94.70	58.70	58.20	1.60	1.60	36.38
RANGE	92.80	54.30	54.20	1.20	1.10	28.38
		I				
BASIN ID 30BO	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
	AREA	PERIMETER	WIDTH		DEPTH	
30BO	AREA (ft.²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO
30BO	AREA (ft. ²) 4.00	PERIMETER (ft.) 4.00	WIDTH (ft.) 4.00	RADIUS 4.00	DEPTH (ft.) 4.00	RATIO 4.00
30BO n MEAN	AREA (ft. ²) 4.00 56.10	PERIMETER (ft.) 4.00 29.55	WIDTH (ft.) 4.00 27.78	RADIUS 4.00 1.63	DEPTH (ft.) 4.00 1.80	RATIO 4.00 14.03
30BO n MEAN S.D.	AREA (ft. ²) 4.00 56.10 49.90	PERIMETER (ft.) 4.00 29.55 20.03	WIDTH (ft.) 4.00 27.78 21.00	RADIUS 4.00 1.63 0.51	DEPTH (ft.) 4.00 1.80 0.44	RATIO 4.00 14.03 8.26
30BO n MEAN S.D. C.V. (%)	AREA (ft. ²) 4.00 56.10 49.90 88.94	PERIMETER (ft.) 4.00 29.55 20.03 67.78	WIDTH (ft.) 4.00 27.78 21.00 75.62	RADIUS 4.00 1.63 0.51 31.53	DEPTH (ft.) 4.00 1.80 0.44 24.43	RATIO 4.00 14.03 8.26 58.91

Medium bank reach means for Strata "B" second order

BASIN ID 36AO	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	3.00	3.00	3.00	3.00	3.00	3.00
MEAN	275.73	95.00	93.40	3.27	3.37	32.42
S.D.	186.03	83.67	84.71	0.58	0.67	35.61
C.V. (%)	67.47	88.07	90.70	17.67	19.78	109.83
MINIMUM	161.60	45.30	43.10	2.60	2.60	11.65
MAXIMUM	490.40	191.60	191.20	3.60	3.80	73.54
RANGE	328.80	146.30	148.10	1.00	1.20	61.89

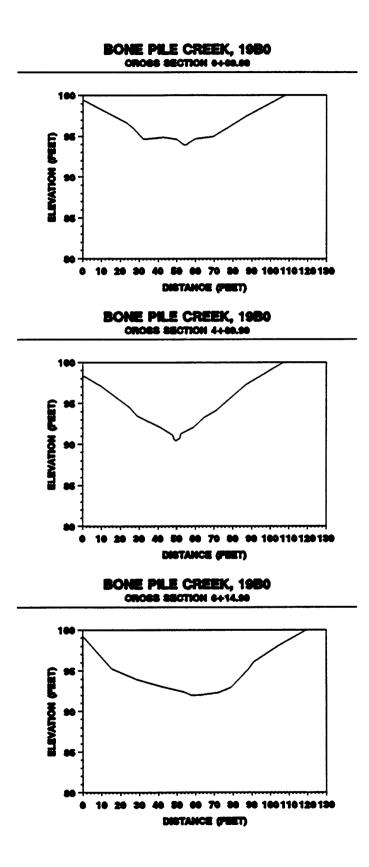
BASIN ID 36BO	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	608.95	97.45	93.35	6.25	6.55	14.48
S.D.	38.54	6.29	7.71	0.78	0.92	3.21
C.V. (%)	6.33	6.46	8.26	12.45	14.03	22.16
MINIMUM	581.70	93.00	87.90	5.70	5.90	12.21
MAXIMUM	636.20	101.90	98.80	6.80	7.20	16.75
RANGE	54.50	8.90	10.90	1.10	1.30	4.54

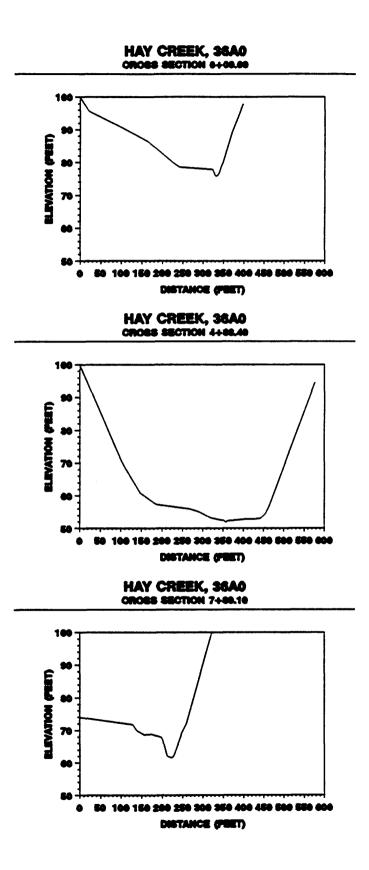
BASIN ID 54AO	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	118.50	56.95	56.25	2.05	2.10	27.87
S.D.	51.90	6.29	6.15	0.64	0.71	6.46
C.V. (%)	43.80	11.05	10.94	31.04	33.67	23.16
MINIMUM	81.80	52.50	51.90	1.60	1.60	23.31
MAXIMUM	155.20	61.40	60.60	2.50	2.60	32.44
RANGE	73.40	8.90	8.70	0.90	1.00	9.13

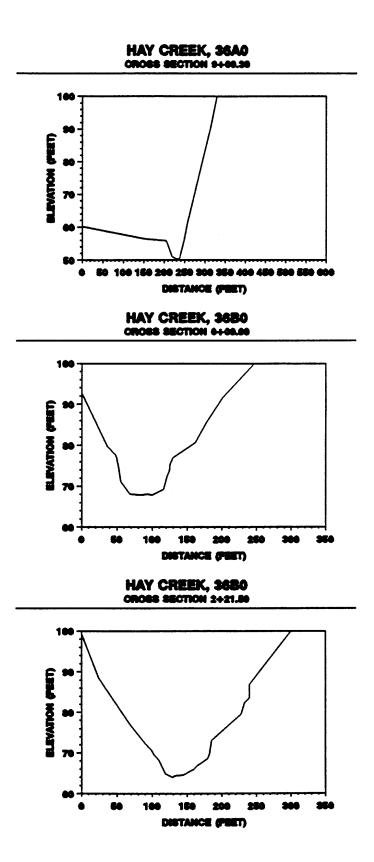
. . .

BASIN ID 54BO	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	4.00	4.00	4.00	4.00	4.00	4.00
MEAN	51.20	33.15	32.60	1.28	1.30	29.05
S.D.	48.40	14.59	14.17	0.87	0.91	7.68
C.V. (%)	94.53	44.01	43.46	67.89	69.94	26.44
MINIMUM	9.30	17.90	17.70	0.50	0.50	18.16
MAXIMUM	113.00	46.80	45.40	2.40	2.50	35.40
RANGE	103.70	28.90	27.70	1.90	2.00	17.24

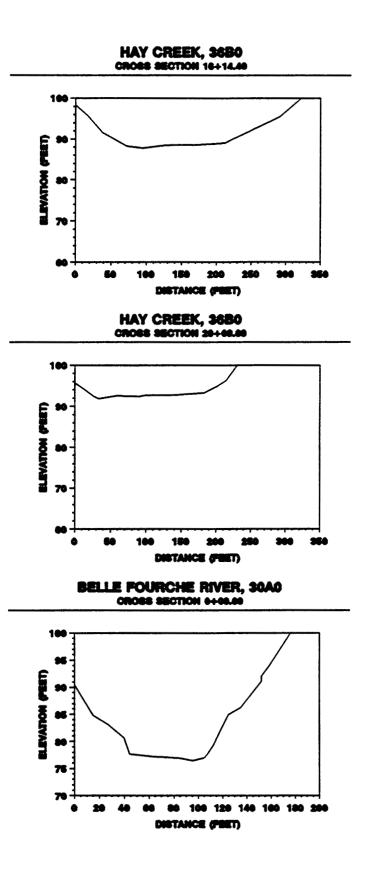
BASIN ID 19B0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	0.25	2.90	2.90	0.10	0.10	29.00
S.D.	0.07	0.57	0.57	0.00	0.00	5.66
C.V. (%)	28.28	19.51	19.51	0.00	0.00	19.51
MINIMUM	0.20	2.50	2.50	0.10	0.10	25.00
MAXIMUM	0.30	3.30	3.30	0.10	0.10	33.00
RANGE	0.10	0.80	0.80	0.00	0.00	8.00
L						
BASIN ID 30B0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio
		PERIMETER	WIDTH		DEPTH	
3080	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO
30B0	(ft. ²) 2.00	PERIMETER (ft.) 2.00	WIDTH (ft.) 2.00	RADIUS 2.00	DEPTH (ft.) 2.00	RATIO 2.00
30B0 n MEAN	(ft. ²) 2.00 3.80	PERIMETER (ft.) 2.00 5.60	WIDTH (ft.) 2.00 4.25	RADIUS 2.00 0.65	DEPTH (ft.) 2.00 0.85	RATIO 2.00 5.34
30B0 n MEAN S.D.	(ft. ²) 2.00 3.80 1.84	PERIMETER (ft.) 2.00 5.60 0.71	WIDTH (ft.) 2.00 4.25 0.50	RADIUS 2.00 0.65 0.21	DEPTH (ft.) 2.00 0.85 0.35	RATIO 2.00 5.34 1.64
30B0 n MEAN S.D. C.V. (%)	(ft. ²) 2.00 3.80 1.84 48.38	PERIMETER (ft.) 2.00 5.60 0.71 12.63	WIDTH (ft.) 2.00 4.25 0.50 11.65	RADIUS 2.00 0.65 0.21 32.64	DEPTH (ft.) 2.00 0.85 0.35 41.60	RATIO 2.00 5.34 1.64 30.69

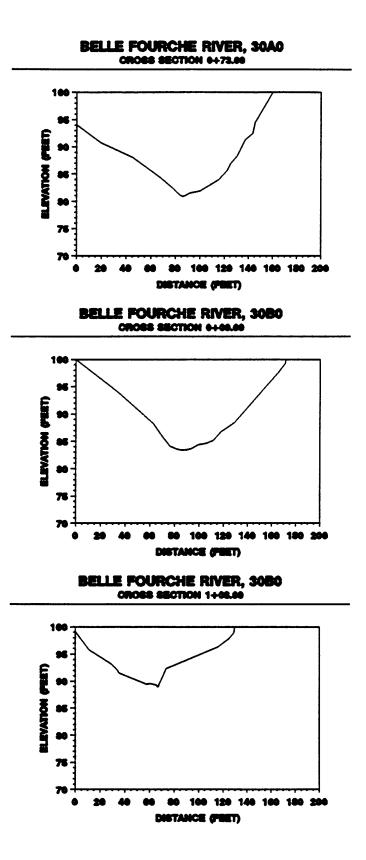

Low bank reach means for Strata "B" second order

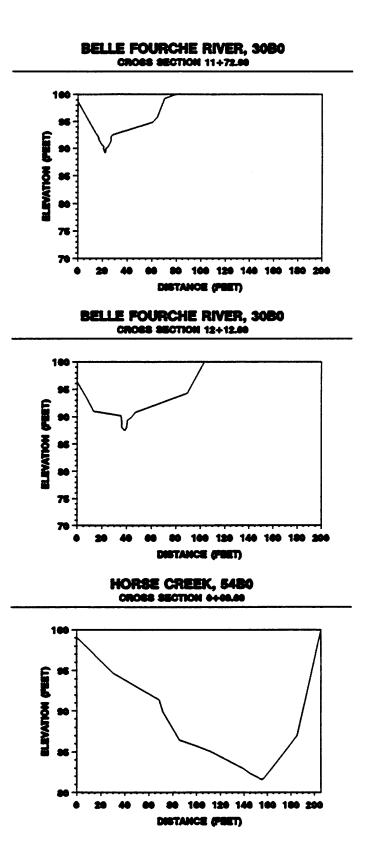

. .

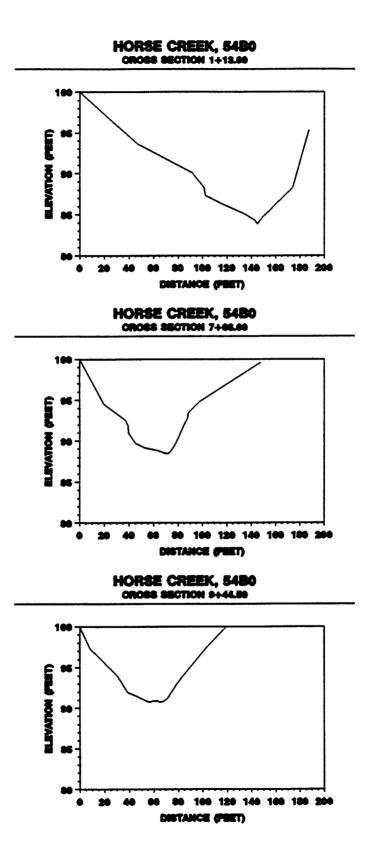

BASIN ID 36A0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	4.00	4.00	4.00	4.00	4.00	4.00
MEAN	8.48	13.55	13.38	0.50	0.50	40.30
S.D.	10.93	5.00	4.79	0.54	0.54	17.88
C.V. (%)	128.92	36.89	35.82	107.08	107.08	44.38
MINIMUM	1.60	8.40	8.30	0.20	0.20	14.69
MAXIMUM	24.70	19.70	19.10	1.30	1.30	54.00
RANGE	23.10	11.30	10.80	1.10	1.10	39.31

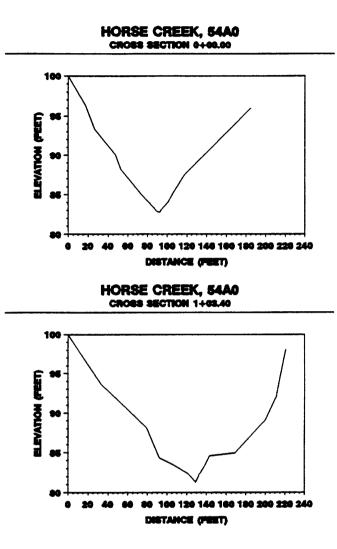
BASIN ID 54A0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	
n	2.00	2.00	2.00	2.00	2.00	2.00	
MEAN	33.25	31.80	31.50	1.05	1.05	30.63	
S.D.	5.59	0.00	0.00	0.00 0.21		6.19	
C.V. (%)	16.80	0.00	0.00	20.20	20.20	20.20	
MINIMUM	29.30	31.80	31.50	0.90	0.90	26.25	
MAXIMUM	37.20	31.80	31.50	1.20	1.20	35.00	
RANGE	7.90	0.00	0.00	0.30	0.30	8.75	


BASIN ID 54B0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	
n	4.00	4.00	4.00	4.00	4.00	4.00	
MEAN	4.05	13.05	13.00	0.23	0.23	49.38	
S.D.	4.30	11.39	11.33	0.15	0.15	24.31	
C.V. (%)	106.19	87.27	87.16	66.67	66.67	49.23	
MINIMUM	0.10	1.70	1.70	0.10	0.10	17.00	
MAXIMUM	8.30	23.10	23.00	0.40	0.40	75.00	
RANGE	8.20	21.40	21.30	0.30	0.30	58.00	



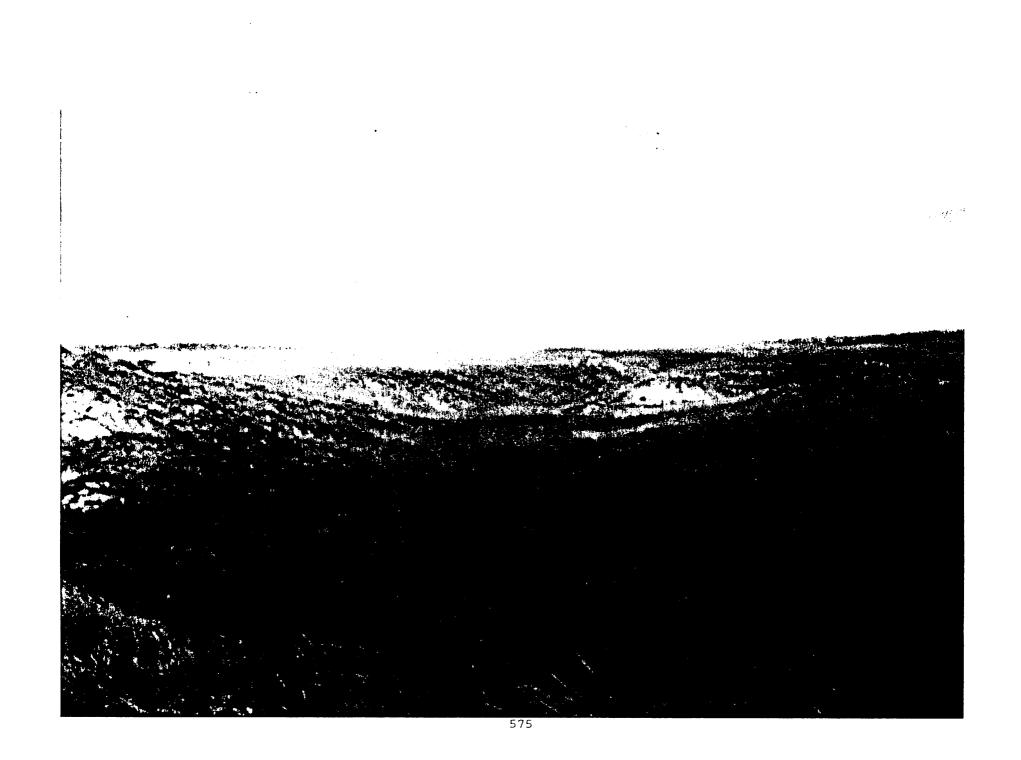



:



ł

:

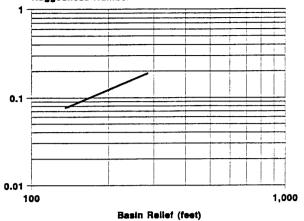

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	BED WIDTH (feet)
19B0	4+69.90	HIGH	364.20	95.00	3.80	37.00
19B0	6+14.90	HIGH	515.40	113.80	4.50	54.60
30A0	0+00.00	HIGH	1366.30	149.40	9.10	63.40
30A0	0+73.00	HIGH	1053.10	145.10	7.30	
30B0	0+00.00	HIGH	1584.70	171.80	9.20	24.10
30B0	1+03.00	HIGH	710.00	129.20	5.50	6.30
30B0	11+72.00	HIGH	333.90	69.60	4.80	50.90
30B0	12+12.00	HIGH	408.10	94.40	4.30	36.10
36A0	0+00.00	HIGH	4719.30	387.90	12.20	103.40
36A0	7+89.10	HIGH	1007.40	264.00	3.80	
36A0	9+00.30	HIGH	854.10	255.60	3.30	
36B0	0+00.00	HIGH	2971.00	207.60	14.30	35.60
36B0	2+21.50	HIGH	6014.40	296.50	20.30	27.60
36B0	16+14.40	HIGH	2322.50	311.10	7.50	146.20
36B0	20+09.60	HIGH	553.60	208.90	2.60	162.50
54A0	0+00.00	HIGH	1116.10	166.00	6.70	
54A0	1+03.40	HIGH	2093.00	210.40	9.90	
54B0	0+00.00	HIGH	2071.00	204.10	10.10	96.60
54B0	1+13.00	HIGH	951.60	152.80	6.20	
54B0	7+66.00	HIGH	825.20	146.30	5.60	
54B0	9+44.50	HIGH	630.70	117.90	5.30	
1980	0+00.00	MEDIUM	94.70	58.20	1.60	38.30
19B0	4+69.90	MEDIUM	1.90	4.00	0.50	
30B0	0+00.00	MEDIUM	114.90	50.70	2.30	
30B0	1+03.00	MEDIUM	80.10	40.50	2.00	
30B0	11+72.00	MEDIUM	16.60	10.40	1.60	

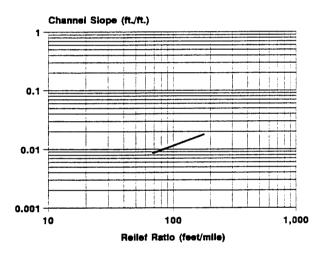
. :

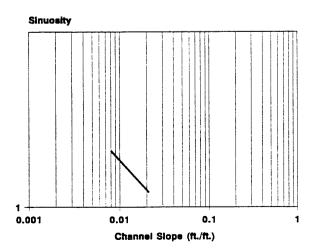
Strata "B" second order raw data by study reach, cross section, and bank identification.

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	BED WIDTH (feet)
30B0	12+12.00	MEDIUM	12.80	9.50	1.30	
36A0	4+88.40	MEDIUM	490.40	191.20	2.60	121.20
36A0	7+89.10	MEDIUM	175.20	45.90	3.80	
36A0	9+00.30	MEDIUM	161.60	43.10	3.70	
36B0	0+00.00	MEDIUM	636.20	87.90	7.20	
36B0	2+21.50	MEDIUM	581.70	98.80	5.90	
54A0	0+00.00	MEDIUM	155.20	60.60	2.60	
54A0	1+03.40	MEDIUM	81.80	51.90	1.60	
54B0	0+00.00	MEDIUM	16.20	23.30	0.70	
54B0	·1+13.00	MEDIUM	9.30	17.70	0.50	
54B0	7+66.00	MEDIUM	113.00	45.40	2.50	
54B0	9+44.50	MEDIUM	66.30	44.00	1.50	
19B0	0+00.00	LOW	0.30	3.30	0.10	
19B0	4+69.90	LOW	0.20	2.50	0.10	
30A0	0+00.00	LOW	4.50	18.50	0.20	
30A0	0+73.00	LOW	3.10	9.50	0.30	
30B0	11+72.00	LOW	2.50	3.90	0.60	
3080	12+12.00	LOW	5.10	4.60	1.10	
36A0	0+00.00	LOW	24.70	19.10	1.30	
36A0	4+88.40	LOW	1.60	8.30	0.20	
36A0	7+89.10	LOW	5.20	15.30	0.30	
36A0	9+00.30	LOW	2.40	10.80	0.20	
54A0	0+00.00	LOW	37.20	31.50	1.20	
54A0	1+03.40	LOW	29.30	31.50	0.90	
54B0	0+00.00	LOW	0.60	4.80	0.10	
54B0	1+13.00	LOW	0.10	1.70	0.10	
BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	BED WIDTH (feet)
54B0	7+66.00	LOW	8.30	23.00	0.40	
54B0	9+44.50	LOW	7.20	22.50	0.30	•

•

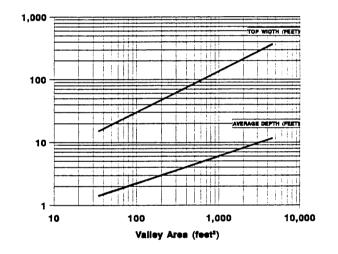

APPENDIX B-3

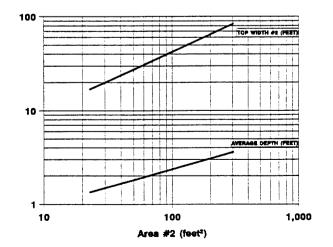

STRATA "B" - THIRD ORDER

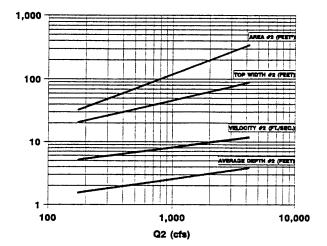

-

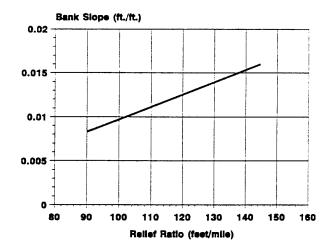
Description of Contents	Page
Geomorphic Relationships in Graph Format	579 - 582
Simple and Multiple Linear Regression Output Tables and Simple Linear Regression Plots with 90% Confidence Belts	583 - 608
Descriptive Statistics by Study Reach and by Bank	609 - 614
Cross-Section Plots by Study Site and Study Reach	615 - 622
Raw Field Data	623 - 625
Digitized Drainage Basin and Drainage Network	626 - 629
Photographic Representation	630 - 632

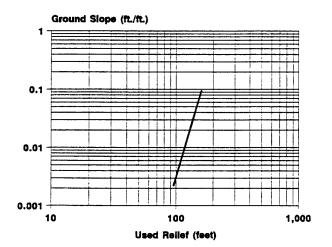


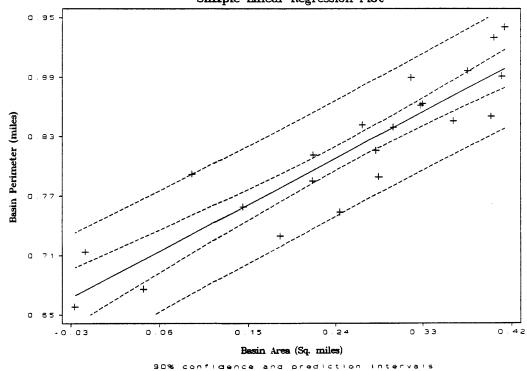







:

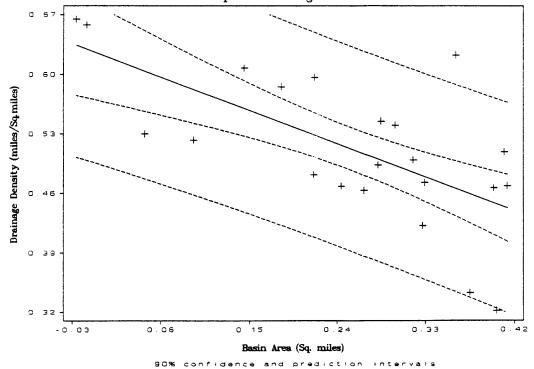




t

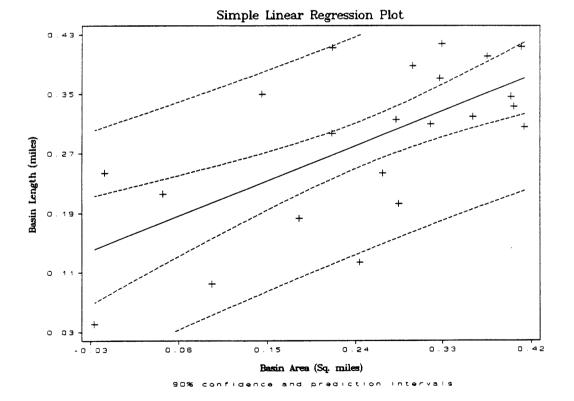
UNWEIGHTED L	EAST SQ	UARES LI	INEAR	REGRES	SION C	OF BASIN	PERIN	IETER
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	SI	TUDENT'S	т	P
CONSTANT BA		8283 2254		01535 05386		44.48 9.70		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.8248 0.8160				SQUARE VIATION	(MSE)	0.00110 0.03317
SOURCE	DF	SS		MS		F	E)
REGRESSION RESIDUAL TOTAL	1 20 21	0.1035 0.0220 0.1255	30	0.10		94.13	0.00	
CASES INCLUD	ED 22	MISSING	G CASE	IS O				

Strata "B" third order regression output for basin perimeter versus basin area.



Simple Linear Regression Plot

UNWEIGHTED I	LEAST SQ	UARES	LINEAR	REGRES	SION	OF DRAIN	AGE DE	INSITY
PREDICTOR VARIABLES	COEFFI	CIENT	STE	ERROR	S	TUDENT'S	т	P
CONSTANT BA		2263 3489	-	.03157		19.72 -3.93		0.0000 0.0008
R-SQUARED ADJUSTED R-S	QUARED	0.435 0.407				SQUARE VIATION	(MSE)	0.00465 0.06821
SOURCE	DF	SS		MS		F	P)
REGRESSION RESIDUAL TOTAL	1 20 21	0.07 0.09 0.16	305	0.07 0.00		15.42	0.00	08
CASES INCLUE	ED 22	MISSI	NG CAS	ES O				


Strata "B" third order regression output for drainage density versus basin area.

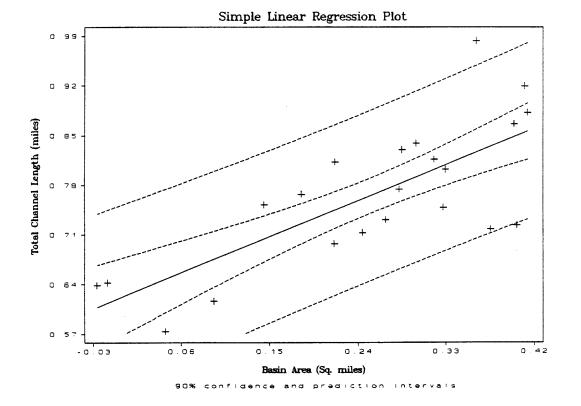
Simple Linear Regression Plot

area.								
UNWEIGHTED	LEAST S	SQUARES	LINEAR	REGRES	SION OF	BASIN	LENGTH	
PREDICTOR VARIABLES	COEFE	FICIENT	STD	ERROR	STUI	DENT'S	т	P
CONSTANT BA		15505 52445		.03846 .13493		4.03 3.89		0007 0009
R-SQUARED ADJUSTED R	SQUAREI				MEAN SQ RD DEVIA		(MSE)	0.00691 0.08310
SOURCE	DF	SS	5	MS		F	P	
REGRESSION RESIDUAL TOTAL	1 20 21	0.10	3812	0.10		.5.11	0.0009	
CASES INCLU	JDED 22	MISSI	ING CASE	ES O				

Strata "B" third order regression output for basin length versus basin area.

585

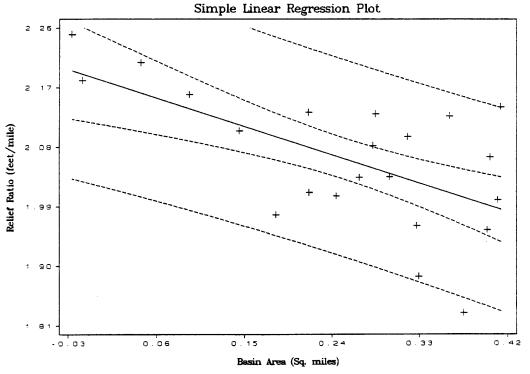
UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF FIRST	S	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	т	P
CONSTANT RR TCHL	0.2	3796 7255 5362	0	.35625 .14613 .15114	_	-1.51 1.87 6.31		0.1475 0.0777 0.0000
R-SQUARED ADJUSTED R-S		0.6771 0.6431	U	RESID.		SQUARE VIATION	(MSE)	0.00438
SOURCE	DF	SS		MS		F	I	ò
REGRESSION RESIDUAL TOTAL	2 19 21	0.1746 0.0833 0.2579	0	0.08		19.92	0.00	000
CASES INCLU	DED 22	MISSING	CASI	ES O				


Strata "B" third order regression output for number of first orders versus relief ratio and total channel length.

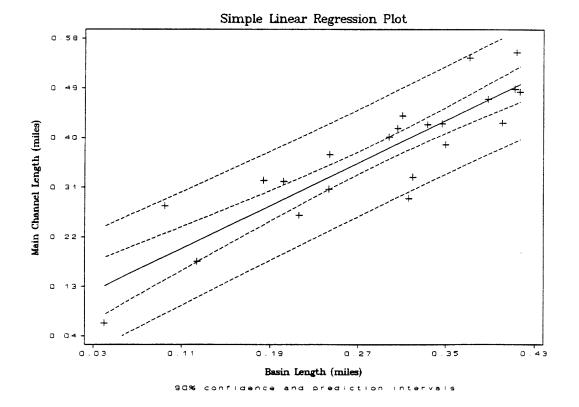
UNWEIGHTED I	LEAST SQ	UARES LIN	IEAR	REGRES	SION	OF SECON	DS		
PREDICTOR VARIABLES	COEFFICIENT		STD	ERROR	;	STUDENT'S T		P	
CONSTANT	0.49704			12950	-	3.84		0.0011	
CHS TCHL	0.22810 0.33155			0.06695 0.08011		3.41 4.14		0.0030 0.0006	
R-SQUARED ADJUSTED R-S		0.5570 0.5103				N SQUARE EVIATION	(MSE)	0.00131 0.03626	
SOURCE	DF	SS		MS		F	P		
REGRESSION RESIDUAL	2 19	0.03140		0.01		11.94	0.00	04	
TOTAL	21	0.05638							
CASES INCLUE	ED 22	MISSING	CASE	S O					

Strata "B" third order regression output for number of second orders versus channel slope and total channel length.

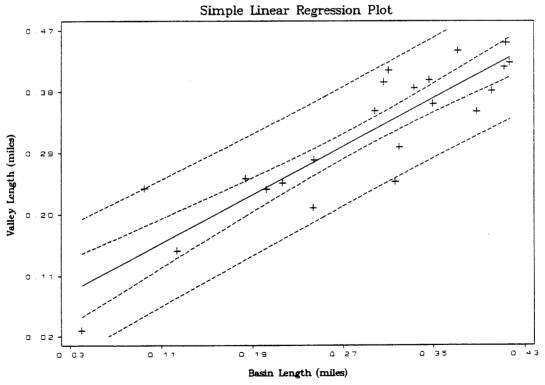
UNWEIGHTED	LEAST SQ	UARES	LINEAR	REGRES	SION C	F TOTAL	CHANNE	L LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	SI	UDENT'S	T	P
CONSTANT BA		2263 6511	-	.03157 .11075		19.72 5.10		.0000
R-SQUARED ADJUSTED R-		0.565 0.543				SQUARE VIATION	(MSE)	0.00465 0.06821
SOURCE	DF	SS	3	MS		F	P	
REGRESSION RESIDUAL TOTAL	1 20 21	0.12 0.09 0.21	305	0.12	113 465	26.04	0.000	1
CASES INCLU	DED 22	MISSI	ING CAS	ES 0				


Strata "B" third order regression output for total channel length versus basin area.

588


area.								
UNWEIGHTED	LEAST SQ	UARES LI	NEAR	REGRES	SION O	F RELIE	F RATIO	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	ST	UDENT'S	T	P
CONSTANT BA		8296 7635		.03914 .13732		55.78 -3.47		0000 0024
R-SQUARED ADJUSTED R-		0.3757 0.3444				SQUARE IATION	(MSE)	0.00715 0.08457
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 20 21	0.0860 0.1430 0.2291	5	0.08	607 715	12.03	0.0024	-
CASES INCLU	DED 22	MISSING	CASE	ES O				

Strata "B" third order regression output for relief ratio versus basin area.


UNWEIGHTED	LEAST SQ	UARES	LINEAF	REGRES	SION OF	MAIN	CHANNEL	LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	STI	ERROR	STU	DENT'S	Τ	P
CONSTANT BL		9201 97144	-).03424		2.69 8.69	-	.0142 .0000
R-SQUARED ADJUSTED R-	SQUARED	0.790 0.780			MEAN S RD DEVI	~	(MSE)	0.00303 0.05504
SOURCE	DF	SS	5	MS		F	P	
REGRESSION RESIDUAL TOTAL	1 20 21	0.22 0.06 0.28	5059	0.22 0.00		75.53	0.000	0
CASES INCLU	DED 22	MISSI	NG CAS	ES O	<u></u>			

Strata "B" third order regression output for main channel length versus basin length.

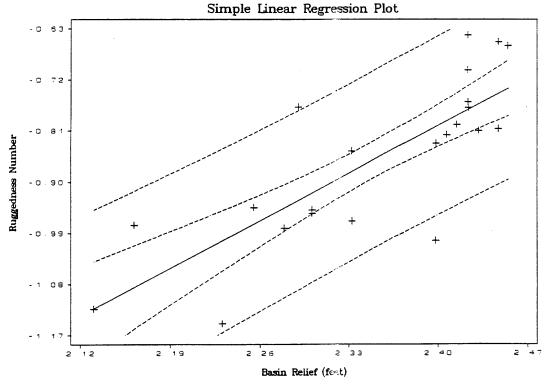
590

JNWEIGHTED L	EAST SQ	UARES LI	NEAR	REGRESS	ION	OF VALLEY	Y LENGTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	т	P
CONSTANT BL		5963 9004		.03096 .10110	-	1.93 8.80		0685 0000
R-SQUARED ADJUSTED R-S		0.7949 0.7846				I SQUARE EVIATION	(MSE)	0.00248 0.04978
SOURCE	DF	SS		MS		F	₽	
REGRESSION RESIDUAL TOTAL	1 20 21	0.1920 0.0495 0.2416	6	0.192 0.002		77.51	0.0000	
CASES INCLUD	ED 22	MISSING	CASE	ES O				

UNWEIGHTED L	LEAST SQ	UARES L	INEAR	REGRES	SION	OF BASIN	RELIE	F
PREDICTOR VARIABLES VIF	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	т	P
CONSTANT	2.2	3398	0	.05116		43.67		0.0000
BA	-0.3	0378	0	.17663		-1.72	(0.1017
BL	0.6	7096	0	.22093		3.04	(0.0068
R-SQUARED ADJUSTED R-S		0.3299 0.2594				SQUARE	(MSE)	0.00674 0.08211
SOURCE	DF	SS		MS		F	P	
REGRESSION	2	0.063	06	0.03	153	4.68	0.02	23
RESIDUAL	19	0.128	09	0.00	674			
TOTAL	21	0.191	15					
CASES INCLUE	DED 22	MISSIN	G CASI	ES O				

•

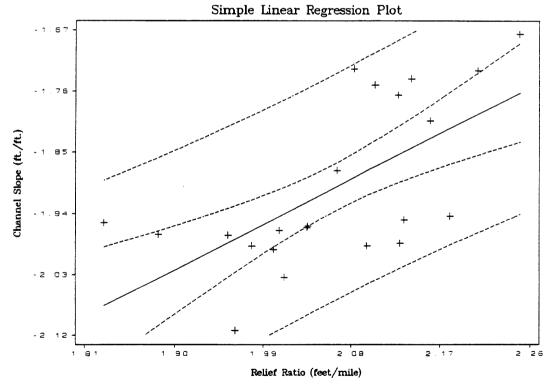
Strata "B" third order regression output of basin relief versus basin area and basin length.


		*						
UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF USED	RELIEF	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	Т	P
CONSTANT	3.0	4950	0	.27759		10.99		0000
BA	0.4	5202	0	.13588		3.33	0.	0035
CHS	0.5	9231	0	.15111		3.92	0.	0009
R-SQUARED ADJUSTED R-S	QUARED	0.5085 0.4568		RESID. STANDA		SQUARE	(MSE)	0.00612 0.07826
SOURCE	DF	SS		MS		F	P	
REGRESSION	2	0.1204	2	0.06	021	9.83	0.0012	
RESIDUAL	19	0.1163	7	0.00	612			
TOTAL	21	0.2367	9					
CASES INCLU	DED 22	MISSING	CASI	ES O				

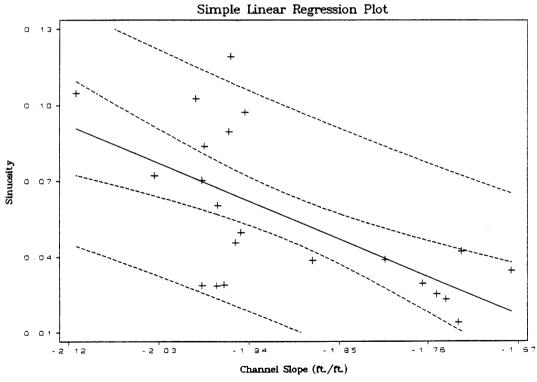
•

Strata "B" third order regression output for used relief versus basin area and channel slope.

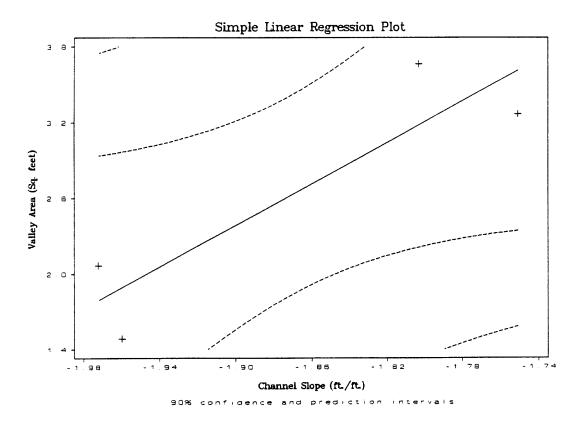
	rerrer.								
UNWEIGHTED	LEAST SQ	UARES L	INEAR	REGRES	SION C	F RUGGE	DNESS	NUMBER	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	SI	UDENT'S	T	P	
CONSTANT BR	-3.6	7468 9772	-	.47712 .20285		-7.70 5.90		0.0000	
R-SQUARED ADJUSTED R-		0.6354 0.6172				SQUARE VIATION	(MSE)	0.00787 0.08869	
SOURCE	DF	SS		MS		F	I	2	
REGRESSION RESIDUAL TOTAL	1 20 21	0.274 0.157 0.431	32	0.27 0.00	421 787	34.86	0.00	. 000	
CASES INCLU	JDED 22	MISSIN	G CASI	ES O					


Strata "B" third order regression output for ruggedness number versus basin relief.

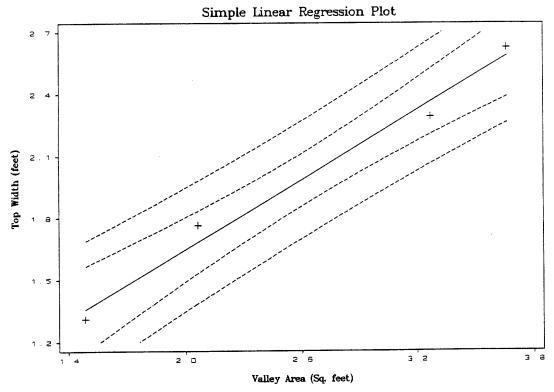
^{90%} confidence and prediction intervals


UNWEIGHTED	LEAST SQ	UARES	LINE	AR	REGRES:	SION	OF CHANN	EL SI	LOPE	
PREDICTOR VARIABLES	COEFFI	CIENT	S	ГD	ERROR		STUDENT'S	т		P
CONSTANT RR		4115 4629			40828 19771		-8.43 3.77			0000 0012
R-SQUARED ADJUSTED R-	SQUARED	0.416 0.386					N SQUARE EVIATION	(MSE)		0.00896 0.09464
SOURCE	DF	SS	5		MS		F		P	
REGRESSION RESIDUAL TOTAL	1 20 21	0.12 0.17 0.30	7913		0.12' 0.008		14.25	0.0	012	-
CASES INCLU	DED 22	MISSI	NG CA	ASE	S 0					

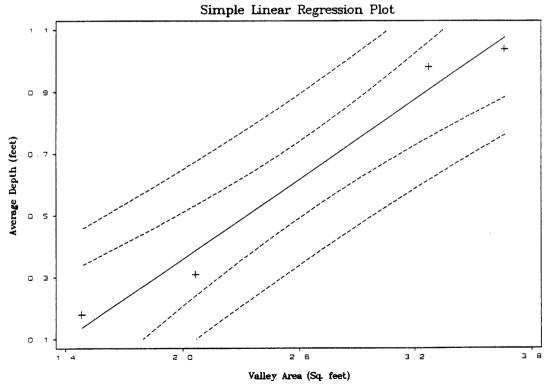
Strata "B" third order regression output for channel slope versus relief ratio.


siope.								
UNWEIGHTED 1	LEAST SQ	UARES I	LINEAR	REGRESS	ION C	OF SINUC	SITY	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	SI	rudent' s	т	P
CONSTANT CHS	-0.2			08504 04462		-3.07 -3.73		0061 0013
R-SQUARED ADJUSTED R-S	SQUARED					SQUARE /IATION		0.02471
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 20 21			0.008 6.108E-		13.90	0.0013	-
CASES INCLU	DED 22	MISSIN	NG CASE	ES O				

Strata "B" third order regression output for sinuosity versus channel slope.


UNWEIGHTED	LEAST SQ	UARES LI	INEAR	REGRES	SION OF	F VALLE	Y AREA	L
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	JDENT'S	т	P
CONSTANT CHS		0295 23310		28033 81770		3.41 2.92		0.0761 0.0999
R-SQUARED ADJUSTED R-	SQUARED	0.8102 0.7153			MEAN S RD DEVI	SQUARE LATION	(MSE)	0.29462 0.54279
SOURCE	DF	SS		MS		F	P)
REGRESSION RESIDUAL TOTAL	1 2 3	2.5154 0.5892 3.1046	25	2.51 0.29		8.54	0.09	999
CASES INCLU	DED 4	MISSING	CASES	5 0				

Strata "B" third order regression output for valley area versus channel slope.

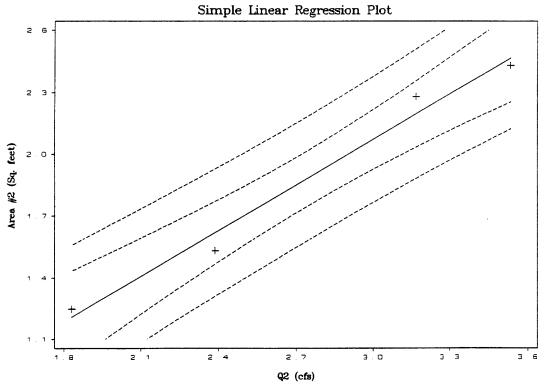

UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF TOP W	IDTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	i	STUDENT'S	T	P
CONSTANT A		51662 56485		13740 04969		3.76 11.37		0.0640 0.0076
R-SQUARED ADJUSTED R-S	QUARED	0.9848 0.9771				N SQUARE EVIATION	(MSE)	0.00767 0.08755
SOURCE	DF	SS		MS		F		₽
REGRESSION RESIDUAL TOTAL	1 2 3	0.9905 0.0153 1.0059	3	0.99 0.00		129.23	0.0	076
CASES INCLU	DED 4	MISSING	CASES	0				

Strata "B" third order regression output for top width versus valley area.

UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRES	SION C	OF AVERA	GE DEI	PTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	SI	rudent's	т	P
CONSTANT A		0519 3174		13338 04824		-3.79 8.95		0.0632 0.0123
R-SQUARED ADJUSTED R-S	QUARED	0.9756 0.9635				SQUARE VIATION	(MSE)	0.00722 0.08499
SOURCE	DF	SS		MS		F	1	2
REGRESSION RESIDUAL TOTAL	1 2 3	0.5787 0.0144 0.5931	15	0.57 0.00		80.11	0.03	123
CASES INCLUI	ED 4	MISSING	CASES	0			7811 - Marci and a second	

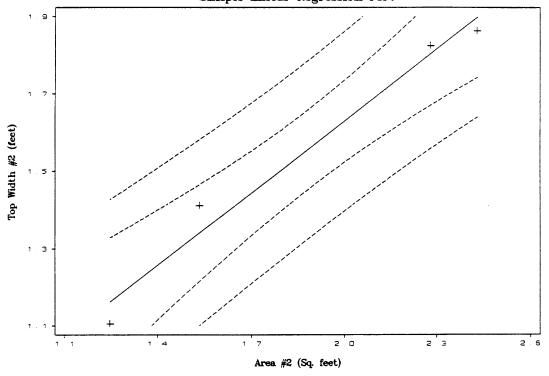
Strata "B" third order regression output for average depth versus valley area.

UNWEIGHTED L	EAST SQ	UARES LIN	NEAR	REGRESS	ION	OF AREA	#2	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	Т	P
CONSTANT		9731		20870		13.22		.0481
BR	-5.6	8428	0.	50545		-11.25	0	.0565
SIN	-19.	6945	1.	52286		-12.93	0	.0491
R-SQUARED ADJUSTED R-S	QUARED	0.9951 0.9852		RESID. STANDAR		SQUARE VIATION	(MSE)	0.00485 0.06965
SOURCE	DF	SS		MS		F	P	
REGRESSION	2	0.97686	5	0.488	43	100.68	0.070	3
RESIDUAL	1	0.00485	5	0.004	85			
TOTAL	3	0.98171	1					
CASES INCLUE	ED 4	MISSING (CASES	5 0				


.

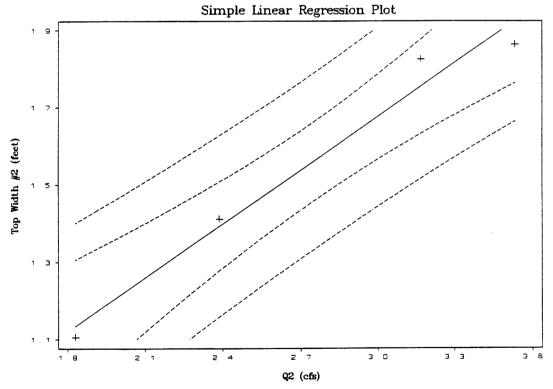
Strata "B" third order regression output for area #2 versus basin relief ______and sinuosity.

.

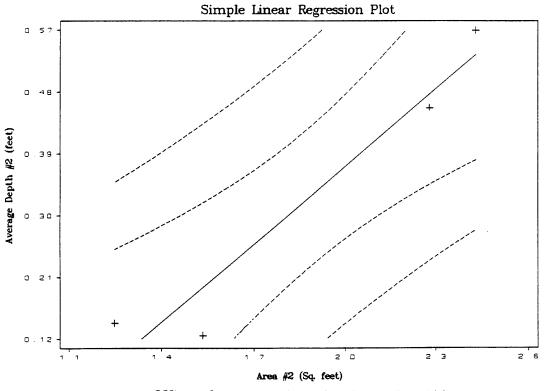

UNWEIGHTED L	EAST SÇ	QUARES LIN	EAR	REGRES	SION	OF AREA	#2	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	:	STUDENT'S	т	P
CONSTANT Q2		4397 73871		19503 06941	-	-0.74 10.64		0.5373 0.0087
R-SQUARED ADJUSTED R-S		0.9826 0.9740				N SQUARE EVIATION	(MSE)	0.00852 0.09228
SOURCE	DF	SS	_	MS		F	I	2
REGRESSION RESIDUAL TOTAL	1 2 3	0.96468 0.01703 0.98171		0.96 0.00		113.27	0.00	087
CASES INCLUD	ED 4	MISSING C	ASES	0				<u></u>

Strata "B" third order regression output for area #2 versus Q2.

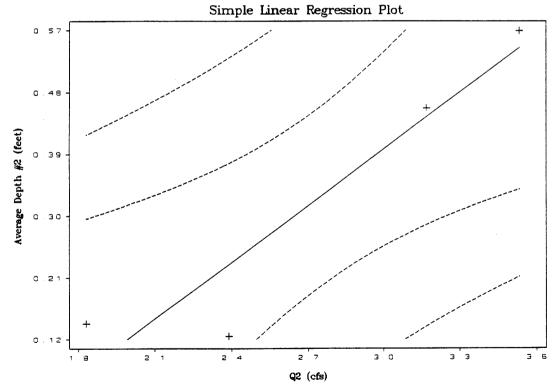
UNWEIGHTED I	LEAST SQ	QUARES L	INEAR	REGRES	SION OF	TOP W	IDTH #2	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	БТ	P
CONSTANT A2		8516 52271		13816 07132		2.79 8.73		.1082 .0129
R-SQUARED ADJUSTED R-S	SQUARED	0.9744 0.9617			MEAN SO RD DEVI	-	(MSE)	0.00499 0.07066
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	0.380 0.009 0.390	99	0.38		76.24	0.012	Ð
CASES INCLU	DED 4	MISSING	CASES	0				<u></u>


Strata "B" third order regression output for top width #2 versus area #2.

Simple Linear Regression Plot

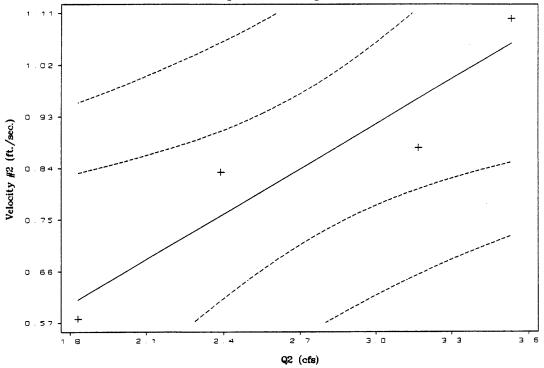

UNWEIGHTED L	EAST SO	UARES L	INEAR	REGRES	SION	OF TOP W	IDTH	#2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	т	P
CONSTANT Q2		8417 6416		14797 05266	-	1.92 8.81		0.1948 0.0126
R-SQUARED ADJUSTED R-S	QUARED	0.9749 0.9624				N SQUARE EVIATION	(MSE)	0.00490 0.07002
SOURCE	DF	SS		MS		F		P
REGRESSION RESIDUAL TOTAL	1 2 3	0.380 0.009 0.390	80	0.38 0.00		77.69	0.0	126
CASES INCLUD	ED 4	MISSING	CASES	5 0				

Strata "B" third order regression output of top width #2 versus Q2.


UNWEIGHTED I	LEAST SÇ	QUARES L	INEAR	REGRES	SION OF	' AVERA	GE DE	PTH #2	in the second second
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	P	
CONSTANT A2		38498 37826		13631 07036		-2.82 5.38		0.1058 0.0329	
R-SQUARED ADJUSTED R-S	QUARED	0.9353 0.9029		RESID. STANDA	MEAN S RD DEVI	~	(MSE)	0.00 0.06	
SOURCE	DF	SS		MS		F	:	P	
REGRESSION RESIDUAL TOTAL	1 2 3	0.140 0.009 0.150	72	0.14 0.00		28.90	0.03	329	
CASES INCLUI	DED 4	MISSING	CASES	3 0					

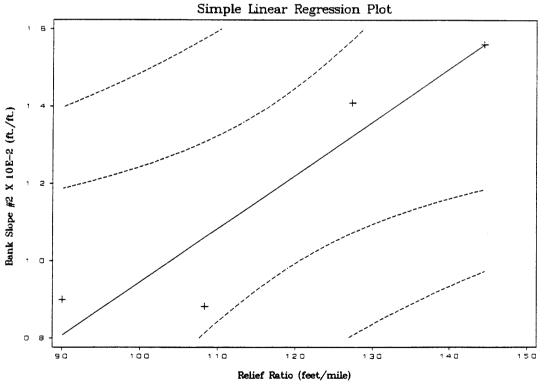
Strata "B" third order regression output for average depth #2 versus area #2.

UNWEIGHTED	LEAST SÇ	UARES	LINEAR	REGRES	SION OF	AVERAG	GE DEP	TH #2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	Р
CONSTANT Q2		2843 27540	-	.18968 .06750	······································	-2.26 4.08		0.1524 0.0552
R-SQUARED ADJUSTED R-	SQUARED	0.892 0.839		RESID. STANDA	MEAN SO RD DEVI	•	(MSE)	0.00805 0.08975
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	0.13 0.01 0.15	611	0.13 0.00		16.65	0.05	52
CASES INCLU	DED 4	MISSIN	G CASES	5 0				9 77,81

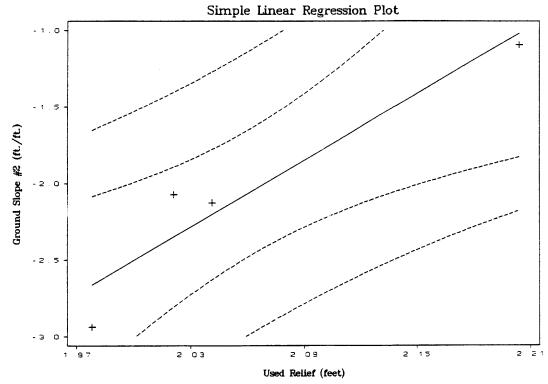

Strata "B" third order regression output for average depth #2 versus Q2.

90% confidence and prediction intervals

UNWEIGHTED L	EAST SQ	UARES L	INEAR	REGRES	SION	OF VELOC	ITY #2	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	STUDENT'S	T	P
CONSTANT Q2		2946 6271		19066 06785	-	0.68 3.87		.5672
R-SQUARED ADJUSTED R-SG	QUARED	0.8823 0.8234				N SQUARE EVIATION	(MSE)	0.00814 0.09022
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	0.122 0.016 0.138	28	0.12		14.99	0.060	7
CASES INCLUD	ED 4	MISSING	CASES	6 0				


Strata "B" third order regression output for velocity #2 versus Q2.

Simple Linear Regression Plot


r								
UNWEIGHTED 1	LEAST S	QUARES L	LINEAR	REGRES	SION OF	F BANK	SLOPE	
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR	STU	JDENT'S	т	P
CONSTANT RR		00434 0E-04		00452 0E-05		-0.96 3.64		0.4382 0.0679
R-SQUARED ADJUSTED R-S	SQUARED	0.8688 0.8033		RESID. STANDAI		~	•	2.392E-06 0.00155
SOURCE	DF	SS		MS		F	F)
REGRESSION RESIDUAL TOTAL	1 2 3	3.169E- 4.784E- 3.648E-	06	3.169E 2.392E		13.25	0.06	579
CASES INCLU	DED 4	MISSING	CASES	0				

Strata "B" third order regression output for bank slope versus relief ratio.

UNWEIGHTED	LEAST SO	UARES I	LINEAR	REGRES	SION OF	GROUNI) SLOP	PE #2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	P
CONSTANT UR		0180 25842		41616		-4.98 4.38		0.0380 0.0483
R-SQUARED ADJUSTED R-	SQUARED	0.905 0.858			MEAN SO RD DEVI	-	(MSE)	0.08059 0.28389
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 2 3	1.548 0.167 1.709	118	1.54 0.08		19.21	0.04	83
CASES INCLU	IDED 4	MISSIN	G CASES	5 0				

Strata "B" third order regression output for ground slope #2 versus used relief.

Basin ID 1900	Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)
n	3	3	3	3	3	3	3
Mean	34.63	22.42	21.07	1.47	1.57	13.78	-0.001
S.D.	20.90	6.53	6.17	0.47	0.51	2.54	0.003
C.V. (%)	60.35	29.13	29.27	32.22	32.60	18.43	592.22
Minimum	16.95	15.55	14.45	1.10	1.20	12.14	-0.004
Maximum	57.70	28.55	26.65	2.00	2.15	16.70	0.002
Range	40.75	13.00	12.20	0.90	0.95	4.56	0.006
Basin ID 3000	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)
n	2	2	2	2	2	2	2
Mean	1980.20	205.43	200.50	9.38	9.60	20.63	0.003
s.D.	902.13	59.36	60.95	1.66	1.48	3.14	0.005
C.V. (%)	45.56	28.90	30.40	17.73	15.47	15.20	141.42
Minimum	1342.30	163.45	157.40	8.20	8.55	18.42	0.000
Maximum	2618.10	247.40	243.60	10.55	10.65	22.85	0.007
Range	1275.80	83.95	86.20	2.35	2.10	4.44	0.007

High bank reach means for Strata "B" third order

. .

.

Basin ID 3600	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)
n	1	1	1	1	1	1	1
Mean	117.00	58.95	58.15	1.95	2.05	28.52	0.016
S.D.	0.00	0.00	0.00	0.00	0.00	0.00	0.000
C.V. (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Minimum	117.00	58.95	58.15	1.95	2.05	28.52	0.016
Maximum	117.00	58.95	58.15	1.95	2.05	28.52	0.016
Range	0.00	0.00	0.00	0.00	0.00	0.00	0.000

. .

Basin ID 5400	Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)
n	1	1	1	1	1	1	1
Mean	4602.10	423.55	420.45	10.90	10.90	38.60	0.004
S.D.	0.00	0.00	0.00	0.00	0.00	0.00	0.000
C.V. (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.000
Minimum	4602.10	423.55	420.45	10.90	10.90	38.60	0.004
Maximum	4602.10	423.55	420.45	10.90	10.90	38.60	0.004
Range	0.00	0.00	0.00	0.00	0.00	0.00	0.000

Basin ID 1900	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velo- city (ft/s)	Q (cfs)
n	3	3.00	3.00	3.00	3.00	3.00	3	3	3	3	3
Mean	22.67	14.68	13.50	1.38	1.48	9.22	-0.001	0.009	0.033	5.06	172.43
S.D.	19.76	6.19	5.67	0.58	0.67	0.32	0.003	0.010	0.000	4.55	252.01
C.V. (%)	87.19	42.16	42.02	41.89	44.89	3.46	592.22	109.18	0.00	89.95	146.15
Minimum	10.15	10.55	9.55	1.00	1.05	9.00	-0.004	0.001	0.033	1.52	18.87
Maximum	45.45	21.80	20.00	2.05	2.25	9.59	0.002	0.020	0.033	10.19	463.28
Range	35.30	11.25	10.45	1.05	1.20	0.59	0.006	0.019	0.000	8.67	444.41
r	T	Ī	<u>active subscript</u>				l I		T ^{rees}	r	T
Basin ID 3000	Area	Wetted	Тор	Hydraulic	Average	W/D	Bed	Bank	Manning's	Voloathy	
1 3000	(ft³)	Perimeter (ft)	Width (ft)	Radius	Depth (ft)	Ratio	Slope (ft/ft)	Slope (ft/ft)	"n"	Velocity (ft/s)	Q (cfs)
n 3000	(ft') 2				Depth		Slope	Slope		-	1
		(ft)	(ft)	Radius	Depth (ft)	Ratio	Slope (ft/ft)	Slope (ft/ft)	"n"	(ft/s)	(cfs)
n	2	(ft) 2	(ft) 2	Radius 2	Depth (ft) 2	Ratio 2	Slope (ft/ft) 2	Slope (ft/ft) 2	*n* 2	(ft/s) 2	(cfs) 2
n Mean	2 36.63	(ft) 2 32.98	(ft) 2 31.10	Radius 2 1.38	Depth (ft) 2 1.53	Ratio 2 36.58	Slope (ft/ft) 2 0.003	Slope (ft/ft) 2 0.014	"n" 2 0.030	(ft/s) 2 6.90	(cfs) 2 260.53
n Mean S.D.	2 36.63 10.64	(ft) 2 32.98 14.11	(ft) 2 31.10 16.12	Radius 2 1.38 0.74	Depth (ft) 2 1.53 0.95	Ratio 2 36.58 39.13	Slope (ft/ft) 2 0.003 0.005	Slope (ft/ft) 2 0.014 0.005	"n" 2 0.030 0.000	(ft/s) 2 6.90 1.47	(cfs) 2 260.53 127.33
n Mean S.D. C.V. (%)	2 36.63 10.64 29.06	(ft) 2 32.98 14.11 42.78	(ft) 2 31.10 16.12 51.84	Radius 2 1.38 0.74 54.00	Depth (ft) 2 1.53 0.95 62.60	Ratio 2 36.58 39.13 106.98	Slope (ft/ft) 2 0.003 0.005 141.42	Slope (ft/ft) 2 0.014 0.005 32.27	"n" 2 0.030 0.000 0.00	(ft/s) 2 6.90 1.47 21.33	(cfs) 2 260.53 127.33 48.87

Medium bank reach means for Strata "B" third order

....

۸

•

Basin ID 3600	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	3	3	3	3	3	3	3	3	3	3	3
Mean	305.23	81.53	80.08	3.03	3.08	24.28	0.010	0.009	0.033	8.90	4220.20
S.D.	339.85	60.71	59.91	1.37	1.37	8.11	0.006	0.008	0.000	6.66	6341.70
C.V. (%)	111.34	74.46	74.80	45.00	44.27	33.39	61.17	89.19	0.00	74.78	150.27
Minimum	75.70	42.20	41.55	1.80	1.85	17.23	0.005	0.003	0.033	4.95	374.71
Maximum	695.65	151.45	149.10	4.50	4.55	33.14	0.016	0.018	0.033	16.59	11540.00
Range	619.95	109.25	107.55	2.70	2.70	15.91	0.011	0.015	0.000	11.64	11165.29
r		T	T	T	r	r		T		T	T1
Basin ID 5400	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
		Perimeter	Width		Depth		Slope	Slope			
5400	(ft²)	Perimeter (ft)	Width (ft)	Radius	Depth (ft)	Ratio	Slope (ft/ft)	Slope (ft/ft)	"""	(ft/s)	(cfs)
5400 n	(ft²) 3	Perimeter (ft) 3	Width (ft) 3	Radius 3	Depth (ft) 3	Ratio 3	Slope (ft/ft) 3	Slope (ft/ft) 3	3	(ft/s) 3	(cfs) 3
5400 n Mean	(ft ²) <u>3</u> 279.35	Perimeter (ft) 3 75.83	Width (ft) 3 73.82	Radius 3 3.65	Depth (ft) 3 3.77	Ratio 3 19.99	Slope (ft/ft) 3 0.008	Slope (ft/ft) 3 0.016	"n" 3 0.034	(ft/s) 3 12.84	(cfs) 3 3685.10
5400 n Mean S.D.	(ft ²) 3 279.35 78.79	Perimeter (ft) 3 75.83 8.69	Width (ft) 3 73.82 7.90	Radius 3 3.65 0.73	Depth (ft) 3 3.77 0.75	Ratio 3 19.99 2.44	Slope (ft/ft) 3 0.008 0.005	Slope (ft/ft) 3 0.016 0.005	"n" 3 0.034 0.000	(ft/s) 3 12.84 3.15	(cfs) 3 3685.10 1791.50
5400 n Mean S.D. C.V. (%)	(ft ³) 3 279.35 78.79 28.20	Perimeter (ft) 3 75.83 8.69 11.45	Width (ft) 3 73.82 7.90 10.71	Radius 3 3.65 0.73 19.90	Depth (ft) 3.77 0.75 19.93	Ratio 3 19.99 2.44 12.19	Slope (ft/ft) 3 0.008 0.005 55.58	Slope (ft/ft) 3 0.016 0.005 33.23	"n" 3 0.034 0.000 0.00	(ft/s) 3 12.84 3.15 24.54	(cfs) 3 3685.10 1791.50 48.62

. . .

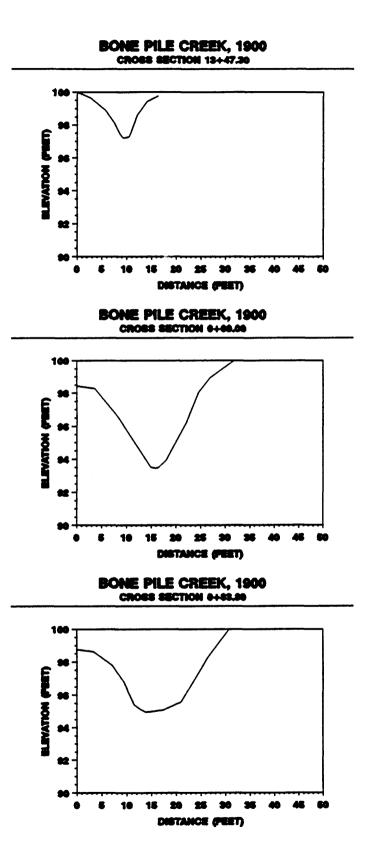
.

Basin ID 3000	Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	1	1	1	1	1	1	1	1	1	1	1
Mean	17.10	11.20	9.00	1.50	1.90	4.74	0.000	0.001	0.030	1.84	31.38
S.D.	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00
C.V. (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Minimum	17.10	11.20	9.00	1.50	1.90	4.74	0.000	0.001	0.030	1.84	31.38
Maximum	17.10	11.20	9.00	1.50	1.90	4.74	0.000	0.001	0.030	1.84	31.38
Range	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00
r		r		r	1		í				
Basin ID 3600	Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
		Perimeter	Width		Depth		Slope	Slope		-	
3600	(ft²)	Perimeter (ft)	Width (ft)	Radius	Depth (ft)	Ratio	Slope (ft/ft)	Slope (ft/ft)	"n"	- (ft/s)	(cfs)
3600 n	(ft') 3	Perimeter (ft) 3	Width (ft) 3	Radius 3	Depth (ft) 3	Ratio 3	Slope (ft/ft) 3	Slope (ft/ft) 3	"n" 3	(ft/s) 3	(сfв) 3
3600 n Mean	(ft²) 3 42.37	Perimeter (ft) 3 23.88	Width (ft) 3 23.52	Radius 3 1.02	Depth (ft) 3 1.03	Ratio 3 35.47	Slope (ft/ft) 3 0.010	Slope (ft/ft) 3 0.004	"n" 3 0.031	(ft/s) 3 3.35	(cfs) 3 195.15
3600 n Mean S.D.	(ft ³) 3 42.37 51.86	Perimeter (ft) 3 23.88 18.40	Width (ft) 3 23.52 18.11	Radius 3 1.02 0.85	Depth (ft) 3 1.03 0.88	Ratio 3 35.47 20.84	Slope (ft/ft) 3 0.010 0.006	Slope (ft/ft) 3 0.004 0.010	"n" 3 0.031 0.000	(ft/s) 3 3.35 1.67	(cfs) 3 195.15 261.91
3600 n Mean S.D. C.V. (%)	(ft ²) 3 42.37 51.86 122.42	Perimeter (ft) 3 23.88 18.40 77.05	Width (ft) 3 23.52 18.11 77.02	Radius 3 1.02 0.85 83.66	Depth (ft) 3 1.03 0.88 84.69	Ratio 3 35.47 20.84 58.76	Slope (ft/ft) 3 0.010 0.006 61.17	Slope (ft/ft) 3 0.004 0.010 287.52	"n" 3 0.031 0.000 0.00	(ft/s) 3 3.35 1.67 49.86	(cfa) 3 195.15 261.91 134.21

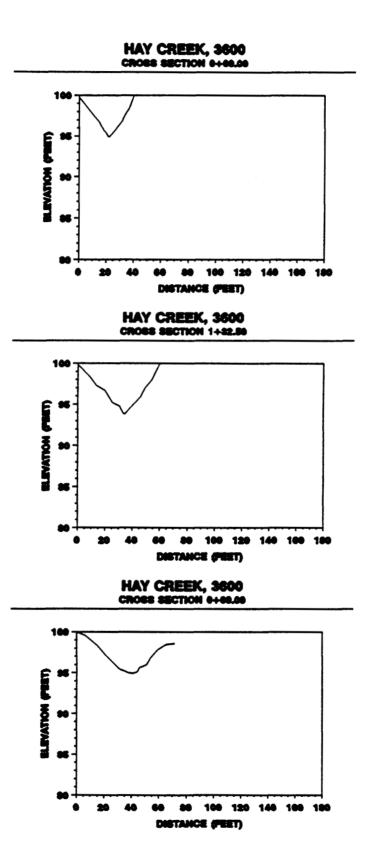
Low bank reach means for Strata "B" third order

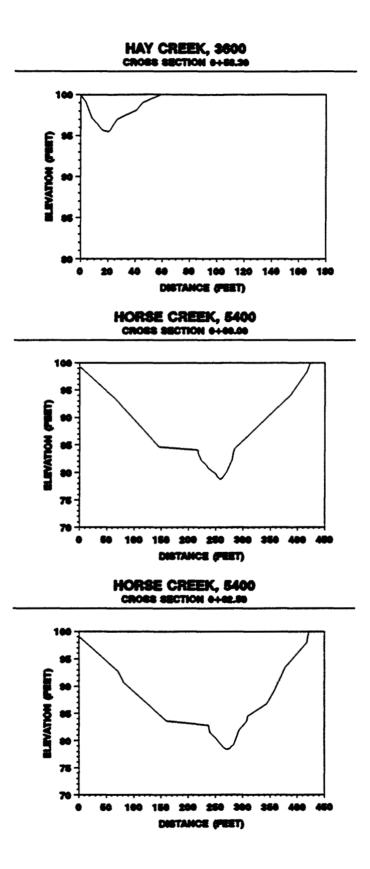
. .

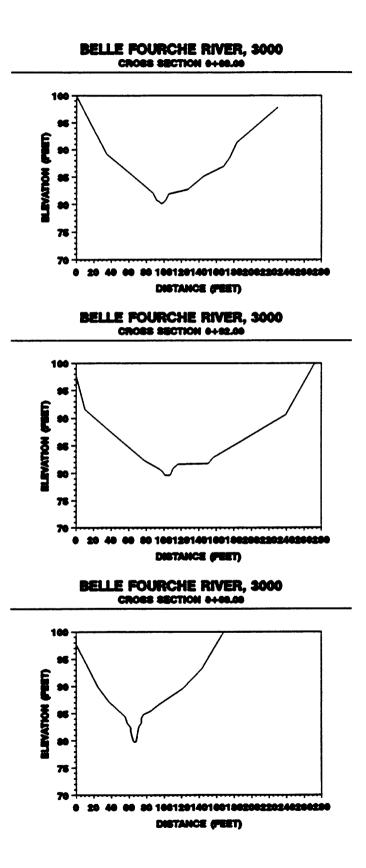

.

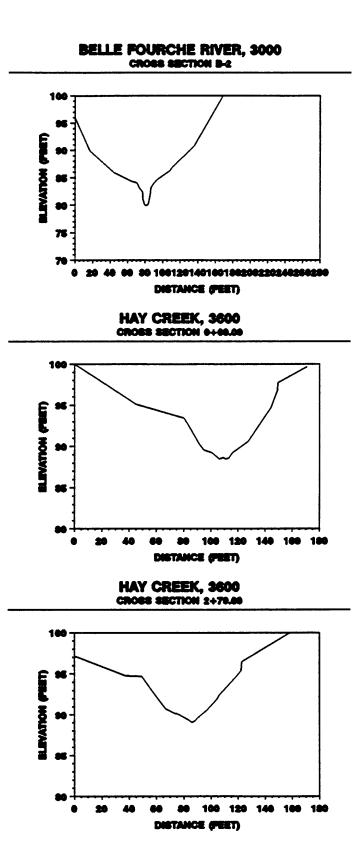

.

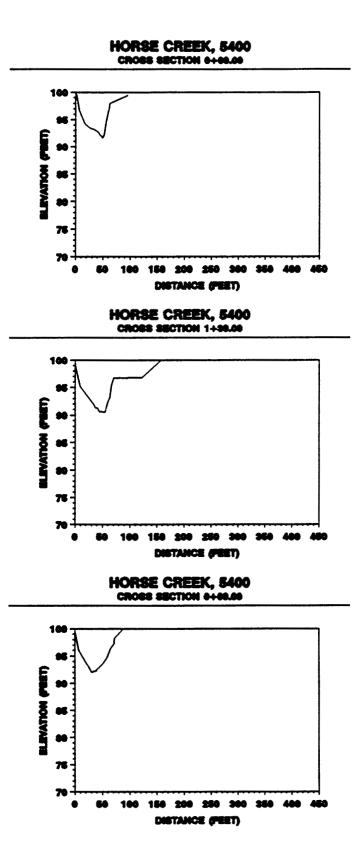
Basin ID 5400	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	3	3	3	3	3	3	3	3	3	3	3
Mean	25.08	24.92	24.63	0.87	0.87	28.09	0.008	0.010	0.031	4.17	140.13
S.D.	22.92	13.10	13.04	0.34	0.34	4.34	0.005	0.007	0.000	2.60	190.87
C.V. (%)	91.35	52.57	52.95	39.27	39.27	15.46	55.58	70.37	0.00	62.33	136.20
Minimum	7.90	14.15	13.90	0.60	0.60	23.17	0.004	0.003	0.031	2.02	27.11
Maximum	51.10	39.50	39.15	1.25	1.25	31.36	0.013	0.016	0.031	7.05	360.51
Range	43.20	25.35	25.25	0.65	0.65	8.20	0.009	0.013	0.000	5.04	333.40

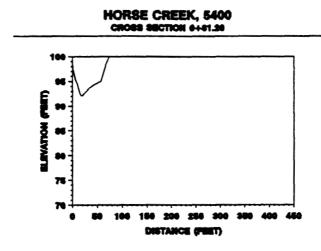

.


. .

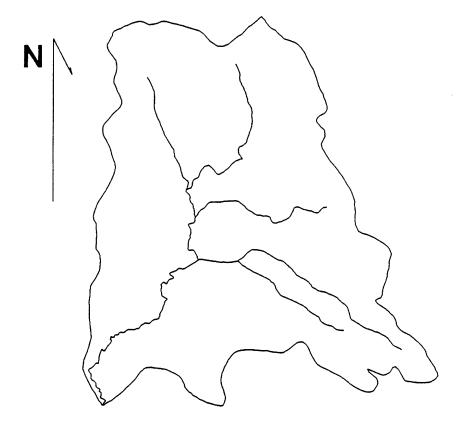





ţ



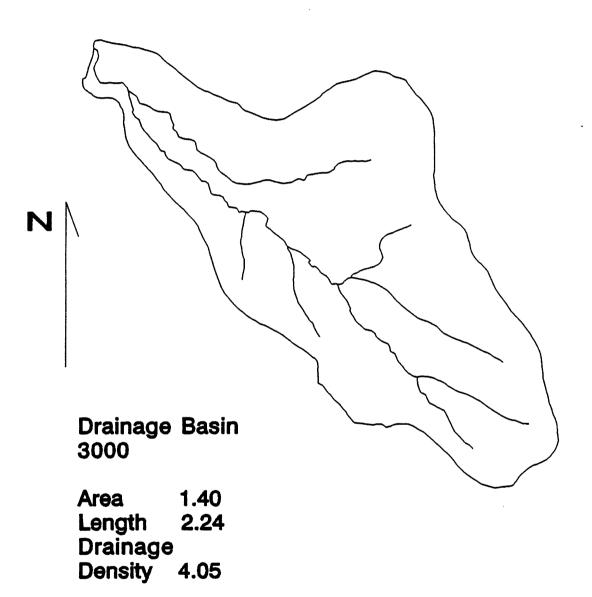
•

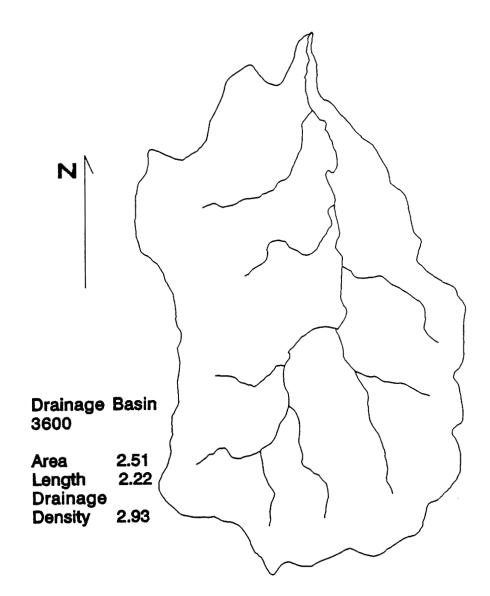

Strata "B" third order raw data by study reach, cross section, and bank identification.

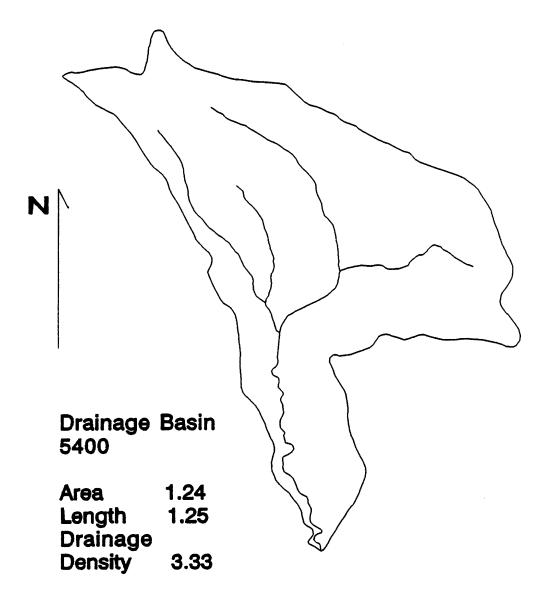
BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	FLOOD- PLAIN WIDTH (feet)
1900	0+00.00A	HIGH	30.00	20.60	1.50	
1900	1+23.00A	HIGH	28.50	23.60	1.20	
1900	13+47.30A	HIGH	15.60	14.60	1.10	69.40
1900	12+98.00A	HIGH	18.30	14.30	1.30	
1900	0+00.00B	HIGH	59.70	25.60	2.30	
1900	0+83.80B	HIGH	55.70	27.70	2.00	
3000	0+00.00A	HIGH	2212.60	223.10	9.90	44.90
3000	0+92.00A	HIGH	3023.70	264.10	11.40	15.90
3000	0+00.00B	HIGH	1404.20	160.20	8.80	
3000	0+75.50B	HIGH	1280.50	154.60	8.30	
3600	0+00.00C	HIGH	107.50	58.10	1.90	
3600	0+58.30C	HIGH	126.50	58.20	2.20	
5400	0+00.00A	HIGH	4482.30	420.90	10.60	
5400	0+62.50A	HIGH	4722.00	420.00	11.20	
1900	0+00.00A	MEDIUM	11.20	9.70	1.20	
1900	1+23.00A	MEDIUM	13.60	12.20	1.10	
1900	12+98.00A	MEDIUM	9.30	8.80	1.00	
1900	13+47.30A	MEDIUM	11.00	10.30	1.10	
1900	0+00.00B	MEDIUM	56.20	21.60	2.60	
1900	0+83.80B	MEDIUM	34.70	18.40	1.90	
3000	0+00.00A	MEDIUM	19.00	17.40	1.10	
3000	0+92.00A	MEDIUM	39.20	67.60	0.60	
3000	0+00.00B	MEDIUM	54.20	22.60	2.40	
3000	0+75.50B	MEDIUM	34.10	16.80	2.00	
3600	0+00.00A	MEDIUM	908.70	168.20	5.40	
3600	2+79.60A	MEDIUM	482.60	130.00	3.70	

.

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)
3600	0+00.00B	MEDIUM	101.70	39.70	2.60
3600	1+32.50B	MEDIUM	187.00	59.50	3.10
3600	0+00.00C	MEDIUM	73.10	41.70	1.80
3600	0+58.30C	MEDIUM	78.30	41.40	1.90
5400	0+00.00A	MEDIUM	216.90	65.60	3.30
5400	0+62.50A	MEDIUM	169.50	63.90	2.70
5400	0+00.00B	MEDIUM	345.40	94.40	3.70
5400	1+39.00B	MEDIUM	248.80	64.10	3.90
5400	0+00.00C	MEDIUM	378.50	84.40	4.50
5400	0+81.20C	MEDIUM	317.00	70.50	4.50
3000	0+00.00B	LOW	16.50	8.80	1.90
3000	0+75.5B	LOW	17.70	9.20	1.90
3600	0+00.00A	LOW	182.00	59.10	3.10
3600	2+79.60A	LOW	19.30	27.40	0.70
3600	0+00.00B	LOW	6.80	10.90	0.60
3600	1+32.50B	LOW	43.50	28.40	1.50
3600	0+00.00C	LOW	1.00	8.20	0.10
3600	0+58.30C	LOW	1.60	7.10	0.20
5400	0+00.00A	LOW	62.60	43.40	1.40
5400	0+62.50A	LOW	39.60	34.90	1.10
5400	0+00.00B	LOW	6.60	11.60	0.60
5400	1+39.00B	LOW	9.20	16.20	0.60
5400	0+00.00C	LOW	8.80	17.80	0.50
5400	0+81.20C	LOW	23.70	23.90	1.00
 1900	0+00.00A	LOW #2	0.30	2.50	0.10
1900	1+23.00A	LOW #2	0.30	2.70	0.10

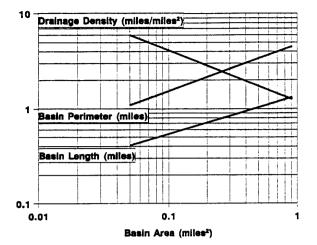

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)
1900	12+98.00A	LOW #2	0.20	1.80	0.10
1900	13+47.30A	LOW #2	0.30	2.00	0.10
1900	0+00.00B	LOW #2	0.10	1.50	0.07
1900	0+83.80B	LOW #2	0.30	4.50	0.10
3000	0+00.00B	LOW #2	11.50	8.00	1.40
3000	0+75.50B	LOW #2	12.80	8.70	1.50
3600	0+00.00A	LOW #2	14.70	24.20	0.60
3600	2+79.60A	LOW #2	0.80	5.00	0.20

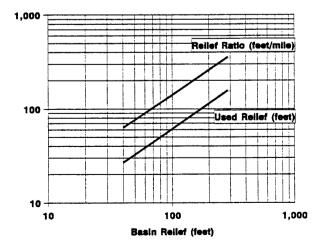


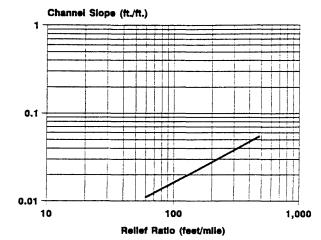

Drainage Basin 1900

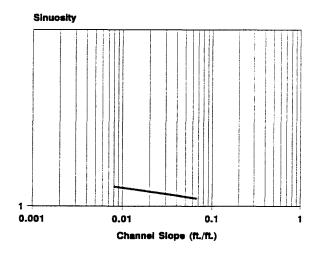
Area	1.85
Length	1.75
Drainage	
Density	2.91

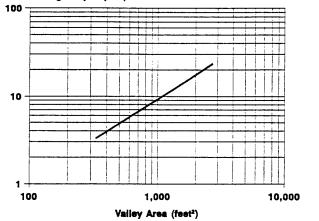
. :

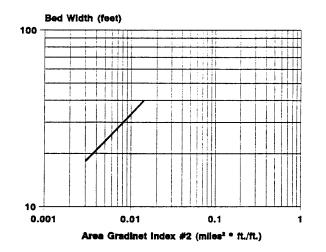

631

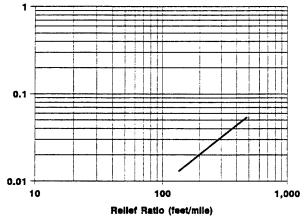

APPENDIX C-1


STRATA "C" - FIRST ORDER

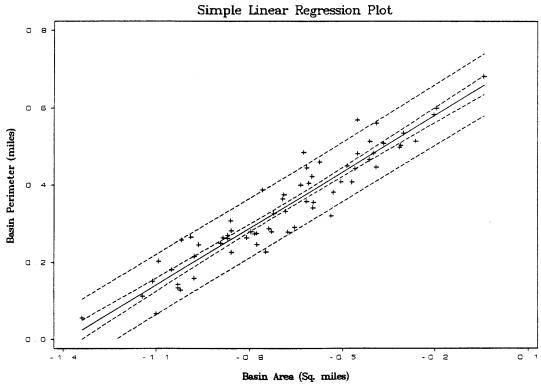

Description of Contents	Page
Geomorphic Relationships in Graph Format	634 - 636
Simple and Multiple Linear Regression Output Tables and Simple Linear Regression Plots with 90% Confidence Belts	637 - 653
Descriptive Statistics by Study Reach and by Bank	654 - 663
Cross-Section Plots by Study Site and Study Reach	664 - 677
Longitudinal Profiles by Study Reach	678 - 681
Raw Field Data	682 - 684
Photographic Representation	685 - 687



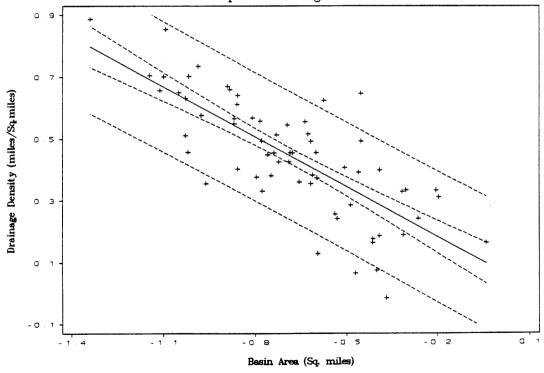




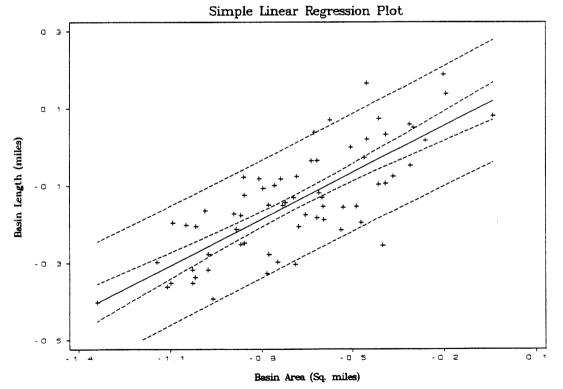
Average Depth (feet)



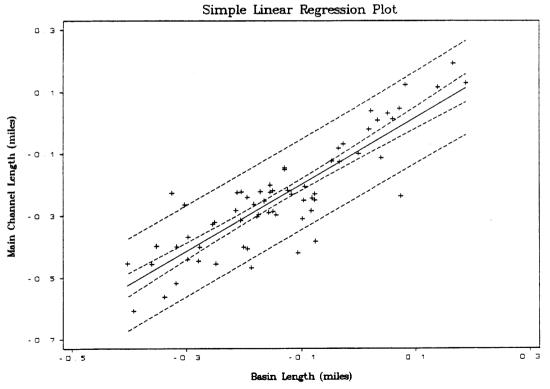
UNWEIGHTED	LEAST SQ	UARES I	LINEAR	REGRES	SION OF	BASIN	PERIME	TER
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	Dent's	т	P
CONSTANT BA		7920 8858		01542		14.05 23.39		.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.8953 0.8936			MEAN S(RD DEVI2	-	(MSE)	0.00208 0.04560
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 64 65	1.137 0.133 1.270	308	1.13 0.00		17.03	0.0000	-)
CASES INCLU	DED 66	MISSIN	NG CASE	IS O				


Strata "C" first order regression output for basin perimeter versus basin area.

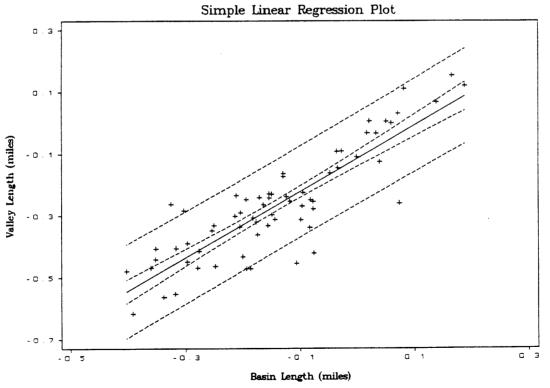
UNWEIGHTED I	LEAST SQ	UARES	LINE	AR	REGRESS	SION	OF DRAIN	AGE DEN	SITY
PREDICTOR VARIABLES	COEFFI	CIENT	S	TD	ERROR	5	STUDENT'S	Т	Р
CONSTANT BA		7611 3820			04165 05643	-	1.83 -9.54		.0723 .0000
R-SQUARED ADJUSTED R-S	QUARED	0.58 0.58					N SQUARE EVIATION	(MSE)	0.01517 0.12318
SOURCE	DF	S	5		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 64 65	0.9	3030 7110 5140		1.380		90.97	0.000	0
CASES INCLUI	DED 66	MISS	ING C	ASE	S 0				


Strata "C" first order regression output for drainage density versus basin area.

Simple Linear Regression Plot


Strata	"C"	first	order	regression	output	for	basin	length	versus	basin
a	rea.	_								

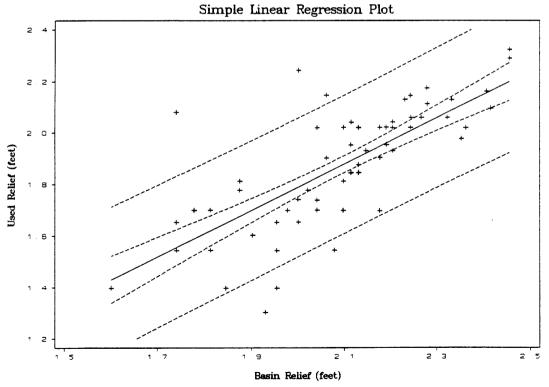
UNWEIGHTED I	EAST SQ	UARES	LINEAR	REGRES	SION	OF BASIN	LENGT	H
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	Т	P
CONSTANT BA		3596 0208		.03054 .04137		4.45 9.72		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.596 0.589				N SQUARE	(MSE)	0.00815 0.09030
SOURCE	DF	SS	5	MS		F	P	
REGRESSION RESIDUAL TOTAL	1 64 65	0.77 0.52 1.29	2189	0.77 0.00		94.47	0.00	
CASES INCLUE	DED 66	MISSI	ING CAS	ES O				


UNWEIGHTED 1	LEAST SQ	UARES	LINEAR	REGRES	SION OF	MAIN	CHANNEL	LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	T	P
CONSTANT BL		8979 7919		01514 07636		-5.93 14.13		0000
R-SQUARED ADJUSTED R-S	SQUARED	0.757 0.753			MEAN S RD DEVI	~	(MSE)	0.00754 0.08681
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 64 65	1.50 0.48 1.98	229	1.50 0.00		.99.71	0.0000	-
CASES INCLU	DED 66	MISSI	NG CASI	ES O				

Strata "C" first order regression output for main channel length versus ______basin length.

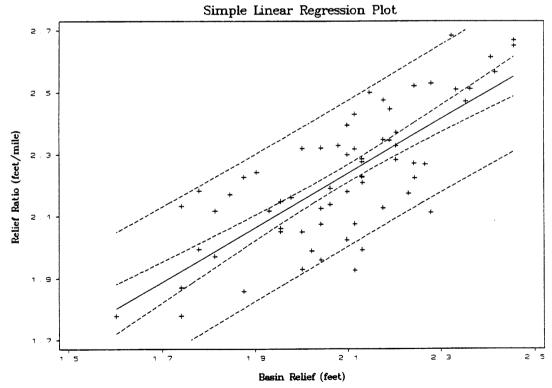
UNWEIGHTED L	EAST SQ	UARES LIN	NEAR	REGRESS	ION	OF VALLE	Y LENGT	H
PREDICTOR VARIABLES	COEFFI			ERROR		STUDENT'S		P
CONSTANT BL	-0.1 1.0	1452 6960		01531		-7.48 13.85		.0000
R-SQUARED ADJUSTED R-S	QUARED	0.7499 0.7460				N SQUARE EVIATION	(MSE)	0.00770 0.08777
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 64 65	1.47839 0.49302 1.97142	2	1.478		191.91	0.000	0
CASES INCLUD	ED 66	MISSING	CASE	ES O				

Strata "C" first order regression output for valley length versus basin length.



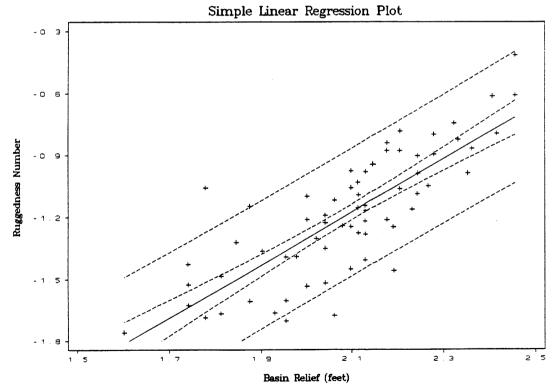
Strata "C"	first	order	regression	output	of	basin	relief	versus	basin	area
and	basin	length								

UNWEIGHTED	LEAST SQ	UARES LI	NEAR	REGRESS	SION OF	F BASIN	RELIEF	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	JDENT'S	Т	P
CONSTANT BA BL	-0.3	4289 6611 5569	0	.06851 .12761 .24505		28.36 -2.87 3.08	Ο.	0000 0056 0030
R-SQUARED ADJUSTED R-	SQUARED	0.1382 0.1108		RESID. STANDAR			(MSE)	0.03134 0.17703
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	2 63 65	0.3165 1.9742 2.2908	9	0.158		5.05	0.0093	
CASES INCLU	DED 66	MISSING	CASE	ES O				<u></u>

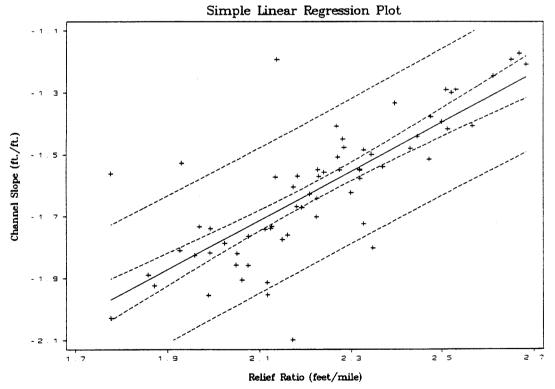

UNWEIGHTED I	LEAST SQ	UARES L	INEAR	REGRES	SION	OF USED	RELIEF	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	Т	P
CONSTANT BR		1480 0205		.22168 .10572	-	-0.07 8.53		0.9470 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.5322 0.5248				I SQUARE EVIATION	(MSE)	0.02561 0.16002
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 64 65	1.864 1.638 3.502	78	1.86 0.02		72.80	0.00	00
CASES INCLUI	DED 66	MISSIN	G CASE	ES O				

Strata "C" first order regression output for used relief versus basin _______ relief.

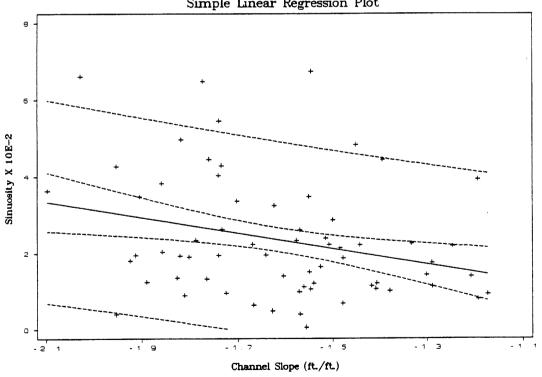
UNWEIGHTED	LEAST SO	UARES L	INEAR	REGRES	SION	OF RELIE	F RAT	IO
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	:	STUDENT'S	т	P
CONSTANT BR		9125 7992		19432 09268	-	2.01 9.49		0.0483 0.0000
R-SQUARED ADJUSTED R-	SQUARED	0.5848 0.5783				N SQUARE EVIATION	(MSE)	0.01968 0.14027
SOURCE	DF	SS		MS		F]	P
REGRESSION RESIDUAL TOTAL	1 64 65	1.773 1.259 3.032	22	1.77		90.15	0.00	
CASES INCLU	DED 66	MISSIN	G CASE	ES O				


Strata "C" first order regression output for relief ratio versus basin ______relief.

644

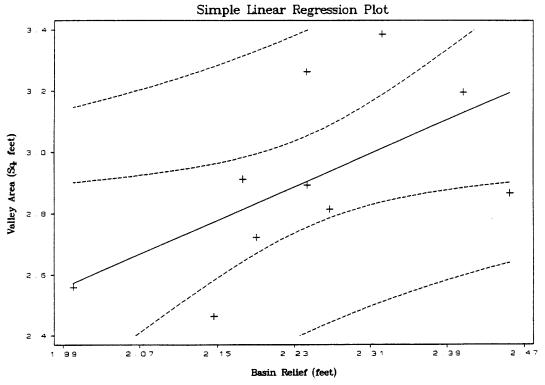

UNWEIGHTED I	LEAST SQ	UARES	LINEAL	R REGRES	SION OF	RUGGE	DNESS	NUMBER
PREDICTOR VARIABLES	COEFFI	CIENT	STI	D ERROR	STU	DENT'S	т	P
CONSTANT BR		7701 8753).25462).12144		15.23 10.60		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.637 0.631			MEAN S RD DEVI	~	(MSE)	0.03378 0.18380
SOURCE	DF	SS	5	MS		F	I	<u>></u>
REGRESSION RESIDUAL TOTAL	1 64 65	3.79 2.16 5.99		3.79		12.42	0.00	
CASES INCLU	DED 66	MISSI	ING CAS	SES 0				

Strata "C" first order regression output for ruggedness number versus ______basin relief.


UNWEIGHTED L	EAST SQ	UARES	LINE	EAR	REGRES	SION	OF CHANN	EL SI	LOPE	
PREDICTOR VARIABLES	COEFFI	CIENT	S	STD	ERROR		STUDENT'S	T		Р
CONSTANT RR	-3.3 0.7	8048 9440	-		17927 08006		-18.86 9.92			0000
R-SQUARED ADJUSTED R-S	QUARED	0.600 0.599					N SQUARE EVIATION	(MSE))	0.01944 0.13943
SOURCE	DF	SS	5		MS		F		P	
REGRESSION RESIDUAL TOTAL	1 64 65	1.91 1.24 3.15	1413	-	1.91 0.01		98.46	0.0	0000	
CASES INCLUD	ED 66	MISSI	ING C	ASE	s o					

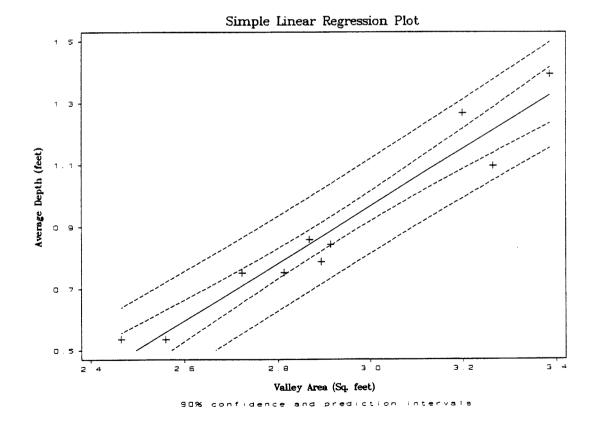
Strata "C" first order regression output for channel slope versus relief

siope.								
UNWEIGHTED	LEAST SQ	UARES	LINEAR	REGRES	SION	OF SINUO	SITY	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	STUDENT'S	Т	P
CONSTANT CHS		0934 2032		.01390 .00856	-	-0.67 -2.37		0.5043 0.0206
R-SQUARED ADJUSTED R-	- SQUARED	0.081 0.066				N SQUARE EVIATION	(MSE)	2.313E-04 0.01521
SOURCE	DF	SS		MS		F	I	· ·
REGRESSION RESIDUAL TOTAL	1 64 65	0.00 0.01 0.01		0.00 2.313E		5.64	0.02	206
CASES INCLU	JDED 66	MISSI	NG CASI	ES O			1979	in a constant de la constant de la constant constant de la constant de la constant de la constant de la constan


Strata "C" first order regression output for sinuosity versus channel slope.

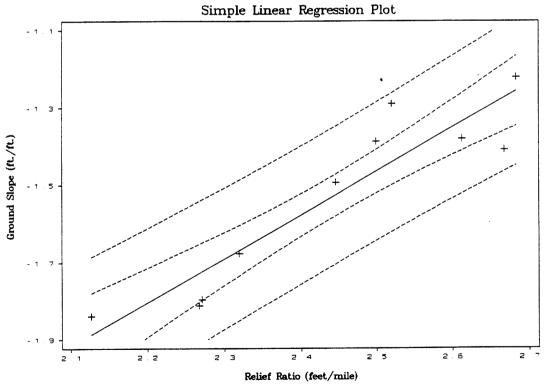
Simple Linear Regression Plot

UNWEIGHTED :	LEAST SQ	UARES I	INEAR	REGRES	SION O	F VALLE	Y AREA	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	ST	udent's	т	P
CONSTANT BR		6923 7051		45106		-0.12 2.12		9100 0665
R-SQUARED ADJUSTED R-S	SQUARED	0.3605 0.2805		RESID. STANDA			(MSE)	0.06420 0.25337
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 8 9	0.289 0.513 0.803	58	0.28		4.51	0.0665	
CASES INCLU	DED 10	MISSIN	G CASE	ES O				

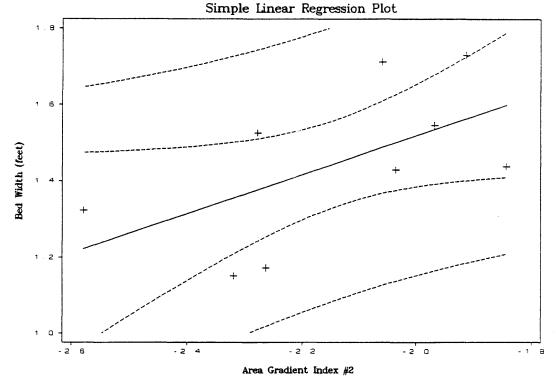

Strata "C" first order regression output for valley area versus basin relief.

648

UNWEIGHTED	LEAST SQ	UARES L	INEAR	REGRESS	SION	OF AVERA	GE DE	PTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT A		1967 2922		.25494 .08727	-	-7.14 10.65		0.0001 0.0000
R-SQUARED ADJUSTED R-	SQUARED	0.9341 0.9258				N SQUARE EVIATION	(MSE)	0.00612 0.07821
SOURCE	DF	SS		MS		F		P
REGRESSION RESIDUAL TOTAL	1 8 9	0.693 0.048 0.742	93	0.693		113.37	0.0	
CASES INCLU	DED 10	MISSIN	G CASI	ES O				


Strata "C" first order regression output for average depth versus valley area.

;


UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRES	SION O	F GROUN	D SLOP	E
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	ST	UDENT'S	т	P
CONSTANT RR	-4.2 1.1	9766 3347		.39423 .16108		-10.90 7.04		0.0000 0.0001
R-SQUARED ADJUSTED R-S	QUARED	0.8609 0.8435		RESID. STANDA			(MSE)	0.00836 0.09142
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 8 9	0.4138 0.0668 0.4806	35	0.41 0.00		49.52	0.00	01
CASES INCLU	DED 10	MISSING	G CASI	ES O				

Strata "C" first order regression output for ground slope versus relief ratio.

UNWEIGHTED I	EAST SO	UARES LI	NEAR	REGRES	SION	OF BED W	IDTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	5 T	P
CONSTANT AGI2		54381 51246		58080 26997	-	4.38 1.90		0.0032 0.0995
R-SQUARED ADJUSTED R-S	QUARED	0.3398 0.2455				N SQUARE EVIATION	(MSE)	0.03249 0.18025
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 7 8	0.1170 0.22742 0.34449	2	0.11 0.03		3.60	0.09	95
CASES INCLUE	ED 9	MISSING (CASES	3 1	and an and the state of the later.			

Strata "C" first order regression output for bed width versus area gradient index #2.

UNWEIGHTED	LEAST SQ	UARES LI	NEAR	REGRESSIC	ON OF TOP W	IDTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STUDENT'S	5 T	P
CONSTANT		4727	-	.54408	5.97		0006
BR	-0.4	7815	0	.22322	-2.14	0.	0694
SIN	-6.7	4661	2	.64399	-2.55	0.	0380
R-SQUARED ADJUSTED R-	SQUARED	0.4905 0.3449			EAN SQUARE DEVIATION	(MSE)	0.00384 0.06195
SOURCE	DF	SS		MS	F	P	
REGRESSION	2	0.0258	6	0.01293	3.37	0.0944	
RESIDUAL	7	0.0268	6	0.00384	Ł		
TOTAL	9	0.0527					
CASES INCLU	DED 10	MISSING	CAS	ES O			

Strata "C" first order regression output for top width versus relief ratio and sinuosity.

UNWEIGHTED LE	EAST SQ	UARES LI	NEAR	REGRE	SSION	OF TW			
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	1	STUDENT'S	т	P	
CONSTANT RR SIN	2.6 -0.2 -3.8		0	.29758 .11556 .97863		9.03 -2.04 -1.94		0.0000 0.0802 0.0929	
R-SQUARED ADJUSTED R-S(QUARED	0.4718 0.3209				N SQUARE EVIATION	(MSE)	0.00398 0.06307	
SOURCE	DF	SS		М	s	F	I	<u> </u>	
REGRESSION RESIDUAL TOTAL	2 7 9	0.0248 0.0278 0.0527	5		1244 0398	3.13	0.10)71 .	
CASES INCLUD	ED 10	MISSING	CAS	ES O					

BASIN ID 05B4	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00	4.00	3.00
MEAN	2735.90	145.42	100.83	17.68	25.85	4.12	19.35	0.064
S.D.	1721.10	46.93	26.81	4.72	9.36	1.37	14.77	0.026
C.V. (%)	62.91	32.27	26.59	26.72	36.23	33.13	76.32	41.18
MINIMUM	1709.00	114.50	71.70	14.90	17.30	3.01	4.25	0.037
MAXIMUM	5305.50	215.20	135.30	24.70	39.20	6.09	34.72	0.090
RANGE	3596.50	100.70	63.60	9.80	21.90	3.08	30.47	0.053
BASIN ID 07D3	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
07D3	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
07D3	(ft. ²) 3.00	PERIMETER (ft.) 3.00	WIDTH (ft.) 3.00	RADIUS 3.00	DEPTH (ft.) 3.00	RATIO 3.00	WIDTH (ft.) 3.00	SLOPE (ft/ft) 5.00
07D3 n MEAN	(ft. ²) 3.00 1896.60	PERIMETER (ft.) 3.00 156.07	WIDTH (ft.) 3.00 148.50	RADIUS 3.00 11.97	DEPTH (ft.) 3.00 12.60	RATIO 3.00 11.76	WIDTH (ft.) 3.00 35.62	SLOPE (ft/ft) 5.00 0.053
07D3 n MEAN S.D.	(ft. ²) 3.00 1896.60 608.00	PERIMETER (ft.) 3.00 156.07 26.50	WIDTH (ft.) 3.00 148.50 26.46	RADIUS 3.00 11.97 1.68	DEPTH (ft.) 3.00 12.60 1.74	RATIO 3.00 11.76 0.78	WIDTH (ft.) 3.00 35.62 13.41	SLOPE (ft/ft) 5.00 0.053 0.011
07D3 n MEAN S.D. C.V. (%)	(ft. ²) 3.00 1896.60 608.00 32.06	PERIMETER (ft.) 3.00 156.07 26.50 16.98	WIDTH (ft.) 3.00 148.50 26.46 17.82	RADIUS 3.00 11.97 1.68 14.02	DEPTH (ft.) 3.00 12.60 1.74 13.84	RATIO 3.00 11.76 0.78 6.63	WIDTH (ft.) 3.00 35.62 13.41 37.65	SLOPE (ft/ft) 5.00 0.053 0.011 21.58

High bank reach means for Strata "C" first orders.

BASIN ID 07D4	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
MEAN	828.87	132.17	127.97	6.13	6.33	21.27	38.53	0.017
S.D.	353.15	17.28	15.12	1.86	2.00	5.46	20.66	0.008
C.V. (%)	42.61	13.07	11.82	30.26	31.59	25.66	53.63	47.07
MINIMUM	509.60	121.50	118.40	4.20	4.30	17.52	21.97	0.010
MAXIMUM	1208.20	152.10	145.40	7.90	8.30	27.54	61.68	0.026
RANGE	698.60	30.60	27.00	3.70	4.00	10.02	39.71	0.016
		T		1	T		I	1
BASIN ID 07E3	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE Slope (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
07E3	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
07E3	(ft. ²) 2.00	PERIMETER (ft.) 2.00	WIDTH (ft.) 2.00	RADIUS 2.00	DEPTH (ft.) 2.00	RATIO 2.00	WIDTH (ft.) 2.00	SLOPE (ft/ft) 2.00
07E3 n MEAN	(ft. ²) 2.00 1589.00	PERIMETER (ft.) 2.00 110.70	WIDTH (ft.) 2.00 86.30	RADIUS 2.00 14.30	DEPTH (ft.) 2.00 18.60	RATIO 2.00 4.69	WIDTH (ft.) 2.00 15.16	SLOPE (ft/ft) 2.00 0.046
07E3 n MEAN S.D.	(ft. ²) 2.00 1589.00 288.92	PERIMETER (ft.) 2.00 110.70 14.85	WIDTH (ft.) 2.00 86.30 21.50	RADIUS 2.00 14.30 0.71	DEPTH (ft.) 2.00 18.60 1.27	RATIO 2.00 4.69 1.48	WIDTH (ft.) 2.00 15.16 3.94	SLOPE (ft/ft) 2.00 0.046 0.027
07E3 n MEAN S.D. C.V. (%)	(ft. ²) 2.00 1589.00 288.92 18.18	PERIMETER (ft.) 2.00 110.70 14.85 13.41	WIDTH (ft.) 2.00 86.30 21.50 24.91	RADIUS 2.00 14.30 0.71 4.94	DEPTH (ft.) 2.00 18.60 1.27 6.84	RATIO 2.00 4.69 1.48 31.48	WIDTH (ft.) 2.00 15.16 3.94 25.99	SLOPE (ft/ft) 2.00 0.046 0.027 58.02

BASIN ID 12B1	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00	4.00	7.00
MEAN	689.43	117.83	115.50	5.80	5.93	21.31	54.40	0.016
S.D.	296.69	8.90	8.40	2.24	2.35	6.47	11.57	0.007
C.V. (%)	43.04	7.55	7.27	38.63	39.69	30.38	21.27	40.67
MINIMUM	488.50	105.00	103.20	4.10	4.20	12.70	44.90	0.009
MAXIMUM	1126.20	123.90	121.90	9.10	9.40	27.98	70.90	0.028
RANGE	637.70	18.90	18.70	5.00	5.20	15.27	26.00	0.019

BASIN ID 12B2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	5.00	5.00	5.00	5.00	5.00	5.00	5.00	7.00
MEAN	788.18	107.98	103.68	7.16	7.52	14.90	53.42	0.042
S.D.	305.88	19.74	19.89	2.16	2.39	5.47	15.64	0.016
C.V. (%)	38.81	18.28	19.18	30.11	31.75	36.70	29.27	39.01
MINIMUM	435.50	76.90	73.10	4.40	4.50	9.37	33.90	0.021
MAXIMUM	1054.90	128.50	125.20	9.70	10.50	23.49	77.20	0.063
RANGE	619.40	51.60	52.10	5.30	6.00	14.12	43.30	0.042

BASIN ID 16C2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	4.00	4.00	4.00	4.00	4.00	4.00	4.00	6.00
MEAN	552.13	100.10	96.75	5.45	5.70	17.26	27.93	0.034
S.D.	169.54	24.86	26.63	1.06	1.04	5.38	6.81	0.015
C.V. (%)	30.71	24.84	27.53	19.45	18.23	31.18	24.40	43.06
MINIMUM	300.00	71.20	65.80	4.20	4.60	12.43	23.00	0.020
MAXIMUM	665.50	129.70	128.20	6.70	7.00	24.65	38.00	0.061
RANGE	365.50	58.50	62.40	2.50	2.40	12.23	15.00	0.041
r	r	r				r		1
BASIN ID 22B1	AREA (ft.²)	WETTED Perimeter (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
2281	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
22B1	(ft. ²) 6.00	PERIMETER (ft.) 6.00	WIDTH (ft.) 6.00	RADIUS 6.00	DEPTH (ft.) 6.00	RATIO 6.00	WIDTH (ft.)	SLOPE (ft/ft) 13.00
22B1 n MEAN	(ft. ²) 6.00 328.32	PERIMETER (ft.) 6.00 90.53	WIDTH (ft.) 6.00 88.67	RADIUS 6.00 3.47	DEPTH (ft.) 6.00 3.55	RATIO 6.00 25.22	WIDTH (ft.)	SLOPE (ft/ft) 13.00 0.043
22B1 n MEAN S.D.	(ft. ²) 6.00 328.32 172.35	PERIMETER (ft.) 6.00 90.53 31.42	WIDTH (ft.) 6.00 88.67 31.43	RADIUS 6.00 3.47 0.82	DEPTH (ft.) 6.00 3.55 0.88	RATIO 6.00 25.22 6.15	WIDTH (ft.)	SLOPE (ft/ft) 13.00 0.043 0.013
22B1 n MEAN S.D. C.V. (%)	(ft. ²) 6.00 328.32 172.35 52.50	PERIMETER (ft.) 6.00 90.53 31.42 34.70	WIDTH (ft.) 6.00 88.67 31.43 35.45	RADIUS 6.00 3.47 0.82 23.62	DEPTH (ft.) 6.00 3.55 0.88 24.67	RATIO 6.00 25.22 6.15 24.39	WIDTH (ft.)	SLOPE (ft/ft) 13.00 0.043 0.013 29.72

_

BASIN ID 22B2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	5.00	5.00	5.00	5.00	5.00	5.00	3.00	8.00
MEAN	364.26	108.80	107.62	3.42	3.46	32.27	24.37	0.027
S.D.	40.76	20.10	20.24	0.51	0.53	10.05	15.10	0.012
C.V. (%)	11.19	18.47	18.81	14.82	15.38	31.14	61.96	42.42
MINIMUM	318.00	81.40	79.80	2.90	2.90	19.46	10.00	0.002
MAXIMUM	406.20	136.80	135.60	4.00	4.10	45.20	40.10	0.038
RANGE	88.20	55.40	55.80	1.10	1.20	25.74	30.10	0.037
(<u></u>		r	r	r			Г	<u> </u>
BASIN ID 22C2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE Slope (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
22C2	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
22C2	(ft. ²) 6.00	PERIMETER (ft.) 6.00	WIDTH (ft.) 6.00	RADIUS 6.00	DEPTH (ft.) 6.00	RATIO 6.00	WIDTH (ft.) 5.00	SLOPE (ft/ft) 8.000
22C2 n MEAN	(ft. ²) 6.00 1039.10	PERIMETER (ft.) 6.00 125.67	WIDTH (ft.) 6.00 122.27	RADIUS 6.00 7.50	DEPTH (ft.) 6.00 7.68	RATIO 6.00 17.06	WIDTH (ft.) 5.00 28.20	SLOPE (ft/ft) 8.000 0.015
22C2 n MEAN S.D.	(ft. ²) 6.00 1039.10 640.16	PERIMETER (ft.) 6.00 125.67 38.64	WIDTH (ft.) 6.00 122.27 37.10	RADIUS 6.00 7.50 3.19	DEPTH (ft.) 6.00 7.68 3.31	RATIO 6.00 17.06 3.60	WIDTH (ft.) 5.00 28.20 9.07	SLOPE (ft/ft) 8.000 0.015 0.005
22C2 n MEAN S.D. C.V. (%)	(ft. ²) 6.00 1039.10 640.16 61.61	PERIMETER (ft.) 6.00 125.67 38.64 30.74	WIDTH (ft.) 6.00 122.27 37.10 30.34	RADIUS 6.00 7.50 3.19 42.50	DEPTH (ft.) 6.00 7.68 3.31 43.08	RATIO 6.00 17.06 3.60 21.09	WIDTH (ft.) 5.00 28.20 9.07 32.15	SLOPE (ft/ft) 8.000 0.015 0.005 32.207

.....

BASIN ID 07D4	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	246.50	57.05	54.15	4.30	4.55	11.91
S.D.	6.79	3.18	3.04	0.14	0.07	0.85
C.V. (%)	2.75	5.58	5.62	3.29	1.55	7.17
MINIMUM	241.70	54.80	52.00	4.20	4.50	11.30
MAXIMUM	251.30	59.30	56.30	4.40	4.60	12.51
RANGE	9.60	4.50	4.30	0.20	0.10	1.21
BASIN ID 16C2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
		PERIMETER	WIDTH		DEPTH	
16C2	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO
16C2	(ft. ²) 3.00	PERIMETER (ft.) 3.00	WIDTH (ft.) 3.00	RADIUS 3.00	DEPTH (ft.) 3.00	RATIO 3.00
16C2 n MEAN	(ft. ²) 3.00 120.87	PERIMETER (ft.) 3.00 43.40	WIDTH (ft.) 3.00 42.50	RADIUS 3.00 2.07	DEPTH (ft.) 3.00 2.13	RATIO 3.00 39.03
16C2 n MEAN S.D.	(ft. ²) 3.00 120.87 109.09	PERIMETER (ft.) 3.00 43.40 32.38	WIDTH (ft.) 3.00 42.50 31.85	RADIUS 3.00 2.07 1.95	DEPTH (ft.) 3.00 2.13 2.05	RATIO 3.00 39.03 30.37
16C2 n MEAN S.D. C.V. (%)	(ft. ²) 3.00 120.87 109.09 90.25	PERIMETER (ft.) 3.00 43.40 32.38 74.61	WIDTH (ft.) 3.00 42.50 31.85 74.95	RADIUS 3.00 2.07 1.95 94.37	DEPTH (ft.) 3.00 2.13 2.05 96.10	RATIO 3.00 39.03 30.37 77.81

Medium bank reach means for Strata "C" first orders.

BASIN ID 22B1	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	6.00	6.00	6.00	6.00	6.00	6.00
MEAN	19.03	19.93	19.63	0.87	0.88	22.67
S.D.	13.22	8.26	8.26	0.37	0.35	7.77
C.V. (%)	69.48	41.42	42.08	42.34	39.49	34.27
MINIMUM	5.50	10.20	9.90	0.50	0.50	16.50
MAXIMUM	36.00	28.60	28.30	1.30	1.30	38.00
RANGE	30.50	18.40	18.40	0.80	0.80	21.50

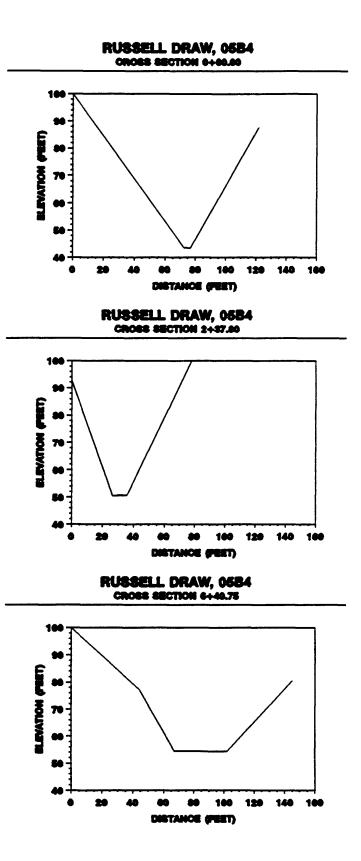
BASIN ID 22B2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	5.00	5.00	5.00	5.00	5.00	5.00
MEAN	14.26	20.62	20.32	0.68	0.70	39.86
S.D.	10.20	14.68	14.68	0.48	0.49	40.15
C.V. (%)	71.51	71.21	72.25	70.07	69.99	100.73
MINIMUM	1.10	6.20	6.10	0.20	0.20	12.36
MAXIMUM	24.40	44.50	44.30	1.40	1.40	110.75
RANGE	23.30	38.30	38.20	1.20	1.20	98.39

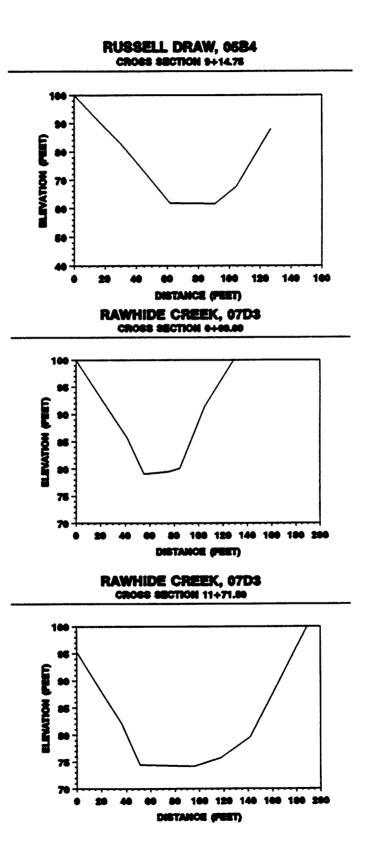
BASIN ID 22C2	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	3.00	3.00	3.00	3.00	3.00	3.00
MEAN	6.17	13.80	13.70	0.43	0.43	30.87
S.D.	3.12	5.96	5.96	0.06	0.06	9.44
C.V. (%)	50.57	43.21	43.53	13.32	13.32	30.58
MINIMUM	3.80	8.80	8.70	0.40	0.40	21.75
MAXIMUM	9.70	20.40	20.30	0.50	0.50	40.60
RANGE	5.90	11.60	11.60	0.10	0.10	18.85

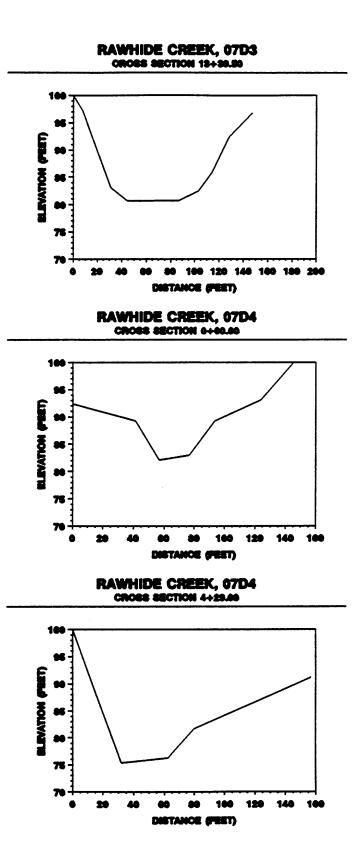
.....

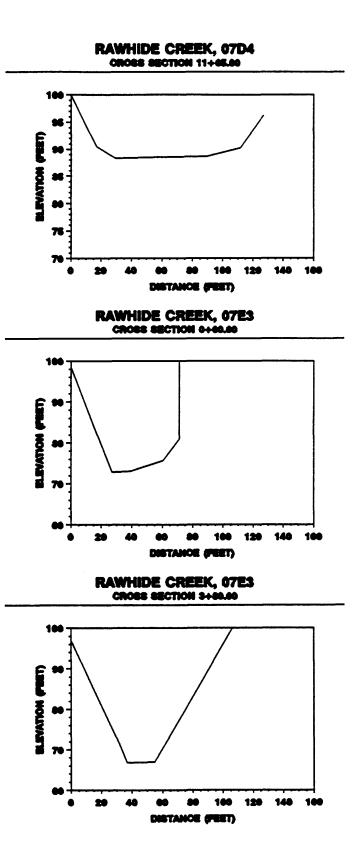
BASIN ID 12B1	AREA (ft. ²)	WETTED TOP HYDRAULIC PERIMETER WIDTH RADIUS (ft.) (ft.)			AVERAGE DEPTH (ft.)	W/D RATIO
n	4.00	4.00	4.00	2.00	2.00	2.00
MEAN	1.13	10.65	10.65	0.15	0.15	75.00
S.D.	1.13	5.33	5.33	0.07	0.07	14.14
C.V. (%)	100.66	50.03	50.03	47.14	47.14	18.86
MINIMUM	0.30	6.00	6.00	0.10	0.10	65.00
MAXIMUM	2.80	17.00	17.00	0.20	0.20	85.00
RANGE	2.50	11.00	11.00	0.10	0.10	20.00
BASIN ID	AREA	WETTED	TOP	HYDRAULIC	AVERAGE	W/D
22B1	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO
22B1	(ft.') 6.00			RADIUS 3.00		RATIO
		(ft.)	(ft.)		(ft.)	RATIO 39.00
n	6.00	(ft.) 6.00	(ft.) 3.00	3.00	(ft.) 3.00	
n MEAN	6.00 0.23	(ft.) 6.00 3.90	(ft.) 3.00 3.90	3.00	(ft.) 3.00 0.10	39.00
n MEAN S.D.	6.00 0.23 0.15	(ft.) 6.00 3.90 1.46	(ft.) 3.00 3.90 1.46	3.00 0.10 0.00	(ft.) 3.00 0.10 0.00	39.00 11.53
n MEAN S.D. C.V. (%)	6.00 0.23 0.15 64.52	(ft.) 6.00 3.90 1.46 37.33	(ft.) 3.00 3.90 1.46 37.33	3.00 0.10 0.00 0.00	(ft.) 3.00 0.10 0.00 0.00	39.00 11.53 29.57

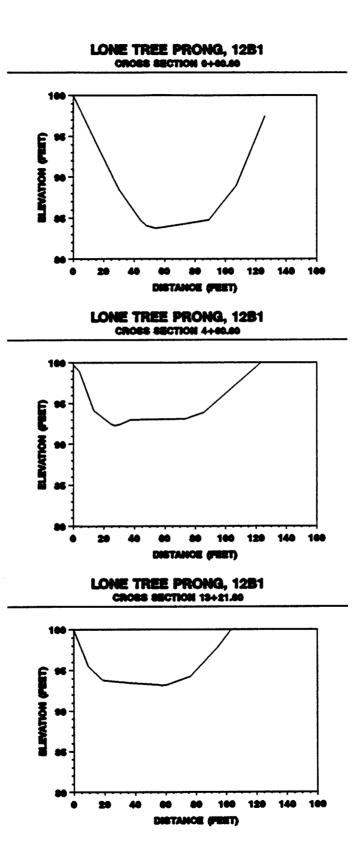
Low bank reach means for Strata "C" first orders.

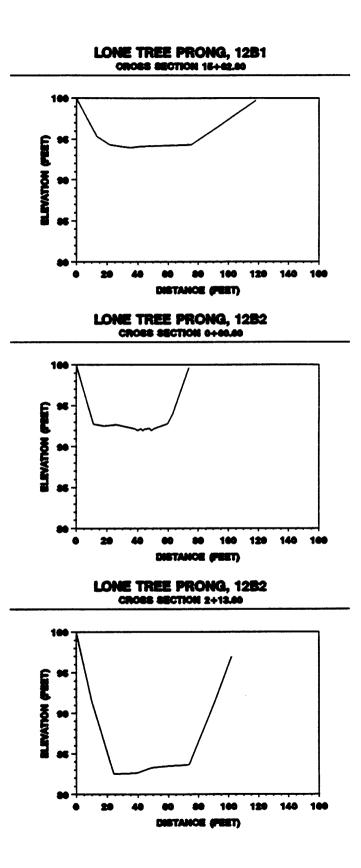

. .

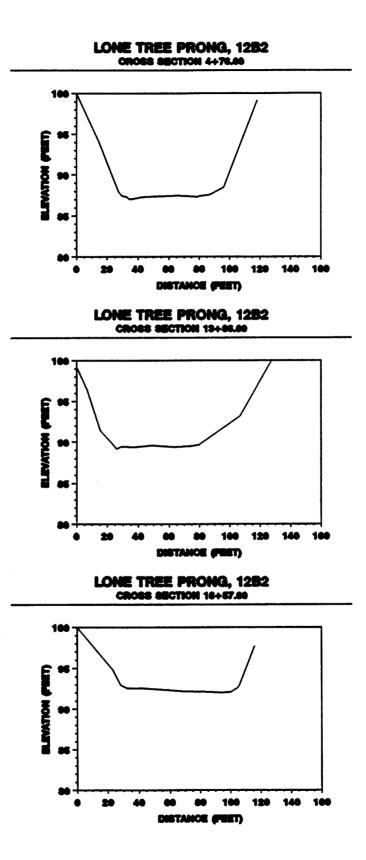

.

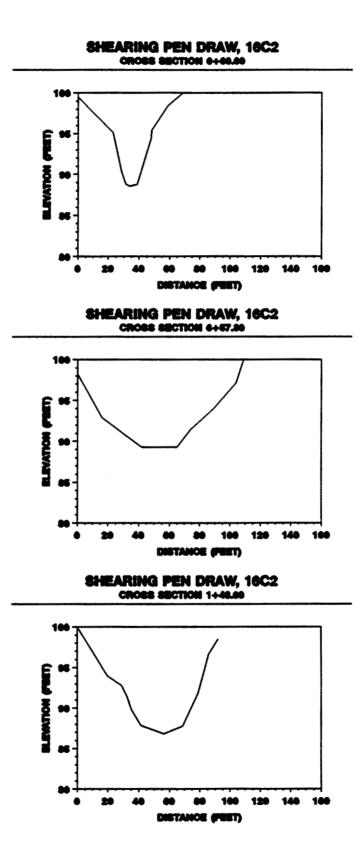

BASIN ID 22B2	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	0.40	4.10	4.05	0.10	0.10	40.50
S.D.	0.14	0.99	0.92	0.00	0.00	9.19
C.V. (%)	35.36	24.15	22.70	0.00	0.00	22.70
MINIMUM	0.30	3.40	3.40	0.10	0.10	34.00
MAXIMUM	0.50	4.80	4.70	0.10	0.10	47.00
RANGE	0.20	1.40	1.30	0.00	0.00	13.00

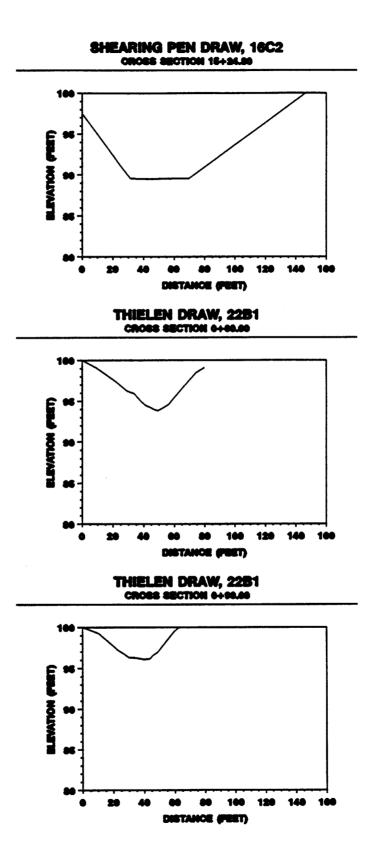

. .

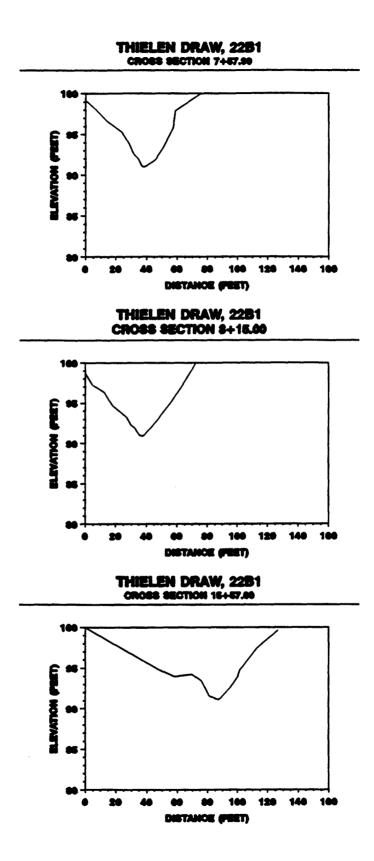

BASIN ID 22C2	AREA (ft. ²)			AVERAGE DEPTH (ft.)	W/D RATIO	
n	3.00	3.00	3.00	2.00	2.00	2.00
MEAN	1.03	7.93	7.93	0.10	0.10	103.50
S.D.	1.12	6.79	6.79	0.00	0.00	75.66
C.V. (%)	107.91	85.63	85.63	0.00	0.00	73.10
MINIMUM	0.20	3.10	3.10	0.10	0.10	50.00
MAXIMUM	2.30	15.70	15.70	0.10	0.10	157.00
RANGE	2.10	12.60	12.60	0.00	0.00	107.00

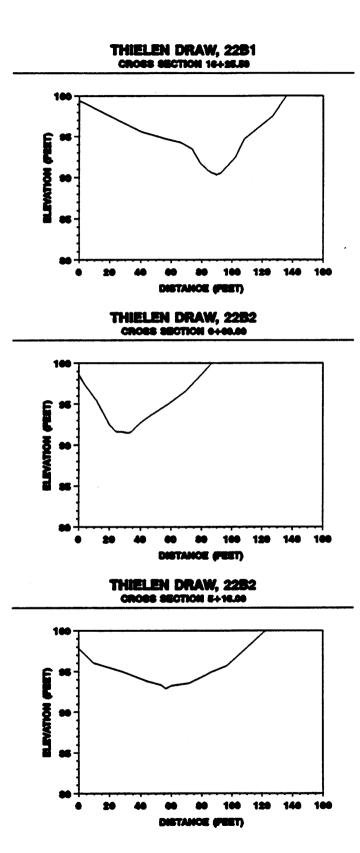


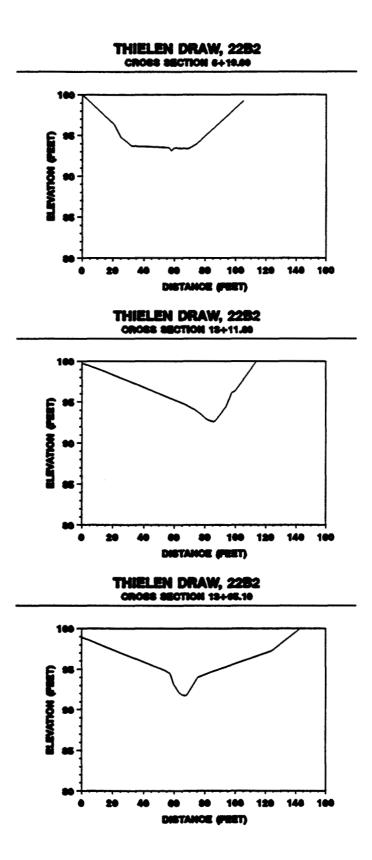


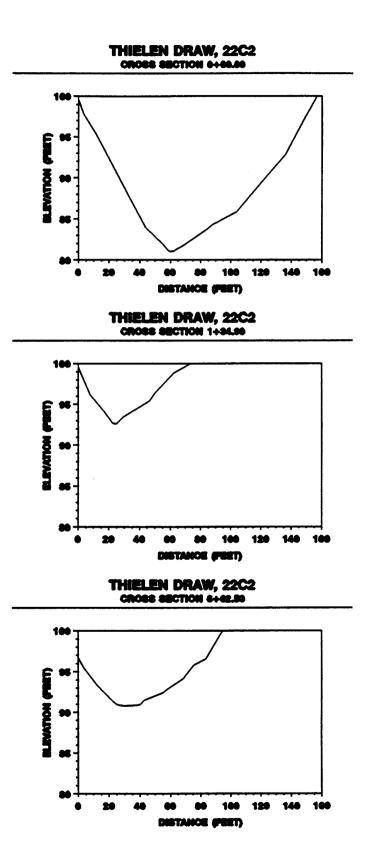




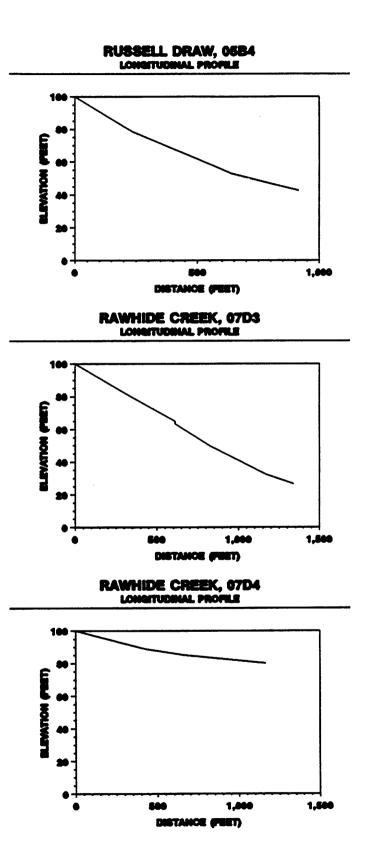




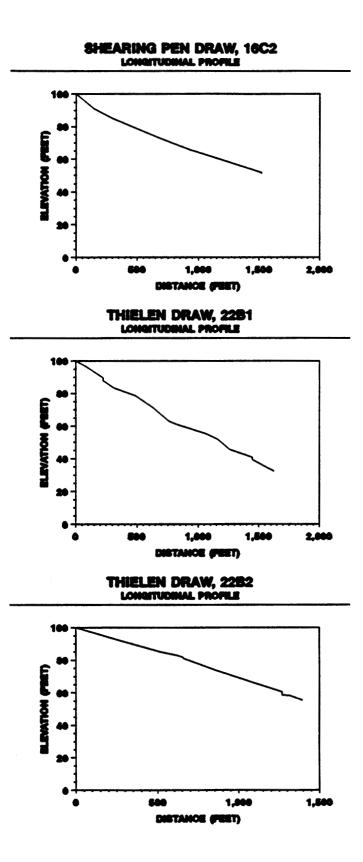


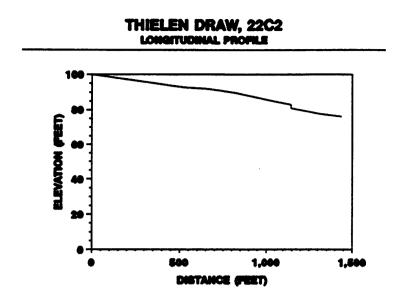

;











 $\geq \frac{1}{2}$

Strata "C" first order raw data by study reach, cross section, and bank identification.

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	BED WIDTH (feet)
05B4	0+00.00	HIGH	2104.80	90.90	23.10	4.25
05B4	2+37.00	HIGH	1709.00	71.70	23.80	9.47
05B4	6+40.75	HIGH	5305.50	135.30	39.20	34.72
05B4	9+14.75	HIGH	1824.20	105.40	17.30	28.97
07D3	0+00.00	HIGH	1512.70	128.10	11.80	20.21
07D3	11+71.50	HIGH	2597.60	178.40	14.60	44.67
07D3	13+39.50	HIGH	1579.50	139.00	11.40	41.97
07D4	0+00.00	HIGH	509.60	118.40	4.30	21.97
07D4	4+29.00	HIGH	1208.20	145.40	8.30	31.93
07D4	11+65.00	HIGH	768.80	120.10	6.40	61.68
07E3	0+00.00	HIGH	1384.70	71.10	19.50	12.37
07E3	3+80.00	HIGH	1793.30	101.50	17.70	17.94
12B1	0+00.00	HIGH	1126.20	119.40	9.40	44.90
12B1	4+60.00	HIGH	622.10	121.90	5.10	70.90
12B1	13+21.00	HIGH	520.90	103.20	5.00	48.20
12B1	15+62.00	HIGH	488.50	117.50	4.20	53.60
12B2	0+00.00	HIGH	435.50	73.10	6.00	48.60
12B2	2+13.00	HIGH	1033.30	98.40	10.50	51.70
12B2	4+76.00	HIGH	1054.90	116.00	9.10	33.90
12B2	13+86.00	HIGH	938.80	125.20	7.50	55.70
12B2	16+57.00	HIGH	478.40	105.70	4.50	77.20
16C2	0+00.00	HIGH	300.00	65.80	4.60	25.00
16C2	1+48.00	HIGH	612.00	87.00	7.00	25.70
16C2	6+57.80	HIGH	631.00	106.00	6.00	23.00
16C2	15+24.80	HIGH	665.50	128.20	5.20	38.00
22B1	0+00.00	HIGH	192.40	71.00	2.70	

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	BED WIDTH (feet)
22B1	0+90.00	HIGH	138.40	62.70	2.20	
22B1	7+57.90	HIGH	281.10	72.50	3.90	
22B1	8+15.00	HIGH	282.70	68.20	4.10	
22B1	15+57.60	HIGH	505.80	123.70	4.10	
22B1	16+25.50	HIGH	569.50	133.90	4.30	
22B2	0+00.00	HIGH	323.80	79.80	4.10	10.00
22B2	5+16.00	HIGH	318.00	109.30	2.90	23.00
22B2	6+19.00	HIGH	394.00	100.50	3.90	40.10
22B2	13+11.60	HIGH	379.30	112.90	3.40	
22B2	13+95.10	HIGH	406.20	135.60	3.00	
22C2	0+00.00	HIGH	1732.10	155.70	11.10	37.60
22C2	1+34.90	HIGH	266.90	70.00	3.80	35.00
22C2	6+62.50	HIGH	303.20	84.00	3.60	
22C2	8+26.60	HIGH	1311.10	133.90	9.80	24.20
22C2	13+10.70	HIGH	1634.30	159.10	10.30	14.90
22C2	14+36.60	HIGH	987.20	130.90	7.50	29.30
07D4	0+00.00	MEDIUM	241.70	52.00	4.60	
07D4	4+29.00	MEDIUM	251.30	56.30	4.50	
16C2	0+00.00	MEDIUM	0.90	7.20	0.10	
16C2	1+48.00	MEDIUM	214.10	51.20	4.20	
16C2	15+24.80	MEDIUM	147.60	69.10	2.10	
22B1	0+00.00	MEDIUM	36.00	28.30	1.30	
22B1	0+90.00	MEDIUM	18.70	26.60	0.70	
22B1	7+57.90	MEDIUM	5.80	10.80	0.50	
22B1	8+15.00	MEDIUM	5.50	9.90	0.60	
22B1	15+57.60	MEDIUM	14.70	16.60	0.90	

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)
22B1	16+25.50	MEDIUM	33.50	25.60	1.30
22B2	0+00.00	MEDIUM	21.10	22.10	1.00
22B2	5+16.00	MEDIUM	1.10	6.10	0.20
22B2	6+19.00	MEDIUM	18.90	44.30	0.40
22B2	13+11.60	MEDIUM	5.80	11.80	0.50
22B2	13+95.10	MEDIUM	24.40	17.30	1.40
22C2	0+00.00	MEDIUM	5.00	12.10	0.40
22C2	1+34.90	MEDIUM	3.80	8.70	0.40
22C2	6+62.50	MEDIUM	9.70	20.30	0.50
12B1	0+00.00	LOW	2.80	17.00	0.20
12B1	4+60.00	LOW	0.70	6.50	0.10
12B1	13+21.00	LOW	0.30	6.00	0.05
12B1	15+62.00	LOW	0.70	13.10	0.05
22B1	0+00.00	LOW	0.20	3.50	0.10
22B1	0+90.00	LOW	0.30	6.20	0.05
22B1	7+57.90	LOW	0.10	2.70	0.04
22B1	8+15.00	LOW	0.10	2.80	0.04
22B1	15+57.60	LOW	0.20	3.00	0.10
22B1	16+25.50	LOW	0.50	5.20	0.10
22B2	13+11.60	LOW	0.50	4.70	0.10
22B2	13+95.10	LOW	0.30	3.40	0.10
22C2	0+00.00	LOW	0.60	5.00	0.10
22C2	1+34.90	LOW	0.20	3.10	0.06
22C2	6+62.50	LOW	2.30	15.70	0.10

· ;

•

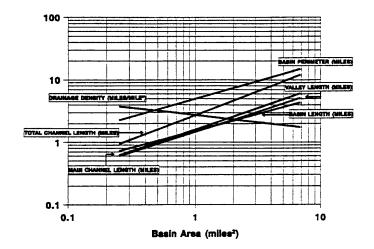
.

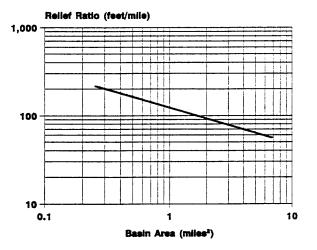
.

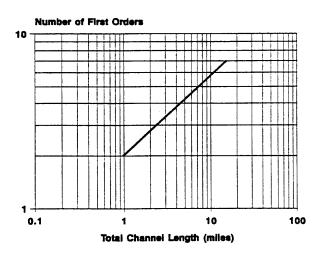
.

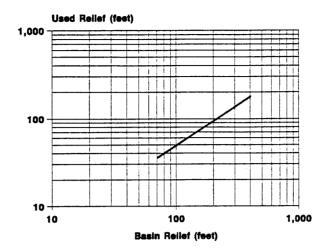
1. Aug.

-

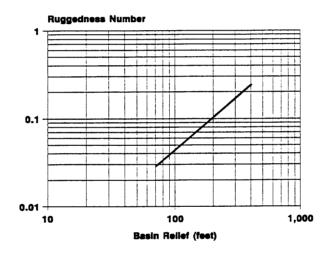


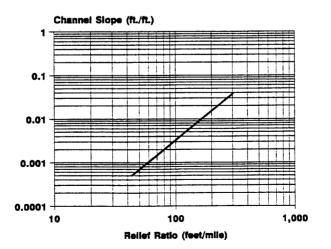


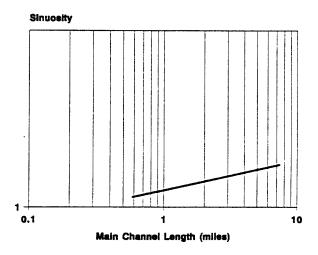

APPENDIX C-2

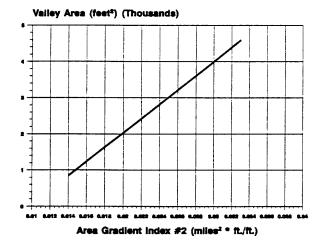

STRATA "C" - SECOND ORDER

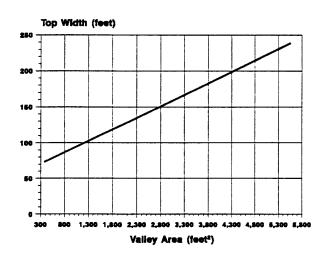
Description of Contents	Page
Geomorphic Relationships in Graph Format	689 - 693
Simple and Multiple Linear Regression Output Tables and Simple Linear Regression Plots with 90% Confidence Belts	694 - 713
Descriptive Statistics by Study Reach and by Bank	714 - 721
Cross-Section Plots by Study Site and Study Reach	722 - 731
Raw Field Data	732 - 733
Photographic Representation	734 - 736

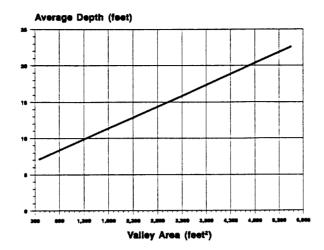


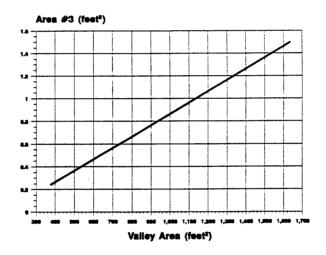


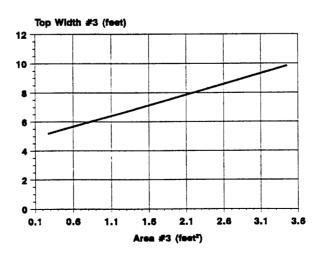


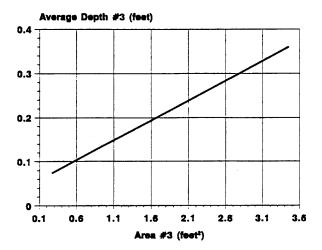


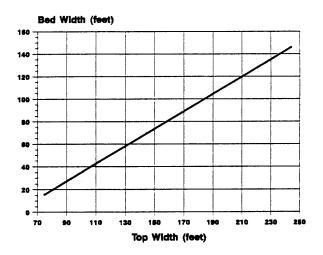

f

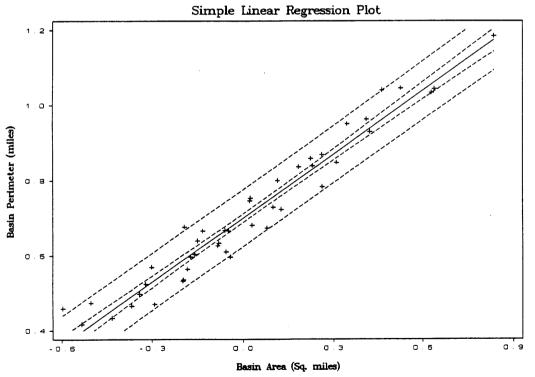







· · · ·


•

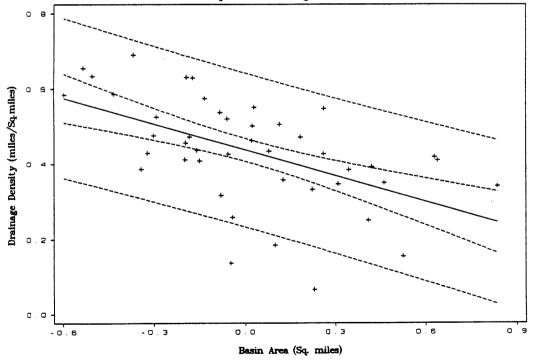


.

693

UNWEIGHTED I	LEAST S	QUARES	LINE	AR	REGRES	SION	OF B	ASIN	PERI	METER	
PREDICTOR VARIABLES	COEFF	ICIENT	S	ГD	ERROR		STUDE	NT'S	т	P	
CONSTANT	0.0	59993		ο.	00671		104	.38		0.0000	
BA	0.9	56684		0.	02041		27	.77		0.0000	
R-SQUARED		0.948	33		RESID.	MEA	N SQU	ARE	(MSE)	0.00	0197
ADJUSTED R-S	SQUARED	0.947	71		STANDA	RD D	EVIAT	ION		0.04	1441
SOURCE	DF	SS	5		MS			F]	P	
REGRESSION	1	1.52	2094		1.52	094	771	.12	0.00	000	
RESIDUAL	42	0.08	3284		0.00	197					
TOTAL	43	1.60	378								
CASES INCLU	DED 44	MISSI	ING C	ASE	s o						

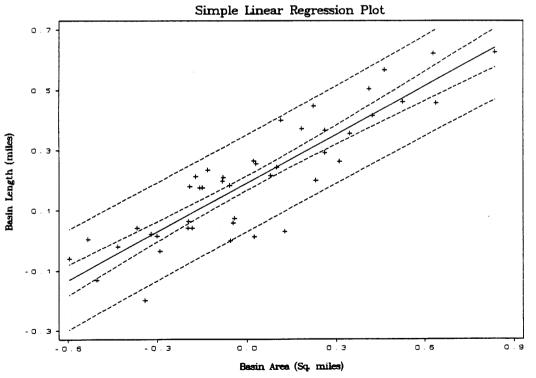
Strata "C" second order regression output for basin perimeter versus basin ______area.



90% confidence and prediction intervals

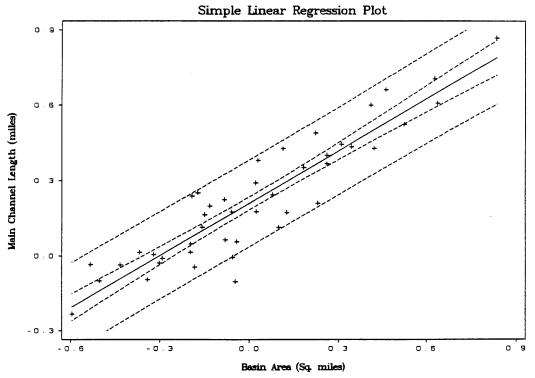
UNWEIGHTED 1	LEAST SQ	UARES I	LINEAR	REGRES	SION	OF DRAIN	IAGE DENS	ITY
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	T	P
CONSTANT BA	0.4	3742 2940	-	.01816 .05530	-	24.08 -4.15		0000 0002
R-SQUARED ADJUSTED R-S	SQUARED	0.2906 0.2738				I SQUARE VIATION	(MSE)	0.01447 0.12031
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 42 43	0.249 0.607 0.857	793	0.24		17.21	0.0002	-
CASES INCLU	DED 44	MISSIN	NG CAS	ES O				

Strata "C" second order regression output for drainage density versus basin area.

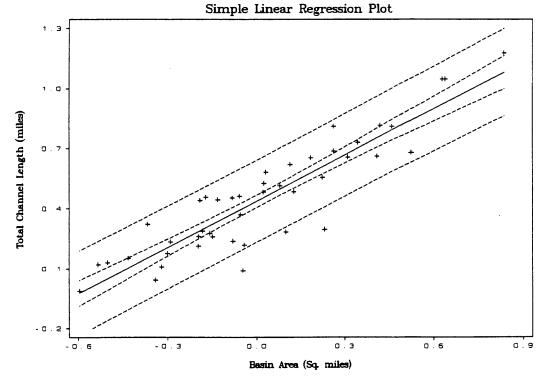

Simple Linear Regression Plot

90% confidence and prediction intervals

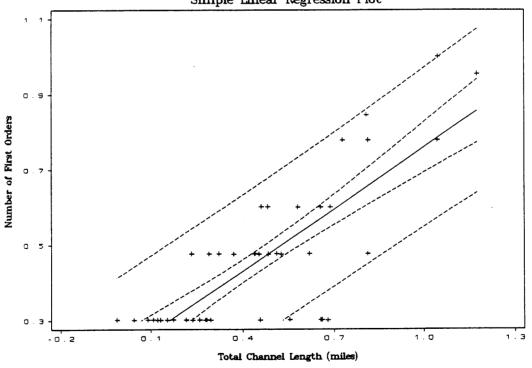
UNWEIGHTED I	LEAST SQ	UARES	LINEAR	REGRES	SION	OF BASIN	LENGI	гн
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	,	STUDENT'S	т	P
CONSTANT BA		9118 3828	-	.01431 .04356	-	13.36 12.36		0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.784 0.779				N SQUARE EVIATION	(MSE)	0.00898 0.09476
SOURCE	DF	SS		MS		F	F	2
REGRESSION RESIDUAL TOTAL	1 42 43	1.37 0.37 1.74	717	1.37 0.00		152.73	0.00	000
CASES INCLU	DED 44	MISSI	NG CAS	ES O				


Strata "C" second order regression output for basin length versus basin area.

90% confidence and prediction intervals

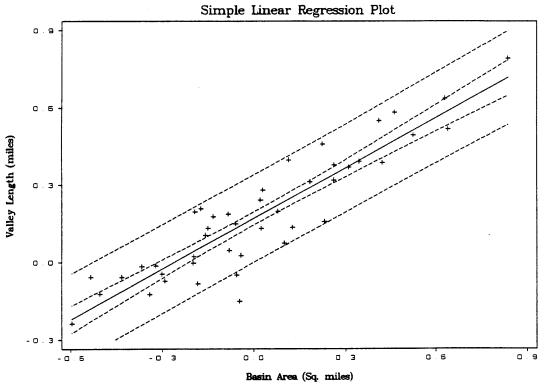

UNWEIGHTED I	LEAST SQ	UARES	LINEAR	REGRES	SION O	F MAIN	CHANNEL	LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	ST	udent's	т	P
CONSTANT BA		0930 9469	-	.01534 .04671		13.64 14.87		0000
R-SQUARED ADJUSTED R-S	SQUARED	0.840 0.836		RESID. STANDA		SQUARE IATION	(MSE)	0.01033 0.10163
SOURCE	DF	SS	5	MS		F	P	
REGRESSION RESIDUAL TOTAL	1 42 43	2.28 0.43 2.71	379	2.28		221.18	0.0000	
CASES INCLU	ED 44	MISSI	NG CASI	ES O				

Strata "C" second order regression output for main channel length versus basin area.


UNWEIGHTED	LEAST S	QUARES	LINEAR	REGRES	SION OF	TOTAL	CHANN	IEL LENGTH
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR	ST	JDENT'S	Т	P
CONSTANT BA		43742 77060		.01816 .05530		24.08 13.94		0.0000 0.0000
R-SQUARED ADJUSTED R-	SQUARED	0.822		RESID. STANDA		-	(MSE)	0.01447 0.12031
SOURCE	DF	SS	5	MS		F	F)
REGRESSION RESIDUAL TOTAL	1 42 43	2.81 0.60 3.41	0793	2.81		.94.20	0.00	000
CASES INCLU	DED 44	MISSI	ING CASI	ES O				

Strata "C" second order regression output for total channel length versus basin area.

UNWEIGHTED I	LEAST SQ	UARES	LIN	EAR	REGRES	SION	OF NUMBE	R OF FI	RST ORDERS
PREDICTOR VARIABLES	COEFFI	CIENT	:	STD	ERROR		STUDENT'S	T	P
CONSTANT TCHL		1148 4820	-		03416 06440		6.19 8.51	=	.0000
R-SQUARED ADJUSTED R-S	QUARED	0.63 0.624					N SQUARE EVIATION	(MSE)	0.01418 0.11907
SOURCE	DF	S	S		MS		F	P	_
REGRESSION RESIDUAL TOTAL	1 42 43	0.5	2745 9546 2291		1.02		72.47	0.000	0
CASES INCLUI	DED 44	MISS	ING (CASE	s o				


Strata "C" second order regression output for number of first orders versus total channel length.

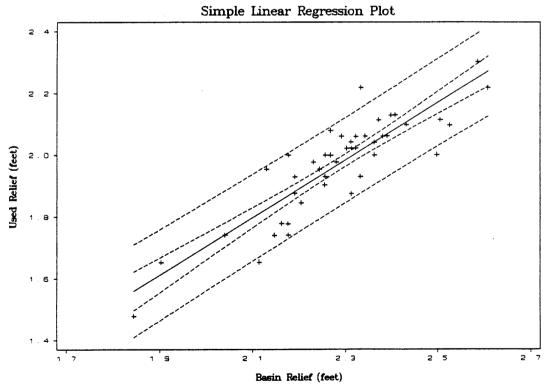
Simple Linear Regression Plot

UNWEIGHTED I	LEAST SQ	UARES	LINEAR	REGRES	SION	N OF VALLE	Y LENG	TH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	Т	P
CONSTANT BA		.7043 5389	-	.01509 .04593		11.30 14.24		0.0000 0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.828 0.824				AN SQUARE DEVIATION	(MSE)	0.00999 0.09994
SOURCE	DF	SS	5	MS	}	F	P	
REGRESSION RESIDUAL TOTAL	1 42 43	2.02 0.41 2.44	.947	2.02		202.65	0.00	00
CASES INCLU	DED 44	MISSI	NG CAS	ES 0				

Strata "C" second order regression output for valley length versus basin ______area._____

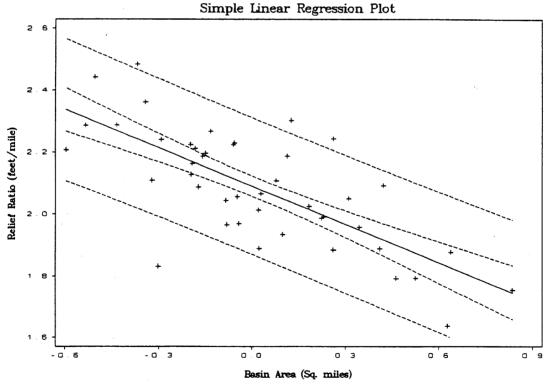
700

UNWEIGHTED	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF BASIN	RELIE	F
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	т	₽
CONSTANT BA BL	-0.2	3084 9944 9045	0	.04490 .12844 .21132	_	47.46 -2.33 3.74	(0.0000 0.0247 0.0006
R-SQUARED ADJUSTED R-	SQUARED	0.3104 0.2768				SQUARE VIATION	(MSE)	0.01684 0.12978
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	2 41 43	0.3108 0.6905 1.0014	9	0.15 0.01		9.23	0.00	05
CASES INCLU	DED 44	MISSING	CASI	ES 🔅				


;

.

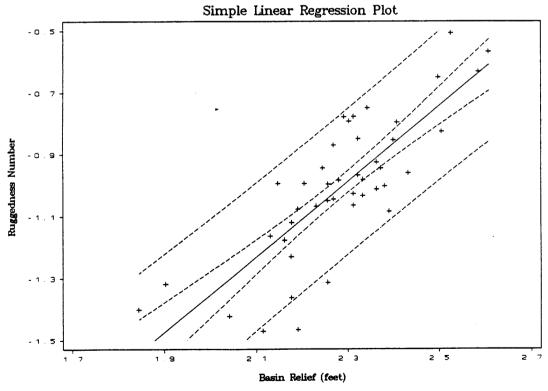
Strata "C" second order regression output of basin relief versus basin area and basin length.


UNWEIGHTED	LEAST S	SQUARES	LINEAR	REGRES	SION	OF USED	RELIEF	7
PREDICTOR VARIABLES	COEFF	FICIENT	STE	ERROR	S	fudent's	Т	P
CONSTANT BR		16568 93476	-	.18571 .08113		-0.89 11.52		0.3774 0.0000
R-SQUARED ADJUSTED R-	SQUAREI	0.759				SQUARE VIATION	(MSE)	0.00659 0.08118
SOURCE	DF	SS	5	MS		F	F	2
REGRESSION RESIDUAL TOTAL	1 42 43	0.87	7682	0.87 0.00	503 659	132.76	0.00	000
CASES INCLU	DED 44	MISSI	ING CAS	ES O				

Strata "C" second order regression output for used relief versus basin relief.

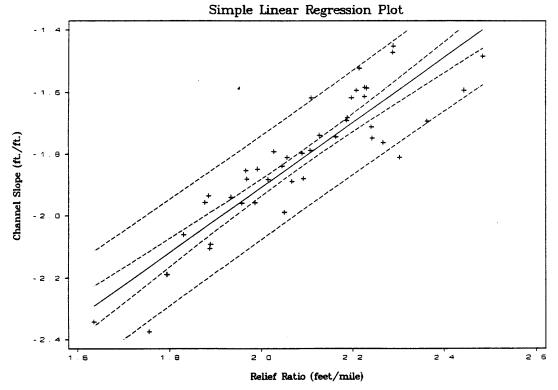
UNWEIGHTED 1	LEAST SQ	UARES	LIN	EAR	REGRES	SION	OF RELIE	F RATI	0
PREDICTOR VARIABLES	COEFFI	CIENT	:	STD	ERROR		STUDENT'S	т	P
CONSTANT BA		9078 1224			01959 05964		106.72 -6.91		0.0000 0.0000
R-SQUARED ADJUSTED R-S		0.532 0.52					N SQUARE EVIATION	(MSE)	0.01684 0.12976
SOURCE	DF	S	5		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 42 43	0.70	0443 0715 1157	_	0.804		47.78	0.00	00
CASES INCLUD	DED 44	MISS	ING	CASE	IS O				

Strata "C" second order regression output for relief ratio versus basin area.


:

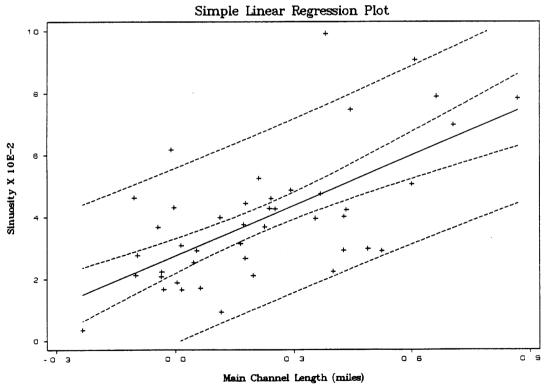
90% confidence and prediction intervals

\$

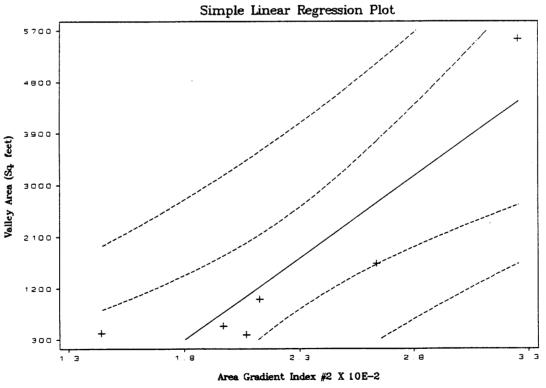

UNWEIGHTED	LEAST SO	UARES	LINEAR	REGRES	SION OF	RUGGE	DNESS NU	MBER
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	P
CONSTANT BR		9592 2177	-	.31724 .13858	-:	11.97 8.82		0000
R-SQUARED ADJUSTED R-	SQUARED	0.649 0.640			MEAN SO RD DEVI	-	(MSE)	0.01923 0.13868
SOURCE	DF	SS	5	MS		F	P	_
REGRESSION RESIDUAL TOTAL	1 42 43	0.80	9487 0777 0264	1.49 0.01		77.73	0.0000)
CASES INCLU	DED 44	MISSI	ING CAS	ES O				

Strata "C" second order regression output for ruggedness number versus ______basin relief._____

UNWEIGHTED I	LEAST SQ	UARES 1	LINEAR	REGRES	SION	OF CHANN	EL SLO	PE
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	Т	P
CONSTANT RR		1161 5195	-	.16795 .08030	-	-23.89 13.10		0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.8034 0.798				SQUARE	(MSE)	0.00975 0.09873
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 42 43	1.672 0.409 2.082	936	1.67		171.62	0.00	00
CASES INCLU	DED 44	MISSI	NG CASI	ES O				


Strata "C" second order regression output for channel slope versus relief ______ratio.

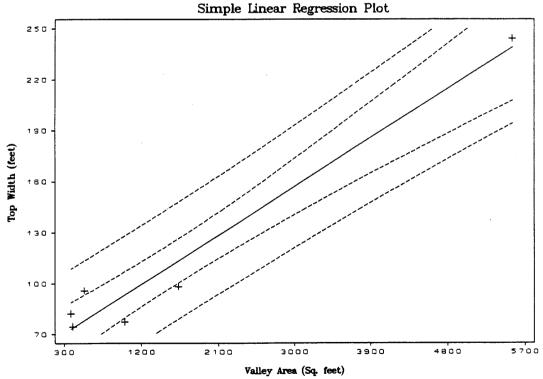
705


UNWEIGHTED L	LEAST SQ	UARES L	INEAR	REGRES	SION	OF SINUC	SITY	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT MCHL	•••	2760 5410	-	.00333 .01000		8.29 5.41		0.0000 0.0000
R-SQUARED ADJUSTED R-S		0.4107 0.3967				N SQUARE DEVIATION	(MSE)	2.718E-04 0.01649
SOURCE	DF	SS		MS		F]	P
REGRESSION RESIDUAL TOTAL	1 42 43	0.007 0.011 0.019	42	0.00 2.718E		29.27	0.0	000
CASES INCLUE	DED 44	MISSIN	G CASI	ES O				

Strata "C" second order regression output for sinuosity versus main _______ channel length.

					1910 - 1914			
UNWEIGHTED L	EAST S	QUARES LIN	NEAR	REGRES	SION	OF VALLE	Y ARE	A
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT AGI2		53.85 2E+05		00.50 291.5		-2.85 3.90		0.0462 0.0175
R-SQUARED ADJUSTED R-S	QUARED	0.7922 0.7402				N SQUARE EVIATION	(MSE)	1.043E+06 1021.32
SOURCE	DF	SS		MS		F]	P
REGRESSION RESIDUAL TOTAL	1 4 5	1.590E+07 4.172E+06 2.008E+07	5	1.590E 1.043E		15.25	0.03	175
CASES INCLUE	DED 6	MISSING (CASES	1				

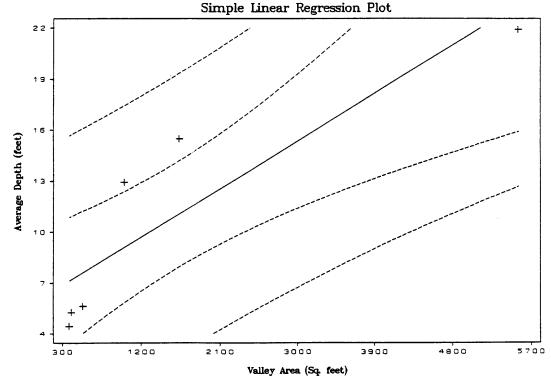
Strata "C" second order regression output for valley area versus area gradient index #2.



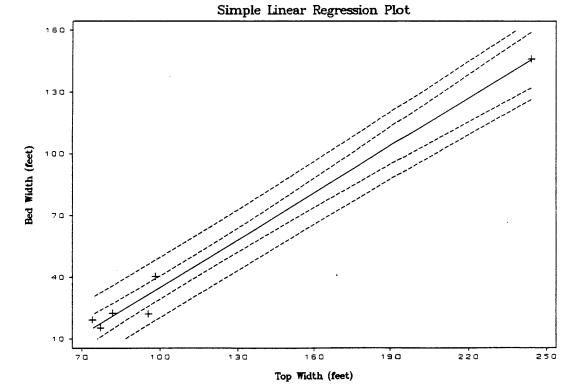
90% confidence and prediction intervals

707

UNWEIGHTED L	EAST SQ	UARES LI	NEAR	REGRES	SION	I OF TOP V	VIDTH		
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	бт	P	
CONSTANT A		1342 3203	-	.10079 .00335		7.55 9.57		0.0017	
R-SQUARED ADJUSTED R-S	QUARED	0.9581 0.9476				N SQUARE DEVIATION	(MSE)		.087 0029
SOURCE	DF	SS		MS		F		P	
REGRESSION RESIDUAL TOTAL	1 4 5	20595. 900.34 21495.	7	2059 225.		91.50	0.0	007	
CASES INCLUD	ED 6	MISSING	CASES	51					

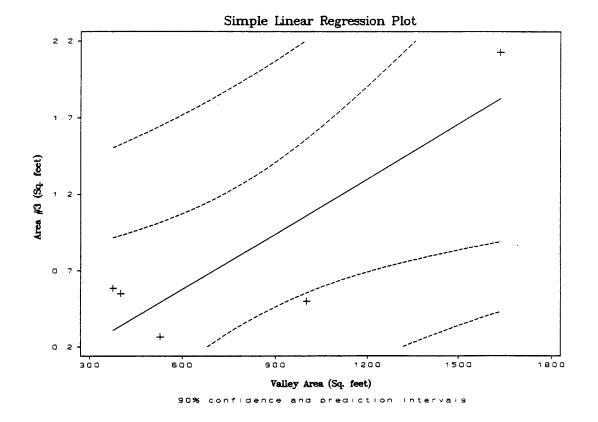

Strata "C" second order regression output for top width versus valley area.

708

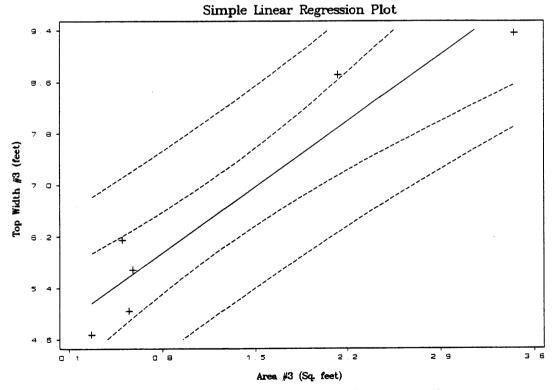

UNWEIGHTED I	LEAST SQ	UARES 1	LINEAR	REGRES	SION	OF AVERA	GE DEPTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STI	ERROR		STUDENT'S	т	P
CONSTANT A		6674 0312		.93624 03E-04		3.08 3.91		0369 0173
R-SQUARED ADJUSTED R-S	SQUARED	0.7929 0.741				N SQUARE EVIATION	(MSE)	12.8592 3.58597
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 4 5	196.9 51.4 248.3	368	196. 12.8		15.31	0.0173	•
CASES INCLU	DED 6	MISSING	G CASE	S 1				

Strata "C" second order regression output for average depth versus valley ______area.

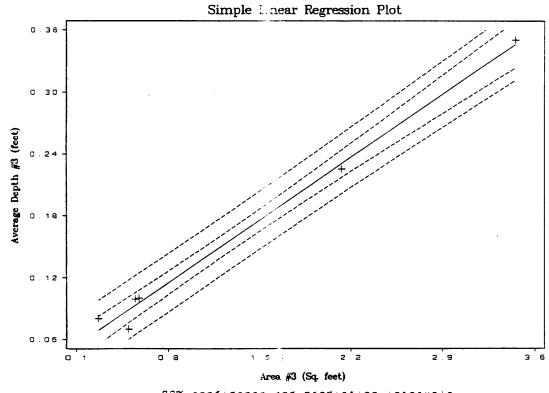
UNWEIGHTED L	east sq	UARES LIN	EAR	REGRES	SION	OF BED W	IDTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT TW		7931 6842		51304 04346		-7.58 17.68		0.0016 0.0001
R-SQUARED ADJUSTED R-SO		0.9874 0.9842				N SQUARE EVIATION	(MSE)	40.5982 6.37167
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 4 5	12692.5 162.393 12854.9		1269: 40.5		312.64	0.00	01
CASES INCLUD	ED 6	MISSING C	ASES	1				


Strata "C" second order regression output for bed width versus top width.

•


UNWEIGHTED L	EAST SQ	UARES I	INEAR	REGRES	SION	OF AREA	#3	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	sı	rudent's	т	P
CONSTANT A		4425 0120		.37675 79E-04		-0.38 2.95		0.7273 0.0602
R-SQUARED ADJUSTED R-S		0.7433 0.6577				SQUARE /IATION	(MSE)	0.19175 0.43789
SOURCE	DF	SS		MS		F	₽	
REGRESSION RESIDUAL TOTAL	1 3 4	1.665 0.575 2.240	25	1.66 0.19		8.69	0.06	02
CASES INCLUD	ED 5	MISSING	CASES	52				

Strata "C" second order regression output for area #3 versus valley area.


UNWEIGHTED	LEAST SÇ	UARES L	INEAR	REGRES	SION	OF TOP W	IDTH #3	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	5 T	P
CONSTANT A3		7545 6573	-	.40707 .23919		11.73 6.13		0003 0036
R-SQUARED ADJUSTED R-	SQUARED	0.9037 0.8797				N SQUARE EVIATION	(MSE)	0.46190 0.67964
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 4 5	17.34 1.847 19.19	62	17.3 0.46		37.55	0.0036	-
CASES INCLU	DED 6	MISSING	CASES	S 1				

Strata "C" second order regression output for top width #3 versus area #3.

UNWEIGHTED	LEAST S	QUARES	LINEAR	REGRES	SION OF	AVGER	AGE DEPT	Ή #3
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR	STU	dent's	T	P
CONSTANT A3		04573 08708		107 31 304 30		6.25 20.27		0033 0000
R-SQUARED ADJUSTED R-	SQUARED	0.990 0.987			MEAN SO RD DEVI		(MSE) 1	.491E-04 0.01221
SOURCE	DF	SS	5	MS		F	₽	
REGRESSION RESIDUAL TOTAL	1 4 5	0.06 5.963E 0.06	-04	0.06 491E		10.71	0.0000	-
CASES INCLU	DED 6	MISSIN	IG CASES					

Strata "C" second order regression output for average depth #3 versus area #3.

1

BASIN ID 05B0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	3.00	3.00	3.00	3.00	3.00	3.00	3.00	1.00
MEAN	5554.40	259.20	244.17	20.63	21.90	11.07	146.07	0.011
S.D.	2690.40	72.48	69.18	4.97	5.23	0.53	43.38	
C.V. (%)	48.44	27.96	28.34	24.11	23.86	4.80	29.70	
MINIMUM	2846.30	184.80	173.10	15.40	16.40	10.56	103.70	0.011
MAXIMUM	8226.80	329.60	311.30	25.30	26.80	11.62	190.40	0.011
RANGE	5380.50	144.80	138.20	9.90	10.40	1.06	86.70	0.000
the second s								
BASIN ID 07D0	AREA (ft. ²)	WETTED Perimeter (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH	•	WIDTH	SLOPE
07D0	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
07D0	(ft. ²) 3.00	PERIMETER (ft.) 3.00	WIDTH (ft.) 3.00	RADIUS 3.00	DEPTH (ft.) 3.00	RATIO 3.00	WIDTH (ft.) 3.00	SLOPE (ft/ft) 5.00
07D0 n MEAN	(ft. ²) 3.00 1002.10	PERIMETER (ft.) 3.00 89.97	WIDTH (ft.) 3.00 76.93	RADIUS 3.00 11.03	DEPTH (ft.) 3.00 12.90	RATIO 3.00 5.97	WIDTH (ft.) 3.00 15.07	SLOPE (ft/ft) 5.00 0.021
07D0 n MEAN S.D.	(ft. ²) 3.00 1002.10 237.66	PERIMETER (ft.) 3.00 89.97 10.04	WIDTH (ft.) 3.00 76.93 8.75	RADIUS 3.00 11.03 1.37	DEPTH (ft.) 3.00 12.90 1.57	RATIO 3.00 5.97 0.11	WIDTH (ft.) 3.00 15.07 6.01	SLOPE (ft/ft) 5.00 0.021 0.009
07D0 n MEAN S.D. C.V. (%)	(ft. ²) 3.00 1002.10 237.66 23.72	PERIMETER (ft.) 3.00 89.97 10.04 11.16	WIDTH (ft.) 3.00 76.93 8.75 11.38	RADIUS 3.00 11.03 1.37 12.37	DEPTH (ft.) 3.00 12.90 1.57 12.18	RATIO 3.00 5.97 0.11 1.78	WIDTH (ft.) 3.00 15.07 6.01 39.90	SLOPE (ft/ft) 5.00 0.021 0.009 42.94

1

High bank reach means for Strata "C" second order

....

BASIN ID 07E0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	6.00	6.00	6.00	6.00	6.00	6.00	6.00	5.00
MEAN	1636.90	113.02	98.45	13.48	15.50	6.41	40.68	0.016
S.D.	1047.20	34.40	30.44	4.10	4.73	0.73	22.95	0.006
C.V. (%)	63.97	30.44	30.92	30.44	30.51	11.35	56.40	40.57
MINIMUM	819.30	84.90	73.60	9.70	10.90	5.36	22.60	0.009
MAXIMUM	3605.40	177.10	156.50	20.40	23.00	7.30	85.70	0.023
RANGE	2786.10	92.20	82.90	10.70	12.10	1.94	63.10	0.014
r		I		l				r
BASIN ID 12B0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
		PERIMETER	WIDTH		DEPTH		WIDTH	SLOPE
12B0	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO	WIDTH (ft.)	SLOPE (ft/ft)
12B0	(ft. ²) 3.00	PERIMETER (ft.) 3.00	WIDTH (ft.) 3.00	RADIUS 3.00	DEPTH (ft.) 3.00	RATIO 3.00	WIDTH (ft.) 3.00	SLOPE (ft/ft) 2.00
12B0 n MEAN	(ft. ²) 3.00 402.00	PERIMETER (ft.) 3.00 77.03	WIDTH (ft.) 3.00 74.17	RADIUS 3.00 5.03	DEPTH (ft.) 3.00 5.23	RATIO 3.00 13.99	WIDTH (ft.) 3.00 19.00	SLOPE (ft/ft) 2.00 0.009
12B0 n MEAN S.D.	(ft. ²) 3.00 402.00 193.69	PERIMETER (ft.) 3.00 77.03 23.57	WIDTH (ft.) 3.00 74.17 22.74	RADIUS 3.00 5.03 0.91	DEPTH (ft.) 3.00 5.23 0.91	RATIO 3.00 13.99 1.91	WIDTH (ft.) 3.00 19.00 7.61	SLOPE (ft/ft) 2.00 0.009 0.002
12B0 n MEAN S.D. C.V. (%)	(ft. ²) 3.00 402.00 193.69 48.18	PERIMETER (ft.) 3.00 77.03 23.57 30.59	WIDTH (ft.) 3.00 74.17 22.74 30.66	RADIUS 3.00 5.03 0.91 18.03	DEPTH (ft.) 3.00 5.23 0.91 17.34	RATIO 3.00 13.99 1.91 13.68	WIDTH (ft.) 3.00 19.00 7.61 40.05	SLOPE (ft/ft) 2.00 0.009 0.002 23.19

. .

BASIN ID 16C0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	5.00	5.00	5.00	5.00	5.00	5.00	3.00	7.00
MEAN	375.00	84.22	81.80	4.30	4.42	20.65	22.20	0.011
S.D.	191.04	17.79	17.16	1.65	1.72	7.97	10.08	0.002
C.V. (%)	50.95	21.12	20.98	38.39	38.84	38.58	45.41	17.15
MINIMUM	149.80	61.20	60.00	2.40	2.50	13.74	11.20	0.008
MAXIMUM	629.10	110.90	107.50	5.70	5.90	32.89	31.00	0.014
RANGE	479.30	49.70	47.50	3.30	3.40	19.15	19.80	0.005

. . . .

BASIN ID 22B0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio	BED WIDTH (ft.)	AVERAGE SLOPE (ft/ft)
n	3.00	3.00	3.00	3.00	3.00	3.00	2.00	2.00
MEAN	529.73	98.07	95.57	5.43	5.60	17.68	21.90	0.017
S.D.	58.46	11.51	12.09	0.91	0.96	5.53	2.97	0.007
C.V. (%)	11.04	11.74	12.65	16.70	17.22	31.28	13.56	43.32
MINIMUM	486.30	86.90	84.10	4.40	4.50	14.02	19.80	0.012
MAXIMUM	596.20	109.90	108.20	6.10	6.30	24.04	24.00	0.022
RANGE	109.90	23.00	24.10	1.70	1.80	10.03	4.20	0.010

BASIN ID 16C0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	3.00	3.00	3.00	3.00	3.00	3.00
MEAN	9.63	15.13	14.87	0.53	0.53	32.82
S.D.	9.26	6.62	6.41	0.35	0.35	13.17
C.V. (%)	96.08	43.71	43.10	65.85	65.85	40.15
MINIMUM	2.20	9.70	9.60	0.20	0.20	24.44
MAXIMUM	20.00	22.50	22.00	0.90	0.90	48.00
RANGE	17.80	12.80	12.40	0.70	0.70	23.56
L						
BASIN ID 22B0	AREA (ft.²)	WETTED Perimeter (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
		PERIMETER	WIDTH		AVERAGE DEPTH	W/D
2280	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio
22B0	(ft. ²) 3.00	PERIMETER (ft.) 3.00	WIDTH (ft.) 3.00	RADIUS 3.00	AVERAGE DEPTH (ft.) 3.00	W/D RATIO 3.00
22B0 n MEAN	(ft. ²) 3.00 2.60	PERIMETER (ft.) 3.00 10.13	WIDTH (ft.) 3.00 10.10	RADIUS 3.00 0.23	AVERAGE DEPTH (ft.) 3.00 0.23	W/D RATIO 3.00 42.00
22B0 n MEAN S.D.	(ft. ²) 3.00 2.60 1.87	PERIMETER (ft.) 3.00 10.13 5.20	WIDTH (ft.) 3.00 10.10 5.20	RADIUS 3.00 0.23 0.06	AVERAGE DEPTH (ft.) 3.00 0.23 0.06	W/D RATIO 3.00 42.00 15.16
22B0 n MEAN S.D. C.V. (%)	(ft. ²) 3.00 2.60 1.87 72.06	PERIMETER (ft.) 3.00 10.13 5.20 51.32	WIDTH (ft.) 3.00 10.10 5.20 51.49	RADIUS 3.00 0.23 0.06 24.74	AVERAGE DEPTH (ft.) 3.00 0.23 0.06 24.74	W/D RATIO 3.00 42.00 15.16 36.09

Medium bank reach means for Strata "C" second order

. .

BASIN ID 22C0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	29.80	19.30	18.30	1.55	1.65	11.15
S.D.	5.66	1.13	0.85	0.21	0.21	0.92
C.V. (%)	18.98	5.86	4.64	13.69	12.86	8.24
MINIMUM	25.80	18.50	17.70	1.40	1.50	10.50
MAXIMUM	33.80	20.10	18.90	1.70	1.80	11.80
RANGE	8.00	1.60	1.20	0.30	0.30	1.30

. .

718

BASIN ID 07D0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	0.50	6.15	6.15	0.07	0.07	127.50
S.D.	0.42	0.92	0.92	0.04	0.04	84.15
C.V. (%)	84.85	14.95	14.95	60.61	60.61	66.00
MINIMUM	0.20	5.50	5.50	0.04	0.04	68.00
MAXIMUM	0.80	6.80	6.80	0.10	0.10	187.00
RANGE	0.60	1.30	1.30	0.06	0.06	119.00
<u>ا</u> لــــــــــــــــــــــــــــــــــــ						L
BASIN ID 07e0	AREA (ft. ²)	WETTED Perimeter (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
		PERIMETER	WIDTH		DEPTH	
0720	(ft. ²)	PERIMETER (ft.)	WIDTH (ft.)	RADIUS	DEPTH (ft.)	RATIO
07E0	(ft. ²) 4.00	PERIMETER (ft.) 4.00	WIDTH (ft.) 4.00	RADIUS 4.00	DEPTH (ft.) 4.00	RATIO 4.00
07E0 n MEAN	(ft. ²) 4.00 2.13	PERIMETER (ft.) 4.00 8.71	WIDTH (ft.) 4.00 8.71	RADIUS 4.00 0.23	DEPTH (ft.) 4.00 0.23	RATIO 4.00 53.37
07E0 n MEAN S.D.	(ft. ²) 4.00 2.13 2.38	PERIMETER (ft.) 4.00 8.71 2.03	WIDTH (ft.) 4.00 8.71 2.03	RADIUS 4.00 0.23 0.19	DEPTH (ft.) 4.00 0.23 0.19	RATIO 4.00 53.37 25.80
07E0 n MEAN S.D. C.V. (%)	(ft. ²) 4.00 2.13 2.38 111.98	PERIMETER (ft.) 4.00 8.71 2.03 23.36	WIDTH (ft.) 4.00 8.71 2.03 23.36	RADIUS 4.00 0.23 0.19 84.13	DEPTH (ft.) 4.00 0.23 0.19 84.13	RATIO 4.00 53.37 25.80 48.34

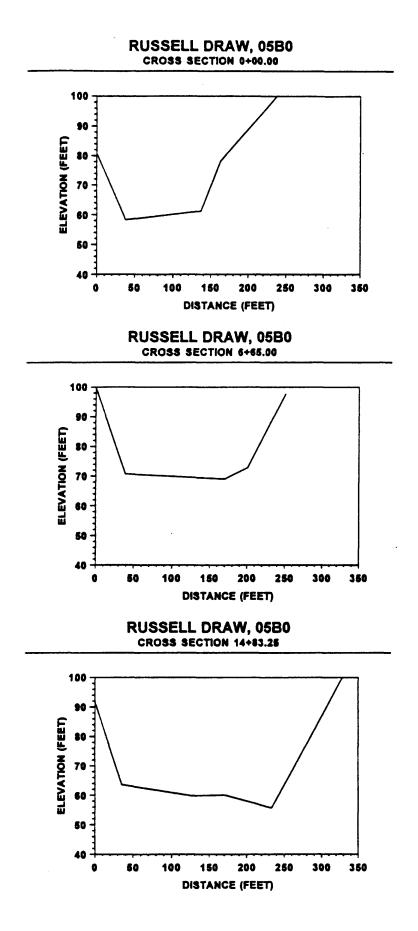
Low bank reach means for Strata "C" second order

· •

BASIN ID 12B0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	0.55	5.05	5.05	0.10	0.10	50.50
S.D.	0.21	0.92	0.92	0.00	0.00	9.19
C.V. (%)	38,57	18.20	18.20	0.00	0.00	18.20
MINIMUM	0.40	4.40	4.40	0.10	0.10	44.00
MAXIMUM	0,70	5.70	5.70	0.10	0.10	57.00
RANGE	0.30	1.30	1.30	0.00	0.00	13.00

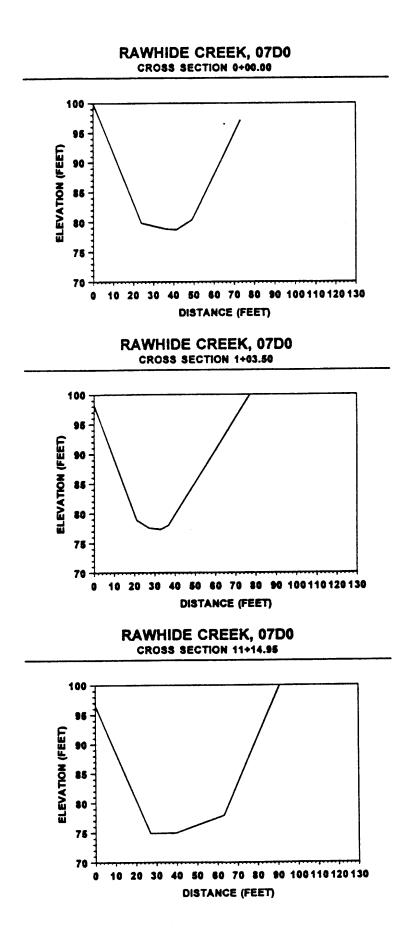
. . .

BASIN ID 16C0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio
n	5.00	5.00	5.00	5.00	5.00	5.00
MBAN	0.58	5.70	5.68	0.10	0.10	56.80
S.D.	0.60	4.32	4.33	0.00	0.00	43.34
C.V. (%)	103.02	75.88	76.31	0.00	0.00	76.31
MINIMUM	0.10	2.10	2.10	0.10	0.10	21.00
MAXIMUM	1.60	13.20	13.20	0.10	0.10	132.00
RANGE	1.50	11.10	11.10	0.00	0.00	111.00

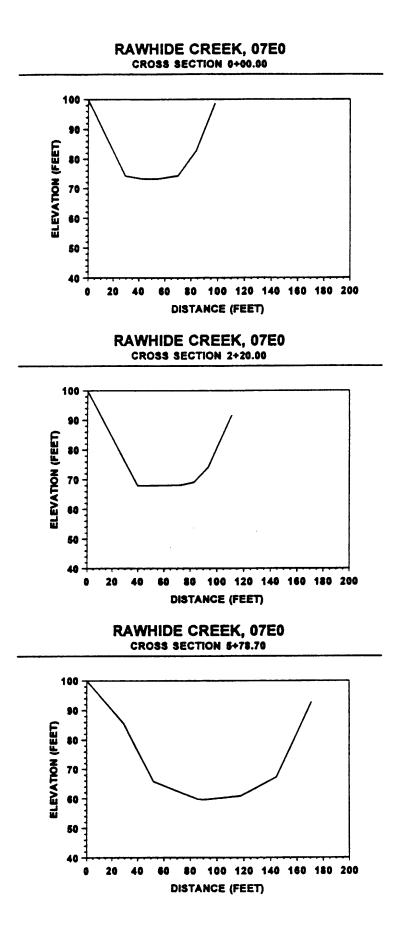

BASIN ID 22B0	AREA (ft.²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D Ratio
n	3.00	3.00	3.00	3.00	3.00	3.00
MEAN	0.27	4.67	4.67	0.08	0.08	97.07
S.D.	0.06	3.24	3.24	0.03	0.03	119.64
C.V. (%)	21.65	69.41	69.41	43.30	43.30	123.26
MINIMUM	0.20	2.60	2.60	0.04	0.04	26.00
MAXIMUM	0.30	8.40	8.40	0.10	0.10	235.20
RANGE	0.10	5.80	5.80	0.06	0.06	209.20

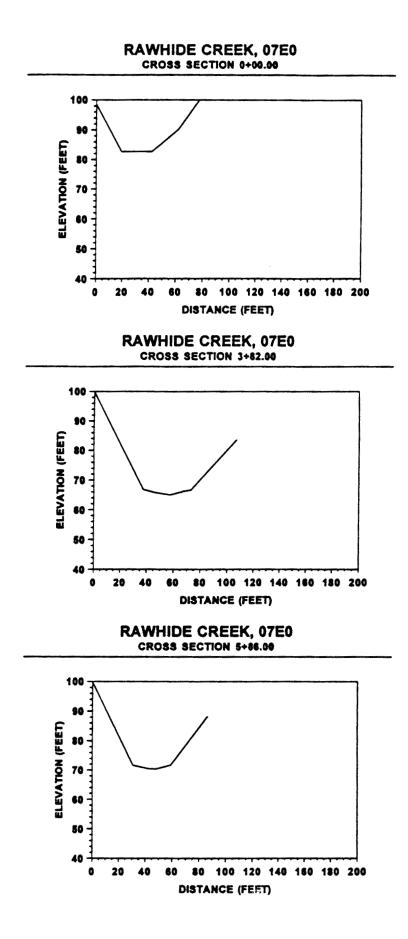
.

...

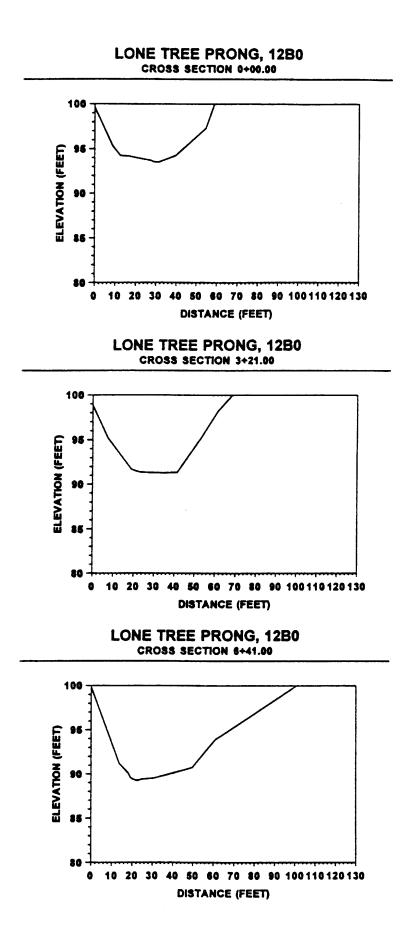

.

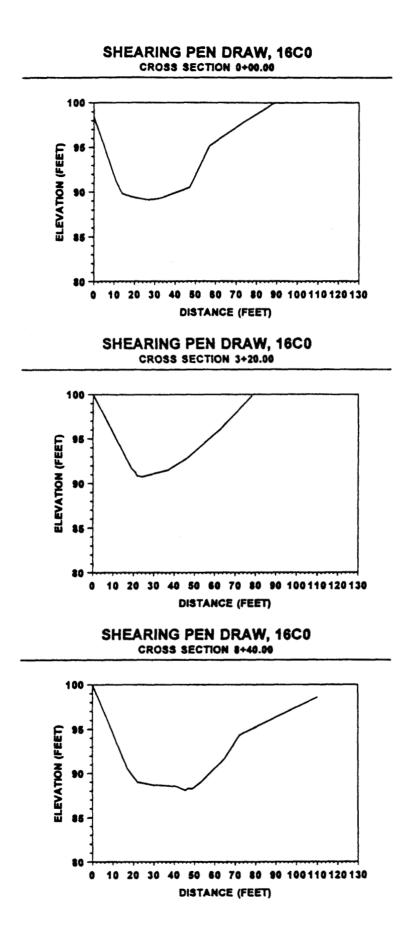
BASIN ID 22C0	AREA (ft. ²)	WETTED PERIMETER (ft.)	TOP WIDTH (ft.)	HYDRAULIC RADIUS	AVERAGE DEPTH (ft.)	W/D RATIO
n	2.00	2.00	2.00	2.00	2.00	2.00
MEAN	3.45	9.55	9.35	0.35	0.35	32.20
S.D.	2.33	0.64	0.50	0.21	0.21	18.10
C.V. (%)	67.64	6.66	5.29	60.61	60.61	56.22
MINIMUM	1.80	9.10	9.00	0.20	0.20	19.40
MAXIMUM	5.10	10.00	9.70	0.50	0.50	45.00
RANGE	3.30	0.90	0.70	0.30	0.30	25.60

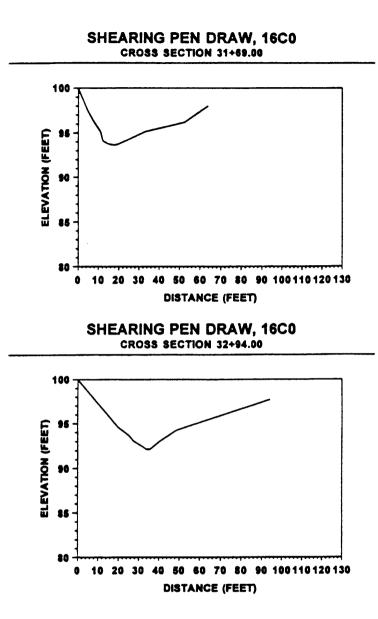


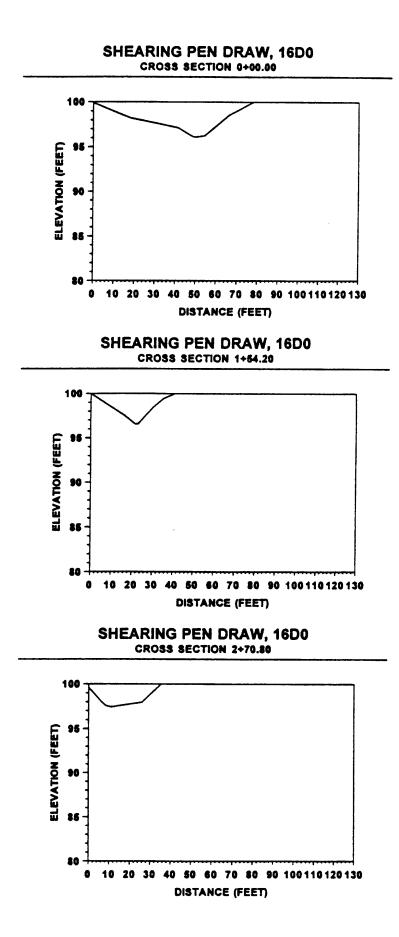

722

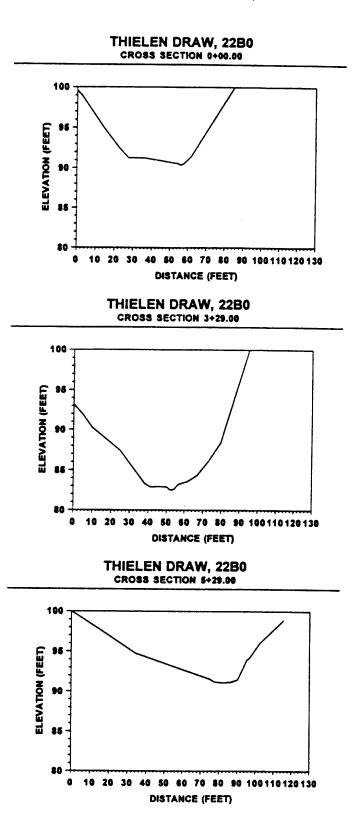
- -

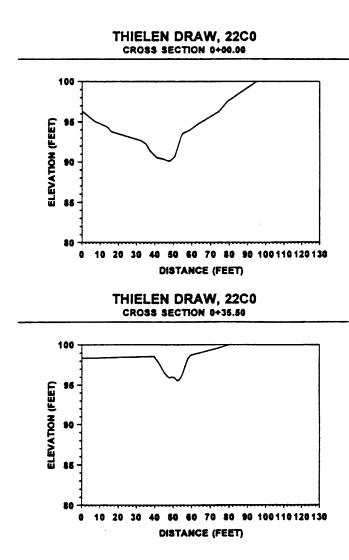



- -






:



.

731

ł

Strata "C" second order raw data by study reach, cross section, and bank identification.

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	BED WIDTH (feet)
05B0	0+00.00	HIGH	2846.30	173.10	16.40	103.70
05B0	6+65.00	HIGH	5590.00	248.10	22.50	144.10
0580	14+83.25	HIGH	8226.80	311.30	26.80	190.40
07D0	0+00.00	HIGH	826.90	69.80	11.80	22.00
07D0	1+03.50	HIGH	906.70	74.30	12.20	11.90
07D0	11+14.95	HIGH	1272.60	86.70	14.70	11.30
07E0	0+00.00	HIGH	1739.50	96.50	18.00	40.80
07E0	2+20.00	HIGH	1725.90	100.50	17.20	32.60
07E0	5+78.70	HIGH	3605.40	156.50	23.00	85.70
07E0	0+00.00	HIGH	819.30	75.30	10.90	22.60
07E0	3+82.00	HIGH	1066.00	88.30	12.10	35.30
07E0	5+86.00	HIGH	865.40	73.60	11.80	27.10
12B0	0+00.00	HIGH	254.70	58.20	4.40	27.10
12B0	3+21.00	HIGH	329.90	64.10	5.10	17.90
12B0	6+41.00	HIGH	621.40	100.20	6.20	12.00
16C0	0+00.00	HIGH	449.70	78.30	5.70	24.40
16C0	3+20.00	HIGH	422.60	77.70	5.40	11.20
16C0	8+40.00	HIGH	629.10	107.50	5.90	31.00
16C0	31+69.00	HIGH	149.80	60.00	2.50	
16C0	32+94.00	HIGH	223.80	85.50	2.60	
2280	0+00.00	HIGH	506.70	84.10	6.00	24.00
22B0	3+29.00	HIGH	596.20	94.40	6.30	19.80
22B0	5+29.00	HIGH	486.30	108.20	4.50	
22C0	0+00.00	HIGH	213.90	74.50	2.90	

•

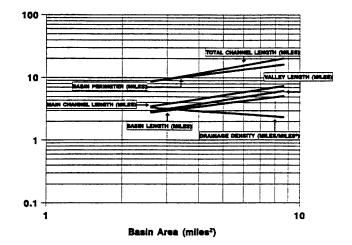
•

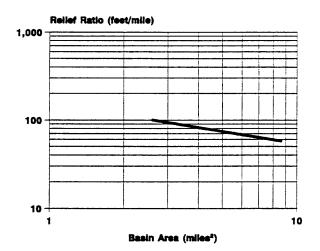
BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	BED WIDTH (feet)
16C0	8+40.00	MEDIUM	2.20	9.60	0.20	31.00
16C0	31+69.00	MEDIUM	20.00	22.00	0.90	
16C0	32+94.00	MEDIUM	6.70	13.00	0.50	
22B0	0+00.00	MEDIUM	2.00	10.10	0.20	24.00
22B0	3+29.00	MEDIUM	1.10	4.90	0.20	19.80
2280	5+29.00	MEDIUM	4.70	15.30	0.30	
22C0	0+00.00	MEDIUM	25.80	17.70	1.50	
22C0	0+35.50	MEDIUM	33.80	18.90	1.80	
07D0	0+00.00	LOW	0.20	5.50	0.04	
07D0	1+03.50	LOW	0.80	6.80	0.10	
07E0	0+00.00	LOW	5.60	11.23	0.50	
07E0	3+82.00	LOW	1.70	9.00	0.20	
07E0	5+78.70	LOW	0.80	8.30	0.10	
07E0	5+86.00	LOW	0.40	6.30	0.10	
12B0	0+00.00	LOW	0.70	5.70	0.10	
12B0	6+41.00	LOW	0.40	4.40	0.10	
16C0	0+00.00	LOW	1.60	13.20	0.10	
16C0	3+20.00	LOW	0.30	4.10	0.10	
16C0	8+40.00	LOW	0.10	2.10	0.10	
16C0	31+69.00	LOW	0.30	5.00	0.10	
16C0	32+94.00	LOW	0.60	4.00	0.10	
22B0	0+00.00	LOW	0.30	3.00	0.10	
22B0	3+29.00	LOW	0.20	2.60	0.10	
22B0	5+29.00	LOW	0.30	8.40	0.04	
22C0	0+00.00	LOW	1.80	9.00	0.20	
22C0	0+35.50	LOW	5.10	9.70	0.50	

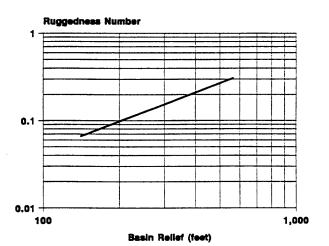
•

.

and a

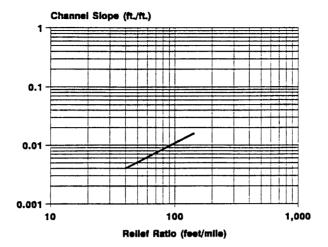

736

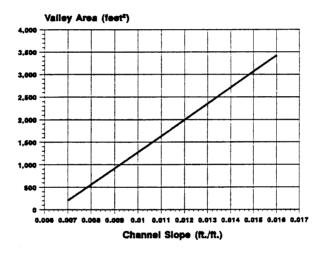

APPENDIX C-3

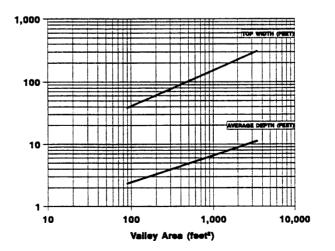

STRATA "C" - THIRD ORDER

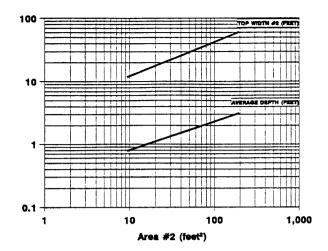
Description of Contents	Page
Geomorphic Relationships in Graph Format	738 - 743
Simple and Multiple Linear Regression Output Tables and Simple Linear Regression Plots with 90% Confidence Belts	744 - 777
Descriptive Statistics by Study Reach and by Bank	778 - 788
Cross-Section Plots by Study Site and Study Reach	789 - 797
Digitized Drainage Basin and Drainage Network	798 - 802
Raw Data	803 - 805
Representative Photographs	806 - 808

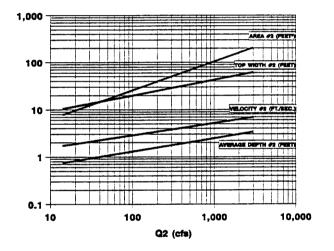
. .

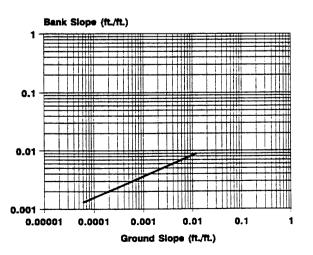


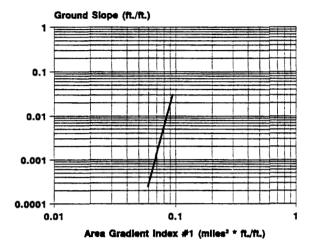


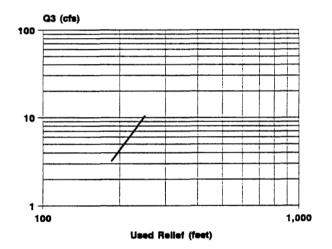


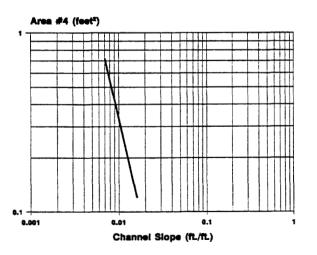

:

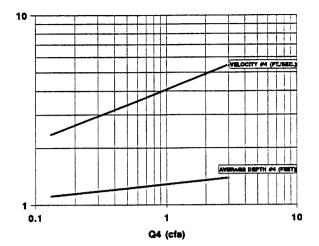


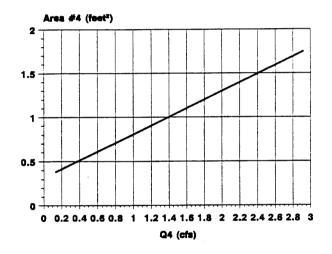






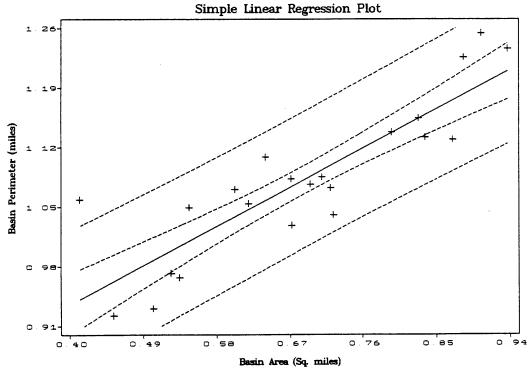



:


;

.

:


.

.

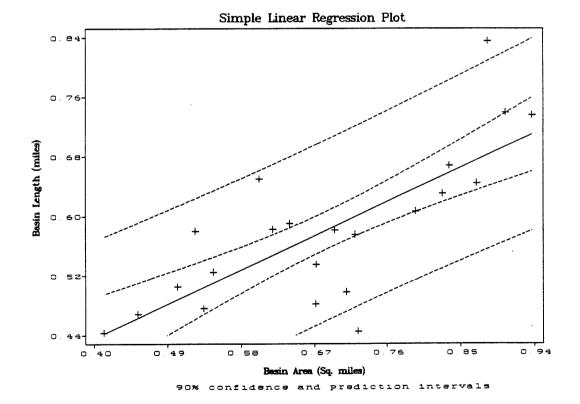
UNWEIGHTED	LEAST SQ	UARES I	LINEAR	REGRES	SION	OF BASIN	PERIN	1ETER
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT BA		3149 1022		.04573 .06520		16.00 7.83	_	0.0000 0.0000
R-SQUARED ADJUSTED R-	SQUARED	0.7538 0.7419				N SQUARE DEVIATION	(MSE)	0.00207 0.04553
SOURCE	DF	SS		MS		F	I	2
REGRESSION RESIDUAL TOTAL	1 20 21	0.120 0.041 0.168	146	0.12 0.00		61.24	0.00	
CASES INCLU	DED 22	MISSIN	NG CASI	ES O				

Strata "C" third order regression output for basin perimeter versus basin area.

:

UNWEIGHTED	LEAST SQ	UARES L	INEAR	REGRES	SION	OF DRAIN	IAGE DENS	ITY
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	T	P
CONSTANT BA		3489 7539	-	.08158 .11633		7.78 -2.37		0000 0281
R-SQUARED ADJUSTED R-	SQUARED	0.2189 0.1798				SQUARE VIATION	(MSE)	0.00660 0.08123
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 20 21	0.036 0.131 0.168	98	0.03 0.00		5.60	0.0281	•
CASES INCLU	DED 22	MISSIN	G CASI	ES O				

Strata "C" third order regression output for drainage density versus basin area.



:

90% confidence and prediction intervals

UNWEIGHTED	LEAST SO	UARES I	LINEAR	REGRES	SION	OF BASIN	LENGT	Н
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	т	P
CONSTANT BA		3246 0957		06927 09876	-	3.36 5.16		0.0031 0.0000
R-SQUARED ADJUSTED R-	SQUARED	0.5710 0.5496				N SQUARE EVIATION	(MSE)	0.00476 0.06897
SOURCE	DF	SS		MS		F	P)
REGRESSION RESIDUAL TOTAL	1 20 21	0.126 0.095 0.225	514	0.120		26.62	0.00	00
CASES INCLU	DED 22	MISSI	NG CASE	IS O				

Strata "C" third order regression output for basin length versus basin area.

UNWEIGHTED L	LEAST SQ	UARES LIN	EAR	REGRES	SION (OF NUMBE	ROF	FIRST ORDERS
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	т	P
CONSTANT	1.0	0231		26244		3.82		0.0012
TCHL	1.2	1361	Ο.	.16801		7.22		0.0000
CHS	0.6	4087	0.	14491		4.42		0.0003
R-SOUARED		0.7355		RESID.	MEAN	SQUARE	(MSE)	0.00802
ADJUSTED R-S	SQUARED	0.7076		STANDA	RD DE	VIATION		0.08957
SOURCE	DF	SS		MS		F		P
REGRESSION	2	0.42381		0.21	190	26.41	0.0	000
RESIDUAL	19	0.15244		0.00	802			
TOTAL	21	0.57625	5					
CASES INCLU	DED 22	MISSING	CASI	ES O				

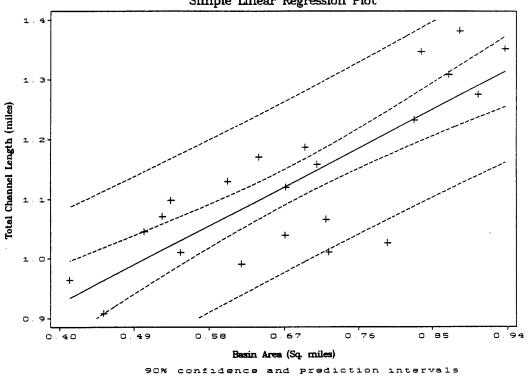
Strata "C" third order regression output for number of first orders versus total channel length and channel slope.

Verbub		lannel le				1 01000		
UNWEIGHTED	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF SECON	DS	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	т	Р
CONSTANT	0.5	4809	0	.28199	-	1.94		0.0669
TCHL	0.7	3828	0	.18053		4.09		0.0006
CHS	0.4	4787	0	15571		2.88		0.0097
R-SQUARED ADJUSTED R-3		0.4797 0.4249				N SQUARE EVIATION	(MSE)	0.00926 0.09625
SOURCE	DF	SS		MS		F	P	
REGRESSION	2	0.1622	5	0.08	113	8.76	0.00	20
RESIDUAL	19	0.1760	0	0.00	926			
TOTAL	21	0.3382	6					
CASES INCLU	DED 22	MISSING	CASI	ES O				

.

•

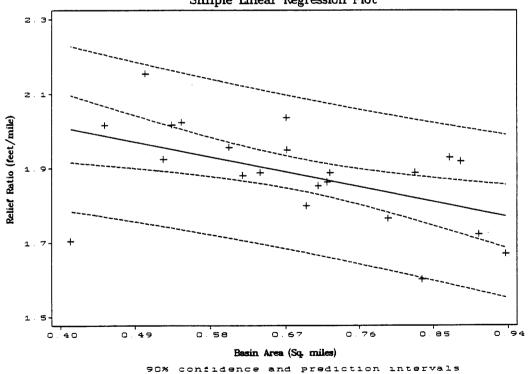
.


Strata "C" third order regression output for number of second orders versus total channel length and channel slope.

.

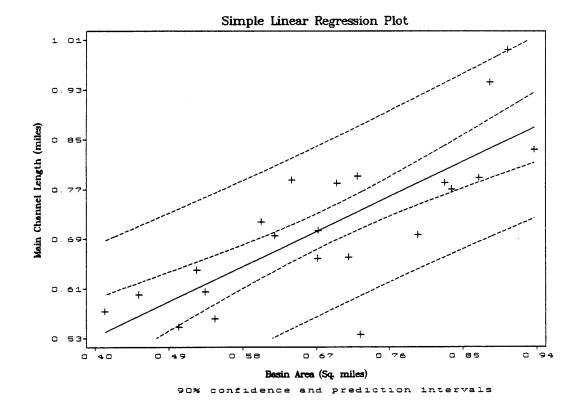
.

UNWEIGHTED I	LEAST SÇ	UARES 1	LINEAR	REGRES	SION	OF TOTAL	CHANNEL	LENGTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	Т	P
CONSTANT BA		3489 2461	-	.08158 .11633	_	7.78 6.23		0000
R-SQUARED ADJUSTED R-S	SQUARED	0.659 0.642				SQUARE VIATION	(MSE)	0.00660 0.08123
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 20 21	0.250 0.133 0.388	198	0.25		38.80	0.0000	
CASES INCLU	DED 22	MISSI	NG CASI	ES O				

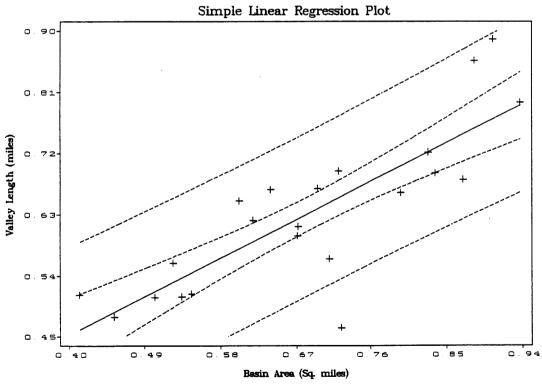

Strata "C" third order regression output for total channel length versus basin area.

Simple Linear Regression Plot

UNWEIGHTED	LEAST SQ	UARES	LINEAR	REGRES	SION	OF RELIE	F RATI	0
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	т	P
CONSTANT BA		8925 4569	-	.11787 .16806	-	18.57 -2.65		0.0000 0.0153
R-SQUARED ADJUSTED R-3	SQUARED	0.260 0.223				SQUARE	(MSE)	0.01377 0.11736
SOURCE	DF	SS	}	MS		F	P	
REGRESSION RESIDUAL TOTAL	1 20 21	0.09 0.27 0.37	547	0.09		7.03	0.01	53
CASES INCLU	DED 22	MISSI	NG CAS	ES O				


Strata "C" third order regression output for relief ratio versus basin area.

Simple Linear Regression Plot


UNWEIGHTED	LEAST SO	UARES	LINEA	R F	EGRES	SION	OF MAIN	CHANN	EL LENGTH	
PREDICTOR VARIABLES	COEFFI	CIENT	ST	DE	ERROR		STUDENT'	SТ	P	
CONSTANT BA		8208 2711)7822 1153	-	3.61 5.62		0.0018	
R-SQUARED ADJUSTED R-	SQUARED	0.612 0.593					N SQUARE EVIATION	(MSE)	0.00607 0.07788	
SOURCE	DF	SS	;		MS		F		P	
REGRESSION RESIDUAL TOTAL	1 20 21	0.19 0.12 0.31	131	_	0.19		31.62	0.0	000	
CASES INCLU	IDED 22	MISSI	NG CA	SES	<u> </u>					

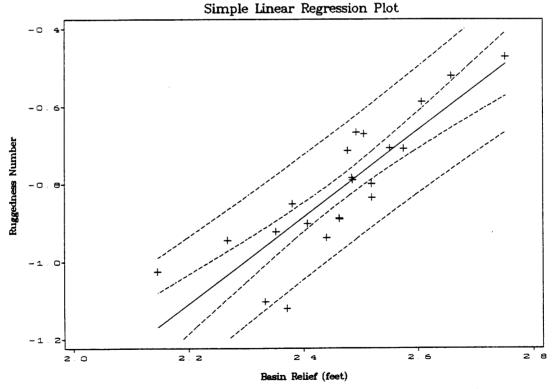
Strata "C" third order regression output for main channel length versus basin area.

UNWEIGHTED 1	LEAST SQ	UARES I	LINEAR	REGRES	SION	OF VALLE	Y LENG	GTH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	т	P
CONSTANT BA		0159 2856		06860 09782	-	2.94 6.43		0.0081 0.0000
R-SQUARED ADJUSTED R-S	SQUARED	0.6737 0.6574		RESID. STANDAI		N SQUARE EVIATION	(MSE)	0.00467 0.06831
SOURCE	DF	SS		MS		F	1	2
REGRESSION RESIDUAL TOTAL	1 20 21	0.192 0.093 0.286	333	0.192		41.29	0.00	. 000
CASES INCLU	DED 22	MISSIN	NG CASE	S 0				

Strata "C" third order regression output for valley length versus basin area.

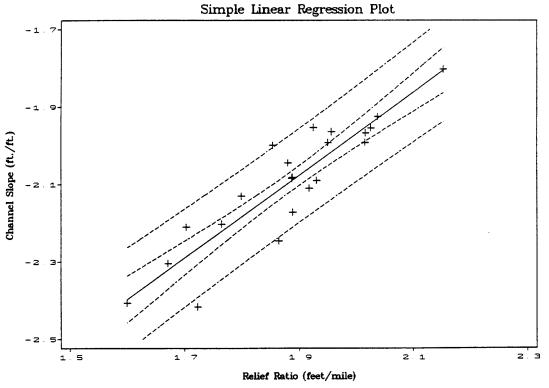
Strata "C	" third	order	regression	output	of	basin	relief	versus	basin	area
and	basin	length	-							

UNWEIGHTED	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF BASIN	RELIE	lF
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	Т	P
CONSTANT BA BL	-0.4	20558 0991 02978	0	.15106 .26303 .39005	-	14.60 -1.56 2.38		0.0000 0.1356 0.0277
R-SQUARED ADJUSTED R-	SQUARED	0.2345 0.1539				N SQUARE EVIATION	(MSE)	0.01447 0.12031
SOURCE	DF	SS		MS		F	F)
REGRESSION RESIDUAL TOTAL	2 19 21	0.0842 0.2750 0.3592	0	0.04 0.01		2.91	0.07	90
CASES INCLU	JDED 22	MISSING	CASI	ES O				


								والمحجار المراجع والمحد والمحادث والمحادث والمحادث والمحادث والمحادث والمحادث والمحادث والمحادث والمحادث والمح
UNWEIGHTED	LEAST SQ	UARES LIN	EAR	REGRESS	SION	OF USED	RELIEF	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	S	TUDENT'S	T	P
CONSTANT	3.5	4286	0.	23861		14.85	0	0000
ва	0.5	0226	0.	14276		3.52	0	0023
CHS		1249		13804		5.89	Ó	.0000
Спо	0.0	1247	0.	12004		5.05	Ŭ	
R-SQUARED ADJUSTED R-	SQUARED	0.6466 0.6095		RESID. STANDAI		SQUARE VIATION	(MSE)	0.00582 0.07629
SOURCE	DF	SS		MS		F	P	
REGRESSION	2	0.20236	;	0.10	L18	17.39	0.000	
RESIDUAL	19	0.11057	,	0.00	582			
TOTAL	21	0.31293						
	41	0.51295	,					
CASES INCLU	DED 22	MISSING	CASE	ES O				

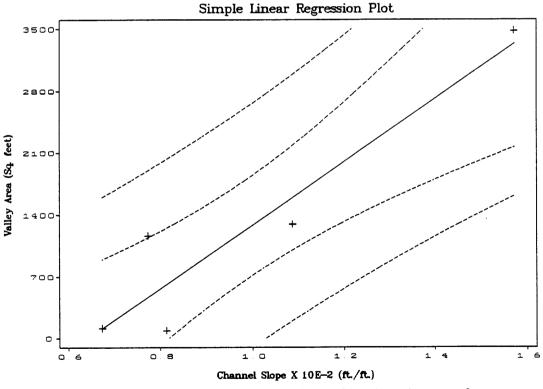
•

Strata "C" third order regression output for used relief versus basin area and channel slope.


UNWEIGHTED L	EAST SQ	UARES	LINEA	R R	EGRESS	SION	OF RUGGE	DNESS	NUMBER
PREDICTOR VARIABLES	COEFFI	CIENT	ST	DE	RROR	2	STUDENT'S	T	P
CONSTANT BR	-3.5 1.1	7706 2191			7257 5091	-	-9.60 7.43		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.734 0.721	-				N SQUARE EVIATION	(MSE)	0.00818 0.09045
SOURCE	DF	SS	5		MS		F		P
REGRESSION RESIDUAL TOTAL	1 20 21	0.49 0.16 0.61	5363		0.452		55.27	0.0	
CASES INCLUD	ED 22	MISSI	ING CA	SES	0				

Strata "C" third order regression output for ruggedness number versus basin relief.

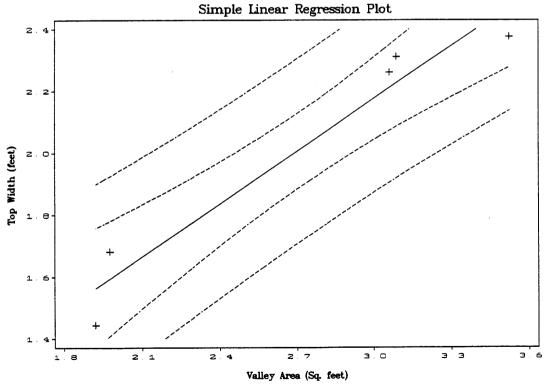
UNWEIGHTED L	EAST SQ	UARES LI	NEAR	REGRES	SION	OF CHANN	EL SLO	PE
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT RR	-4.1 1.0	0982 7041	-	.21327 .11294		-19.27 9.48		0.0000 0.0000
R-SQUARED ADJUSTED R-S	QUARED	0.8179 0.8088				N SQUARE EVIATION	(MSE)	0.00475 0.06892
SOURCE	DF	SS		MS		F	₽	
REGRESSION RESIDUAL TOTAL	1 20 21	0.42663 0.0950 0.52163	0	0.42		89.82	0.00	00
CASES INCLUD	ED 22	MISSING	CASI	ES O				


Strata "C" third order regression output for channel slope versus relief _______ratio.

90% confidence and prediction intervals

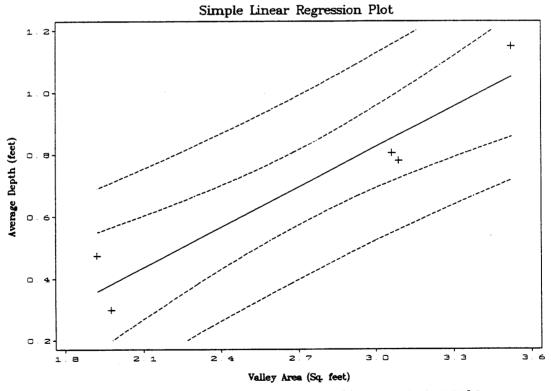
siope.								
UNWEIGHTED L	EAST S	QUARES L	INEAR	REGRES	SION	OF VALLE	Y AREA	
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR		STUDENT'S	Т	P
CONSTANT	-23(00.32	76	55.955		-3.00	0	.0575
CHS	3.583	3E+05	7:	3920.8		4.85	0	.0168
R-SQUARED ADJUSTED R-S	QUARED	0.8868 0.8490				N SQUARE EVIATION	(MSE)	2.879E+05 536.561
SOURCE	DF	SS		MS		F	P	
REGRESSION	1	6.764E+	06	6.764E	+06	23.49	0.016	8
RESIDUAL	3	8.637E+	05	2.879E	+05			
TOTAL	4	7.628E+	06					
CASES INCLUD	ED 5	MISSING	CASES	S 0				

Strata "C" third order regression output for valley area versus channel slope.


:

90% confidence and prediction intervals

757


UNWEIGHTED L	EAST SQ	UARES L	INEAR	REGRES	SION	OF TOP W	IDTH	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT A		7455 6715		.22359 .08012		2.12 7.08		0.1239 0.0058
R-SQUARED ADJUSTED R-S	QUARED	0.9435 0.9247				N SQUARE EVIATION	(MSE)	0.01346 0.11600
SOURCE	DF	SS		MS		F	1	2
REGRESSION RESIDUAL TOTAL	1 3 4	0.674 0.040 0.714	37	0.67 0.01		50.10	0.00	
CASES INCLUE	ED 5	MISSING	CASES	5 0				

Strata "C" third order regression output for top width versus valley area.

UNWEIGHTED I	LEAST SQ	UARES LI	NEAR	REGRES	SION	OF AVERA	GE DEPI	TH
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	T	P
CONSTANT A		7217 3208	-	.22194 .07953		-2.13 5.43).1233).0122
R-SQUARED ADJUSTED R-S	QUARED	0.9077 0.8770				N SQUARE	(MSE)	0.01326 0.11515
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 3 4	0.3913 0.0397 0.4311	8	0.39		29.51	0.012	
CASES INCLUI	DED 5	MISSING	CASES	50				

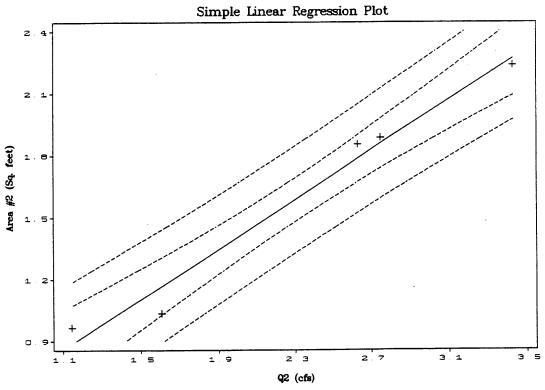
Strata "C" third order regression output for average depth versus valley area.

UNWEIGHTED I	LEAST SQ	UARES LIN	EAR	REGRES	SION	OF AREA	#2	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	:	STUDENT'S	T	P
CONSTANT BA RR	4.5	4609 3417 0366	0.	79684 98157 60889		-5.39 4.62 5.91		0.0328 0.0438 0.0275
R-SQUARED ADJUSTED R-S	SQUARED	0.9464 0.8927				N SQUARE EVIATION	(MSE)	0.03419 0.18490
SOURCE	DF	SS		MS		F	F	<u>,</u>
REGRESSION RESIDUAL TOTAL	2 2 4	1.20647 0.06838 1.27485	3	0.60 0.03	-	17.64	0.05	
CASES INCLU	DED 5	MISSING (CASES	G 0				

;

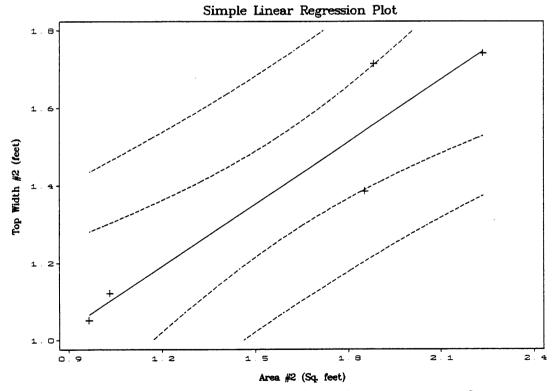
•

Strata "C" third order regression output for area #2 versus basin area and relief ratio.

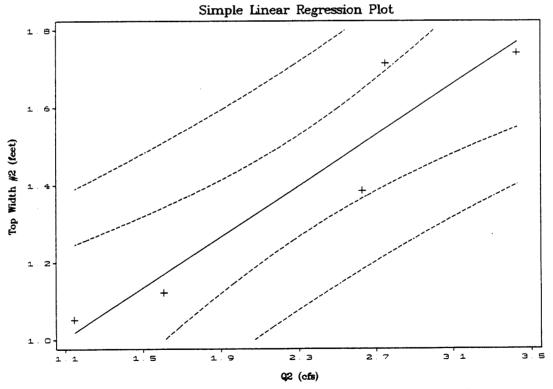

UNWEIGHTED L	EAST SQ	UARES L	INEAR	REGRES	SION	OF Q2		
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	₽
CONSTANT		5121	_	.90737		-11.87		.0070
BA	7.6	0039	0	.75162		10.11	0	.0096
RR	15.	8567	1	.23198		12.87	0	.0060
R-SQUARED		0.9882		RESID.	MEA	N SQUARE	(MSE)	0.02005
ADJUSTED R-S	QUARED	0.9764		STANDA	RD D	EVIATION		0.14158
SOURCE	DF	SS		MS		F	P	
REGRESSION	2	3.354	05	1.67	702	83.66	0.0118	- 3
RESIDUAL	2	0.040	09 .	0.02	005			
TOTAL	4	3.394						
	•	5.552						
CASES INCLUD	ED 5	MISSING	CASE	S 0				

•

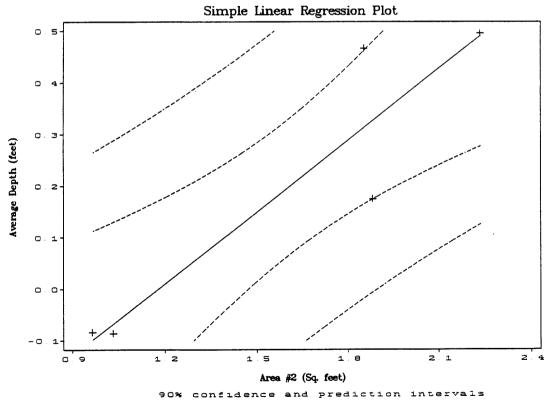
Strata "C" third order regression output for Q2 versus basin area and relief ratio.


UNWEIGHTED I	LEAST SQ	UARES L	INEAR	REGRES	SION	OF AREA	#2	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	T	P
CONSTANT Q2		9396 0552		13402 05460		1.45 11.09).2436).0016
R-SQUARED ADJUSTED R-S	SQUARED	0.9762 0.9682				N SQUARE EVIATION	(MSE)	0.01012 0.10060
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 3 4	1.244 0.030 1.274	36	1.24		122.97	0.003	
CASES INCLU	DED 5	MISSING	CASES	5 0				

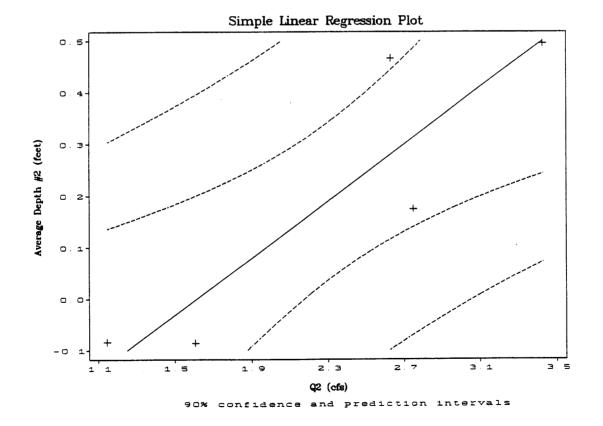
Strata "C" third order regression output for area #2 versus Q2.


UNWEIGHTED	LEAST SÇ	UARES	LINEAL	R REGRES	SION	OF TOP W	NIDTH #2	2
PREDICTOR VARIABLES	COEFFI	CIENT	STI	O ERROR	S	rudent's	БТ	P
CONSTANT A2		4946 3517		0.18931		2.90 4.73		0.0624 0.0179
R-SQUARED ADJUSTED R-	SQUARED	0.881 0.842				SQUARE VIATION	(MSE)	0.01634 0.12784
SOURCE	DF	SS	;	MS		F	P	
REGRESSION RESIDUAL TOTAL	1 3 4	0.36 0.04 0.41	903	0.36	513 634	22.34	0.017	79
CASES INCLU	DED 5	MISSIN	IG CASI	ES O				

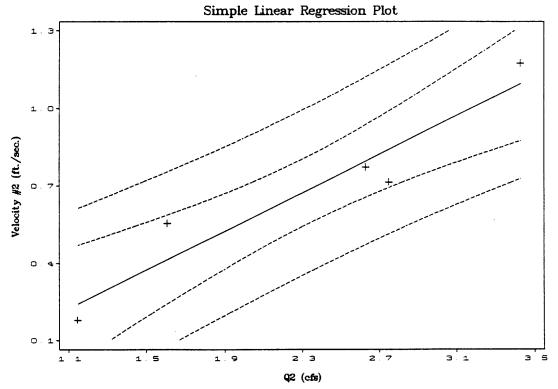
Strata "C" third order regression output for top width #2 versus area #2.


UNWEIGHTED I	LEAST SQ	UARES	LINEAR	REGRES	SION	I OF TOP W	IDTH :	#2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT Q2		4157 2912	-	.16589 .06759		3.87 4.87		0.0306 0.0165
R-SQUARED ADJUSTED R-S	QUARED	0.887 0.850				AN SQUARE DEVIATION	(MSE)	0.01551 0.12452
SOURCE	DF	SS		MS		F		P
REGRESSION RESIDUAL TOTAL	1 3 4	0.36 0.04 0.41		0.36		23.71	0.0	165
CASES INCLUI	DED 5	MISSIN	G CASE	s 0				

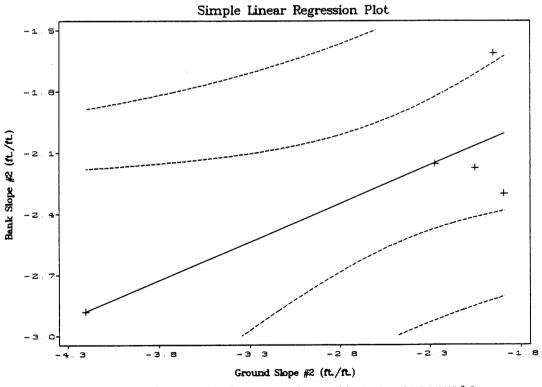
Strata "C" third order regression output of top width #2 versus Q2.


PREDICTOR VARIABLES	COEFFI	CIENT	5	STD	ERROR	:	STUDENT'S	T	P
CONSTANT A2		4626 6384	-		18605 11128	-	-2.94 4.17		0.0607 0.0251
R-SQUARED ADJUSTED R-S	SQUARED	0.852 0.803					N SQUARE EVIATION	(MSE)	0.01579 0.12564
SOURCE	DF	SS			MS		F	I	P
REGRESSION RESIDUAL TOTAL	1 3 4	0.27 0.04 0.32	736	-	0.27		17.37	0.02	251

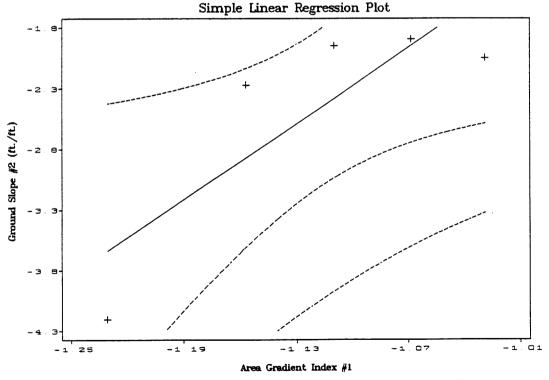
Strata "B" third order regression output for average depth #2 versus area _____#2.


UNWEIGHTED I	LEAST SC	UARES L	INEAR	REGRES	SION OF	AVERA	GE DEF	PTH #2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	т	P
CONSTANT Q2		4473		19359 07888		-2.30 3.50		0.1052 0.0396
R-SQUARED ADJUSTED R-S		0.8030 0.7374			MEAN S RD DEVI	~	(MSE)	0.02112 0.14531
SOURCE	DF	SS		MS		F	F	>
REGRESSION RESIDUAL TOTAL	1 3 4	0.258 0.063 0.321	35	0.25		12.23	0.03	96
CASES INCLUI	DED 5	MISSING	CASES	5 O				

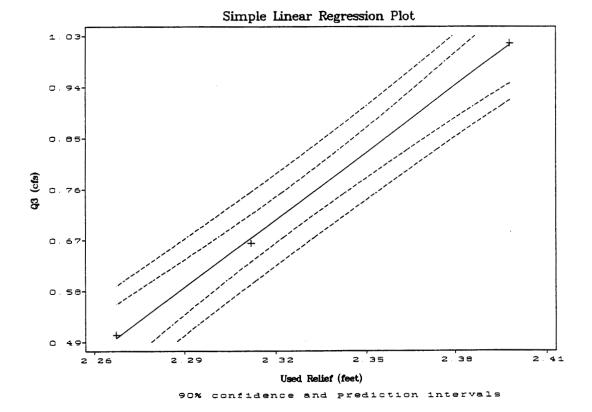
Strata "C" third order regression output for average depth #2 versus Q2.


UNWEIGHTED I	EAST SC	UARES LI	NEAR	REGRES	SION	OF VELOC	ITY #2	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	5	STUDENT'S	т	P
CONSTANT Q2		8548 7368		16574 06753	-	-1.12 5.53		0.3446 0.0116
R-SQUARED ADJUSTED R-S	QUARED	0.9108 0.8810				N SQUARE EVIATION	(MSE)	0.01548 0.12441
SOURCE	DF	SS		MS		F	₽	
REGRESSION RESIDUAL TOTAL	1 3 4	0.4739 0.0464 0.5203	3	0.47		30.62	0.01	16
CASES INCLUE	ED 5	MISSING	CASES	5 0		·····		

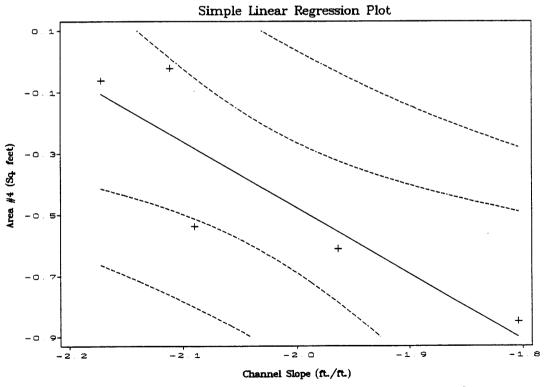
Strata "C" third order regression output for velocity #2 versus Q2.

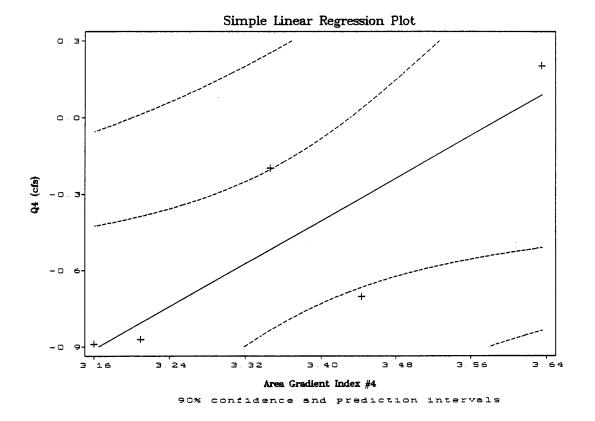

UNWEIGHTED L	EAST SQ	UARES LI	NEAR	REGRES	SION	OF BANK	SLOPE	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT GS2	-1.2 0.3	8909 7829		40206		-3.21 2.47		0.0491 0.0902
R-SQUARED ADJUSTED R-S	QUARED	0.6701 0.5601				N SQUARE EVIATION	(MSE)	0.08975 0.29959
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 3 4	0.5469 0.2692 0.8161	6	0.54 0.08		6.09	0.090	02
CASES INCLUE	ED 5	MISSING	CASES	5 0				

Strata "C" third order regression output for bank slope versus ground slope.

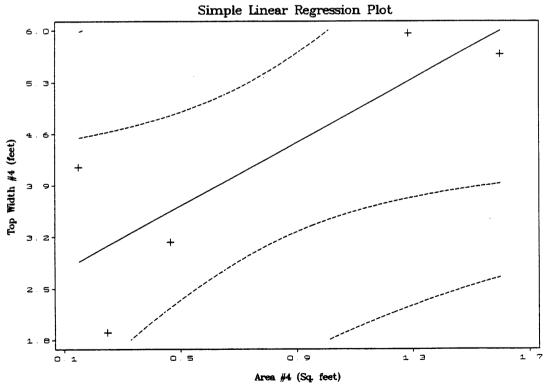

UNWEIGHTED L	EAST SQ	UARES I	LINEAR	REGRES	SION	OF GROUN	D SLOPE	#2
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT AGI1		8584 4208	-	.38583 .91214		2.09 2.66	-	.1272 .0761
R-SQUARED ADJUSTED R-S	QUARED	0.7028 0.6038	-			N SQUARE EVIATION	(MSE)	0.37857 0.61528
SOURCE	DF	SS		MS		F	P	_
REGRESSION RESIDUAL TOTAL	1 3 4	2.680 1.135 3.825	572	2.68 0.37		7.10	0.0763	L
CASES INCLUD	ED 5	MISSING	G CASE	S 0				

Strata "C" third order regression output for ground slope #2 versus area gradient index #1.

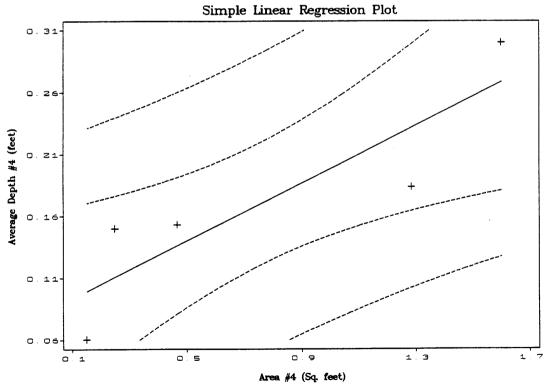

UNWEIGHTED L	EAST S	QUARES L	INEAR	REGRES	SION	OF Q3		
PREDICTOR VARIABLES	COEFF	ICIENT	STD	ERROR		STUDENT'S	т	P
CONSTANT UR	÷ -	47410 95692	+	.27501 .11822		-30.81 33.47		0.0207 0.0190
R-SQUARED ADJUSTED R-S	QUARED	0.9991 0.9982				N SQUARE EVIATION	(MSE)	1.235E-04 0.01111
SOURCE	DF	SS		MS		F		P
REGRESSION RESIDUAL TOTAL	1 1 2	0.138 1.235E- 0.138	04	0.13 1.235E		1120.32	0.0	190
CASES INCLUD	ED 3	MISSING	CASE	52				


UNWEIGHTED L	EAST SQ	UARES	LINEAR	REGRES	SION	OF AREA	#4	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	:	STUDENT'S	Т	P
CONSTANT	-4.7	9668	_	.36974	-	-3.50	-	.0394
R-SQUARED ADJUSTED R-S		0.773	9	RESID.		N SQUARE EVIATION	-	
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 3 4	0.40 0.11 0.51	738	0.40 0.03	- · -	10.27	0.049	2
CASES INCLUD	ED 5	MISSIN	G CASE	s 0				

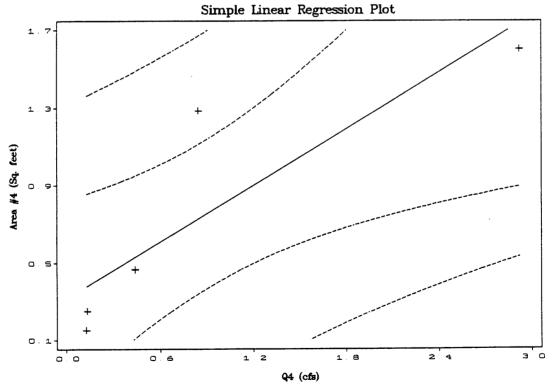
Strata "C" third order regression output for area #4 versus channel slope.


UNWEIGHTED I	LEAST SQ	UARES	LINE	EAR	REGRES	SION	OF Q4		
PREDICTOR VARIABLES	COEFFI	CIENT	5	STD	ERROR		STUDENT'S	т	P
CONSTANT AGI4		5050 .0144	-		63769 78423		-2.86 2.68		0.0644 0.0751
R-SQUARED ADJUSTED R-S	QUARED	0.705					N SQUARE EVIATION	(MSE)	0.08949 0.29915
SOURCE	DF	SS	5		MS		F	I	?
REGRESSION RESIDUAL TOTAL	1 3 4	0.64 0.26 0.91		-	0.64		7.18	0.07	751
CASES INCLUE	ED 5	MISSIN	IG CI	ASES	<u> </u>				

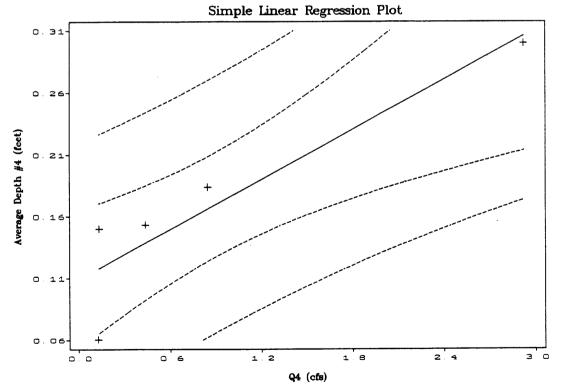
Strata "C" third order regression output for Q4 versus area gradient index #4.


UNWEIGHTED :	LEAST SO	UARES L	INEAR	REGRES	SION OF	TOP W	IDTH #	‡ 4	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STU	DENT'S	БТ	P	
CONSTANT A4		4018 6197		81269 85573		3.13 2.53		0.0522 0.0857	
R-SQUARED ADJUSTED R-	SQUARED	0.6803 0.5737			MEAN SO RD DEVI	~	(MSE)	1.24280 1.11481	
SOURCE	DF	SS		MS		F]	2	
REGRESSION RESIDUAL TOTAL	1 3 4	7.932 3.728 11.66	39	7.93 1.24		6.38	0.08	357	
CASES INCLU	DED 5	MISSING	CASES	5 0					

Strata "C" third order regression output for top width #4 versus area #4.

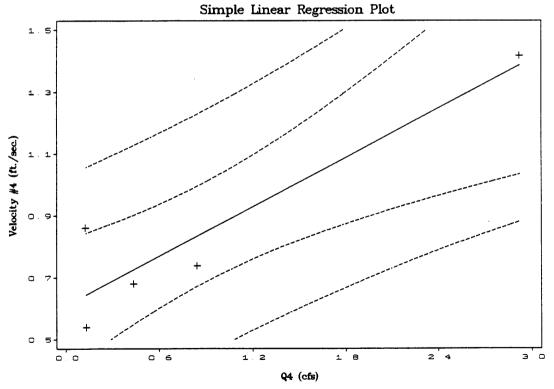

UNWEIGHTED L	EAST SQ	UARES	LINEAR	R R	EGRES	SION	OF AV	ERAGE	DEPTH	#4
PREDICTOR VARIABLES	COEFFI	CIENT	STI	ΣE	RROR		STUDEN	T'S T	1	P
CONSTANT A4		8193 1668			3433 3615			39 23		0971 0483
R-SQUARED ADJUSTED R-S		0.776 0.701					N SQUA EVIATI	-	SE)	0.00222 0.04709
SOURCE	DF	ss			MS		F	•	₽	
REGRESSION RESIDUAL TOTAL	1 3 4	0.02 0.00 0.02	665	_	0.02: 0.00:		10.	42	0.0483	
CASES INCLUD	ED 5	MISSIN	G CASI	ES	0					

Strata "C" third order regression output for average depth #4 versus area #4._____


UNWEIGHTED I	LEAST SQ	UARES	LINEAR	REGRES	SION O	F AREA	#4	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	ST	UDENT'S	Т	P
CONSTANT Q4		1555 8610	-	.21544 .15653		1.46 3.11).2392).0531
R-SQUARED ADJUSTED R-S	QUARED	0.762 0.683		RESID. STANDA		SQUARE IATION	(MSE)	0.13422 0.36637
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 3 4	1.29 0.40 1.69	267	1.29 0.13		9.64	0.053	31
CASES INCLU	DED 5	MISSIN	G CASES	5 0				

Strata "C" third order regression output for area #4 versus Q4.

UNWEIGHTED I	LEAST SQ	UARES LI	INEAR	REGRES	SION	OF AVERA	GE D	EPTH	#4
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR		STUDENT'S	т		P
CONSTANT Q4		0919 6742		02367 01720		4.61 3.92			0192 0295
R-SQUARED ADJUSTED R-S	QUARED	0.8367 0.7823				N SQUARE EVIATION	(MSE	:)	0.00162 0.04025
SOURCE	DF	SS		MS		F		P	
REGRESSION RESIDUAL TOTAL	1 3 4	0.0249 0.0048 0.0297	36	0.02		15.37	0.	0295	
CASES INCLU	DED 5	MISSING	CASES	5 0	- <u>100 - 100 - 100</u>				


Strata "C" third order regression output for average depth #4 versus Q4.

ł

UNWEIGHTED L	EAST SQ	UARES 1	LINEAR	REGRES	SION OF	VELOCI	TY #4	
PREDICTOR VARIABLES	COEFFI	CIENT	STD	ERROR	STUD	ent's	т	P
CONSTANT Q4		0916 6589		09023 06555		6.75 4.06		0066 0270
R-SQUARED ADJUSTED R-S	QUARED	0.8458 0.7944			MEAN SQ RD DEVIA		(MSE)	0.02354 0.15343
SOURCE	DF	SS		MS		F	P	
REGRESSION RESIDUAL TOTAL	1 3 4	0.38 0.07 0.45	063	0.38 0.02		6.45	0.0270	
CASES INCLUE	ED 5	MISSING	G CASES	5 0				

Strata "C" third order regression output for velocity #4 versus Q4.

Basin ID 0500	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Floodplain Width (ft)	Bed Slope (ft/ft)
n	2	2	2	2	2	2	1	2
Mean	3477.40	249.77	239.90	14.58	15.40	19.83	21.95	0.012
S.D.	1353.90	42.32	49.07	7.88	8.77	14.61	0.004	0.005
C.V. (%)	38.93	16.94	20.46	54.09	56.94	73.67	32.64	21.98
Minimum	2520.10	219.85	205.20	9.00	9.20	9.50	21.95	0.009
Maximum	4434.80	279.70	27:50	20.15	21.60	30.16	21.95	0.014
Range	1914.70	59.85	69.40	11.15	12.40	20.66	0.00	0.005

High bank reach means for Strata "C" third order

.

....

Basin ID 0700	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Floodplain Width (ft)	Bed Slope (ft/ft)
n	2	2	2	2	2	2	2	2
Mean	1161.40	185.65	183.40	6.35	6.43	29.54	117.65	0.005
S.D.	23.55	33.09	33.87	0.99	1.03	10.17	41.58	0.002
C.V. (%)	2.03	17.83	18.47	15.59	15.96	34.41	35.34	39.22
Minimum	1144.80	162.25	159.45	5.65	5.70	22.35	88.25	0.004
Maximum	1178.10	209.05	207.35	7.05	7.15	36.73	147.05	0.007
Range	33.30	46.80	47.90	1.40	1.45	14.38	58.80	0.003

Basin ID 1200	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydrauli Radius	c Averag Depth (ft)			n Bed Slope (ft/ft)
n	2	2	2	2	2	2	2	2 2
Mean	1294.90	211.57	209.4	5 6.03	6.08	34.6	125.25	0.004
S.D.	448.91	56.68	57.63	0.46	0.39	7.6	42.99	0.006
C.V. (%)	34.67	26.79	27.52	7.63	6.40	22.	34.33	133.29
Minimum	977.45	171.50	168.7	0 5.70	5.80) 29.2	94.85	5 0.000
Maximum	1612.30	251.65	250.2	0 6.35	6.35	i 40.0)7 155.65	5 0.009
Range	634.85	80.15	81.50	0.65	0.55	i 10.8	60.80	0.008
Basin ID 1600	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Floodplain Width (ft)	Bed Slope (ft/ft)
n	3	3	3	3	3	3	0	3
Mean	105.52	55.92	54.57	1.98	2.10	30.08	0.00	0.005
S.D.	48.52	31.86	32.54	0.68	0.79	20.99	0.00	0.003
C.V. (%)	45.99	56.97	59.63	34.32	37.80	69.76	0.00	66.80
Minimum	69.30	31.50	28.85	1.45	1.50	9.66	0.00	0.003
Maximum	160.65	91.95	91.15	2.75	3.00	51.59	0.00	0.008
Range	91.35	60.45	62.30	1.30	1.50	41.93	0.00	0.006

.

... *

.

Basin ID 2200	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Floodplain Width (ft)	Bed Slope (ft/ft)
n	3	3	3	3	3	3	1	3
Mean	88.20	32.10	28.45	2.73	3.13	10.19	10.15	0.008
S.D.	33.90	4.08	4.10	0.81	1.06	4.62	0.01	0.007
C.V. (%)	38.43	12.70	14.40	29.74	33.86	45.39	116.60	73.37
Minimum	57.45	28.55	23.90	1.85	1.95	6.94	10.15	-0.002
Maximum	124.55	36.55	31.85	3.45	4.00	15.48	10.15	0.016
Range	67.10	8.00	7.95	1.60	2.05	8.54	0.00	0.017

....

.

Basin ID 0500	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	2	2	2	2	2	2	2	2	2	2	2
Mean	194.10	57.25	55.80	3.23	3.33	18.06	0.012	0.025	0.033	14.94	2982.30
S.D.	104.09	8.27	7.21	1.38	1.45	5.59	0.004	0.009	0.000	1.59	1863.30
C.V. (%)	53.63	14.45	12.93	42.76	43.60	30.98	32.64	36.68	0.00	10.63	62.48
Minimum	120.50	51.40	50.70	2.25	2.30	14.10	0.009	0.019	0.033	13.82	1664.80
Maximum	267.70	63.10	60.90	4.20	4.35	22.01	0.014	0.032	0.033	16.06	4299.90
Range	147.20	11.70	10.20	1.95	2.05	7.91	0.005	0.013	0.000	2.25	2635.10

Medium bank reach means for Strata "C" third order

.....

.

Basin ID 0700	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	2	2	2	2	2	2	2	2	2	2	2
Mean	131.92	58.10	57.25	1.75	1.78	35.58	0.012	0.008	0.033	5.19	658.88
S.D.	105.39	14.35	14.28	0.78	0.74	6.02	0.012	0.006	0.000	0.48	482.86
C.V. (%)	79.89	24.71	24.95	44.45	41.83	16.92	95.32	72.46	0.00	9.34	73.29
Minimum	57.40	47.95	47.15	1.20	1.25	31.32	0.004	0.004	0.033	4.85	317.44
Maximum	206.45	68.25	67.35	2.30	2.30	39.83	0.020	0.012	0.033	5.53	1000.30
Range	149.05	20.30	20.20	1.10	1.05	8.51	0.016	0.008	0.000	0.69	682.86

Basin ID 1200	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	1	1	1	1	1	1	1	1	1	1	1
Mean	9.30	12.23	11.33	0.77	0.83	14.09	0.0001	0.001	0.030	1.51	14.04
S.D.	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00
C.V. (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00
Minimum	9.30	12.23	11.33	0.77	0.83	14.09	0.0001	0.001	0.030	1.51	14.04
Maximum	9.30	12.23	11.33	0.77	0.83	14.09	0.0001	0.001	0.030	1.51	14.04
		0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00
Range	0.00	0.00									
Range	0.00	1									
Range Basin ID 1600	0.00 Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
Basin ID	Агеа	Wetted Perimeter	Top Width		Depth		Slope	Slope		-	
Basin ID 1600	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Radius	Depth (ft)	Ratio	Slope (ft/ft)	Slope (ft/ft)	*""	(ft/s)	(cfs)
Basin ID 1600 n	Area (ft²) 2	Wetted Perimeter (ft) 2	Top Width (ft) 2	Radius	Depth (ft) 2	Ratio 2	Slope (ft/ft) 2	Slope (ft/ft) 2	"n" 2	(ft/s) 2	(cfs) 2
Basin ID 1600 n Mean	Area (ft ²) 2 11.28	Wetted Perimeter (ft) 2 14.05	Top Width (ft) 2 13.70	Radius 2 0.80	Depth (ft) 2 0.83	Ratio 2 16.79	Slope (ft/ft) 2 0.006	Slope (ft/ft) 2 0.008	"n" 2 0.030	(ft/s) 2 3.63	(cfs) 2 41.04
Basin ID 1600 n Mean S.D.	Area (ft ²) 2 11.28 0.32	Wetted Perimeter (ft) 2 14.05 1.41	Top Width (ft) 2 13.70 1.48	Radius 2 0.80 0.07	Depth (ft) 2 0.83 0.11	Ratio 2 16.79 3.53	Slope (ft/ft) 2 0.006 0.004	Slope (ft/ft) 2 0.008 0.005	"n" 2 0.030 0.000	(ft/s) 2 3.63 0.91	(cfs) 2 41.04 11.47
Basin ID 1600 n Mean S.D. C.V. (%)	Area (ft ²) 2 11.28 0.32 2.82	Wetted Perimeter (ft) 2 14.05 1.41 10.07	Top Width (ft) 2 13.70 1.48 10.84	Radius 2 0.80 0.07 8.84	Depth (ft) 2 0.83 0.11 12.86	Ratio 2 16.79 3.53 21.00	Slope (ft/ft) 2 0.006 0.004 61.02	Slope (ft/ft) 2 0.008 0.005 58.96	"n" 2 0.030 0.000 0.00	(ft/s) 2 3.63 0.91 25.22	(cfs) 2 41.04 11.47 27.94

....

G

Basin ID 2200	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	4	4	4	4	4	4	4	4	4	4	4
Mean	89.18	30.13	27.21	2.75	3.13	9.13	0.010	0.008	0.034	7.14	821.02
S .D.	59.31	15.39	15.92	0.89	1.09	4.57	0.008	0.007	0.001	4.66	901.84
C.V. (%)	66.50	51.09	58.48	32.22	35.02	49.99	86.36	91.93	1.48	65.35	109.84
Minimum	23.05	15.95	14.80	1.45	1.55	5.64	-0.002	0.001	0.033	3.19	74.42
Maximum	166.00	51.95	50.50	3.40	4.05	15.33	0.016	0.017	0.034	12.39	2057.30
Range	142.95	36.00	35.70	1.95	2.50	9.69	0.018	0.016	0.001	9.20	1982.88

....

Basin ID 0500	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	1	1	1	1	1	1	1	1	1	1	1
Mean	2.20	10.35	10.30	0.20	0.20	64.33	0.014	0.015	0.030	2.10	4.62
S.D.	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00
C.V. (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Minimum	2.20	10.35	10.30	0.20	0.20	64.33	0.014	0.015	0.030	2.10	4.62
Maximum	2.20	10.35	10.30	0.20	0.20	64.33	0.014	0.015	0.030	2.10	4.62
Range	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00

-

Low bank reach means for Strata "C" third order

....

Basin ID 0700	Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	3	3	3	3	3	3	3	3	3	3	3
Mean	5.83	16.60	16.37	0.47	0.48	89.11	0.010	0.005	0.033	1.88	11.37
S.D.	1.21	9.20	9.40	0.24	0.26	115.37	0.009	0.001	0.000	0.58	5.31
C.V. (%)	20.67	55.44	57.45	50.63	53.09	129.47	83.50	22.92	0.00	30.74	46.75
Minimum	4.70	9.70	9.15	0.20	0.20	21.65	0.004	0.004	0.033	1.22	5.73
Maximum	7.10	27.05	27.00	0.65	0.70	222.33	0.020	0.006	0.033	2.29	16.28
Range	2.40	17.35	17.85	0.45	0.50	200.68	0.016	0.002	0.000	1.07	10.55

Basin ID 2200	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	2	2	2	2	2	2	2	2	2	2	2
Mean	5.05	7.15	6.65	0.55	0.60	15.67	0.003	0.001	0.030	0.91	6.03
S.D.	3.82	0.57	0.07	0.28	0.35	5.42	0.007	0.001	0.000	0.74	7.24
C.V. (%)	75.61	7.91	1.06	51.43	58.93	34.61	209.32	94.28	0.00	81.45	120.09
Minimum	2.35	6.75	6.60	0.35	0.35	11.83	-0.002	0.000	0.030	0.39	0.91
Maximum	7.75	7.55	6.70	0.75	0.85	19.50	0.008	0.001	0.030	1.44	11.14
Range	5.40	0.80	0.10	0.40	0.50	7.67	0.010	0.001	0.000	1.05	10.23

....

.

Basin ID 0500	Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	1	1	1	1	1	1	1	1	1	1	1
Mean	0.15	4.15	4.15	0.06	0.06	132.70	0.014	0.013	0.030	0.86	0.13
S.D.	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00
C.V. (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Minimum	0.15	4.15	4.15	0.06	0.06	132.70	0.014	0.013	0.030	0.86	0.13
Maximum	0.15	4.15	4.15	0.06	0.06	132.70	0.014	0.013	0.030	0.86	0.13
Range	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00

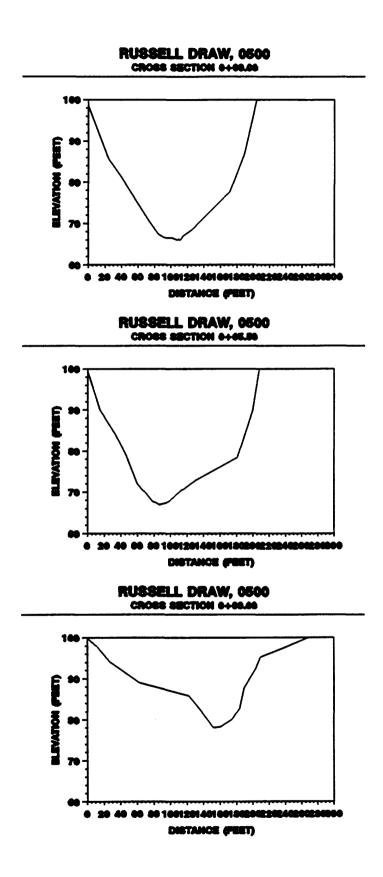
Low bank # 2 reach means for Strata "C" third order

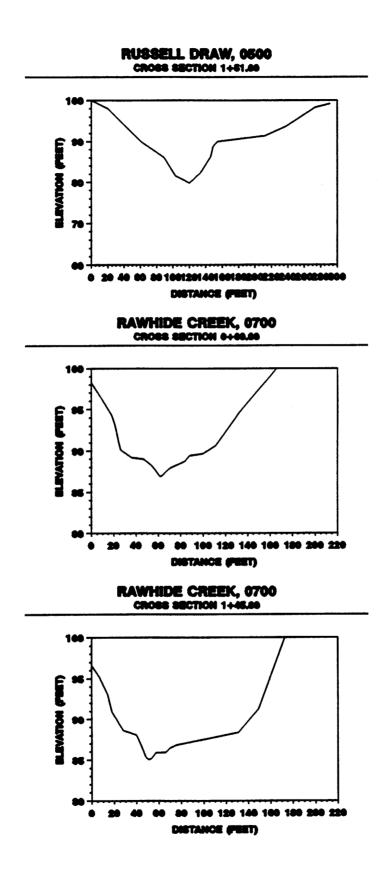
....

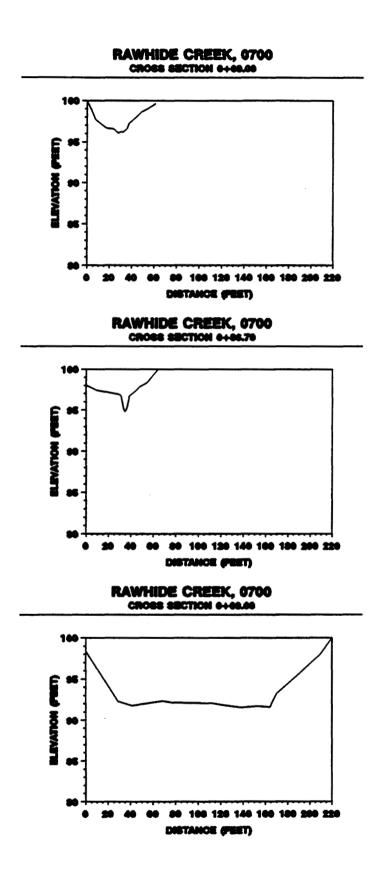
Basin ID 0700	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	2	2	2	2	2	2	2	2	2	2	2
Mean	1.60	5.83	5.68	0.28	0.30	36.09	0.012	0.005	0.033	1.42	2.92
S.D.	1.34	1.17	0.95	0.18	0.21	2.25	0.012	0.003	0.000	0.98	3.46
C.V. (%)	83.97	20.03	16.82	64.28	70.71	6.25	95.32	55.12	0.00	68.93	118.58
Minimum	0.65	5.00	5.00	0.15	0.15	34.50	0.004	0.003	0.033	0.73	0.47
Maximum	2.55	6.65	6.35	0.40	0.45	37.69	0.020	0.007	0.033	2.11	5.37
Range	1.90	1.65	1.35	0.25	0.30	3.19	0.016	0.004	0.000	1.38	4.90

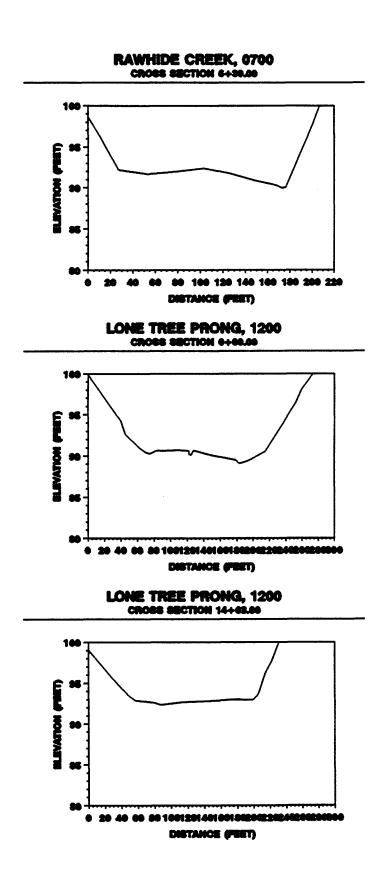
Basin ID 1200	Area (ft ³)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	1	1	1	1	1	1	1	1	1	1	1
Mean	0.25	2.10	1.90	0.15	0.15	15.00	0.0004	0.0015	0.030	0.54	0.13
S.D.	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00
C.V. (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Minimum	0.25	2.10	1.90	0.15	0.15	15.00	0.0004	0.0015	0.0300	0.54	0.13
Maximum	0.25	2.10	1.90	0.15	0.15	15.00	0.0004	0.0015	0.0300	0.54	0.13
Range	0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	0.000	0.00	0.00

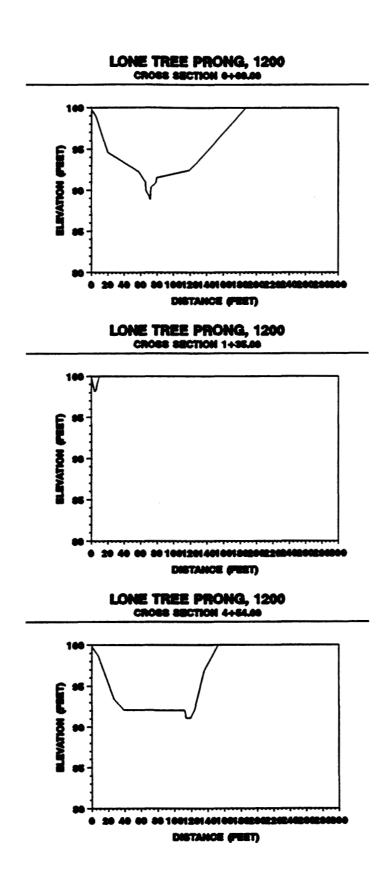
.

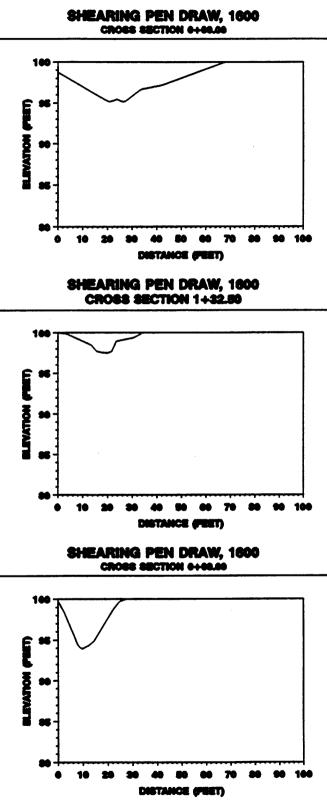

· · · ·

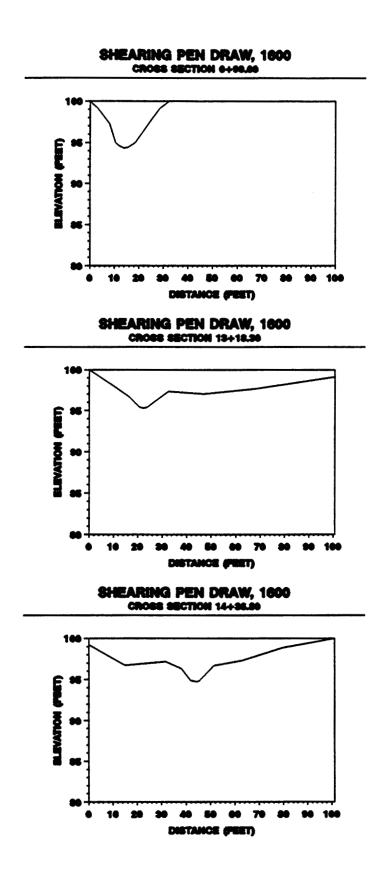

Basin ID 1600	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	3	3	3	3	3	3	3	3	3	3	3
Mean	1.28	6.00	5.95	0.18	0.18	37.25	0.005	0.005	0.032	0.74	0.84
S.D.	0.93	2.30	2.27	0.10	0.10	16.94	0.003	0.004	0.002	0.40	0.70
C.V. (%)	72.51	38.25	38.07	56.77	56.77	45.48	66.80	85.97	5.41	54.89	82.60
Minimum	0.30	3.55	3.55	0.10	0.10	21.25	0.003	0.000	0.030	0.33	0.22
Maximum	2.15	8.10	8.05	0.30	0.30	55.00	0.008	0.008	0.033	1.14	1.60
Range	1.85	4.55	4.50	0.20	0.20	33.75	0.006	0.008	0.003	0.81	1.38

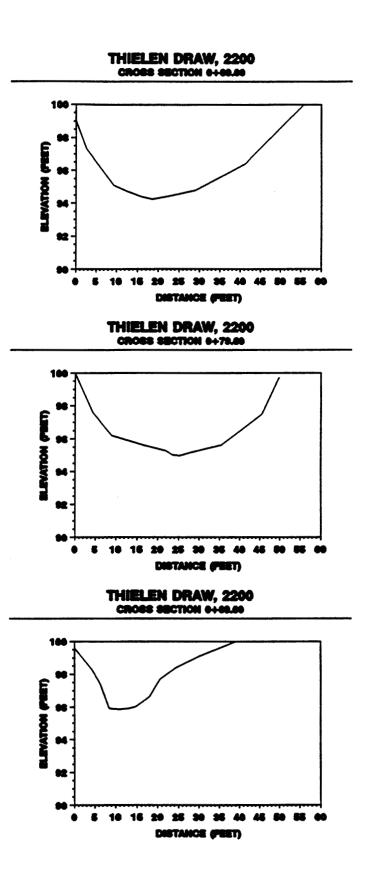

Basin ID 2200	Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)	Hydraulic Radius	Average Depth (ft)	W/D Ratio	Bed Slope (ft/ft)	Bank Slope (ft/ft)	Manning's "n"	Velocity (ft/s)	Q (cfs)
n	3	3	3	3	3	3	3	3	3	3	3
Mean	0.47	3.18	3.13	0.14	0.15	54.44	0.008	0.004	0.031	0.68	0.44
S.D.	0.29	1.37	1.33	0.03	0.06	57.85	0.009	0.006	0.001	0.65	0.60
C.V. (%)	61.86	42.88	42.59	23.61	36.02	106.26	116.60	141.98	3.69	95.73	136.47
Minimum	0.30	1.95	1.90	0.10	0.10	13.25	-0.002	0.000	0.030	0.17	0.05
Maximum	0.80	4.65	4.55	0.16	0.21	120.58	0.016	0.011	0.032	1.42	1.13
Range	0.50	2.70	2.65	0.06	0.11	107.33	0.017	0.010	0.002	1.25	1.08

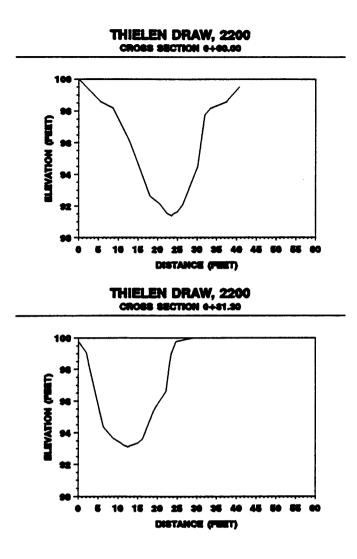

• ... •

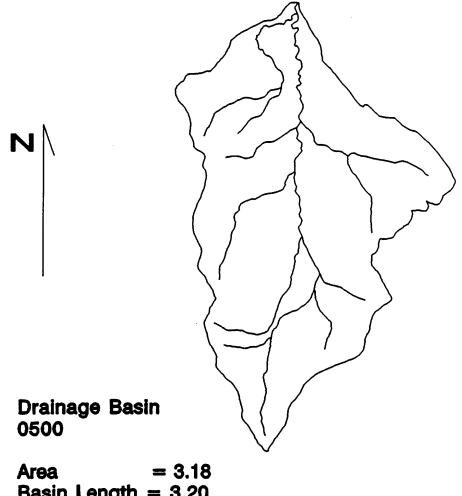

.

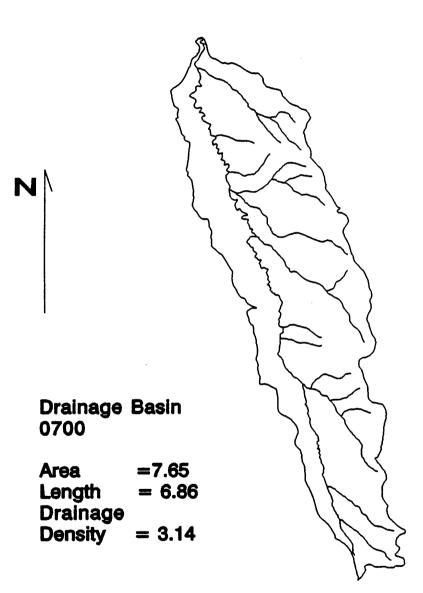




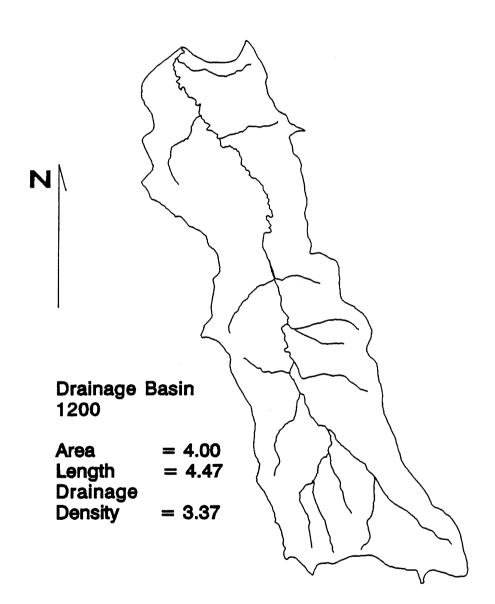


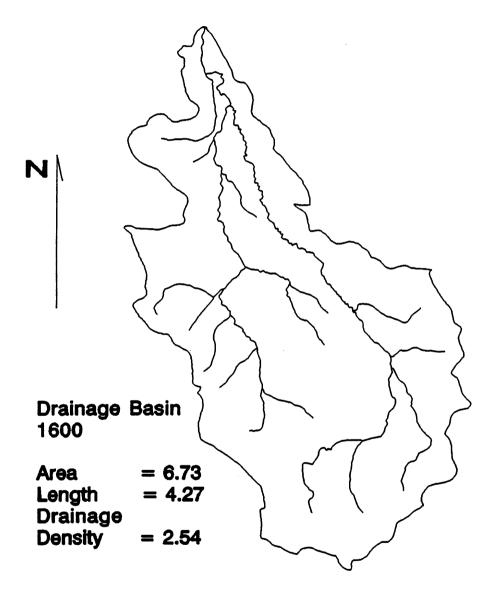


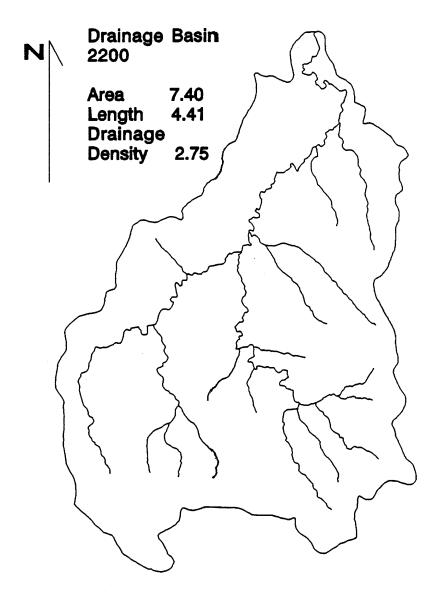




ł


•




Area= 3.18Basin Length= 3.20Drainage= 3.49

¥.

Strata "C" third order raw data by study reach, cross section, and bank identification.

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)	FLOOD- PLAIN WIDTH (feet)
0500	0+00.00A	HIGH	2670.90	265.90	10.00	
0500	1+51.00A	HIGH	2369.20	283.30	8.40	
0500	0+00.00B	HIGH	4364.20	202.80	21.50	25.20
0500	0+65.50B	HIGH	4505.30	207.60	21.70	18.70
0700	0+00.00A	HIGH	1041.80	155.10	6.70	79.20
0700	1+45.00A	HIGH	1247.70	163.80	7.60	9730
0700	0+00.00C	HIGH	1100.10	211.70	5.20	136.50
0700	6+39.00C	HIGH	1256.10	203.00	6.20	157.60
1200	0+00.00A	HIGH	2047.60	273.00	7.50	155.80
1200	14+63.00A	HIGH	1177.10	227.40	5.20	155.50
1200	0+00.00B	HIGH	1043.20	185.50	5.60	89.30
1200	4+54.00B	HIGH	911.70	151.90	6.00	100.40
1600	0+00.00A	HIGH	103.80	56.10	1.90	
1600	1+32.50A	HIGH	34.80	31.30	1.10	
1600	0+00.00B	HIGH	80.60	25.60	3.10	
1600	0+90.00B	HIGH	92.60	32.10	2.90	
1600	13+18.30B	HIGH	153.60	96.30	1.60	
1600	14+36.80B	HIGH	167.70	86.00	2.00	
2200	0+00.00B	HIGH	64.40	35.00	1.80	
2200	1+02.80B	HIGH	50.50	24.20	2.10	
2200	0+00.00C	HIGH	80.20	24.10	3.30	
2200	0+79.90C	HIGH	85.00	23.70	3.60	
2200	0+00.00D	HIGH	143.10	38.80	3.70	9.20
2200	0+81.30D	HIGH	106.00	24.90	4.30	11.10
0500	0+00.00A	MEDIUM	319.70	65.10	4.90	
0500	1+51.00A	MEDIUM	215.70	56.70	3.80	

.

BASIN I.D.	CROSS SECTION NUMBER	BANK I.D.	AREA (feet ²)	TOP WIDTH (feet)	AVERAGE DEPTH (feet)
0500	0+00.00B	MEDIUM	163.30	59.90	2.70
0500	0+65.50B	MEDIUM	77.70	41.50	1.90
0700	0+00.00A	MEDIUM	385.30	103.50	3.70
0700	1+45.00A	MEDIUM	27.60	31.20	0.90
0700	0+00.00B	MEDIUM	66.30	43.90	1.50
0700	0+86.70B	MEDIUM	48.50	50.40	1.00
1200	0+00.00B	MEDIUM	10.60	12.50	0.80
1200	1+35.00B	MEDIUM	9.30	9.50	1.00
1200	4+54.00B	MEDIUM	8.00	12.00	0.70
1600	0+00.00A	MEDIUM	16.30	20.00	0.80
1600	1+32.50A	MEDIUM	6.70	9.50	0.70
1600	13+18.30B	MEDIUM	10.50	13.20	0.80
1600	14+36.80B	MEDIUM	11.60	12.10	1.00
2200	0+00.00A	MEDIUM	166.40	51.80	3.20
2200	0+79.60A	MEDIUM	165.60	49.20	3.40
2200	0+00.00B	MEDIUM	19.30	14.90	1.30
2200	1+02.80B	MEDIUM	26.80	14.70	1.80
2200	0+00.00C	MEDIUM	70.00	19.50	3.60
2200	0+79.90C	MEDIUM	76.70	21.10	3.60
2200	0+00.00D	MEDIUM	99.50	25.00	4.00
2200	0+81.30D	MEDIUM	89.10	21.50	4.10
0500	0+00.00B	LOW	3.10	11.60	0.30
0500	0+65.50B	LOW	1.30	9.00	0.10
0700	0+00.00A	LOW	8.60	15.30	0.60
0700	1+45.00A	LOW	5.60	10.60	0.50
0700	0+00.00B	LOW	3.10	11.00	0.30

.

•

APPENDIX VI

ABSTRACTS OF RESULTING THESES AND PUBLICATIONS

Jensen, Lee E., <u>Characterization of Drainage Networks for Mine</u> <u>Land Reclamation in the Eastern Powder River Basin</u>, <u>Wyoming</u>, M.S., Department of Range Management / Wyoming Water Resources Center, July 1994.

There are 15 active and several proposed and discontinued coal mining operations in the Eastern Powder River Basin, Basin. The accessibility and quality of coal in the basin lend to its economic desirability. The current life-of-mine estimates indicate that each mine will disturb and then reclaim between 959 to 13,217 acres before completion of mining activities.

An alternative to current engineering approaches, the Geomorphic Approach, was applied in this study. A total of 384 drainage basins were selected and analyzed. There were 25 or more geomorphic characteristics delineated and measured for each basin from U.S.G.S. 1:24,000 quadrangles. Additionally, field investigations were conducted to quantify crosssectional and longitudinal profile characteristics of 58 drainage networks.

The geomorphic characteristics measured from U.S.G.S. 1:24,000 quadrangles were utilized to classify third order drainage basins into three separate strata. The geomorphic characteristics were then used to develop design equations for the reconstruction of drainage basins and networks within each strata by order. Approximately 200 significant design equations were developed for reclamation in the Eastern Powder River Basin. Anderson, Anthony J., <u>A Classification of Drainage Basins in</u> the Eastern Powder River Basin Coal Field of Wyoming. M.S., Department of Range Management/Wyoming Water Resources Center, July 1994.

Current and potential coal mining operations in the Powder River Basin have increased the need for knowledge regarding drainage basin form and function in that region. Quantitative analysis of erosional landforms has derived and defined variables that can distinguish drainage basins. This study combined quantitative morphometric, substrate, and surface cover variables with multivariate statistics to develop a classification system for low order watersheds in the Powder River Basin Coal Field in Campbell County Wyoming.

Three hundred eighty-four low order drainage basins were selected from USGS, 1:24000, 7.5 minute, topographic quadrangles. Fifteen quantitative and six categorical variables were used to characterize and describe each basin. Principal components analysis, cluster analysis, and discriminant function analysis were used to categorize the basins in each order. The resulting categories were altered as necessary after correlation key parameters were analyzed.

The resulting classification has three strata defined by geology, basin area, and gross basin slope of the third order drainage basin. Second and first order basins were classified by the third order stream to which they are tributary.