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UNCE:HTAINTY AND SENSITIVITY ANALYSES OF 
P I T - M I G R A T I O N  MODEL 

By Keh-Chia Yeh' and Yeou-Koung Tung,I Associate Member, ASCE 

ABSTRACT: Sand and gravel mining from a river bed rcsulls'in irregular pits on  
the river bed. 'The migration of the pits might polentially threaten the safety of 
downstream bridge piers and other in-stream hydraulic structurcs. Models were 
devclopcd lo simulate the movement of pits for predicting the effect o f  migrating 
pits on in-stream Structures. In view o f  randoni characteristics inherently residing 
in hydraulic and hydrologic processes, i t  is essential for an engineer lo assess the 
overall Uncertainty features o f  a hydraulic niodcl output subjccted t o  i ts stochastic 
input parameters. As an illustrntion. this paper analyzes the uncertaintics of a pit 
migration model recently proposed by Lee ct al. ( I Y 9 0 )  using three methods in- 
cluding the first-order variance estimaiion method, point estimation tcchniquc, and 
Latin hypercubic sampling. Coniparisons of merits and limitations of these methods 
are also made. 

INTRODUCTION 

Sand and gravel mined from river beds are major sources of construction 
materials in Taiwan. Mining activities result in irregular pits on  the river 
bed. As observed by Lee (1-1. Y. Lee, personal communication, 1991) in 
his laboratory experiments, the migrating pit disappears or  diffuses rapidly 
in a very short distance under high flow conditions. On the other hand, the 
pit might travel a long distance downstream and maintain its distinctiveness 
during low- and medium-flow conditions. Therefore, the migration of pits 
during low- and medium-flow seasons might impose potential threats to the 
safety of downstream bridge piers and other in-stream hydraulic structures. 

Pit migration and morphology are the result of a very complicated non- 
linear interaction among the flow, topography of erodible bed and banks, 
and sediment transport. To better understand the pit-migration process, 
Lee et al. (1990) conducted a series of experiments from which a set of 
empirical formulas were developed for predicting the progressive change of 
the geometry of a pit as it migrates downstream. Models such as this can 
be applied to evaluate the safety of in-stream structures in relation to mi- 
grating pits. 

In hydraulic/hydrologic modelings, analyses, and designs, several factors 
contribute to different uncertainties (Yen et al. 1986), such as: 

1. Uncertainties associated with the inherent randomness of natural pro- 

2. Model uncertainty reflecting the inability of the simulation model or 
cesses 

design technique to represent the system's true physical behavior 
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3. Model-parameter uncertainties resulting from inahility t o  qu;mtify ;IC- 

curately the model input parameters 
4. Data uncertainties including (a) measurement errors; (13) inconsistency 

and nonhomogeneity of data; and (c) data handling and transcription errors 
5 .  Operational uncertainties including those associated with construction, 

manufacture, deterioration and maintenance, and other human factors that 
are not accounted for in the modeling or design procedures. 

All of these uncertainties may contribute to the stochasticity of model 
input parameters, which, in turn, result in model output uncertainty. The 
purpose of uncertainty analysis is to determine how the stochastic input 
parameters affect model outputs. The analysis provides the modeler with 
insight about the contribution of each stochastic input parameter to the 
overall uncertainty of the model output. Such information is useful for 
identifying the important input parameters to which more attention should 
be given if the overall uncertainty of model output is to be reduced. 

Another important aspect of model evaluation is the sensitivity analysis. 
Sensitivity analysis is concerned with how inputs influence the output and 
output variability. A local perspective for sensitivity analysis is concerned 
with output variability in the neighborhood of a point-often the nominal 
value-in the input space. Sensitivity analysis from the global perspective, 
on the other hand, is concerned with the variability of output over the entire 
input space. Although local sensitivity measures can provide, in principle, 
a more detailed description of the importance of input parameters than the 
global measures, the use of local measures, in practice, is often limited by 
the computational effort required to evaluate them, especially when the 
number of variables is large. Global sensitivity measures require less com- 
putational effort and also can be used to rank the relative importance of 
inputs. However, lack of resolution can limit its usefulness, especially when 
the effect of an input o n  the model output is drastically different in differetit 
parts of the parameter space. 

In view of safety implications of migrating pits on  in-stream hydraulic 
structures, the main objective of this study is to assess the uncertainty, in 
terms of statistical characteristics, of a hydraulic model in describing mi- 
gration of a pit. For purposes of demonstration a simple pit-migration model 
developed by Lee et al. (1990) was adopted. Parameter uncertainties in the 
model are the main concerns. Methods for performing uncertainty analysis 
vary in sophistication. In principal, it would be ideal to derive the exact 
probability density function (PDF) of the model output as a function of the 
PDFs of the stochastic input variables. However, most of the models used 
in hydraulic and hydrologic analyses are highly complex. This usually pro- 
hibits attempts to analytically derive the PDF of the model output. Alter- 
native methods therefore are useful in estimating the statistical properties 
of the model output. The methods considered herein are the first-order 
variance estimation (FOVE) method, the point estimate (PE) method, and 
Latin hypercubic sampling (LHS). The relative performance of the three 
techniques in analyzing the uncertainty of the pit migration model is com- 
pared. 

PIT-MIGRATION MODEL 

The experiments conducted by Lee et al. (1990) were limited to pits of 
rectangular shape and uniform sand material. Additional conditions under 
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which the experiments were performed were: (1 )  The Froucle number was 
less t han  0.85 t o  guarantee ii subcritical flow; (2) the particle size of the bed 
niaterial, d, ,  was larger than 0.6 nim to avoid the occurrence o f  ripples; and 
(3) tlic shear velocity o f  the flow was sni;illcr than 3.4- t o  prcvcnt thc 
occiiriciicc of’ scdiiiieiit i i i  susjxmsioi i .  Lhtsccl on tlic expcrililclitiil tliit;~ ;I set 
o f  empirical equations were devclopcd using multiple regression analysis. 
Although equations were developed for predicting the geometry of a rec- 
tangular pit as i t  migrates downstream, this study is only concerned with 
the maximum depth after a pit travels a specified distance downstream. The 
model for predicting the maximum pit depth consists of five equations whose 
functional relations were obtained through a trial-and-error procedure. To 
facilitate discussion of the uncertainty analysis to be presented later the pit 
migration model given below retains regression coefficients and model error 
terms in the form of notations. The values of regression coefficients esti- 
niated by the least-squares method are given in colunin 2 of Table 1. 

The t~iodel output of interest, i.e., the maximum pit depth H d ,  is estimated 
by 

TABLE 1. Statistical Properties of Stochastic Input Parameters in Pit-Migration 

Mean 

0.0250 
0.w1 
2.650 
0.OU1 

- 0.3480 
0.4102 

- O.OO352 
0.4354 

- 0.4464 
0.00013 
0.5692 

- 1.187 
0.1715 
2.166 
0.7795 

- 0.2865 
0.6008 

- 0.3797 
- 0.2028 
-0.2975 
- 0.00653 
0.0461 1 
0.00289 
O.OO0 
0.OOO 
O.OO0 
0.OOO 
0.OO0 

(2) 

Standard 
deviation 

(3) 
0.00204 1 
0.m1732 
0.05774 
0.00 1 I55 
0.02547 
0.05781 
0.00105 
0.029 1 3 
0.053 
O.ooOo23 
0.0924 
0.1411 
0.0818 
0.436 
0.3334 
0.2216 
0.1544 
0.0473 - 
0.0208 
0.047 
0.000946 
0.002624 
0.00045 
0.001 112 
0.04131 
0.09423 
0.09442 
0.000454 

Coefficient of 
variation 

0.0816 
0. I732 
0.02 18 
0.1 155 
0.0732 
0.1409 
0.2983 
0.0669 
0.1187 
0.1769 
0.1623 
0.1189 
0.4770 
0.20 13 
0.4277 
0.7735 
0.2570 
0.1246 
0.0540 
0.1580 
0.1449 
0.0569 
0.1557 

(4) 

- 
- 
- 
- 
- 

Distribution 

triangular 
uniform 

(5) 

uniform 
uniform 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 

In - = do + d, (t ifT) + d, (z) + e4 . . . . . . . . . . . . . . . .  (21 
whcre fIlllilx = the maximum pit depth at the ericl o f  il convcctiori period 
by which time the upstream boundary of the pit reaches the original down- 
stream pit boundary; Tf = the time span of the convection period; t = total 
travel time of the pit including the convection period and the diffusion period 
during which the pit loses its identity downstream; u* and u*,  = the shear 
velocity and critical shear velocity, respectively; do, d,, and d,  = regression 
coefficients; and e4 = the model error term. Based on the experimental 
data, (1) has a coefficient of determination R 2  = 0.752. The associated 
standard error s4 = 0.09442. 

The maximum pit depth at the end of the convection period, H,,,, in (1) 
is estimated by 

. . . . . . . . . . . . . . .  (2) = 6, + 6, In (E) + b2 In (:) + e2 

where H = the initial pit depth; y = the flow depth; bo, b , ,  and 62 = 
regression coefficients; and e2 = the error term associated with estimating 
1n(Hma,/H). Eq. (2) has an R 2  = 0.937 and standard errors, = 0.04131. 

The total time [i.e., tin (l)]  required for a pit to travel a specified distance 
D is 

............................................... (3) 
t = - + -  D L  

Ubd Ubc 

where L = the initial pit length; and Ubd and ubc = the moving velocities 
of th’e pit during the diffusion period and convection period, respectively. 
The moving velocity Ubd is estimated as 

. . . . . . . . . . . . . . .  (4) 

where a,,  a,, a3, a,, a,, and a6 = regression coefficients; L, = the effective 
pit length at the end of the convection period; and e,  = the model error 
term. Eq. (4) has an R2 = 0.9989 with a standard error of estimate s1 = 
0.001112. The term LJH in (4) is estimated by 

. . . . . . .  ( 5 )  In (2) = c, + cl In (z) + c2 In ($) + c3 In (:) + e3 

where c,, cl, c2, and c, = regression coefficients; and e3 = the model error 
term. The R2 and standard error of estimate s3 for ( 5 )  are 0.806 and 0.09423, 
respectively . 

The pit moving velocity during the convection period ubc is estimated by 
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- bc = r ,  In ($ + 1) + r2 [In (5)12 + r3 [In (: + 1)12  + e, . ( 6 )  
u*c I , 

Input variable 
(1) 

4, 
d ,  
4 

where r , ,  r2, and r, = regression coefficients; and e, = the model error 
term. Eq. (6) has an K 2  = 0.9954 and standard error of estimate s5 = 
0 .OOO4542. 

To estimate the maximum pit depth H d  after a certain distance of travel, 
the use of the five aforementioned regression equations requires knowledge 
of the shear velocity u* and the critical shear velocity u*,. The shear velocity 
u * ,  under the wide-channel condition, can be computed by 

4, 4 d2 

(2) (3) (4) 
1 .m - 0.2750 - 0.9912 

- 0.2750 1 .m 0.1695 
- 0.9912 0.1695 1.oooO 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  u* = va; (7) 

input variable 
(1 1 

where gr = the gravitational acceleration constant; S, = the friction slope; 
and y = the flow depth, which can be computed by Manning’s formula 

b” b ,  b2 

(2) (3) (4) 

315 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (8) Y = (g) 

bo 
bl 

62 

where n = the Manning’s roughness; Q = the flow rate; and B = the 
channel width. The critical shear velocity u*, can be determined by the 
Shields’ diagram, which is a function of the specific weight of sand material 
(ys), representative particle size (dJ, and other flow characteristics. 

0.9291 1 .m - 0.9059 
- 0.9059 1 .m -0.7199 

0.9291 - 0.7 199 1 .oo(w) 

UNCERTAINTIES IN PIT-MIGRATION MODEL 

Using the pit-migration model [(l)-(6)] to estimate the maximum pit 
depth (&) as the pit travels downstream requires specifying the pit dimen- 
sions ( H  and L ) ,  hydraulic conditions (0, B, n, S,), bed material charac- 
teristics (ys, ds),  and regression coefficients (a, b, c, d, r )  in the models. 
These can be regarded as the model input parameters that affect the esti- 
mated maximum pit depth; all are subject to uncertainty. 

Hydraulic parameters such as Manning’s roughness n and friction slope 
S, cannot be assessed with absolute certainty. Bed material characteristics, 
such as specific weight ys and representative grain size d,, generally vary 
spatially. Also, estimated values for regression coefficients given in column 
2 of Table 1 cannot be treated as the true ones because they are estimated 
from a limited amount of experimental data. Sample errors exist in the 
estimated regression coefficients. Furthermore, the pit-migration model de- 
veloped on the basis of experimental data can only be considered as an 
approximation of the underlying physical process. Note that the model errors 
associated with the regression equations (i.e., e,, e2, e3, e4, e,) account only 
in part of the total model errors with respect to the real-world pit-migration 
process because some factors such as nonuniform sediment size and irreg- 
ular-shaped pits are not considered. In the pit-migration model considered 
herein, a total of 28 input parameters listed in column 1 of Table 1 are 
considered random and subject to uncertainty. 

The uncertainties associated with input parameters can be assessed sub- 
jectively based on personal experience and judgment, or they can be quan- 
tified statistically on the basis of measurements and proper statistical the- 
ories. For example, Manning’s roughness n is a conceptual parameter that 
is not physically measurable. The values of Manning’s roughness used in 
most hydraulic computations are determined on the basis of personal judg- 
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ment in comparing field channel conditions and hydraulic reference books. 
A good example illustrating the uncertainty of Manning’s roiighncss cocf- 
ficient are nominal values and ranges o f  Manning’s roughness undcr il varicty 
of channel conditions listed by Chow (1959). Further, probability distri- 
butions for those conceptual parameters can only be assumed. 

In contrast, some parameters in a hydraulic model can be physically 
measured. In such cases, statistical tools can be applied to analyze the 
measured data and to quantify the associated uncertainty represented by 
the mean, standard deviation, or even the probability distribution. Examples 
of such parameters are representative sediment sizes, specific weights, and 
hydraulic geometry. Other types of model parameters are empirical coef- 
ficients whose statistical properties can be inferred via appropriate statistical 
theories. An example of this is the assessment of parameter and model 
uncertainties associated with the regression model, such as the pit-migration 
model presented previously. Based on  the experimental data from Lee et 
al. (1990), the mean, standard deviation and coefficient of variation of the 
regression coefficients in the pit-migration model [( 1)-(6)] are listed in 
columns 2-4 of Table 1, respectively. The standard deviations associated 
with the error terms of the regression equations are the standard errors that 
represent partial model uncertainties. Although the actual model uncer- 
tainty is larger than those indicated by regression standard errors, the as- 
sessment of such total model error is difficult because of the absence of a 
true model of the process. Without having evidence to adjust for its value, 
this study treats regression standard errors as model errors. The correlation 
matrices between regression coefficients within individual regression eyua- 
tions are shown in Tables 2-6. Correlation relationships are important for 
describing the linear relationship among stochastic model input parameters 
that directly affect the degree of uncertainty in the model output. 

METHODS OF UNCERTAINTY ANALYSIS 

First-Order Variance Estimation (FOVE) Method 
This method estimates uncertainty of the model output as a function of 

the variances of stochastic input parameters. It uses Taylor’s series expansion 
to estimate the local uncertainty of the model output at a selected expansion 
point. Consider that the output Y of a hydraulic of hydrologic model can 
be expressed as a function of stochastic input parameters X s  as 

TABLE 2. Correlation Matrix of Regression Coefficients in Eq. (1) 



l 
(14 

(5) 
- 0.9657 

0.5219 
- 0.2877 

I .oouo 
-0.5118 

0.2889 

!lation Matrix of Regre 

0 5  

(6)  
0.67 18 

- 0.0053 
0.9453 

- 0.51 18 
l.m 

- 0.9623 

- 0.6732 
1 .(MK)O 

- 0.9576 
0.5219 

- 0.9953 
0.9634 

Input 
variable 

(1) 

0, 

a2 

a3 
4 
(I 5 

(I, 

0.4441 
-0.9576 

1 . O( HH) 
- 0.2877 

0.9453 
-0.9916 

u1 

(2) 
I .(HM)O 

- 0.6732 
0.4441 

- 0.9657 
0.67 18 

- 0.4629 

Input 
variable CI Cl c2 

(1 1 (2) (3) (4) 
CO 1 .O(w - 0.6503 0.8503 
CI - 0.6503 I .MMW - 0.7255 
c2 0.8503 - 0.7255 I .oooo 
CI - 0.8752 0.2595 -0.5391 

%, 
(7) 

- 0.4629 
0.9634 

-0.9016 
0.2889 

- 0.9623 
1 .OW) 

C I  

(5) 
- 0.8752 

0.2595 
- O.5391 

I .oooo 

input variable rl r2 

(1) (2) (3) 
rl 1 .om - 0.3224 

r3 - 0.9790 0.1405 
r2 - 0.3224 I .o(lUo 

(4) 
- 0.9790 

0.1405 
1 .oooo 

Y = g(Xf) = g ( X , ,  x2, X") (9) . . . .  .............................. 
Where X = an n-dimensional column vector of stochastic input parameters; 
the superscript t = the matrix or vector transpose; and g( ) represents a 
functional relationship for the model. In the context of the present study, 
g(X') is the pit-migration model consisting of (1)-(S), the model output Y 
is the maximum pit depth H d ,  and the stochastic input vector X consists of 
elements indicated in column 1 of Table 1. The FOVE method considers 
the first-order Taylor series expansion term of (9): 

n 

. . . . . . . . . . . . .  Y = g(xb) + c &"(Xi - X i 0 )  = g(x6) + sb(X - xo) (10) 
i =  1 

where s, = n-dimensional column vector of sensitivity coefficients with 
elementss, = (dg/dXi)xo being the sensitivity coefficient of the model output 
Y with respect to the ith input parameter Xi  at the expansion point 4,. 
Applying the expectation and variance operators to (10) with x, = p,  the 
mean and variance of the model output Y can be estimated as 

I 

E ( Y )  = c"y = g(p') ......................................... (11) 
and i 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) var(Y) = u2y = sfas 
where p,, and cry = the mean and standard deviation o f  ttic model output, 
respectively; p and c(Z = the vuctor of inemis i i l i d  thc cov;iri:iiicc ni;itrix o f  
stoch;rstic input paranicters, rcspectivcly: arid s = the sciisitivity cocfficiciit 
vector evaluated at xu = p. I f  all stochastic input parameters are inde- 
penJlent, the variance of the model output Y reduces to 

var(Y) = 2 s;uf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (13) 
I -  1 

As can be seen from (12) and (13), the uncertainty of the model output, 
var(Y), depends not only on the uncertainty of individual stochastic input 
parameters as measured by a;, but also on the associated sensitivity coef- 
ficients s,. According to (13), the contribution of each stochastic input pa- 
rameter, C, to the overall uncertainty of the model output can be computed 
as 

s:u; 
0; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) ci = - i =  1 , 2  , . . . ,  n 

The relative importance of stochastic input parameters, in terms of their 
contribution to the overall uncertainty of the model output, then can be 
assessed through examining the relative magnitude of Ci. In the case that 
some of the stochastic input parameters are correlated, the positive or neg- 
ative contribution of such correlation to the overall uncertainty of the model 
output also can be evaluated. 

Point Estimation (PE) Methods 
The PE method was originally proposed by Rosenblueth (1975) to deal 

with symmetric, correlated, stochastic input parameters. The method was 
later extended to the case involving asymmetric random variables (Rosen- 
blueth 1981). The idea is to approximate the original YDF of a random 
variable by discrete probability masses concentrated at two points in such 
a way that the first three moments of the original PDF are preserved. 

Consider the model represented by (9) having n stochastic input param- 
eters. By Rosenblueth's PE method, 2" model evaluations (runs) are re- 
quired to estimate the statistical moments of the model output. For large 
computerized hydraulic models involving many stochastic input parameters, 
Kosenblueth's I'E method is coniputationally impractical. For the present 
analysis, the required model run by Rosenblueth's method would be 228 = 
268,435,456. To avoid this difficulty, Harr (1989) proposed a modification 
that reduces the required model runs from 2" to 2n, and greatly enhances 
practical applicability of the method. 

By Harr's modification, the correlation matrix C of n stochastic input 
parameters, which is real and symmetric, is decomposed 

c = VLV' 

where V = eigenvector matrix = (vl ,  v2, . . .  , v,,), in which v l ,  v2, . . .  , 
v,! = column vectors of eigenvectors; and L = diag(A,, A2, . . .  , A,,), a 
diagonal matrix with A,, A2, . . .  , A, being the corresponding eigenvalues. 
The correlation matrix can also be represented geometrically by a hyper- 
sphere of radius fi centered at the expected values of stochastic input 
parameters pl,  p2, . . .  , p, in the standardized coordinate system. Each 

................................................. (15) 
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eigenvector, passing through the origin of the hypersphere, intersects the 
sphere surface at two points. Then, these 2n intersection points (for n input 
varbbles) are used to estimate the statistical moments of model output. 
Harr’s (1989) modified PE method can be summarized by the following: 

Step 1. Decompose the correlation matrix C of the input variables 
into an eigenvector matrix V and corresponding diagonal eigenvalue 
matrix L, as (15) 
Step 2. Generate coordinates of the 2n intersecting points using 

u1 . . . .  
. - . . o  
0 . - .  

. . . . o n  

-xi, = p - t  -[ . . - . .  I V i  i =  1 , 2  , . . . , .  n . . . . . . .  (16) 

Step 3. Compute Y i ,  = g(Xi=) ,  and yf, = g z ( X i , )  for i = 1, 2, 

Step 4. Compute the averaged model outputs for i = 1, 2 ,  . . .  , 
n, i.e. 

. . .  9 n -  

- Y;+ + Yi- Y?+ + Y;-- Y, = 2 and Y: = 2 
Step 5. Compute the mean and variance of the model output Y: 

(17) 
i =  1 ............................ E ( Y )  = i=1- -- 

n 5 hi 
I -  1 

2 Y ; A i  

n 
.................................... (18) 

(19) 

E(Y2) = h 

............................. var(Y) = E(Y2) - E 2 ( Y )  

Latin Hypercubic Sampling (LHS) 
The essence of Latin hypercubic sampling is to select, in a stratified 

manner, random samples for each stochastic input parameter over its range 
such that the overall uncertainty of the model output can be reasonably 
described by finite samples. Consider K sets of n random input parameters 
to be generated from which the corresponding model outputs are computed. 
By LHS, the plausible range of each of the stochastic input parameters is 
divided into K equal probability intervals from which a random sample for 
the input parameter is taken. More specifically, consider a stochastic input 
parameter Xi over the interval ( l i ,  ui) following a specified PDF, f i (xi) .  The 
range (l,, ui) is partitioned into K intervals, 

li = a;, < a,, C . . .  < ai,K--l < aiK = ui (20) 
where P(a,., 5 Xi < a i ,k t l )  = 1/K for all k = 0, l., 2, . . . .  K - 1. LHS 

....................... 

involves randomly selecting a value in each of the intervals to form the K 
samples for the ith stochastic input parameter Xi. A random permutation 
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can be applied to randomize the sequence to make the generated sequence 
of K samples random. The process can be repeated for all stochastic input 
parameters resulting in K input data sets. 

Using LHS, the usual estimators of the mean and distribution function 
of the model output are unbiased (McKay 1988). Moreover, whcn the mode 
g(X) is monotonic in each of the X i ,  the variance of the estimators are no  
more than, and often much less than, the variances based on inputs gen- 
erated by a simple random sampling procedure, such as by Monte Carlo 
simulation. This variance reduction property of LHS implies that fewer 
samples or computer runs may be necessary to obtain a degree of precision 
comparable to that obtained from a simple random sampling of input pa- 
rameters. 

The aforementioned description of LHS assumes that the ri model input 
parameters are uncorrelated. In the case that some of the stochastic input 
parameters are correlated, the joint PDF of the inputs are required. Com- 
paring with the variety of the random number generation for univariate 
variable, multivariate random number generation is much more restricted 
to a few joint distributions such as multivariate normal, multivariate log- 
normal, and multivariate gamma (Johnson 1987). For more detailed dis- 
cussions, readers are referred to McKay (1988). 

APPLICATION 

The conditions under which the analysis of the pit migration model are 
considered are: flow rate Q = 200 cms, channel width B = 100 m, initial 
pit length L = 40 m, initial pit depth H = 3 m, and traveling distance D 
= 500 m. The example adopted herein meets the required conditions under 
which Lee et al.3 (1990) experiments were conducted. 

The distribution types and corresponding statistical properties of the 28 
stochastic input parameters used in the three methods are listed in Table 
1. Those distribution types are judged from the data, if available, or sub- 
jectively assumed. Normal distributions used for regression coefficients and 
model errors are based on the validity of the normality condition through 
the regression analysis. The correlation coefficient matrices of regression 
coefficients in the pit migration model are listed in Tables 2-6. 

Due to the complexity of the model, numerical derivatives were adopted 
for sensitivity coefficients using the central difference scheme instead of 
analytical derivatives. In the numerical differencing, the mean values of the 
stochastic input parameters were used as nominal and the increment of X I  
was set, after several trials for numerical convergence, equal to O.OIlpll if 
pj # 0 and equalled to 0.001 if pi = 0. By Harr’s PE method, the correlation 
coefficient matrix CZ8 z8 was decomposed into eigenvalues and eigenvectors 
using the computer software MATLAB (Matrix Laboratory) (“MATLAB” 
1989). 

In the framework of LHS the regression coefficients for a given equation 
were considered to have multivariate normal distributions. Regression coef- 
ficients between different regression equations were considered uncorre- 
lated. Input parameters associated with channel bed characteristics such as 
n,  s/, d,, ys were assumed not correlated with any other parameters. Sixty 
Latin hypercubic sample sets (K = 60) for the 28 stochastic input parameters 
were generated based on their respective statistical properties. According 
to McKay (1988), a sample size around 2n = 2(28) = 56 would be sufficient 
in the LHS procedure for the purpose of uncertainty and sensitivity analyses. 
After Latin hypercubic samples were generated, the sample statistics such 
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as mean, standard deviation, and correlation structure were computed to 
check the compliance to the population statistical characteristics of the input 
parameters. 

v, P,OI (J, 
(2) 

- 0.0148 
0.0015 

-0.0014 
- 0.0031 

o.oO05 
- 0.0069 

0.0012 
-0.0007 

RESULTS ANO ANALVSIS 

FOVE Method 
Two cases were considered in uncertainty analysis by the FOVE method. 

The first case assumed that all 28 stochastic input parameters are uncor- 
related. The estimated mean and standard deviation of the model output 
H,, under this assumption are 1.304 m and 0.340 m, respectively. The sen- 
sitivity coefficients s, and the relative contribution of each stochastic input 
parameter C, to the overall uncertainty of H,, are listed in Table 7 .  It  can 
be seen from Table 7 that some of the variables, such as ah and r3, have 
large sensitivity coefficients but have small contributions to the overall un- 
certainty of the model output Hd. On the other hand, some input param- 

Rank of 
importance" s, s, p p ,  a, /O . 1 1 54 

(3) (4) 
- 0.1278 1 

0.0131 4 
- 0.01 19 5 
- 0.0273 3 

8 0.0041 
- 0.06oO 2 

0.0105 6 
- 0.0058 7 

TABLE 7. Sensitivity Coefficients and Relative Contribution of Each Input Pa- 
rameter to Uncertainty of Model Output 11, (Uncorrelated Condition) 

lnpu t parameter 
(1 1 

Sensitivity 
coefficient ( d k f J d X , )  

(2) 
- 36.0476 

-6234.13 
0.6509 

1073.94 . 
0.1366 
0.0971 

10.5558 
0.1588 
0.0802 

1.2719 
0.981 1 
0.1691 
0.2078 
0.1603 
0.0276 
0.5659 
I .3037 
0.5465 
0.1967 

948.67 

- 9.7603 
- 2.0842 
- 27.20 

0.1175 
1.2719 
0.2078 
1.3037 

- 3.5025 

contribution 
( CJ 
(3) 
4.69 

10.10 
1.22 

13.33 
0.01 
0.03 
0.11 
0.02 
0.02 
0.41 

1 1  .98 
16-60 
0.17 
7.1 1 
2.47 
0.03 
6.62 
3.29 
0.11 
0.07 
0.07 
0.03 
0.13 
0.57 
2.39 
0.33 

13.68 
4.41 

Rank of 
importance 

(4) 
8 
5 

3 
- 

4 
1" 

6 
- 

- 
7 

10 

- 
2 
9 

"Rank 1 represents the most important parameter in the sense of percentage contri- 
bution to overall output uncertainty. 
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eters, such as b ,  and e4, having relatively small viilues of sensitivity coclli- 
cients, contribute significantly to the uncertainty o f  If,,. 'Ihercfore, thc rcliitivc 
contribution of each input parameter to the overall uncertainty o f  a model 
output depends not only on the respective sensitivity coefficient but also on 
its own variance. On the basis of percentage contribution, the 10 most 
important input parameters to the overall uncertainty of the pit-migration 
model are identified in Table 7. 

In the second case, correlation among input parameters was considered. 
The computed standard deviation of the model output was reduced from 
0.340 m (under the uncorrelated condition) to 0.257 m, a variance reduction 
of 43%. Consequently, correlation among the stochastic input parameters 
should be included in the uncertainty arialysis so as not to overestiniate the 
variance of N,,. The important correlated stochastic input parameters con- 
tributing to the variance of H,, are listed in Table 8.  From Table 8 ,  the 
relative contribution of the variance of H,, resulting from the correlated pair 
(b,,, 6 , )  is the most important among all other pairs. Their effect on the 
total variance of Hd has about the same order of magnitude as the top five 
individually important parameters listed in Table 7 ,  which include param- 
eters h,, and h, .  This result suggests that two correlated and individually 
important input parameters can constitute an important pair affecting the 
overall uncertainty of model output. Two highly correlated parameters may 
not necessarily form an important pair if only one parameter is individually 
important and the other is insignificant in contributing to the overall un- 
certainty. 

Harr's PE Method 
In the pit-migration model considered, there are 2(n) = 2(28) = 56 

intersecting points on  the hypersphere along the 28 principal axes defined 
by the eigenvectors. One of these 56 points resulted in zero pit depth down- 
stream because the associated friction slope S, is very small and the cor- 
responding shear velocity is less than the critical shear velocity for the 
incipient motion of sediment. The estimated mean and standard deviation 
of the model output Hd were 1.595 m and 0.399 m, respectively. The un- 
certainty of Hd in terms of standard deviation, 0.399 m, obtained by the 
Harr's PE method is larger than the value (0.257 m) obtained from the 
FOVE method. 

TABLE 8. Summarv of ImDortant Correlated Terms to Uncertaintv of HA 

Correlated input 
and parameters 

(XI and X,) 
(1 1 

b,, and b,  
b,, and b2 
b ,  and bz 
c, and c ,  
c, and c2 
c, and c3 
c, and cj  
do and d ,  



Note that the eigenvalues associated with the correlation matrix of the 
stochastic input parameters are the variances of standardized stochastic 
parameters in the transformed space via the eigenvalue-eigenvector or- 
thogonal transform (Ang and Tang 1984). The relative contribution of each 
transformed parameter to the overall model output uncertainty can be coni- 
puted separately by the ratio of the corresponding eigenvalue to the sum 
of all eigenvalues, which is equal to n.  However, since the parameters in 
the transformed space are a linear combination of the parameters in the 
original space, inverting the process to provide the relative contribution of 
each original stochastic input parameter to the overall model output un- 
certainty is difficult. At the present stage, the different PE versions are not 
applicable in assessing sensitivity of input parameters on model output. 

LHS 
The histogram based on the 60 values of maximum pit depth is shown in 

Fig. 1. The mean and standard deviation of the maximum pit depth are 
1.326 m and 0.273 m, respectively. The distribution of the model output is 
more or less symmetric with respect to its mean. On the basis of 60 LHS 
sets for the 28 stochastic input parameters and the corresponding maximum 
pit depths, an analysis to identify the importance and sensitivity of input 
parameters in determining the model output and its uncertainty can be made. 

A useful index that measures the importance of input parameters is the 
simple correlation coefficient (CC), computed by 

where rjY = the simple CC of input Xi and model output Y; xki and y ,  = 

14 l6  k 
12 
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Maximum pit depth, H, (m) 

FIG. 1. Histogram of Maximum Pit Depth Based on 60 LHS Sets 

the values of input X ,  and the corresponding model output, respectively, 
for the kth LH sample; 1, and jj = the sample means of input paranieter 
X, and model output based on  the K LHS sets, respectively. The squared 
value of the correlation coefficient represents the percentage of variation 
(or uricertainty) in model output Y that can be explained by the input 
parameter under consideration. A given input parameter with a high cor- 
relation coefficient indicates that a large percentage of the model output 
variability (uncertainty) can be accounted for by that input parameter. In 
this sense, a stochastic input parameter with a high correlation coefficient 
indicates its importance in contributing to model output uncertainty. 

Note that the simple CC computed by (21) does not take into account 
the presence of correlation between input parameters in the process of 
determining model output. A better indicator is the partial correlation coef- 
ficient (PCC) which accounts for linear dependency among the input pa- 
rameters. The PCC between the model output Y and input parameter Xi 
can be determined as 

- c" 
C,' = - vv .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (22) Ct'CYV 

with cty ,  c", and c y y  being the elements of the simple CC matrix inverse 
. . .  
. . .  1 c'" I C'Y 

c2" I c2" 
c12 

c 2 '  c22 

. . . . . .  

J 

C" cY2 . . , CY" I CYY 1 
where C ( X ,  X )  is an n x n correlation matrix for the stochastic input 
parameters; and C ( X ,  Y) is an n x 1 column vector of correlation coeffi- 
cients between the n stochastic input parameters and the model output Y. 

Although PCC is an improvement over the simple CC, it is like the simple 
CC in that it only measures the linear association between two random 
variables. To measure the possible nonlinear but monotonic relation be- 
tween the two random variables, a rank correlation coefficient (RCC) and 
partial RCC (PRCC) can be used. The RCC and PRCC are computed in 
a manner similar to (22) and (23) by replacing the values of random variables 
under consideration by their respective integer ranks. After the rank trans- 
form the two random variables will have an exact linear relationship if they 
have a monotonic relation. Two random variables having low CC or PCC, 
but high RCC or PRCC, can be related strongly in a nonlinear fashion. 

The simple CC, PCC, RCC, and PRCC of the maximum pit depth with 
all 28 stochastic input parameters are tabulated in Table 9. Judging from 
the values of the four correlation coefficients, the input parameters defining 
the channel characteristics ( n ,  S,, and d,) and error terms associated with 
the regression equations for H,,, [(l)] and ubc [(6)] are significantly more 
important than the remaining input parameters. Among the 19 regression 
coefficients, only b, in (2) can be considered an important input parameter. 
Keferring to 'Table 1, these important input parameters do not necessarily 
all have very high uncertainty individually. The relative importance of each 
input parameter also depends on the functional form in which the parameter 
is used. Comparing the values of PCC and PRCC, practically all input 
parameters have about the same values. This indicates that the use of a 
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TABLE 9. Simple CC, PCC, RCC, and PRCC of Maximum Pit Depth and 28 Input 
Parameters in Pit-Miaration Model 

cc 
(2) 

- 0.531 
- 0.270 

0.162 
0.468 

- 0.028 
0.064 

- 0.057 
0.017 

- 0.079 
0.072 

- 0.044 
0.215 
0.051 

- 0.210 
0.21 1 

-0.151 
0.184 
0.173 

- 0. loo 
0.220 
0.092 

-0.018 
- 0.093 

0.306 
0.365 

- 0.040 
0.497 
0.088 

PCC 
(3) 

-0.822 [4] 

0.432 [8] 
0.947 [ 11 

-0.888 (31 

- 0.165 
- 0.143 
- 0.142 
- 0.183 
-0.128 
-0.119 

0.337 
0.613 
0.086 

- 0.002 
0.087 
0.127 
0.079 
0.139 
0.07 1 
0.069 
0.235 

- 0.245 
- 0.233 

0.039 

91 
61 

101 

0.614 (51 
0.445 [7] 
0.929 121 
0.073 

RCC 
(4) 

-0.512 
- 0.305 

0.168 
0.477 

- 0.098 
0.133 

- 0.092 
0.Ml 

- 0.149 
0.116 

- 0.012 
0.181 
0.067 

-0.194 
0.217 

- 0.155 
0.194 
0.191 

- 0.120 
0.215 
0.012 

- 0.034 
-0.010 

0.232 
0.344 

- 0.051 
0.481 
0.057 

Note: Number in the bracket remesents the rank of imoortance. 

PRCC 
(5) 

-0.629 IS] 
-0.840 (31 

0.248 I IO] 
0.900 [ 1 J 

-0.303 (81 
- 0.235 
- 0.084 
- 0. I97 
- 0.073 

0.083 
0.199 
0.460 [6] 
0.110 

-0.268 [9] 
0.151 
0.420 [7] 

- 0.108 
-0.001 
- 0.041 

0.212 
0.197 
0.120 
0.252 

-0.112 
0.636 [4] 
0.035 
0.857 [2] 

- 0.077 

nonlinear relation between model output (the maximum pit depth) and an 
individual input parameter does not improve the  association. 

In addition to the use of PCC and PRCC, the importance of input pa- 
rameters can be identified by regression analysis. In regression analysis, the 
model outputs computed from the K input sets generated by the LHS tech- 
nique are related to the n stochastic input parameters, in the simplest case, 
as 

yk = Po + 2 xkipi,  k = 1,  2, . . . .  K ..................... (24) i.: 1 

Then, the least-squares estimates of ps indicate the values of the sensitivity 
coefficient associated with each input parameter over the entire range of 
input space considered in generating LHS sets. In most situations, inputs 
and outputs may have different units and ranges, so it is advisable to stan- 
dardize inputs and to centralize the output (the dependent variable). Then, 
the regression coefficient P * s  in the following model are sought 
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n 

. . .  .................... y: = + C, z k i P ? ,  k = 1 , 2 , .  K (25)  
i =  1 

where z k i  = (xki  - .f,)/ui and y: = y, - y .  Since g*s have the same units 
as the output, they represent the change in output due to a change in input 
by one standard deviation. The values of t-statistics (called t-ratio) associated 
with p*s indicate the relative predictive quality, or significance, of the sto- 
chastic input parameters. 

Whereas correlation coefficients indicate the strength of the association 
between inputs and output, regression coefficients represent the intensity 
of the relation. Results of regression analysis, based on (25), are given in 
Table 10. The coefficient of determination R 2  associated with the regression 
model is 98.1% with a standard error = 0.05160 m. The important inputs 
identified on the basis of PCC and PKCC (shown in Table 9) have excep- 
tionally high values for the t-ratio. This indicates that input parameters n ,  
Sr, d,, b , ,  e2, and e, have very good predictive quality. From the viewpoint 

TABLE 10. Results of Regressing Maximum Pit Depth on Input Parameters of 

- 0.074876 
- 0.096947 

0.027275 
0.143266 

- 0.06020 

0.00349 
- 0.05994 

0.0496 
0.05 19 
0.13106 
0.15130 
0.03259 
0.0234 
0.03292 
0.030 1 1 
0.0722 
0.0930 
0.0537 
0.00804 

- 0.1585 
- 0.02927 
- 0.1548 

- 

0.000700 
0.04490 
0.026252 
0.124358 
0 .OO7214 

Standard 
deviation 

(3) 
0.009274 
0.008682 
0.009302 
0.005654 
0.09450 

0.09419 
0.07086 
0.1217 
0.1588 
0.07075 
0.03531 
0.04314 
0.1743 
0.04986 
0.05060 
0.1 160 
0.1086 
0.1167 
0.03375 
0.1166 
0.02001 
0.1157 
0.009201 
0.01048 
0.009666 
0.008558 
0.009781 

- 

t-ratio 
(4) 
- 8.07 
- 11.17 

2.93 
16.56 
- 0.64 
- 
0.04 

- 0.85 
0.41 
0.33 
1.85 
4.29 
0.76 
0.13 
0.66 
0.60 
0.62 
0.86 
0.46 
0.24 

- 1.36 
- 1.46 
- 1.34 

0.08 
4.28 
2.72 

14.53 
0.74 

Rank r 

(5) 
4 
3 
7 

"Deleted by the computer package due to its high correlation with other parameters. 
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of model parsimony, input parameters with less significance can be discarded 
from the regression model without jeopardizing model’s predictive quality. 
I n  this sense, those input parameters that have little statistical significance 
from ii regression study can he treatcti i is constants iri the unccrtiiiiity iitlalysis 
of niodcl output. ‘I’lie selection of input parameters can be do~ie subjectively 
in an iterative manner (e.g., retain those with t-ratios greater than 1.0) or 
through the use of formal statistical procedures (e.g., stepwise regression). 

Based on Table 10, the stochastic input parameters with little statistical 
significance are deleted from the full regression model. The results of the 
reduced regression model containing 21 of the original 28 input parameters 
are Shown in the first four columns of Table 11. The corresponding R 2  is 
98.0% and the standard error is 0.04753 m. The reduced regression model 
maintains practically the same level of R 2 ,  whereas the standard error is 
improved by 8% due to an increase in degrees of freedom. The PCCs of 
21 input parameters in  the reduced regression model are also listed in column 
5 of Table 11.  As can be seen, an input parameter with large value of t- 
ratio generally is associated with a high value of PCC. Many of the input 
parameters deleted from the full regression model are mainly due to high 
correlation with other variables. For example, only u, and us in (4) for 
are retained in the reduced regression model. This is because other coef- 
ficients a,, u2, u3, and a6 are redundant in the sense that they are highly 
correlated with a4 and u5. The reduced regression model then identifies the 
important input parameters affecting the sensitivity and uncertainty of pit- 
migration model output in a global sense. 

As mentioned previously, the regression coefficients provide a measure 

FOVE . 

Statistics Uncorrelated Correlated Harr’s PE 
(1) (2) (3) (4) 

TABLE 11. Results of Regressing tfd on Reduced Input Parameters of Pit-Migra- 

LHS 
(5) 

tion Model and PCC between H 

Mean 
Standard 

deviation 

- 0.074802 
- 0.096084 

0.027306 
0.144657 

- 0.023 149 
- 0.017435 

0.13549 
0.15208 
0.02570 
0.02779 
0.03492 
0.054 153 

- 0.045797 
0.034954 

- 0.12497 
- 0.02324 
- 0.12084 

0.044209 
0.027787 
0.125115 
0.006134 

1.304 1.304 1.595 1.326 

0.340 0.257 0.399 0.273 

and Input Parameters 

Standard 
deviation 

(3) 
0.007972 
0.007214 
O.oO82 19 
0.007454 
0.008362 
0.00801 5 
0.04985 
0.02633 
0.03081 
0.01 125 
0.0 1288 
0.009572 
0. oO7293 
0.007839 
0.09892 
0.01732 
0.09709 
0.008052 
0.007795 
0.007437 
0.007084 

r-ratio 
(4) 
- 9.38 
- 13.32 

3.32 
19.41 
- 2.77 
-2.18 

2.72 
5.78 
0.83 
2.47 
2.71 
5.66 

- 6.28 
4.46 

- 1.26 
- 1.34 
- 1.24 

5.49 
3.56 

16.82 
0.87 

PCC 
(5) 

- 0.8324 
- 0.9054 

0.4696 
0.9519 

- 0.4052 
- 0.3289 

0.3990 
0.6790 
0.1323 
0.3678 
0.3982 
0.6713 

- 0.7w0 
0.5810 

- 0.1982 
- 0.2100 
- 0.1954 

0.6602 
0.4957 
0.9374 
0.1373 

I 

of global sensitivity of the maximum pit depth to the input parameters over 
the entire input domain. Referring to Table 10, the regression coefficients 
associated with those significant input parameters are generally, but not  
alwilys, lilrgcr than tllosc insigiiificaiit ones. Insignificant input p;rranicters 
with large regression coefficients might indicate fluctuation of local sensi- 
tivity of opposite signs in different regions of the input domain, resulting 
an domain-averaged sensitivity not statistically significantly from zero. This 
lack of resolution is a limitation that could potentially reduce the effective- 
ness of LHS for sensitivity analysis. 

Comparison of Three Uncertainty Analysis Methods 
Comparing Tables 7 ,9 ,  and 10, the ranking of importance of parameters 

can vary with method. The ranking based on  t-ratio (Table 10) is practically 
identical to that using PCC (column 3 of Table 9). PCC and PRCC (Table 
9) yield basically the same ranking for the six parameters having the highest 
correlation coefficients with the model output. Note that the ranking of 
input parameters by the FOVE method is quite different from that by 
regression analysis. The main discrepancy is attributed to the difference in 
domain in which the two methods operate. That is, the FOVE method gives 
the indication of importance measured in the vicinity of a selected point in 
the entire parameter space, whereas measures such as PCC, PRCC, and f- 
ratio indicate the importance of a model parameter in a global sense over 
the entire parameter space. Discrepancy in the signs of sensitivity coeffi- 
cients in the FOVE method and those of PCC, PRCC, and /-ratio for some 
parameters also indicates the local and global effects. 

The means and standard deviations of the model output Hd computed by 
the three uncertainty analysis methods are summarized in Table 12, Values 
for the mean and standard deviation of Hd obtained by Harr’s PE method 
are larger than those obtained by the other two methods. Numerical ex- 
amples given in Harr (1989) show that Harr’s PE method has the tendency 
to overestimate the mean and standard deviation of the model output over 
those obtained by Rosenblueth’s PE method. This tendency becomes more 
pronounced as the degree of nonlinearity of the model increases. The FOVE 
method, when correlation among parameters is considered, yields close but 
slightly lower values than those obtained by the LHS technique. Although 
the three techniques yield approximations to the true statistical moments 
of the model output, the LHS procedure has better theoretical support for 
a nonlinear model, which is the case for the pit migration model. 

For all three uncertainty analysis techniques considered, computational 
effort is largely determined by the number of computer runs of the model 
under consideration. In this aspect, the three techniques are comparable. 
Using the central differencing scheme, the FOVE method requires 2n + 1 
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= 2(28) + I = 57 computer runs of the pit-migration model to obtain the 
sensitivity coefficients. Of course, the number of the computer runs can be 
reduced by about half if one adopts the forward or backward differencing 
scheme. Harr’s PE method needs 2n = 2(29) = 56 computer runs. The 
LHS procedure, for purpose of subsequent sensitivity and uncertainty anal- 
yses, requires at least n + 1 computer runs based on  the sample sets de- 
termined by the technique. McKay (1988) pointed out that 2n LHS sets are 
generally sufficient. In case the execution time for each model run is lengthy, 
subsets of the generated LHS sets can be selected for model evaluation. 

With about the same amount of computational effort, the FOVE method 
and LHS procedure can produce more information than Harr’s PE method 
(including the Rosenblueth original version). In addition to estimates of the 
mean and standard deviation of the model output, the FOVE method pro- 
vides information concerning local sensitivity and percentage contribution 
of individual stochastic input parameters to the overall model uncertainty. 
Similarly, from L€ IS, the importance of stochastic input parameters with 
regard to the model sensitivity and uncertainty in a global sense can be 
identified. Although Harr’s PE method allows assessments of relative con- 
tribution to overall model output uncertainty in the transformed space, the 
conversion back to the original parameter space is difficult. 

Improvement in the accuracy of the FOVE method could be made by 
incorporating the correlation relationship of stochastic input parameters in 
estimating the mean model output. This results in a second-order approx- 
imation. The price to pay for the improvement is an increase of computer 
model runs to estimate the second-order partial derivatives by numerical 
differencing. Improvement in accuracy of L€+S can be made through gen- 
erating more LHS sets, hence increase computer model runs. 

The FOVE method is simple, effective, and straightforward once the 
sensitivity coefficients, variances, and covariance matrix of the stochastic 
input parameters are quantified. The FOVE method is particularly accurate 
if the relations between model output and inputs are linear or close to linear. 
The merit of the FOVE method is that important stochastic input parameters 
can be identified easily. In addition, any changes in uncertainties of the 
input parameters can easily be incorporated to update the uncertainty of 
the model output. Note that calculations of sensitivity coefficients might be 
cumbersome and time-consuming for a large model in practice. Numerical 
differencing must be applied for models whose analytical derivatives are not 
obtainable. One intrinsic drawback of the FOVE method is that the method 
in insensitive to the distribution of stochastic input parameters. In fact, 
Harr’s PE method is like the FOVE method in that only the first two 
moments of a random variable, not its distribution type, are used in the 
computation. Harr’s method is an approximation to Rosenblueth’s PE method, 
which is capable of considering the distribution type of the stochastic input 
parameters. On the other hand, the PE methods provide a general frame- 
work allowing the estimation of statistical moments of any order without 
significantly increasing the computational burden, as would the FOVE method 
when high-order moments are sought. 

SUMMARY AND CONCLUSIONS 

Sand and gravel mining from a river bed leaves pits of a variety of sizes 
and shapes in the river bed that can migrate downstream, threatening the 
safety of bridge piers and other in-stream hydraulic structures. A pit-mi- 
gration model has been developed by Lee et al. (1990) based on a series of 
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laboratory experiments. Within the range of the experimental data, the 
model provides predictions of thc moving speed, shape, and maximum depth 
of the pit as it travels downstream. The model can be utilized to regulate 
mining operations and to evaluiite the impact of pits on in-stream structures. 
Li ke c) t he r h y d r a u I i c/ h y d r olog i c tn ode I s , t he pit - m ig r a t i o t i  mode 1 i t 1 vo I ve s 
parameters that are subject to uncertainty. Due to implications of using the 
model for predictions, an examination of the model behavior and its un- 
certainty is of value. 

In this study, three uncertainty analysis techniques are applied to assess 
the uncertainty associated with the maximum pit depth predicted by the pit- 
migration model. In addition, features of the three uncertainty analysis 
techniques and their performance are compared. Numerical investigation 
indicates that the PE method proposed by Harr (1989) yields higher v- I ues 
in mean and standard deviation than the other methods, i.e., the FOVE 
method and LHS. This implies that the use of Harr’s PE method would 
result in a conservative prediction for the maximum pit depth. Computa- 
tionally, the three uncertainty analysis procedures are comparable. How- 
ever, the FOVE method and LHS yield more information with regard to 
the relative importance of stochastic input parameters in mode\ sensitivity 
and uncertainty. Each method has its own advantages and weaknesses. The 
selectioii of a method for analysis depends on study objectives. 

This paper demonstrates capabilities of three uncertainty analysis tech- 
niques, which can be extended to  analyze the behavior of more complex 
hydraulic and hydrologic models. Also, the paper illustrates that in the 
course of analyzing model uncertainty a lot of information (e.g., the indi- 
vidual contribution of input parameters to the uncertainty of the model 
output) with regard to the behavior of model inputs and output can be 
derived. This is not generally possible through a purely deterministic anal- 
ysis. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

a , ,  , . . , a6 = 
B =  

c =  bo, bl, 62 = 

ci = 

v =  
var(Y) = 

regression coefficients in (4); 
channel width; 
regression coefficients in (2); 
correlation matrix of stochastic input parameters X; 
contribution of X to overall uncertainty of Y (under inde- 
pendent condition); 
regression coefficients in ( 5 ) ;  
elements of simple correlation coefficient matrix inverse; 
specified distance of pit migration; 
regression coefficients in (1); 
representative particle size; 
model error terms; 
gravitational acceleration; 
initial pit depth; 
maximum pit depth after traveling some distance down- 
stream; 
maximum pit depth at end of convection period; 
number of LHS sets; 
diagonal matrix with eigenvalues as its elements; 
initial pit length; 
effective length at end of the convection period; 
Manning’s roughness; 
flow discharge ; 
coefficient of determination ; 
regression coefficients in (6); 
friction slope; I 

sensitivity coefficient of model output with respect to Xi; 
standard error of estimates; 
time span for convection period; 
total travel time of pit migration; 
shear velocity and critical shear velocity, respectively; 
pit migrating velocities during convection period and dif- 
fusion period, respectively; 
eigenvector matrix; 
variance of model output Y; 

i 
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X 

x, 
X k i *  Y k  

Y 

T 
Y k  
zk i  

P Y  (JY 
Pi/ 

= n-dimensional column vector of stochastic input parame- 
ters; 

= Taylor series expansion point; 
= kth LHS for input parameter Xi  and corresponding model 

output, respectively; 
= sample means of input parameter Xi and model output based 

on LHS sets, respectively; 
= model output; 
= flow depth; 
= Y, - 9;  
= standardized form of stochastic input parameter Xi  in LHS 

sets; 
= linear regression coefficients; 
= specific weight of sediment; 
= eigenvalue; 
= vector of means of stochastic input parameters; 
= mean and standard deviation of input parameter Xi ,  re- 

spect ively ; 
= mean and standard deviation of model output, respectively; 
= correlation coefficient between input parameters Xi and Xi; 

and 
= covariance matrix of Xs. 
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