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INTRODUCTION

Population viability analysis (PVA) is a process. It entails evaluation of data
and models for a population to anumpau} the likelihood that a population will
persist for some arbitrarily chosen time finto the future (125, 128). A closely

related concept is minimum viable populauon (MVP) analysis. An MVP is

an estimate of the minimum number of q»rgamsms of a particular species that
constitutes a viable population. Referende is also made to population vulner-
ability analysis which is a negative appel]auon for PVA.PVA embraces MVP,
but without seeking to estimate the absolute minimum population necessary
to keep a species viable (136). ;L

In the United States, the US Forest Service has a mandate to preserve viable
populations on its lands under the National Forest Management Act (158).
Likewise, the US Fish and Wildlife Service and the National Marine Fisheries
Service have been evaluating PV As for many species or populations proposed
for listing under the Endangered Species Act (152). Establishing criteria for
what constitutes a viable population is no longer strictly an academic pursuit.

PVAs have been attempted for at least 35 species; perhaps the most
celebrated are those for the grizzly bear (Ursus arctos horribilis) (126, 129,
144), and the northern spotted owl (Strix occidentalis caurina) (18, 79, 95,
98a). Most PVAs are simulation studies that remain unpublished, or when
published, they may only include outlinqs of model structure (95, 126, 131).
Others invoke analytical methods or rules of thumb,” always burdened with
severe assumptions (31, 152). PVAs vary according to the ecology of the
species, the expertise of the modelers, aﬂd the extent of available data.

*The US govemnment has the right to retain a numexclusxvc, royalty-free license in and to any

copyright covering this paper.
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There are no guidelines on what coﬁét.mtcs a valid PV A, and because each
case is unique, I am loathe to devise anyi lf\ny attempt is qualified that involves
a population simulation or analysis ‘%l:h the intent of projecting future

populations or estimating some extincticn or persistence parameter, e.g. time
to extinction, probability of extinction,jb’ obability of persisting for 100 years,
etc, Definitions and criteria for viab&l ty, persistence, and extinction are
arbitrary, e.g. ensuring a 95% probability of surviving for at least 100 years.
Discussion of such criteria can be founiiij_ Mace & Lande (92) and Thompson
(152). Cl

Collecting sufficient data to derive reliable estimates for all the parameters
necessary to determine MVP is simply not practical in most cases. It is further
questionable how well ecologists can predict the future (34), particularly over
time horizons necessary to project extinctions. On the other hand, Soulé(136)
suggests that managers have the right to expect population biologists to project
the number of animals necessary to ensure the long-term viability of a
population. But to do so has proven to be dangerous ground (83) which risks
damaging the credibility of conservation' biologists.

My purpose in this review is an attenipt to place PVA and MVP on more
comfortable ground by identifying a f%gislic domain. I maintain that PVA
ought to be an integral part of any spe¢ies management plan, but rather than
being so presumptuous as to claim that&'b can actually use modeling to define
a MVP, or to estimate the probability'{¢f extinction, I use it as a forum to
champion the adaptive management E%Er:ach of Holling (67) and Walters

i

(162). For those all-too-frequent cases that cannot wait for a full-blown PVA,
I review empirical evidence suggestin t use of rules-of-thumb for MVPs

may not be unrealistic. i
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MODELING EXTINCTION
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Fundamental to MVP is the fact that sméll populations are more likely to go
extinct than larger ones due to inbreeding depression and genetic drift, or
simply the threat of chance birth or death events (demographic stochasticity).
Under high environmental variance or, catastrophes, however, maintaining
MVP may not be as effective a conservation target as would be managing for
spatial configuration and location of habjtats (38, 85, 106, 128). Irrespective
of the target, the objective of PVA is tg provide insight into how resource
management can change parameters infljencing the probability of extinction.
This change may entail lengthening theiéxpectcd time to extinction, E(T), or
reducing the probability of extinction \Ji@hin some time frame.
The most appropriate model structure fora PVA depends on the availability
of data and the essential features of the e'!:blogy of the organism. In this section
o
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I review structural features of PVA and extinction modeling. I begin with a
discussion of stochastic variation, a necessary element in any consideration
of extinction processes, and then review approaches focusing on genetics,
demography, and ecology. I conclude with the argument that all of these
elements ought to occur together in' the same model. Because of the
complexity of such a model, most PVAs will enter the realm of computer
simulation modeling. -

Stochasticity !
Random events can be extremely important in extinction, especially for small
populations, the target of most PVA (121). In a sense, the distinction between
deterministic and stochastic processes in ecology is artificial because all
ecological processes are stochastic. Maynard Smith (97) points out that “the
use of deterministic rather than stochastic models can only be justified by
mathematical convenience.” For heuristic purposes, use of deterministic
models is appropriate. For example, our understanding of a simple model of
competition or predation would only be obfuscated by the complex mathe-
matics of a stochastic version. Because they are more tractable, deterministic
models may yield robust results; stochastic models are often too complex to
be solved analytically and thus require use of simulation methods.

Usually, conclusions from stochasti¢ models in ecology are strikingly
different from deterministic ones (26). This is generally true because of (i)
large variances, (ii) nonlinear functions, and (iii) highly skewed or otherwise
non-normally distributed variables. Theisigniﬁcance of high variance is easy
to understand in the context of extinction (85). Less transparent is the fact
that virtually all ecological processes are nonlinear (17, 122). When the
system contains nonlinearities, its behavior may differ markedly due to Jensen’s
inequality which states that for any concave function, ¢, of a random variable
X, E[6(X)] < ¢[E(X)}; the reverse inequality applies for a convex function
(72). The greater the magnitude of nonlinearity, say as measured by the second
derivative, the greater will be the effect of randomness.

Sampling from a skewed distribution can yield peculiar behaviors in
stochastic models. This is illustrated by exponential population growth in a
random environment, i.e. random growth rate (88). Under such a model,
population sizes at some future time are lognormally distributed (31, 154).
This distribution arises because a series of good years will lead to extraordi-
narily large population sizes due simply to the geometric nature of population
growth. Sequential sampling from such skewed distributions of N(f) results
in the most likely population sizes (mode) being less than the mean. As a
consequence we obtain the seemingly paradoxical observation that the growth
rate for a typical sample path “will in general be less than the growth rate of
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average population” (154). Because ﬁdﬁulaﬁon dynamics generally involve
intrinsically multiplicative processes (83), we may expect complxcauons due
to distributional properties to be commén

Environmental stochasticity or “noise” is handled poorly in most PVA
models. Environmental stochasticity i In namre is not the unstructured “white”
noise of a random number generator or cpsﬂon term. Rather environmental
stochasticity carries structure, such-as autocorrelation and distributional
properties, stemming from the manner m which errors are propagated through
the system (101, 102, 108, 140). It really makes a big difference which
variables in the system are fluctuating due to the environment, because this
can affect the structure and dynamics of the system. Error propagation
(including sampling error) can be examined by simulation methods (104),
yet there has been little study of this problem in ecology.

This all calls for detailed understanding of the variance structure of
populations (55). To understand the role of stochasticity in population
extinction, we must understand how environmental variability affects the
organism, Thus it will be a fundamental challenge in any PVA to decide how
to model environmental stochasticity, Because data are limited, sampling
variance may often overwhelm attempts to decompose variance into individual
and environmental components. If sampling variance is included in a
simulation model, projected vanabxhty will be much larger than in the true
population. H

1 i

8

Genetics

The ultimate objective behind PVA is to devclop prescriptions for species
survival for the purpose of preserving genetic diversity (136); thus it seems
appropriate that models of genetic variation ought to contribute to the
formulation of a PVA. We know that small population size can result in
inbreeding depression in some populations, which may increase the risk of
extinction for the population (81, 111, 112). We also know that small
population size can reduce genetic variation through drift, thereby reducing
the raw material for evolutionary change, and genetic variation can be essential
to ensure preadaptation to disease, competition, or predation (45). But what
we do not know is how much and what type of genetic variation is most
important to preserve.

Templeton (149) makes a convincing argument for placing priority in
conservation on unique evolutionary lineages such as species or subspecies.
But even within a taxonomic group there are many forms of genetic variation,
which may respond differentially to particilar conservation strategies. Genetic
variation is revealed by restriction site analysis of mitochondrial DNA,
karyotypy, electrophoresis of allozymes, hemablhty of quantitative traits (40),
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and morphological variation (but see 69) And it is possible for many of these
measures to vary almost independently of one another (80, 165). Genetic
variation within populations often is measured by mean heterozygosity or the
proportion of alleles that are heterozygous. Yet, if preadaptation to future
insults from other species (disease, parasites, competitors, predators) is the
reason to preserve genetic variation, it may be important to focus on preserving
rare alleles (45). Perhaps the number of alleles per locus is a more important
measure of genetic variation (2a).

Because quantitative traits are most frequently the target of natural
selection, Lande & Barrowclough (81) argue that heritability should be
monitored as a measure of genetic variation for conservation. Yet, from a
pragmatic perspective, we know that estimates of heritability are often difficult
to interpret because the response to selection can be greatly complicated by
maternal effects (3). Relatively low levels of genetic variation may confer
substantial heritability to some quantitative traits (90). There is also the
difficulty of deciding which quantitative traits should be measured. Following
Lande & Barrowclough’s (81) rationale, the most important traits ought to
be those that are most frequently the target of natural selection. Yet, these are
exactly the traits expected to bear the 10\lvest heritability as a consequence of
selection (16, 40).

How genetic variation is stmctured wlthm populations can also bear on
conservation strategies (12). Many population geneticists believe that spatial
heterogeneity is one of the most important mechanisms maintaining genetic
variation in natural populations (63). Whether or not this pertains to the
importance of inbreeding in natural populations has become the source of a
fascinating debate (112, 130), but irrespective of this, there is no question
that spatial variation in genetic composition of populations can be substantial.
We are just beginning to understand the role of population subdivision on
genetic structure and heritability (161). How significant is local adaptation?
How important is coadaptation of gene complexes (149)? Although spatial
structuring of genetic variation is complex and interesting, it is not clear that
our understanding is sufficient to use it as a basis for manipulating populations
for conservation. Attempts to manage the species by transplanting individuals
between subpopulations is an effective tool.to maintain or increase genetic
variation within populations (57) but may destroy variance among popula-
tions. r

The solution to this dilemma may u]umately entail foreseeing the sorts of
threats a species is likely to encounter. If local subpopulations are likely to
be threatened by habitat destruction or political unrest, it may be extremely
important to maintain geographic variants to ensure that the species can
continue to survive in other localities (see 142, 149). However, if future

!
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threats due to diseases and parasites expecwd there may be a premlum
on ensuring the maximum allelic dlve}sxly throughout the population (not
necessarily all in one place—96). "

Is there an optimum amount of mm‘{ng among subpopulations that maxi-
mizes total genetic variance in the population? Because different genes or
gene complexes are found in within-vs- mong subpopulation components of
genetic variation, a general answer tq this question probably does not exist.
Furthermore, the genetic variance w1thi \ populations is a convex function of
dispersal (migration) with maximum v ce at the highest possible dispersal.
Likewise, variance among populanons s a convex function of dispersal but
with maximum variance at zero dlspersaL (25). The sum of these two functions
is similarly convex, and no intermediate maxima exist. Thus, we need to
minimize dispersal among sites to preserve geographic variation while
ensuring large enough numbers in subpopulations to avoid inbreeding loss of
genetic variance,

An approach commonly used in try#ng to determine a genetic basis for
MVP is to examine effective populatlort size, Ne (113). N. gives insight into
the potential consequences of genetic drj ft 10 loss of genetic diversity, but as
is the case for measures of genetic variglion, we have numerous measures of
effective population size, depending upq ri the mechanisms affecting drift. For
example, Ewens (37) reviews the calcjilation of Ne relative to inbreeding,
Nev for the variance in gene frequenciesjamong subpopulations, Ne. targeting
the rate of loss of genetic variation, and{Vem for mutation effective population
size. Still more measures may be deri . For example, N{™* defines the
effective population size in a metapoplijlation experiencing repeated extinc-
tion-recolonization events (49). Each ¢ these basic measures of N. is then
subject to adjustment for unequal sex rat{p, age structure (65, 66), and variable
population size (59). There is no sound' asis for selecting one of these basic
measures of N, over another, yet as Ewéfis (37) shows, they can lead to much
different conclusions about MVP. L

I conclude by agreeing with Shaffer (128) and Lande (80) that modelmg
genetics is not likely to be as important as modeling demographic and
ecological processes in the formulation ‘of a PVA. This does not imply that
genetic considerations are not important; rather, in many cases we do not yet
understand the genetics well enough to use it as the basis for management.
There is an urgent need for research ‘on the link between genetics and
demography (80, 94; cf 111). This conclqsion also does not imply that models
of genetic variability should not form th‘ basis for PVAs. Indeed, I think this
would be a novel approach for species i ''which erosion of genetic variability
is likely to be an important consideration in the future management of a
species, such as the African wild dog' Lycaon pictus) which has a highly
subdivided population (51). But as Lanq has emphasized (80), demography
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and associated ecology are likely to 1

b of more practical significance than
genetics in most PVAs. g

Birth-Death and Demography

BIRTH AND DEATH PROCESSES  Possib}} the simplest approach to modeling
extinction is a stochastic birth-deatl} process (53, 91, 116), assuming
independent, Poisson-distributed birthdiand deaths. Demographic “accidents”
are most likely in small populations|glue to sampling effects, i.e. simply
because individuals do not survive for tlfe same length of time, and individuals
vary in the number of offspring they Bear. This approach has been used to
solve for E(T) as a function of populgtion size, N, given density-dependent
per capita binh bn, and death rates, dy} -

=1

En = 33 Wiy Tl Gwdy ' | L

i=1j=i n=i
up to a maximum possible populanon 1ze Nm. '
As one might expect, such samplifig effects are extremely sensitive to
populatlon s1zc (53, 91), and thcsc effects usually can be ignored if the

extinction. If recolonization is slow, thifre can be a significant risk to loss of
the entire population by demographic $tochasticity alone (103).

Environmental stochasticity is mucl§ more significant than sampling or
demographic stochasticity, except for 1 b small populations (54, 55, 74, 85,
129). Recalling the assumption of Pdlgson distribution for births (bn) and
deaths (dn), the variance in per capita owth rate at population size N (rn
= bN - dN) is simply i

Var(n) = (b + N 2.

E(T) = 2 2 {[2/i(jVar[r;)- E{r]) [nVar(r.,)+E(rnn/[nVar(rn)—E(rn)l}
3.

Here, Var(rn) somehow becomes envijonmental variance (152), albeit still
a function of the magnitude of bn ang dn. The important outcome of the
modified birth-death process model is it E(T) increases with population size

i=1j=i
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analytical predictions from the bmfrdeath model. However, ecological
applications of birth-death process modcls have been criticized for several
reasons.

Early interpretations that populauon of more than 20-30 individuals were
unlikely to risk extinction (91, 116, §2) were a concern given ‘their basis
solely in stochastic demography (129, i64) The use of a reflecting boundary,
Nm, for maximum population size lsiunrcahstlc (30, 94), although this is
resolved by Goel & Richter-Dyn (53). Additionally, the fact that the models
are in continuous time renders it “highly questionable” (83) because of the
importance of seasonal structure in th¢ population. The assumption at Eq. 2
which is the basis for Eq. 3 (152) algo merits consideration. For constant
E(r), increasing variance in rn is accomplished by increasing birth and death
rates, This is reasonable enough given ¢xplicit assumptions in the birth-death
model but bears rather heavily on Belovsky s (6) attempt at empirical
verification for Eq. 3 which draws on comparauve analyses of the maximum
demographic potential for r and b in mammals.

Another matter of concern in all models that predict the time to extinction,
in general, is that E(T) can be a mislea_’c]i,ng characterization of the likelihood
of extinction (31, 41, 55). The distribu%‘ibn of time to extinction is positively
skewed in each of these models, as well as in the age-structured model (82).
The E(T) is substantially greater than the median or mode of the distribution,
because a few populations take extraor‘&nanly long times to become extinct.
The time to extinction most likely id! occur (mode) or the middle of the
distribution (median) may be more meﬁnmgful measures than the mean,

Despite these difficulties and restfictive assumptions, Leigh -(85) and
Goodman (54, 55) made an important point by clarifying that “demographic
uncertainty” is most likely to be a c{incern only at low population sizes,
whereas environmental uncertainty canjpose significant risks for considerably
larger populations (cf 101, 102 forgsimilar results based on branching
processes). Understanding the variation)}in population parameters attributable
to environmental fluctuations is clearly fundamental to any PVA (55).

i
DEMOGRAPHIC PROJECTIONS Althoug! “demographic uncertainty” is usually
approached using birth-death process models these models, in fact, do not
contain age structure. This may be a serious shortcoming because age structure
per se can have a significant effect on popul'auon trajectories and thereby on
the probability of extinction (82, 154, 156)

Many PVAs employ projection matnces such as the Leslie matrix, as
age-structured models of population grthh (95, 126). The Leslie matrix and
similar stage-structured models have mathematical properties that give great
insight into processes of population gfbwth (24).

For example, sensitivity of populatigm growth rate, r, to pertutbations in
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vital rates (P, Fx) for a Leshc/Leﬂco tch matrix can be solved analytlcally
(i.e. dridPy or dr/dFx)(24, 79, 99). Un rstandmg the response of growth rate
to perturbations at various points in thd life table may yield insight into how
one should target management (79). Fo long -lived species, such as the spotted
owl, adult survival is a very sensitivg dcmographlc parameter, whereas in
species with shorter generation times, fecundity can be much more important
(83, 99).
In nature, the elements of a projec ;on matrix are random variables (14,
153) or functions of the environment i(134, 160). Forecasted trajectories of
population size depend not only on thelschedule of vital rates, but also on the
variance in these rates (156). It is important to note that variation in vital
rates creates disequilibrium in age sjructure that further complicates the
dynamics. The variance in population érowth rate is thus attributable to both
the variation in vital rates and. the variance in population structure. For
demography of humans in the United States in 1960, approximately two thirds
of the variance in growth rate can be attributed to variance in vital rates,
whereas about one third is due to ﬂucmauons in age structure (154).
Projection matrices in their s1mplcst form are models of exponential
population growth. As such, there are! esscnually two possible outcomes of

these models: they increase exponen

Ual!y to infinity, or decrease to extinction.

If the dominant eigenvalue for the averdge projection matrix is less than one,

extinction is assured. But even when

the average projection matrix might

predict an increasing population, extin

fition may also occur when vital rates

vary (14, 74, 156). Of course, ex

snential growth models are strictly

unrealistic on time scales necessary tolexplore extinction probabilities.
‘ i ;

FORECASTING METHODS Developmer:}‘ of theory and applications of forecast-
ing mostly have occurred in economids, but the opportunity exists to apply -
many of these procedures to populatic}n projections. Projecting a stochastic
process into the future poses problems. First, one must assume that the
mechanisms generating the historical data remain intact and unchanged in the
future. Second, one must select the cqrrect structural model that drives the
population process or risk serious errors in prediction. Third, errors in
predictions are magnified progressively’into the future such that usually only
a few time intervals can be predicted with any confidence or reliability (31a).

A time series model commonly used for forecasting is the ARIMA
(auto-regressive integrated moving avgrage) model (10, 15, 19, 31a, 154).
Least-squares regression is used to calhulatc the dependence of N(t) on lags
of the entire time series, N(t-1), N(t-2)|\. . . N(t-p). Differencing is employed
to remove trends, and moving averages can be calculated to smooth out
high-frequency noise. The resulting ;El;ation is then extrapolated into the
future beginning from the last observedjlata point. The population’s trajectory
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determines the forecast. Thus, if the ga ectory does not show a population
decrease, the forecast may continue tqf increase without bound. Confidence
intervals around the forecasted value dl nevertheless, include  at some
future time, but this will include samp g error and will be much shorter than
E(T). Many statistical software packpges include programs that perform
ARIMA forecasting. '

A simplistic approach to forecasting
without age structure (31, 64). Itd ¢
differential equation model of exponen
distribution function of extinction is th
to the lognormal), and E(T) = (xo-xe}Mal, where xo is the log. of the initial
population size, xg is the positive population size defined to constitute
extinction (e.g. 1 in sexually reproducug% species), and a is the average growth
rate for the population. A maximum Jikelihood estimator (MLE) for § =
In(ng/me)/(t q -to), which only requires %mowledge of the initial, no, and final
censuses, ng, at times fo and 4 respectively. Or alternatively one may use a
linear regression approach (31) MLEstfor 0'2 are also easily calculated (31,
64).

Although easy to use, one must i agme that the population trajectory
observed thus far will also apply into the future. Also, any structural features
of the population process, e.g. density dependence, which are reflected in the
time series are overlooked in the estim@tor of 3 (154).

Building on the results of Tuljapurkag & Orzack (156) and Heyde & Cohen
(64), Lande & Orzack (82) also modelld stochasticity as a diffusion process
for exponential age-structured populafjons. Simulation trials were used to
validate their estimators for 4 and dff. Although Lande & Orzack '(82)
emphasize that only three parameters gre needed to use their model, one of
these parameters is initial total reprodyjctive value which requires complete
life history and age-structure data! it

A third approach to forecasting is th charactcnze the time series of vital
rates with ARIMA, and then to insert these models into a projection matrix -
(84, 154). Such a “time-series matrix” retains more of the dynamic conse-
quences of age structure, and thereforé population fluctuations ought to be
more realistic. I am unaware of any apphcatlons of this method i in conscrvatlon
biology. L :

For each of these forecasting models we assume a density-independent
population. If density dependence acts‘:iril an age-specific manner (which it
usually does: 43, 44), the complication tp the age structure make it difficult
to derive analytical results for the distripution of extinction times. Given that
density dependence exists in natural populations (133), even in “density
vague” populations (143), I am skept{tal about using density-independent
formulations except in two cases: (i) ry small populations where density

an be derived from a diffusion model
culus is used to solve a stochastic
1 population growth. The probability
inverse Gaussian distribution (similar

i
i
\
i

e



POPULATION VIABILITY 491

dependence may be inconsequential‘felative to demographic stochasticity
(55), or (ii) for short-term forecasting Further research is needed to develop
forecasting models with ecologically realistic structures, e.g. with density
dependence. But in the meantime, Monte Carlo simulation procedures (60,
118) can be used to generate esti ates and distributions for extmctlon
parameters for models with density dépendence.

Sensitivity to initial conditions endures that long-term forecasting will be
unsuccessful for chaotic populations (}22), but nonlinear forecasting methods
may improve short-term forecasts for populations embedded in complex
ecosystems (145). Populations experfcncmg fluctuations due to time-lagged
processes may be particularly sulted. to one of several nonlinear methods
reviewed by Casdagli (23). Software for generating forecasts and calculating
confidence intervals is described by Schaffer & Tidd (123). Unfortunately,
these methods work best for time series longer than are available for most
endangered species. b
Ecology ? ‘
Although much of the literature on BVA has focussed on issues of gencucs
and stochastic demography, it is clear that ultimate causes and threats of
extinction are primarily ecological. L¢ss or degradation of habitat is the most
significant factor threatening species éxtinctions in the future (107, 164). For
avian taxa currently endangered by ex{inction, 82% are associated with habitat
loss, 44% with excessive take, 35% dﬁy introductions, and another 12% are
threatened by chemical pollution or the consequences of natural events (148).

Most PV As have ignored fundameny tals of ecology such as habitat, focusing
instead on genetics or stochastic ded hography. Although ecological factors
influence demographic variables, seld lom is our understanding sufficienct to
isolate these effects. A more appropriate approach for many species may be
to model the habitat for the species and various strategies for managing this
habitat. For example, Foin & Brenchley-Jackson (42) modelled the salinity,
transpiration, and soil moisture of Spartina salt marshes in southern California,
which is essential habitat for the endangered light-footed clapper rail. Reliable
demographic details for the Rail were unavailable, and the only connection
between the bird and the habitat was a linear relationship between the biomass
of Pacific cordgrass, Spartina foliosa, and the number of rails.

Most demographic PVAs performed thus far do not model ecological
consequences of other species, e.g. predators, competitors, parasites, disease.
In particular, exotic species can be & major threat in some. systems (159).
For example, invasions of exotics may be less likely in communities that
possess a diversity of native taxa (114). In some species, dynamics of disease
may be the most significant consideration in a PVA (35, 96). Understanding
such relationships is necessary to prc?ii‘ct population viability.
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Regrettably PVAs often do not explicitly include management (136).
Consider, for example, application of a forecasting method to a population
trajectory for a species whose decline can be attributed to habitat loss. It
makes no sense to extend such a trajectory if all remaining habitat for the
species is now protected. Yet, this is precisely the inference that one would
draw in applying a forecasting mod&L (cf 31, 82). Leaving management out
of a PVA is unfortunate because one ' f the greatest values of PVA modeling
is the opportunity to evaluate the efficacy of various management options
67). I )

Indeed, it is the absence of ecolog;' and management from most attempts
at PV As that is their biggest weakne;";s. These processes ought to be the nuts
and bolts of such modeling exercises!!The power of ecological modeling rests
in our ability essentially to play witf; nature to anticipate the consequences
of various management scenarios (55, 139, 147). Some aspects of ecology
such as density dependence, spatial hétgarogeneity, and the Allee effect are of
particular significance to PVA becaufie they have major consequences to the
probability of extinction,
DENSITY DEPENDENCE The simplest Egssible model of population growth is
an exponential population growth del. It has no ecology. The simplest
possible ecological model is a densit{-dependent model such as the logistic.
The existence of negative feedbackg in compensatory density dependence
dampens population fluctuations andj can greatly reduce the probability of
extinction (52). In model selection) the principle of Occam’s Razor is
commonly invoked, whereby one requiires statistical evidence for the existence
of density dependence before adopting the more complex density-dependent
model. I submit that, instead of requifing statistical demonstration of density
dependence, one should test for deviatipns from a null model of logistic density
dependence. i

This is not to say that estimating pq‘;ameters for a density dependent model
is not without its difficulties (98, 141), in particular, lack of independence
in a time series of census data (20, 110). One can avoid some of these
problems by examining density dependence in survival or fecundity, while
controlling for key environmental parameters (83). Elements of a projection
matrix can be made functions of density, yielding dynamics qualitatively
similar to the logistic (134, 160). Because sufficient data are seldom available
to do justice to characterizing a density dependent function, one may need to
resort to using a form consistent with that observed for similar taxa (43, 44).
Because of the difficulties with parameterization of density dependence, it has
been argued that it may be most conservative to use density-independent
models because they were thought to bear higher probabilities of extinction
(41, 52). But this is not necessarily true; for example, extinction under density




dependencc is imminent if all habimﬁ
more, I do not accept this rationale q
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correlated fluctuations among subpo]@lations can drastically reduce E(T)
48). i

Incorporation of spatial structure ﬁnlo ecological models has involved a
diversity of approaches including rea_tﬁon-diffusion equations (86), discrete
interacting subpopulations envisioned on a grid (157), and Markov transition
matrices (1). Diffusion usually has aﬁétabilizing effect on the dynamics of
single-species models, tending to average population fluctuations in space.
But when spatial structure is combifl¢d with ecological interactions, e.g.
competition or predation, then instability and spatial patterns can emerge.
Spatial models in discrete time also :show the potential for very complex
dynamics, using integrodifference equations (76), or predator-prey difference
equations with dispersal simulated on a. grid (61).

Spatial structure adds so much complexity to ecological models that
generalities can be difficult to obtain (27, 39). For example, depending upon
the species in question, corridors among habitat units may be either beneficial
or detrimental. Corridors can reduce ¢onsequences of inbreeding or demo-
graphic stochasticity by facilitating di$persal among sites; but they can also
serve as transmission routes for diseﬂge, exotic species, or predators (127,
132a). o
Recently, considerable work has focii ssed on metapopulation models, where
the occupancy of discrete habitat patéhes or islands is a consequence of a
balance between dispersal and ‘extinc’pion processes (1, 49, 87). Fahrig &
Paloheimo (39) show how inter-patch dynamics is fundamental in determining
population size in spatially structured models. As the distance between habitat
patches increases, say as a conscquenc'(s of habitat fragmentation, inter-patch
dispersal is expected to decrease. The ability of dispersers to detect new habitat
patches can be an exceedingly importgnt factor determining population size,
patch occupancy, and probability of éxtinction (39, 78). This has been the
guiding principle behind PV As for the spotted owl by Lande (79) and Thomas
et al (151). !

The geometry of habitat can be crifical (157) and virtually impossible to
model with analytical techniques. In a'simulation model for the spotted owl,
the landscape of suitable habitat has be¢l mapped on a geographic information
system (GIS) and imported into a dispersal simulation model (98a). This
technology has great potential for ing with the complex problem of
identifying an appropriate spatial structure for population modeling.

¥

an understanding of the mechanisms régulating population size (133). Single
species models of populations are pr&lpabl'y unrealistic characterizations of
most populations, because population ;regulation actually entails dynamic
interactions among species, €.g. plant-“ ;arbivore, predator-prey, parasite-host

MULTI-SPECIES SYSTEMS To construc& lq PVA, it is fundamental to develop
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interactions. Herein lies a serious dllethma for PVA. We do not understand
multispecies processes well enough f?r most species to incorporate such
complexity into a PVA.

Modeling ecological processes 1deqjly should include the interface with
demography. For example, the dynaducs of disecase in a population can
ultimately be determined by demographic processes. Demographic disequilib-
ria sustained by stochastic perturbationg in vital rates can result in sustained
epidemiological fluctuations (155). Indeed, such interactions between time
delays created by age structure and by 9cologxcal interactions may be a key
to understanding dynamnc behavior in gcneral (62). But, of course, to model
such processes requires detailed information on the age specificity of the
ecological process. 4

Ecological processes are inherently honlmear This fact, along with the
destabilizing effects of environmental seasonality and trophic-level interac-
tions, means that complex dynamics, ipbluding chaos, are to be expected in
many biological populations. It has been argued that chaos seldom occurs in
ecological systems because species would be expected to go extinct when
chaotic fluctuations reduce mpulaﬁoqsgto low levels (9, 119). This is not
necessarily true because a variety of me,chamsrhs can ensure persistence. In
particular, refugia and spatial heterogcnelty (2, 71) can buffer local popula-
tions against extinction. And even if cl‘naouo fluctuations were to cause local
extinction, areas may be repopulated m the sense of a metapopulation (61,
119). |

If anything, however, recent advance;s in nonlinear dynamxcs have made it
clear that even simple ecological systéms can possess remarkably complex
dynamics, The implication is that such QOmplex dynamics may frustrate our
ability to predict long-term trajectories riecessary to estimate extinction times.
If we are to consider PVAs for’ chaoubplly fluctnating populations, the only
hope may be to focus attention on the¢' mechanisms that bound a systems
dynamics, e.g. refugia, spatial heterogenelty, switching to alternative prey.

These remarks only give a glimpse ;nto the true complexity of ecological
systems. In performing PVAs we do not yet know how much complexity is
necessary to capture the essence of .the system. Deciding how much
complexity is necessary should be based on advice from field biologists and
managers, who have the best sense, and mvarxably on the availability of data.
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Interactions Among Mechanisms |

Because several mechanisms can contribute to extinction, and because each
is complex in its own right, the usual approach has been to consider the
mechanisms only piecewise, one or two dt a'time. In this approach, one might
learn which mechanism appears to be. most sensitive and which requires the
largest MVP. S 1
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Unfortunately this approach is flﬁ"ed because the interaction among
components may yield critical insight 1ﬂ the probability of extinction. Indeed,
if Gilpin & Soule’s (50) idea of exti iction vortices has any validity, the
synergism among processes—such as ﬁ' bltat reduction, inbreeding depression,
demographic stochasticity, and loss 'g !genetic variability—is exactly what
will be overlooked by viewing only th Qpleces

It is feasible and straightforward tQ uild a simulation model containing
both demographic and environmental istochasticity, postulated consequences
of inbreeding depression, Allee effec(s habitat trajectories, and consequent
ramifications to carrying capacity, etc; all in the same model. Then one can
conduct a sensitivity analysis to lezqn which parameters have the most
significant consequences, and one can: simulate management alternatives to -
view their expected consequences. Furthermorc simulation offers the power
to explore propagation of variances and the effects of various types of
randomness for complex systems whlch cannot be understood except in the
full-blown model (104, 118). All thes things are possible, but in practice
our ability to predict the behavior of, ¢omplex ecological systems has been
less than exemplary (34). ;t i

T

WHAT MAKES A GOOD PV AND WHO DECIDES?

PVA may be a more ominous pro ition than population biologists are
accustomed to, given that PVAs have n challenged in court (5, 151). Some
of the lessons learned from prev1ous court challenges of population models
may be instructive. For example, the{ statistical reliability of population
projections is likely to be scrutinized, and it is therefore important that
parameter estimation, robustness of my els and confidence limits for projec-
tions be carefully considered. How ' cfcnsxblc is time to extinction, for
example, if it carries confidence mtervafs spanning two orders of magnitude?

Presentation of results can be a dehca, matter. Even though the model may
be complex, it is essential that explanation be clear and understandable to
nonscientists. Substantial testimony m pne of the spotted owl hearings was
ignored by the judge in her ruling becau§¢ she did not understand the modeling.
Yet, to oversimplify may risk mlsrepré ntation.

There exists a delicate trade-off betwéen building a model that realistically
captures the essential ecology of the or imlsms and keeping the model simple
enough that the number of parameters for estimation is reasonable (33). One
of the beauties of some of the forecg ing methods is that straightforward
methods exist for extrapolating the g .bﬁdence intervals and distributional
properties of forecasts (31, 31a, 64). Ii it use of such simple models requires
bold assumptions about exponential ﬂ pulation growth and perpetuation of
population trajectories. For models;|that are more ecologically realistic,
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however, such variance estimators d ot exist, requiring use of simulation
methods, e.g. bootstrapping and jackknifing (100). There are no rules, but a
strategic modeler will use the simpleft possible model that still retains the
essential features of the system’s ecol¢

To anticipate extinction probabilities, it is essential to understand the
structure of variance, particularly enyifonmental variance (cf 55, 99, 101,
102). Yet, obtaining good estimatés. Of variances for environmental and
demographic parameters requires vast amounts of data. Most PV As conducted -
thus far have been unable to do Jusuce variance estimation. Shaffer (126)
was unable to distinguish between sampling and environmental variance for
demographic parameters of grizzly bears. Lande (79) estimated only the
binomial component of sampling vanartce surrounding demographic param-
eters for the spotted owl.

For time series of population size, barlances often increase as the sample
size increases (108). At the very least, it would appear from data presented
by Pimm & Redfearn (108) that 8 yeark of data are needed to stabilize the
variance in insect census data, and 30—4Q years for birds and mammals (150).
To characterize the autocorrelation smrc(%me in a time series will require even

more data, yet antocorrelation is kno be important in prcdxcnn g extinction
probabilities (101, 102). ‘

A large literature exists on the p! il sophy and methods for simulation
modeling in ecology (56, 58, 104, 118} 139, 147). Likewise, there are several
book-length treatises on estimation of] population and ecological parameters
(77, 115, 117, 124, 138, 163). S parameters such as survival or
coefficients for multispecies interactidns can present serious estimation
problems. And in many cases there is litfle hope because data are unavailable
or insufficient. In these instances, one rhay use data from similar species or
areas, use a simpler model encumbere: by unrealistic assumptions on the
structure of the system, or explore the behavior of the system over a range
of reasonable parameter values. .

Deriving statistically reliable esumatefs for MVP is clearly a difficult if not
impossible task. But it can be an even tougher task to extrapolate from the
MVP into estimating the area of habitat nécessary to support such a population,
which requires a detailed understandmg of a species’ habitat requirements
(13). Patches of habitat must not only. bp larger than some critical size (80),
they must also be in a suitable geometric configuration to ensure dispersal
among habitat units. Management for s tted owls (151) provides a complex
case study. i i

Grant (56) suggests four important! Jomponents for validating any PVA
model. First, does the model address Ihe problem? Because the “problem” is
usually a management issue, it may bé dseful to interface the PVA with risk
analysis (93). Second, does the moTel possess reasonable structure and
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behavior? The third step is to attempt a quantitative assessment of the accuracy
and precision of the model’s outputs and behavior. And fourth is to conduct
a sensitivity analysis of the model by changing selected parameters in the
model by an arbitrary amount and then siudying system response and behavior.

Given careful consideration of the lhudience (i.e. who decides?), these
validation approaches offer useful b’aééline criteria for evaluating a PVA
model. But still, finding the appropriate balance between complexity and
statistical reliability will be arbitrary an }gdifﬁcult to evaluate, Following these
validation criteria, some approaches are;ffundamentally insufficient as PVAs,
for example, simple calculations of Ne: > 50/500, or projections of Leslie
matrices until extinction. Examples of PVAs that have been particularly
successful at stimulating enlightened management include those for grizzly
bears (126,144) and spotted owls (983% 151).
GETTING EMPIRICAL |
We cannot expect that simulation PV As i,l/ill be conducted for most endangered
species. Data are often insufficient, timg is critical, PVAs can be costly, and
there are simply too many species needing attention (136). For these reasons,
there continues to be great interest in the formulation of “rules of thumb” for
MVP, and the N > 50/500 guidelines for short-term versus long-term MVPs
are commonly cited (136, 152). ||

The original formulation of these rulés of thumb was genetically based, but
not based upon defensible criteria (3?,iBl)‘. Nevertheless, there is empirical |
evidence that such rules of thumb may [be of appropriate magnitude. Studies
of extinction of bighorn sheep (Ovis d nadensis)(7), and birds on oceanic
or habitat islands (70, 109, 137) consistently show that N < 50 is clearly
insufficient and the probability of extinction was higher or even certain for
such small populations. Populations of jb < N < 200 were marginally secure,
and when N > 200, populations were apparently secure over the limited time
frames of these studies (see 150). Clearly applications of such limited
observations are restricted to particular taxa, and we would expect much larger
population sizes to be necessary for insect populations, for example. And there
are obvious advantages to mammiMngEmree or more replicate populations
(136). I

There is opportunity to expand the fé’mpirical basis for PVA and rules of
thumb (150). This should include extipction studies based upon empirical
observations from islands, and exp‘ér”nemal work with replicated small
populations (29). We need to understarlc;i which factors contribute to extinc-
tion probabilities for various taxa. Fori example, social behavior has been
shown to be an important contributor in primates (32). And it is of great

interest to know whether herbivores tngergo greater population fluctuations
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[y
than do predators (6). Will simple singl'esllspecies models suffice for herbivores
whereas models incorporating lrophxc-level dynamics are essential for preda-
tors (94)? ;

‘Which demographic components are most critical in determining extinction
probabilities? Karr (73) found that foregt undergrowth bird species that have
gone extinct on Barro Colorado Island (BCI) have, on average, lower survival
rates, and that species with lower survival rates disappeared earlier. There was
little evidence that N contributed sxgmﬁcam]y to these extinctions on BCI.
Other life history traits may also be important, e.g. do smaller species undergo
more violent population fluctuations, thereby predisposing them to a higher
probability of extinction (108, 150)? .

If conservation biology is truly going to be a scientific discipline (105),
it must become more actively involved ih experimental research. Experimental
manipulation of habitats to determine the consequences to species richness,
extinction, population turnover, and dispersal are on target (e.g. 89, 120).
Likewise, much could be gained by performing PV As for species in no danger
of extinction, where populations could be manipulated experimentally to
rigorously test the predictions of the m?dcl.

i
CONCLUSIONS: VIABILITY'(SF PVA?

Constructing models to include many %}f the complexities of the ecology of
organisms presents no particular difficulties, but we simply do not have
sufficient data to validate such models for most endangered species. It is
seldom, if ever, that replications exist (i(zt), thus conclusions cannot be robust
(83). A great danger exists that resource managers may lend too much
credence to a model, when they may not fully understand its limitations.
Nevertheless, there is too much to ‘be gained by developing a stronger
understanding of the system by modeling, to shirk modeling for fear of its
being misinterpreted. PVA as a process is an indispensable tool in conserva-
tion, and it involves much more than feeble attempts to estimate MVP or
probabilities of extinction, PVA entails the process of synthesizing informa-
tion about a species or population, and developing the best possible model for
the species given the information available. When done properly this involves
working closely with natural resourceé managers to develop a long-term
iterative process of modeling and research that can reveal a great deal about
how best to manage a species. Done properly PVA can be a variation on
Holling (67) and Walter’s (162) nonod of adaptive management, which has
proven to be a powerful tool in many qreas of resource management.
Adaptive management proposes applidation of different management tactics
in time and space to develop a better pnderstandmg of the behavior of the
system (162). For application to cndangrred species problems, when possible,
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implementation of various managcmeht strategies should be attempted in
spatially separated subpopulations. By so doing, one can evaluate the efficacy
of various conservation strategies. Active manipulation must be part of such
a program, i.e. habitat manipulation, predator or disease control, manipulation
of potential competitors, provisioning, transplanting individuals from other
subpopulations to sustain genétic variation, supplementation of population
with releases of captive stock, etc. Monitoring of the genetic and population
consequences of such manipulations then provides data to validate and/or
refine the PVA model. ‘

PVA raises a large number of exciting research questions in population
ecology and genetics. One promising theoretical area appears to be expanding
theory and applications of extinction processes in age-structured populations,
e.g. developing applications from the general theory outlined by Aytheya &
Karlin (4)(cf 83, 101, 102, 154). Existence of true threshold populations,
i.e. a definitive MVP, depends upon the existence of a density-dependent
mechanism such as the Allee effect or inbreeding depression (111). We have
distressingly little empirical data on these processes in natural populations to
peovide a basis for parameterization of models (30, 78). This must be one of
the most urgent research needs for PVA.

Practical guidelines or “rules of thumb” for MVP may not be as impractical
as I believed before commencing with this review. It is intriguing that five
different studies synthesizing data on extinction for different vertebrate taxa
have revealed that populations below 50 consistently show a high probability
of extinction, whereas populations above 200 are often reasonably secure
given protected habitats (7, 70, 109, 137, 150). Clearly applications of such
limited observations are restricted to particular taxa, and we would expect
much larger population sizes necessary for insect populations, for example
(150). But these studies exemplify the further field studies that are desperately
needed.

Most important, I am confident that PVA will prove to be a valuable tool
as we face the extinction crisis (114). Time is not available to perform PVAs
for all of the species for which it is warranted (128, 136). Indeed,
single-species approaches to conservation are too limited in scope for most
applications in tropical conservation (22; contra 21, 132). We must choose
species for PVAs wisely, because protecting diverse communities and
keystone species may afford disproportionate benefits (137a).
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