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The finite-strip method (FSM) is a hybrid technique which combines spectral and finite-element 
methods. Finite-element approximations are made for each mode of a finite Fourier series expansion. 
The Galerkin formulated method is set apart from other weighted-residual techniques by the selection 
of two types of basis functions, a piecewise linear interpolating function and a trigonometric function. 
The efficiency of the FSM is due in part to the orthogonality of the complex exponential basis: 
The linear system which results from the weak formulation is decoupled into several smaller 
systems, each of which may be solved independently. An error analysis for the FSM applied 
to time-dependent, parabolic partial differential equations indicates the numerical solution error 
is O(h2 + Wr).  M represents the Fourier truncation mode number and h represents the finite- 
element grid mesh. The exponent r 2 2 increases with the cxact solution smoothness in the 
respective dimension. This error estimate is verified computationally. Extending the result to the 
finite-layer method, where a two-dimensional trigonometric basis is used, the numerical solution 
error is O(h2 + M-' + N - 4 ) .  The N and q represent the truncation mode number and degree of 
exact solution smoothness in the additional dimension. GI 1993 John Wilev ti Sons. Inc. 

1. INTRODUCTION 

The finite-strip method (FSM) is a hybrid of the finite-element and spectral methods. 
Its typical applications are in the numerical solution of partial differential equations 
in two spatial variables. especially in problems that are geometrically regular in o n e  
coordinate direction. Owing to its unusual efficiency, the technique is a familiar one 
in structural mechanics [l]. It is also useful in models of stratified groundwater flow 
[2,3]. A three-dimensional extension of the method, the finite-layer method, has utility 
in groundwater-flow models (4.51 as well as in other applications. This paper presents 
an error analysis for the FSM applied to time-dependent, parabolic partial differential 
equations. We also indicate how to extend the analysis to the finite-layer method. 

The FSM generates an approximate solution that, at each time level, belongs to a peculiar 
finite-element trial space. This space consists of functions that are piecewise polynomial 
in the z direction and are truncated Fourier series in the x direction. The space has a 
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tensor-product basis, each element of which is a product of two types of one-dimensional 
basis functions. The first type is associated with traditional finite-element techniques. We 
partition the z dimension of the spatial domain by a grid and define piecewise polynomials, 
such as standard piecewise linear basis functions f , ( z ) ,  over the grid. The basis functions 
used for the x dimension are the trigonometric functions associated with spectra1 methods 
[6]. If w,(x) represents a typical element of the trigonometric basis, indexed by the Fourier 
mode number m, then a typical basis function of the trial space for the FSM has the form 
w m ( x ) l j ( z ) .  Section I11 discusses this basis in more depth. 

We discretize a given initial-boundary-value problem in space by using a Galerkin 
formulation [7] in which basis functions w , ( x ) f j ( z )  serve as weight functions in the 
weighted-residual equations. We discretize in time using finite differences. Section IV 
outlines this formulation in more detail. 

In problems having sufficient geometric regularity, the FSM has several computational 
advantages over traditional finite-element and spectral methods. Chief among these is the 
fact that it yields a sparse linear system to solve for each Fourier mode of the approximate 
solution. As discussed briefly in Sec. IV, the matrix equations for different modes are 
independent and therefore are amenable to parallel processing. Several other papers [2,4,5 J 
discuss such computational matters in detail. This paper focuses on the analysis of the FSM. 

The key question in the error analysis is the following: How does the error in the FSM 
solution decay as we refine the mesh size h of the finite-element grid in z or increase 
the number 2M + 1 of Fourier modes used in x? Our development shows that, when the 
trial function is piecewise linear in z ,  the FSM error is O(h2 + M - r ) .  Here, the exponent 
r 2 2 increases with the smoothness of the exact solution in the x direction. 

Our paper is organized as follows. Section I1 describes the physical problem of interest 
and the mathematical assumptions and notation. Section I11 discusses the FSM trial space, 
and Sec. IV describes the FSM formulation. Section V estimates the approximation error 
associated with interpolation and projection maps into the trial space. Using these estimates, 
Sec. VI derives an Lz estimate of the difference between the approximate FSM solution 
and the exact solution. This error estimate is then verified computationally in Sec. VII. In 
Sec. VIII we sketch the extension of the analysis to the finite-layer method. 

II. PHYSICAL PROBLEM AND NOTATION 

Our analysis involves a two-dimensional generalization of the heat equation. Consider a 
rectangular spatiat domain R := (- a, a) X (0,l) with homogeneous Dirichlet boundary 
conditions and coefficients that vary with z :  

s(z)d,u - KAz)dfu - d,[K,(z)d,u]  = f ( x t z , r ) ,  ( x , Y )  E fk, t E (0 ,TI .  

u ( x , z , r )  = 0, (x.z) E dfk, t E [O,TI, (1)  
U(x,Z,o) a uO(X.2). ( X , Z )  E fk . 

Here, d,u :== au/dx, d:u P d2u/dx2, and so forth. We adopt the following notation 
to describe the spatial domain: X := ( - T ,  -1; 2 := (0, 1); R := X X Z.  Also, J f l  
denotes the boundary of R.  

The problem (1) occurs in several applications. In two-dimensional saturated ground- 
water flow, the coefficient S(z) represents specific storage. The coefficients K,(z) and 
K, ( z )  in this context denote hydraulic conductivities in the x and z directions, respec- 
tively. Huyakorn and Pinder [SJ, for example, discuss this application in detail. All three 

. -. 

. . .  . . 
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coefficients may vary with the vertical coordinate z .  as occurs in horizontally uniform 
sedimentagy beds. The function f ( x ,  z, r )  accounts for sources and u(x ,  i ,  t )  represents 
the unknown hydraulic head. The boundary-value problem (1) also has applications 
to conductive heat flow. For a two-dimensional, layered composite slab, S(z) = 1.0; 
K,(z)  and K, ( z )  stand for thermal diffusivities, and u(x ,  z, t )  represents temperature. In 
realistic problems, it is generally necessary to rescale the domain R = (-72, 72) X (0.1) 
to physical dimensions. Linear scalings may change the multiplicative constants in our 
error estimates but do not affect their asymptotic orders. 

We assume that K,  and K,, and S are piecewise constant with respect to z. We also 
assume that they are positive, bounded away from zero, and bounded above: 

We assume that the forcing function f and the initial condition uo are smooth enough 
to guarantee that the solution u(x,  z ,  t) exists, is unique, and depends continuously a n  
these data. 

We use a variety of normed function spaces in our analysis. Denote by L2( f l )  the space 
of square-integrable, complex-valued functions defined on R . The quantity 

( 5 )  

defines the standard norm on this space. Here, lv(x,z>l2 := v ( x , z > v ( x , z ) ,  the overbar 
indicating complex conjugation. We use analogous notation for the one-dimensional 
domains X and 2. For example, the space of square-integrable functions on X is L 2 ( X ) ,  
and the corresponding norm is 

Given v E L 2 ( f l ) ,  v(x,  a )  represents a family of functions in L 2 ( Z )  (that is, functions 
of z), where x is a parameter. Similarly, V ( . , Z )  represents a family of functions in 
Lz(X)  indexed by the parameter z .  Thus I l v (~ : )11~2(~ ,  represents a function in L 2 ( X ) .  
We sometimes abbreviate this function by writing IlvllL~cz,. Likewise, when w E L’(n), 
IlvllLlcx, serves as shorthand for the function Ilv(-, z)llL2tx,. 

We denote by (-, .) the inner product associated with L’(n).  In working with this inner 
product we occasionally employ Fubini’s theorem (see Royden [9]) and interchange the 
order of integration. Thus, if v1. v2 E L Z ( n ) ,  then 

/ 

We define Sobolev spaces associated with X and Z and then usc thcsc Jcfinitions to 
define function spaces over the two-dimensional domain R.  The Sobolcv spaccs / I L ( Z ) ,  
Hi@), and H;(X) are defined in thc usual way: 

H’(z) := {v E L’ (x ) :  a;v E ~ ~ ( 2 ) .  for o 5 u 5 2} ,  
Hi(2) := { v  E H2(2): v (0 )  = v(1)  = 0) .  

(8) 
(9) 

Hi (X)  := { v  E L 2 ( X ) :  t3:v E L 2 ( Z )  and is periodic for 0 I a I r }  . (10) 

- ._ . . - .  I. ., . .  . -  - 
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Following Canuto, Maday, and Quarteroni [6],  we define the nonisotropic Hilbert space 
H;p2(sZ) as the space containing all functions v E L2(n) such that 

and 

We assume that r 2 1, and we denote by 3f the space containing functions v E 
H!+1),2(sZ) such that d:d,v E L2(n) and v(x,z) = 0 when ( x , z )  E do. 

111. FINITE-STRIP TRIAL SPACE 

What distinguishes the FSM from other weighted-residual techniques is its trial space. This 
space whose standard basis contains products 
o , ( x ) l j ( z )  of functions defined on X and Z. For the functions i j ( z ) ,  we use basis functions 
for piecewise linear interpolation over a grid defined on 2. Trigonometric functions, defined 
below, serve as the basis functions w,(x)  defined on X. We now describe this trial space 
in detail. 

The piecewise linear basis {Zj(z)};ii requires that Z be partitioned by a grid. Figure 1 
depicts the nodal lines associated with the grid 0 = zo < z1 < . - -  < Z J  = 1. We demand 
that the grid contain all loci of the jump discontinuities in the coefficients K,, K,, and 
S. The mesh size of this grid is 

is a finite-dimensional subspace of 

h = max lzj  - z,-11. (13) 
j - I .  ..., J 

A typical piecewise linear basis function, shown in Fig. 2, has local support and satisfies 
the conditions 

0, i # j ,  
fj(zi)  = [ 1, i = j ,  i = 0,1, ..., J ,  j = 1.2 ,..., J - 1 .  (14) 

These functions span a ( J  - 1)-dimensional subspace v of L2(Z),  namely, 

Ir = v E L2(2): v ( z )  = 1 V,l/(Z) . (15) [ / - I  j - l  I 
Thus contains all functions that are piecewise linear with respect to the given grid and 
that vanish at the endpoints zo = 0 and Z I  = 1. 

The basis for approximation along the horizontal direction consists of trigonometric 
functions associated with truncated Fourier series on X. Figure 3 depicts one such 
function. Although Fourier sine-cosine series are typically used in FSM computations, 
for succinctness we use the complex exponential form. Letting i2 = - 1, we have 
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-nodal line z, 

FIG. 1. Rectangular domain, R. 

Here, o , ( x )  := exp(imx) and 0 ,  denotes the Fourier coefficient, 

0 ,  := g 1 v(x)o,(x) d x ,  

We denote by ‘U the following (2M + 1)-dimensional subspace of L’(X):  

‘U := {v E L * ( x ) :  0 ,  = o for Iml > M } .  (18) 

Thus ‘U contains all Fourier series on X that are truncated at mode number M .  

with ‘U and ?r, that is, 
Functions in the trial space 3f are bilinear combinations of basis functions associated 

(19) I J - 1  

v E H: v =z 2 2 vm,jom(x)lj(z) = a I r e  
j - l  Imlshf 

Functions in 
The dimension of 3f- is therefore (J - 1) ( 2 M  + 1). 

are-thus piecewise linear in z and vary as truncated Fourier series in x .  

FIG. 2. Linear basis fj(z). 
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sin( nx) 

1 .o 

0.5 

0.0 

-0.5 

-1.0 
-7T 0 x 

2 

FIG. 3. Global basis functions, {sin nx}:-,. 

IV. FORMULATION OF THE FSM 

The FSM arises from the following weak form of the exact problem (1): Find a one- 
parameter family u ( * ; , r )  in H such that, for all test functions w € 3f and all times 
f E (0, TI, 

(sa,u, w> + (K,d,u,  d,w) + (K,a,u,  a ,w)  = (f, w). (20) 

To discretize this problem in space, we restrict u( - ,  *, t) and w to a finite-dimensional 
subspace o,f 3 f :  Find a one-parameter family of functions ii(*, -, t )  in such that; for 
all w E 3f and all t E (0, TI, 

This condition yields a set of ( J  - 1) - (2M + 1) ordinary differential equations in time. 
Instead of solving these ordinary differential equations exactly, we use a temporally 

discrete approximation. We replace the function i i ( x ,  z, t )  by a sequence of functions 
i i k (x ,  z) = E(x, z, k ~ )  in H. Here, T represents the time step. Similarly, uk(x ,  z) signifies 
the exact solution value u ( x , z , k ~ ) .  To solve for i ik(x,z) ,  we introduce the backward 
difference scheme 

Since iik has the form 
I-1 

our objective is to determine the coefficients @k,i at each time level k. To start the 
calculations, we must choose an appropriate initial function iio(x. z ) .  In practice, we project 
the exact initial condition uo(x, z) into the trial space %- using projection operators defined 
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in the next section. This procedure amounts to interpolating the exact initial data in z and 
truncating its Fourier series in x .  

We determine the unknown coefficients (3A . j  at time level k by solving linear systems 
obtained using the basis functions l i ( z )o , (x)  as weight functions w .  If we order the 
weighted-residual equations lexicographically according to the index pairs (m, j ) ,  then the 
choice of the linear basis functions l j ( z )  for the vertical dimension implies that the linear 
system is tridiagonal. Our assumptions that K, and Kz are strictly positive and bounded 
guarantee that the system is symmetric and positive definite and hence nonsingular at each 
time level. The system therefore generates a unique sequence k k  in 3. 

One benefit of the FSM is its efficiency in parallel-computing environments. This benefit 
owes its existence to the orthogonality of the trigonometric basis {om (x)}lmlc,: 

0 f o r m  # n 
1 f o r m  = n .  

- L o , , G d x  1 = [ 
2T 

We also have 

__. for m = n 
for m # n .  

Thus the tridiagonal system to be solved at each time level decouples into (2M + 1) 
independent matrix equations of size J - 1, one system for each Fourier mode. This 
decoupling allows one to solve for distinct Fourier modes in parallel, as demonstrated 
computationally in [2,4,5]. 

Some further remarks about practical implementation are in order before we discuss 
the analysis. The theory presented here applies to a linear problem in which the spatial 
domain has a rectangular geometry and the spatial part of the differential operator is 
seIf-adjoint. Other geometries and boundary conditions may be accommodated if the 
appropriate eigenfunctions are used. Accommodating non-self-adjoint spatial operators 
is not such a straightforward matter. In such problems, the Fourier modes typically do not 
decouple, as discussed above, and much of the method's natural parallelism is lost. The 
use of superposition in the formulation of the FSM formally precludes nonlinear problems. 
However, as in ordinary finite-element and spectral methods, one can often approximate 
a nonlinear problem by an iterative sequence of linear ones, as in Newton's method. In 
these cases the use of the FSM at each iteration may be feasible. We do not explore these 
extensions of the method here. 

V. APPROXIMATION ERROR ESTIMATES 

In this section, we review error estimates for interpolation and projection into the trial 
space H. We use these estimates in the error analysis presented later. 

Define the interpolation map I: L2(Z) - 1/ as follows: 
1 - 1  

j - 1  

For functions v E 3f, we extend this map in the straightforward way: 

I -  I 

j -  I 
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We denote by P: L 2 ( X )  - 21 the projection that truncates Fourier series to 2M + 1 
terms. Provided that M 2 I .  we have 

Again, extension to functions of two variables is straightforward: For v E g ,  

(29) 

where 9,(z) := ( 2 ~ ) ~ '  Ix ~ ( x ,  Z)wm(x) dx.  
Composition of these maps yields the approximarion map I P :  3f - 9. For v E 

3.f. 

In estimating the FSM error lluk - Jk1ILz(n) in the next section, we need an estimate 
of llv - IT'vI(~z(~), which we call the approximation error. To develop this estimate, 
we first discuss the errors associated with I and P. Strang and Fix [lo] show that the 
interpolation error for v E H2(2) obeys the bound 

Analogous estimates exist for the projection error associated with P. If v E HF2(n), 
where r z 1 is an integer, then 

Canuto et al. [ll] outline a proof of this estimate, which we detail in Lemma 10 of the 
Appendix. 

We now prove two lemmas giving an estimate of Ilv - IFVllLz(0). In the proofs, we 
indicate parenthetically the steps where we use the Parseval equality, the Bessel inequality 
1121, and Fubini's theorem [9). The first lemma estimates the interpolation error when we 
apply I to the truncated Fourier series Pv. 
Lemma I. Ifv E H, then 

.. . 
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Proof. Using the definition of 11 - [ I~qn) .  we have 

IlPv - IPvll:z(n, = 

(Fubini's theorem) 

When we combine Eq. (32) and Lemma 1 using the triangle inequality, we get an 
estimate of the approximation error: 

Lemma 2. If v E H then 

(34) 

Proof. The triangle inequality gives 

I I Y  - IzwlL2(n) 5 I lv - PvlJLqn) + IlT'v - I P V I I L ' ( Q ) .  

The desired result follows from the estimates (32) and (33). 

(Canuto, Maday, and Quarteroni [ 11 obtain a comparable estimate.) 
m 

VI. ERROR ANALYSIS OF THE FSM 

We now estimate the difference between the exact solution u ' ( x , z )  of problem (1) and 
the approximate solution iik(x, z )  generated by the FSM. We begin by defining three error 
components, 



. ._ 
- .  
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The objective is to estimate Ile'llLz(n). Since ek = qk + tk, the triangle inequality yields 

Lemma 2 provides an estimate for Ilq'llL2(n), so an estimate for 11tk1lLz(n, will suffice 
to bound Ile'\ILzcn,. 

Our development proceeds by the following plan: We first derive an equation using 
tk as the test function in the fully discretized weak formulation, Eq. (22). We then 
obtain estimates for individual terms in this equation. Finally, we apply a discrete form 
of Gronwall's lemma to yield the desired estimate for II('IILyn). 

in Eq. (20) and subtract Eq. (22) 

from it. We also add thc quantity 

Ile'llLZ(n) 5 IlvkllL2(n) + ll&kllL2(nl * (38) 

We start by restricting the .weight function w to 

S-, W )  ( U k  -:*-I 

Next we obtain an estimate for T ( K , J , ~ ' ,  a,('). Using the inequality 2 b . b )  5 
(a. a )  + ( b ,  b ) ,  the definition of 9, and the assumption that 0 < K, 5 K, we find that 

-- 
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where 

Although the term ( K Z d z ~ ' , d z ~ k )  may be analyzed similarly, we use a different 
approach to show that it vanishes. For any node I, on the z axis, 

Using the expansion (23) of fi* E 2, we write the quantity ,fk as follows: 

{ ' ( X , Z )  = I P U k ( X , Z )  - Gk(x,z) 

Differentiation with respect to z yields 

JJ'(X~ Z )  = - c i , , u r n ( x )  v 

ImlsM 

for any z E ( Z ~ - ~ , Z ~ ) .  Here, 

c:*j := [ Q k , j  - ~ i ( z j ) ]  - [ Q k . j - I  - f i k ( ~ j - l ) l  

Z j  - 21-1 

Because the valuc of K z ( z )  is a constant KL.j for z E ( Z , - ~ , Z , ) ,  the integral over 2 in 
(K, J, q', d z t k )  decomposes into a sum over the intervals formed by the finite-element 
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grid. Using Eq. (48), we get 

where 

The orthogonality property (25) then implies that 

(Kzaivk,  a z t k )  = 0 ,  (49) 

as claimed. 

side of Eq. (41) are non-negative: 
In addition, since K, and Kr are positive, the third and fourth terms on the left-hand 

0 5 r ( K x a J t k . a x t k )  (50) 

and 

o I r ( K , a , t k , a z ~ k ) .  

Incorporating the estimates (42)-(51) into Eq. (41) yields the inequality 

(52) 
We now estimate the first two terms on the right-hand side of Eq. (52). Lemmas 3-5 

concern the first term on the right-hand side, which involves the truncation error associated 
with the time-stepping scheme. 

b m m a  3. Ler uk E for 0 S k S T/T. Then for all (x,z) E a, 

. . . .  .. 
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Proof. The fundamental theorem of calculus and integration by parts yield 

The desired result follows upon rearrangement. 

Lemma 4. Ler uk E 3f for 0 5 k 5 TIT. Then 
rn 

(54) 

Proof. Lemma 3 and the Cauchy-Schwarz inequality imply that 

The last step follows from Fubini's theorem. 

Lemma 5. Let uk E for 0 s k 5 T / r .  Then 
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Proof. The assumption that 0 < S(z) 5 S' and the inequality 2(a,b) I (a,a)  + 
(b, b) imply that 

The desired result follows -from lemma 4. 
We now analyze the second term on the right-hand side of Eq. (52). 

Lemma 6. If qk and tk are as defined in Eqs. (36) and (37), then 

Proof. The Cauchy-Schwarz inequality, the assumption that S(z) 5 S', and the 
inequality 2(a ,b)  I ( a , a )  + (b ,b )  yield 

(Fubini's theorem) 

Application of lemma 5 and lemma 6 to Eq. (52) now produces the inequality 

(57) 

+ L ( M - r r l  2 + h2r212. 

We now make three observations to prepare for the application of the discrete Gronwall 
lemma. First, if p is any positive integer such that p~ 5 T and if we sum Eq. (57) from 

ERROR ANALYSIS OF THE FINITE-STRIP METHOD . . . 
k = 1 through k = p, then we obtain the inequality 

. i ( (s6p,  6') - (st', 6')) 5 $7 P (lk. tk)  - ':' lpk IlafuIIZlcn, df 
k - l  

+ f / ,  Pk Ila,v112z(n,df 

+ 1 P L ( M - r r ,  + h2r2l2. 

k = l  

68 1 

( 5 8 )  

Let us use the numerical initial condition Go = I F u o ,  so that to = 0 and thus (to, 5") = 
0 and (St ' ,  5") = 0. In this case, we can multiply Eq. (58) by 2 and extend the integrations 
to the full time interval (0, T] to get 

where 

(60) Second, the Fourier series for d,u may be written in terms of the Fourier coefficients 
of u. In particular, if u ( - ,  -, 1) E 3f for t E (0, TI ,  then 

and the series converges uniformly. Therefore 

Third, utilizing the assumption that 0 < s 5 S, we can move the last term of the sum 
in Eq.,(59) to the left-hand side, getting 

P- I 

Let us choose the time step T small enough so that s - 2S.7 > 0. Defining 

2s 'T  A := - 
s - 2S'T 

and 
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we obtain 

We now use a discrete form of Gronwail's lemma (reviewed in the Appendix) to establish 
the estimate on I I ( ' I I L ~ c n ) .  If p is any integer such that p~ 5 Ti  then 

1JtkIJt2(n) I p e A r ,  for k = 0,1, ..., P .  (66) 

Finally, the main error estimate for the FSM results when we use the estimate (66) in 
the triangle inequality (38): 

Theorem 1. (FSM Error). Ler u(*, -. r)  E 3f sarisfi the in_iriaf-boundary-vafue probfem 
( I )  for t E (0, T). Let { i i k }  be a sequence of functions in 3f derermined using the FSM, 
Eq. (22). If p is any integer such that p~ 5 T,  then, for time levels k = 0, 1,. . . , p ,  

Here, 

A := - S.7 
s - 2S'T ' 

This theorem asserts that the L2 error in the backward-Euler FSM applied to the problem 
(1) is O(M-' + h2 + 7 ) .  Here, r is the degree of smoothness of the exact solution in 
the x direction. The order of the estimate, M-' in the Fourier direction and h2 in the 
finite-element direction, remains unchanged if we scale the spatial domain to a more 
general rectangle St = ( a , b )  X ( c , d ) .  In particular, the FSM converges in the sense that 
lliik - ukJILl(n) - o as max{h, M - I ,  T }  - 0. 
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VII. COMPUTATIONAL RESULTS 

We test theorem 1 computationally with a dimensionless quenching problem from the 
classical theory of heat transfer. We solve the following model problem on fl = (0, 1 )  X 
(0, 1) with the FSM: 

u ( x , z , O )  = uo = 1, (x,z) E R ,  (68) 
u(x.z,r) = 0, (x,z) E an, f > 0 .  

We use a uniform finite-element grid on 2, the mesh size of which varies among different 
tests, as discussed below. Figure 4 depicts the decomposition of the domain f2 into strips. 

The exact solution to the problem (68) has a double Fourier series, 

4e- K k r ( n m ) 2  4e-Ktrl~n12 
sin (n l r z )  . (69) sin(rnax) 1 - u(x,z,kT) = 2 

m-1.3.5, ... m.rr n=1.3.5.  ... 
The symmetry of the problem implies that only odd-numbered Fourier modes have nonzero 
amplitudes. This solution is continuously differentiable to all orders in both x and z for 
t > 0 ([13], Chap. 4). 

Using the exact solution, we compute the error term by term as follows: 

Orthogonality implies that the first term on the right-hand side of this expansion collapses 
to the infinite sum 

(71) 
n-l 3 5. ... n - I  3 S.... 

Here, N is a positive integer at which wc truncate tlic scrics in ihc cornputatiorls. ' l b  
dctcrmine an appropriatc value of N, wc obscrve that e-KLr(*n)2  dccays quickly with rr .  
Wc pick N such that e-Kkr'rrN)2 -= IO-'O, or - 

N ? / -  10 In 10 
r r 2 K k r  ' 

FIG. 4. Partition of domain into strips. 
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-3 
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for 1 5 k 5 T / r .  We also use the same value of N for the truncated series that arises 
from the second term on the right-hand side of (70): 

n-1.3.5. ... 

where c j  := 2 sin(nwzj) - sin(n.rrz;-1) - sin(n.rrz,+l). We use all the terms of iik to 
calculate its norm. Owing to orthogonality, mixed products of modes do not survive 
integration, and we obtain 

Since uk E H;s2(fl) for all r 2 I ,  theorem 1 indicates that Ilu' - i i ' \ l ~ z ( ~ )  = 

O(h2 + M-' + T) for all r 2 1. The idea behind the following tests is to generate 
numerical solutions using an extremely small time step T and to plot lnlluk - iik(ILqn) vs 
In h and In M-l. The slopes of the resulting plots should confirm theorem 1. 

The first computational test considers the effect of varying the finite-element mesh size 
h. The parameters for this test are summarized in Table I. We use K = 0.02 and a final 
time T = 0.5. To make the time-stepping error negligible, we choose r = 0.0005. To 
render the U ( M - ' )  error terms negligible, we choose M = 65 for the total number of 
Fourier modes. However, only the 32 odd-numbered modes contribute to the expansion 
of ii'. With this fixed value of M ,  we vary h from to &. Figure 5 depicts the results. 
The graph indicates that, as h shrinks, the FSM error is indeed O(h2>. 

Next we examine the effect of varying the total number M of Fourier modes. In this 
test problem, the Fourier coefficients decay rapidly as t increases. While this phenomenon 
is beneficial in computational practice, in numerical testing it requires us to look at early 
solutions to distinguish the FSM error from errors associated with finite machine precision. 
Table I1 summarizes the parameters of this test. We present results for f = 0.03, 0.1, and 
0.3. To render the O(h*) portion of the error negligible, we fix h = 0.002. 

The efficiency of the FSM becomes apparent in computations of this magnitude. At 
each time level, the problem decouples into 32 separate tridiagonal problems, each of 
which determines 499 values a:,,, j = 1.2, ..., 499, for a distinct mode number m. 
Also calculated for each mode, using results of the lower-numbered modes, is the error 
Iluk - i i k l / l L ~ ( ~ ) .  To exploit the increasing smoothness of the solution in time, we increase 
the size of the time step T as the calculations progress. Specifically, 7 ranges from 0.0001 
initially to a maximum value of 0.0025, which is still small enough to keep the time- 
stepping error negligible. Figure 6 shows a convergence plot of the errors computed for 
the three output times. The plot indicates convergence beyond all orders in r ,  until the 
machine's precision limits have been reached. This result is consistent with the fact that 
the exact solution in this test problem is smooth in x ,  belonging to H;*(fl) for all r I 1. 

Diffusivity: K = 0.02 
Output time: T = 0.5 
Time steo: T = 0.0005 
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These computational tests verify that it is possible in practice to obtain O(M- '  + h') 
errors using the FSM, in accordance with theorem 1. 

VIII. EXTENSION TO THE FINITE-LAYER METHOD 

It is possible to extend the error estimate of theorem 1 to problems on three-dimensional 
domains fl = X X Y X Z in a straightforward way. We now sketch this extension. By 
analogy with the FSM, we consider problems that are geometrically regular and periodic 
in x and y. Consider the following initial-boundary-value problem: 

Sd,u - K,a;u - K,a+ - az(~,a,u) = f on Q x (0,7-], 

u(x*y9r ,0)  = u0(x,y9z) ,  
(75)  u(x,y,t.d = 0, ( X , Y , Z >  E an, r E [O,T] ,  

( x , y , z )  E Q .  
Here, the coefficients S, K,, Ky, and K: vary as functions of L and obey bounds similar 
to those given in the inequalities (2), (3 ) ,  and (4). 

Discretization in the finite-layer method is analogous to that used in the FSM. 
To discretize the problem in the L direction, we again use the piecewise linear basis 

TABLE 11. Parameter summary for test 2 (varying M). Diffusivity: K = 0.02. 

Time data: 

number of time step total time 
steps 7 t 

0.000 10 100 
0.000 25 80 
0.000 25 80 
0.000 50 100 
0.002 50 80 

0.01 
0.03" 
0.05 
0. 10" 
0.30" 

'Results included in Fig. 6. 
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o\ 
-1 - 

-2 - 

-3 - 

-4  - 

-5 - 

-6 - 

-7 - 

-8 

-9 1 
-10 f I I I I 1 I 

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 

FIG. 6. Convergence plot for changing number M of Fourier modes. 

functions { l j ( z ) ) ; i : .  For the x and y directions, we use truncated Fourier series. The 
exponential basis functions in this case have the form 

(76) 

wnmwm,,n, (77) 

w,. , (x ,y)  := w,(x)w,(y)  = e i ( m + n y ) .  

By orthogonality, we have 

1 for m' Or It # n' dx = { 1 for m = m' and n = n'. 
We again use backward differences to approximate time derivatives. 

L2(n) such that 
The appropriate nonisotropic Hilbert space H;q ,* (n)  in this setting contains all v E 

(78) 

and 

1. 

" . . . . -. - . - 
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By analogy with the FSM, the space 3-f- contains all functions v E H;*qa2(n) for 
which d:d,v, d:d,v, d:d;v, d:+*d;v, dId,4+'v E L 2 ( f l )  and v vanishes on dR. The trial 
space 3f is the span of the tensor-product basis functions l , ( ~ ) w ~ . ~ ( x , y ) ,  where j = 
1.2,. . . , J - I ,  Irnl S M, and In1 S N .  The interpolation operator I is analogous to that 
used in the analysis of the FSM. The projection P in this context truncates double Fourier 
series: 

where 

(Parseval equality) 

(ParseVal equality) 

rn 

We now state the approximation error estimate corresponding to lemma 1 and lemma 
2. The proofs of the next two lemmas are identical to those of the earlier lemmas, except 
for the following changes: Integrations over X become integrations over X X Y; the basis 
function w,(x) is replaced by ~ ~ . . ( x , y ) ;  and the sums over rn are replaced by double 
sums over m and n. 

b-- 
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Lemma 8. If v E 3f, then 

Lemma 9. I f  v E H, then 

We obtain an error estimate for the finite-layer method by a sequence of arguments 
analogous to those leading to Theorem 1, incorporating the following changes: 

1. Replace integration over X by integration over X X Y. 
2. Replace sums over m by double sums over m and n and use the respective truncation 

3. Manipulate the term ( K y d v i i k ,  d y w )  in the error equation in a manner identical to that 
limits M and N where appropriate. 

used for  the term (K,a,ijk.d,w) in the FSM analysis. 

The following theorem results. 

Theorem 2. (Finite-LayeCError). Let uk E H denote the solution to the problem (75) 
at t = kr, and let i ik E 3f be the corresponding solution to the finite-layer method. If p 
is any integer such that p r  5 T, then 

Thus the error is O(M-' + N - 9  + h2 + r), in close analogy with the error estimate of 
theorem 1. 

The Wyoming Water Research Center supported this work through a grant-in-aid. We 
also received support through NSF Grant No. RII-8610680 and ONR Grant No. 0014- 
88-K-0370. The authors thank Professor Jay Puckett and Professor Thomas Edgar of the 
Department of  Civil Engineering, University of Wyoming, for their practical insights into 
the FSM. 
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APPENDIX 

(Parseval equality) 

(Parseval equality) 

Discrete Form of Gronwall's Lemma 

Lemma 11. Suppose that the real sequence {vk}kp=o satisfies the inequafiry 

Ivkl 5 p AT k - 1  1 Iv,l for  k = 0, 1, .  . . , P ,  
J'O 

where A, p, and r are non-negative real numbers. Then 

IVkl 5 P e l P r  for k = 0,1, ..., P .  
Proof. Define the sequence {&}[-,, by 

k 
zk = p + A T x I V , I .  

1-0 

The definition of zk and the inequality of the hypothesis imply that 

and 
20 = p + AT1VOl 5 p + A T p  

zj - ~ , - l  = A T ~ V , ~  5 A T Z , - ,  for j = 1 , 2  ,..., P ;  
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that is, 

for j = 1,2,. . . , P. Apply the above result k - 1 times. Since (1 -t  AT)^ 5 eApr for any 
integer k, 0 I k 5 P, we have 

or 

The inequality in the hypothesis implies the desired result. 8 
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