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2. FORMULATION OF THE FINITE LAYER hfETHOD 

The FLM rests on certain geometric assumptions about 
the problem's spatial domain 9. In particular. we consider 9 
to be a rectangular parallelepiped consisting of a saturated, 
confined aquifer in which Darcy's law applies. We assume 
that the coordinate axes coincide with the principal direc- 
tions of the hydraulic conductivity tensor and that principal 
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The finite layer method (FLN) is an extension of the finite strip method familiar in structural 1 
* I. 

engineering. The idea behind the method is to discretize two space dimensions using truncated Fourier 
series, approximating variations in the third via finite elements. The eigenfunctions used in the Fourier 
expansions are orthogonal, and. consequently. the Galerkin integrations decouple the weighted 
residual equations associated with different Fourier modes. The method therefore reduces three- 
dimensional problems to sets of independent matrix equations that one can solve either sequentially on 

suitable for such computationally intensive applications as optimization and inverse problems. Four 
groundwater flow applications are presented to demonstrate the egectiveness of FLM as a forward 
solver. 
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1 a microcomputer or concurrently on a parallel processor. The latter capability makes the method 

1. INTRODUCTION 

The finite layer method (FLM) is a numerical method that 
shows promise for modeling many aquifer flow problems. 
The idea behind the method is to discretize one dimension of 
the spatial domain using finite elements. approximating 
variations in the other two dimensions using truncated 
Fourier series. For problems having sufficient geometric 
simplicity this approach avoids much of the expense associ- 
ated with three-dimensional finite elements. When the Fou- 
rier series is composed of orthogonal eigenfunctions. the 
finite element integration decouples the equation sets for 
different Fourier modes, and it is therefore possible to solve 
many small. simultaneous matrix equations in parallel. This 
inherent parallelism can be especially important when it is 
necessary to execute a flow model iteratively. as in param- 
eter identification and optimization studies. This paper ex- 
amines the application of the FLM to several problems of 
interest to groundwater hydrologists. 

Much of the literature relevant to the FLM concerns its 
predecessor, the finite strip method (FSM) [Cheirng. 19761, 
and applications to structural engineering. The FSM uses 
truncated Fourier series to discretize problems alon, 0 one 
coordinate axis instead of two. Prickett and Wsemnn (19871 
review the literature on the FShl pertaining to structural 
analysis. The FLM itself has received some attention. for 
example, in the analysis of elastic. horizontally layered 
foundations [Clteung and Fati, 19791. It is also possible to 
extend the FLM to problems with infinite layers having finite 
thickness. Rowe arid Booker [ 19821 apply this technique to 
elastic soils, as do Small arid Booker [ 19844. Booker atid 
Small 11982~1, b ,  19861 also use this approachlo model soil 
consolidation and surface deformation accompanying the 
extraction of water [Small and Booker, 1984bJ. Slattery 
[I9861 and, subsequently, Piickett and Schtnidt [ 19901 utilize 
the FSM to obtain head distributions in two-dimensional 
well drawdown models. 

Copyright 1992 by the American Geophysical Union. 
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! One way to think of the FLM is as a quasi-analytic 

method, in which one incorporates analytic information 
about the initial boundary value problem (in this case, the 
eigenfunctions of the spatial operator) into the numerical 

spirit but different in detail, have appeared in the water 
resources literature. including the finite analytic method 
[ N i t w i g  et of.. 19851 and the Laplace transform Galerkin 
method [SirdicX?. 19891, among others. The FL51 is also 
related to the spectral method [Cortlieb mid O ~ n ' p ,  19771. 
The two methods share the idea of approximating spatial 
variations using truncated series of eigenfunctions. Where 
they differ is in the use of finite element approximations to 
discretize problems along one of the three spatial coordi- 
nates in the FLhl. This device facilitates the simulation of 
certain geometrically simple heterogeneities. such as those 
occurring in stratified sedimentary basins. 

I n  this paper we present the formulation of the FLM, 
discuss severai coding aspects of the method, and demon- 
strate its application to four problems. The first problem 
involves a fully penetrating well: the second involves injec- 
tion of water at a single point in the aquifer: the third is a 
three-dimensional model of a leaky aquifer: and the fourth is 

, . I 

v 
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approximation. Other quasi-analytic methods, similar in 1, 

, 
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'1: 
a model of a multiwell field. We do not present a full error . I1 
analysis for the method, which is logically the subject of 
another article. Such an analysis would clarify the trade-offs 

1715 



1716 SMITH ET AL.: FINITE LAYER METHOD FOR GROUNDWATER FLOW MODELS 

- ZJ 

nodal 
planes 
c y 

Fig. 1. Typical rectangular parallelepiped domain 9. 

in many sedimentary formations where the bedding planes 
are nearly parallel. Figure 1 depicts a typical domain 9 with 
dimensions X, Y, and 2. 

We begin by establishing the boundary value problem to 
be solved and define the differential operator L[ 3 as 
follows: 

a ’h ah 
ax-  - ay-  az a t  

L [ h ] =  -K, 7- K, y-- 

Here S, is the specific storage. Under our assumptions the 
equation governing the head h ( x ,  y ,  z ,  t )  is 

L [ h ]  + F = 0, (2) 

where the prescribed forcing function F ( x ,  y, z, t )  gives the 
rate of water withdrawal per unit volume of porous medium. 
We refer readers to Hiryakorn and Pinder [ 19831 and Walton 
[1970] for the derivation of (2). 

When the withdrawal (or injection) occurs at a point sink 
or source, one can take F to be a possibly time-dependent 
multiple of the Dirac 6 distribution. Superpositions of such 
distributions, centered at different spatial points, are also 
possible, as are more general functional forms. As with most 
discrete methods, the FLM has a limited ability to capture 
the steep head gradients that occur near point sources and 
sinks. In the examples discussed below the FLM produces 
results that appear reasonable, but for more accuracy one 
might employ some special technique, such as singularity 
removal [Lowry et al., 19891 to improve the approximations. 

In our first two test problems below we use the initial 
condition h ( x ,  y I  z ,  0 )  = 0 and impose no-flow conditions 
(ah /dz  = 0) on the two horizontal planes representing the 
impermeable confining layers. In the third problem we 
impose the condition h = 0 at the top of the semipermeable 
aquitard and a no-flow condition at the bottom of the aquifer. 
In all three problems we impose the condition h = 0 at the 
vertical planes x = 0, x = X, y = 0 ,  and y =‘Y. 

To discretize these problems, we divide the domain 9 into 
J layers that are normal to the z axis. The j t h  layer has 
thickness ( A Z ) ~ ,  and the aquifer characteristjcs remain con- 
stant within each layer; however, they may vary from layer 
to layer. Each layerj is bounded above and below by nodal 

At any time t we represent the hydraulic head h ( x ,  y, z j ,  
t )  on a single nodal plane z = Zj by a function h j ( x ,  y ,  t )  
satisfying the prescribed conditions hj(O, y ,  1 )  = hj (X ,  y ,  t )  
= h i ( x ,  0 ,  t )  = h, (x ,  Y ,  t )  = 0 at the vertical boundaries. 
These conditions allow an exact representation of the ( x ,  y )  

. 

planes z = z j  and z = z,+ I ,  SO that ( A d j  = Zj+l - Z j -  

variations in hi as a double Fourier sine series, in which the 
Fourier coefficients amni are time-dependent: 

Here 

G, , (x ,  y) = sin ( n ~ x / X )  sin (mry /Y) .  (4) 

For the numerical method we truncate this series, getting an 
approximation 

where M and N are determined by the level of accuracy 
desired. 

To define the vertical variation of the approximate head h ,  
we linearly interpolate between nodal planes: 

’ 

Here the functions N,( z) are standard linear shape functions 
in the z direction: 

N j ( z )  = ( t j + I - ~ ) l ( A t ) j  Z j < < S ’ .  -j+ 1. 

To determine the unknown coefficients we develop 
a linear system of ordinary differential equations in time by 
using the following weighted residual equations: 

We use as weight functions the shape functions associated 
with the unknown coefficients Qmn,, namely, 

If we interchange the operations of differentiation and inte- . 
gration with the finite summation implicit in h ,  (8) becomes 

J + l  M N p p p  

NjGmin* dx dy dz = 0. (10) 

We now integrate by parts to shift one order of differen- 
tiation from h to the weight function NiGmvne.  In doing SO, 

we simplify matters by observing that the eigenfunctions 
Gmn(x,  y) obey orthogonality relationships guaranteeing 
that, whenever M # rn’ or n # n ’ ,  
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Therefore the only terms that survive the integration and 
summation in (10) are those for which rn = rn' and tr = n ' ,  
and we get 

- @,,j 1 K,NjNi  dz 1 [ % G,, d.r dy 

+ Qmni = 0. 

Here 

r r r  

One equation of the form (12) holds for each distinct triple (i, 
rn. n) of indices associated with a weight function. For 
simplicity, we represent the forcing function F by a constant 
multiple of the Dirac S distribution &x,  y ) ) .  

As with the usual finite element method using piecewise 
linear basis functions, terms in (12) for which li - jl 2 2 
vanish, yielding tridiagonal systems with unknowns If 
the bottom (or top) of the aquifer is a no-flow boundary, the 
contributions at z = 0 (or 2. = Z) that arise from the 
integration by parts also vanish. Moreover, owing to the 
orthogonality relations in (1 l), each Fourier mode (rn, n) has 
its own matrix equation: 

[MI,,@,, + [BI,, d@,,Jdt + Qmn = 0, (14) 

where [MI,,, and [B],,, are tridiagonal matrices, and @,, 
and Q,, are vectors with components Qmnj and Qfnn, , j  = 1, 
... , N + 1, respectively. The typical [MI,, and [ B ] , ,  
tridiagonal entries for a specific layerj (where 1 I j I J) are 
as follows: 

rnjj = mj1, 

1717 

bj, = bjl ,  

Figure 2 depicts how [MI,, and [B],,,, are assembled and 
what entries the 2 x 2 matrices have. 

We approximate the time derivative by a simple difference 
scheme in @: 

Here k indexes the most recent time level at which am,, is 
known, and k + 1 indexes the next time level. We represent 
the time increment between these two levels by A t  and use 
8 to denote a weighting parameter, discussed shortly. The 
temporally discrete system therefore becomes 

Choosing various values of 8 E [0, 11 yields various temporal 
weightings of the scheme, with 8 = 0 giving an explicit 
scheme and 8 = 1 yielding a fully implicit scheme. We use 
8 = 112, which corresponds to the familiar Crank-Nicolson 
scheme. This scheme is unconditionally 'stable and is sec- 
ond-order accurate in t .  

3. CODING CONSIDER4TIONS 

Together with initial conditions and boundary conditions, 
the model requires the following information: layer- 
dependent variables, constant within each layer or nodal 
plane; mode-dependent variables, constant for each Fourier 

* - - - -  
I I 

L -  

j = J  

1 
Fig. 2. Matrix assembly for tridiagonal matrices [ M I m n  and 

[BI",,,. 
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Fig. 3 ,  Geometry of the fully penetrating well. 

component; variables characterizing sources ( F ) ,  and timing 
variables. 

The layer-dependent variables include the number of 
layers J, the dimensions of each layer, and the conductivities 
and specific storage of each layer. Variables associated with 
the Fourier modes include the indices M and N at which the 
two-dimensional series will be truncated and a matrix [a] in 
which to store Fourier coefficients for each nodal plane.The 
initial value of [a] reflects the initial condition of the aquifer. 
The variables needed to characterize sources include well 
locations and volumetric flow rates between nodal planes. 
The timing variables include the total time ttofal, the time 
step A t ,  and the temporal weighting parameter 8. 

The FLM has advantages in both small-scale and large- 
scale computing environments. Because the method reduces 
three-dimensional problems to sets of one-dimensional prob- 
lems. one can often use a microcomputer to model large, 
three-dimensional aquifers that would otherwise require too 
much memory. On the other hand. since the one-dimension- 
a1 problems are uncoupled. the method is also very adapt- 
able to parallel computing environments. We discuss this 
possibility further in section 4. 

4. TEST PROBLEMS AND RESL~LTS 
We examine four test problems. The first two problems 

have exact solutions in ideal cases. when the sources have 
infinitesimal radius and the aquifers have infinite areal ex- 
tent. The third problem has no exact solution, but there is a 
classical, closed-form solution that is available if we accept 
certain simplifying assumptions. The exact solution for the 
first problem can be used with superposition to obtain an 
exact solution for the fourth case. 

Single, Firlly Penetrating Well 

Figure 3 depicts a fully penetrating well with a constant 
discharge rate Q and horizontal flow within the aquifer. and 
Table 1 summarizes the parameters defining the problem. 

TABLE 1. Input Data for the Fully Penetrating Well Problem 
~~ 

Definition 

Depth of aquifer 
Plan dimensions 
Well location 
Hydnulic conductivity 
Specific storage 
Discharge rate 
Number of modes 
Number of layers 
Time step 
Total time 

Z = ! 0 0 m  
X = Y = 1280 m 

K = 4 d d  
5, = 1.6 x 1 0 - 6 h  
Q = -4257 m3/d 
.\I = N = 37 
J = l  
At = 0.001 day 
r,,,d = 0.02 day 

(XS, y , )  = (640. 640) 

2.0 

/ t = 2S.Y minutes 

pa, 0 - FLN Doints 

0.2 I 

(!I 20 i o  l o  sb 100 1lO l i 0 .  160 IS0 2 

horizontal distance from source irn] 

' I  

, 

10 

Fig. 4. Hydraulic head h versus distance r from the single, fully 
penetrating well. Solid curves depict the classical. one-dimensional 
radial solution. 

The exact solution that we use for comparison is a similarity 
solution for a line source having infinitesimal radius in a 
one-dimensional. radial problem, where r = (I' + y')"' is 
the distance from the well. Walton [1970] gives this exact 
solution as 

L 

where if = ( r 2 S , Z ) / ( 4 K Z t )  is the similarity variable and y = 
0.5772 is the Euler constant. 

I n  the numerical model we keep tfotal small and use large 
values for X and Y to reduce the influence of the zero-head 
boundary. since the similarity solution applies to a domain of 
infinite areal extent. As Figure 4 indicates. the FLM approx- 
imation in this case is essentially indistinguishable from the 
similarity solution. 

Point Sorirce Itljecrion 

The primary pu-rpose of this test problem is to demonstrate 
the ability of the layers to model vertical gradients in head. 
Using a specific storage S ,  = 1.0 facilitates comparison of 
the results to the corresponding problem in heat conduction. 
Figure 5 depicts a point source injection well with a constant 
injection rate (2, corresponding to a well screened over a 
small vertical interval. Table 2 summarizes the parameters 
used to define a sample problem for this geometry. The layer 
thickness varies from 0.1 to 1.5 m, where we concentrate a 
large number of layers at and above the point source. The 
exact solution used for comparison represents radiai flow 
from a point source in a domain having infinite areal extent. 
Ctzrslaw and Jaeger [ 19591 give this solution as 

(O,O,O) 

Fig. 5 .  Geometry of the point source injection well. 
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TABLE 2. Input Data for the Point Source Injection Well 

............................................................ s7 _... 

Definition 

Depth of aquifer 
Plan dimensions 
Line source location 
Hydraulic conductivity 
Specific storage 
Injection rate 
Number of modes 
Number of layers 
Layer thickness 
Time step 
Total time 

Z = 3 2 m  
X = Y = & m  
kS. y,) = (32. 32) 
li = 195.3 m/d 
S, = 1 per meter 
Q = 2000 m3/d 

J = 50 
0.1-1.5 m 
At = 0.001 day 
fIotal = 0.04 day 

I\! = N = 64 

We use a Chebyshev approximation to erfc [see Press et nl., 
19881. As in the first sample problem, we keep ttotal small to 
avoid the influence of the computational boundaries in the 
FLM model. 

We compare the exact solution with the FLM approxima- 
tion along two directions from the point source: one on the 
nodal plane normal to the z axis and one parallel to the L 
axis. Figures 6 and 7 show these comparisons. As with the 
fully penetrating well, the FLXI gives a good approximation 
to the exact solution except near the well bore. The discrep- 
ancy for r < 1/2 m is attributable to the assumption in the 
exact solution that the source has infinitesimal radius, which 
implies that the exact solution is unbounded as r + 0. The 
pressure near the point source remains finite in the FLM 
solution. 

Single Well in L? L e d y  Aqiiifer 

As a third example we use the FLM to simulate unsteady 
radial flow in a leaky, isotropic. confined aquifer where a 
fully penetrating well discharges at a constant rate. as shown 
in Figure S. We present two separate runs to illustrate the 
effectiveness of the FLM model: Table 3 contains the 
parameters defining them. Wnlrori [ 19701 provides a classical 
one-dimensional radial solution for this problem. again as- 
suming a well having infinitesimal radius in an aquifer of 
infinite radial esrent: 

t 19) / ~ ( % r ,  t )  = (Q/4rK.AZ4A)bS'(ir, B ) .  

Here K A  and Z, are the conductivity and depth, respec- 
tively, of the aquifer. The wsll function W r i .  B )  is repre- 
sented by the integral 

6 
i 7-11 

t = 5i.6 minutes 

0- FLM poinu - f 
d 1  

iml 0 

0 I 2 3 4 5 6 7 8 9 10 

horizontal distance from source [m] 

Fig. 6. NumencaI and classical solurions for point source injec- 
tion plotted along the horizontal line ((.I-. !'. :) = (.I-. y T ,  0)) .  The 
one-dimensional c1assic;iI solution is depicted by the solid curve. 

solution 
' 6  

0.2 0.4 0.6 0.8 h 3  

0 1 2  3 4 5 6 7 S 9 10 

vertical distance from source [m] 

Fig. 7. Numerical and classical solutions for point source injec- 
tion plotted along the vertical line ((s, y, :) = (sJ, yS, :)). The 
one-dimensional classical solution is depicted by the solid curve. 
The inset compares the solutions close to the source. 

where KT and ZT stand for the conductivity and depth of the 
aquitard. To derive this solution. one must assume that the 
vertical component of water velocity vanishes in the aquifer. 
Thus the classical solution unrealistically requires flow lines 
to be refracted instantaneously from vertical to horizontal as 
they cross the aquitard-aquifer interface. The classical solu- 
tion also incorporates the assumption that water is not 
released from storage in the aquitard. Since S, = 0 in the 
aquitard. the drawdown varies linearly with elevation, and 
the vertical velocity is independent of z in the aquitard. As 
we argue below, the numerical solutions depict more realis- 
tic values of the drawdown, capturing a vertical component 
of velocity in the aquifer and a changing vertical component 
of velocity in the semipermeable aquitard at early times. As 
time proceeds, the numerical model approaches the classical 
solution as expected. 

Figure 9 and Figure 10 summarize the first run., Figure 9 
shows the drawdown in the classical solution and in the 
numerical solution generated by the FLM at a radius of 50 m 
from the source at two time intervals. Figure 10 shows the 
corresponding values of vertical velocity in the aquitard. The 
verticat velocity in the aquifer is essentially constant at 
about 0.001 m/d. The FLM solution at t = 2-55 min illus- 
trates the effects of storage in the semipermeable layer, 
which the classical model cannot capture. Figure 1 I depicts 
the results of the second run in a log-log format. at an 
elevation of 15 m. These results are representative of those 
obtainable from the classical solution. However, the FLM 
method allows one to distinguish well function values asso- 

aquifer - , I - 
- 0 1 -  

Fig. 8. Geometry of a single well in 3 leaky aquifer. 
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TABLE 3. Input Data for the Single Well in a Leaky Aquifer 

Definition 

Total depth 
Aquifer depth 
Aquitard depth 
Plan dimensions 

Run 1 
Run 2 

Run 1 
Run 2 

Well location 

Aquifer conductivity 
Aquitard conductivity 
Aquifer specific storage 
Aquitard specific storage 
Discharge rate 
Number of modes 
Number of layers 
Layer thickness 
Time step 

Z = Z , , i Z T = 8 0 m  
ZA = 60 rn 
ZT = 20 m 

X = Y = 1280 m 
X = Y = 3200 rn 

(x,, )I,) = (640, 610) 
(xS, y,) = (1600, 1600) 

KT = 0.12 mid 
ssA = 2.0 x 10+/rn 
S s T  = 1.5 x 10-6/m 
Q = 18.850 m'/d 
,\I = N = 64 
J = 120 
0.1-15 m 
At = 0.0001-0.001 day 

KA = 25 d d  

ciated with different elevations within the aquifer, which the 
classical solution does not. The inset in Figure 11 shows the 
well function values at different elevations, 15 and 59 m. 

Midtiwell Field 

The primary purpose of the fourth test case is to demon- 
strate the ability of the FLM to model a multiwell field. Our 
example has three fully penetrating welis. The first well 
discharges at a constant rate starting at t = 0. The second 
and third wells inject at constant rates starting at t = 0.002 
day. Table 4 summarizes the parameters defining the prob- 
lem. The exact solution that we use for comparison is a 
superposition of similarity solutions like those used for the 
first problem. 

In the numerical model we keep ttOtal small and use large 
values for X and Y to reduce the influence of the zero-head 
boundary, since the similarity solution applies to a domain of 
infinite areal extent. We compare numerical and exact 
solutions along the transect y = 600 m, which passes close to 
the three wells. As Figure 12 indicates, the FLM approxi- 
mation for the case M =  N = 32 shows virtually no spurious 
oscillations, being essentially indistinguishable from the sim- 
ilarity solution. At the coarser level of Fourier discretization 
in which hi = 1V = 16, the numerical solution is still 
reasonable, but some overshooting and oscillations, attrib- 
utable to the Gibbs phenomenon, are apparent. 

drawdown [meters] 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

40 

j /  
Fig. 9. Drawdown for the classical and numerical solutions to 

the leaky aquifer problem at 50 m from the well. Solid curves depict 
the one-dimensional radial solution, and the dashed curves depict 
the FLM solution. 

t = 28.8 solution 
minuta  

. \  

7 75 

t 70 

I 
I 1 I I 1 i 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 
downward velocity [meters/day] 

Fig. 10. Vertical velocity in aqu.itard for the leaky aquifer 
problem at 50 m from the well, shown at two different times. The 
solid curve depicts the one-dimensional radial solution, and the 
dashed curves depict the FLM solution. 

Parallelization 
Although one can run all of our test problems on a 

personal c,omputer by sequentially solving the tridiagonal 
matrix equations for the Fourier modes, it is noteworthy that 
our code is also amenable to parallel processing. To demon- 
strate this fact, we present results of the second test problem 
run on an Alliant FX/8 computer having a shared memory 
and eight vector processors. Parallelization in a FLM model 
consists of sending distinct tridiagonal systems to different 
processors, which then execute the solution algorithm con- 
currently until all Fourier modes have been computed. 

To quantify the efficiency of the parallelization, we exam- 
ine the CPU time required to solve problems using different 
numbers p of processors. For each value ofp  the speedup S, 
is the ratio of the time taken by one processor in solving the 
problem to the time required for p processors. For an ideally 
parallel algorithm a plot of S, versus p ,  called a speedup 
curve, yields a line having unit slope. In practice, the need 
for processors to transfer information among themselves 
prohibits this ideal case. and speedup curves having average 
slope greater than 0.7 typically indicate excelleht parallel- 
ism. Figure 13 shows the speedup curve for the second test 
problem, where M = N = 64. The ideal curve is represented 
by the top curve and has unit slope. The CPU time ratio 
which was required for just the FLM parallel algorithms is 
depicted by the lower curve and has a slope of approxi- 
mately 0.8. For much larger values of M and N we expect 
the speedups to be somewhat less favorable on shared- 
memory machines because of computational overhead asso- 

loJ 104 

10' 

loo 

10" 

4;rh K.4 24 
Q 

I /u  = 4h'At/r1S,A 

Fig. 1 1. Normalized drawdown curves for a leaky aquifer. The 
inset shows the drawdowns at two different depths, as predicted by 
the FLM model. 
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TABLE 4. Input Data for the Multiwell Problem 7 1  . . . . . &  
. . . . . / :  I 

Definition 

Depth of acquifer 
Plan dimensions 
Location 

Well 1 
Well 2 
Well 3 

Hydraulic conductivity 
Specific storage 
Discharge rate 

Injection rate 
Well 1 

Well 2 
Well 3 

Run 1 
Run 2 

Start time 
Well 1 
Well 2 
Well 3 

Number of layers 
Time step 
Total time 

Number of modes 

Z = 1 0 0 m  
X = Y = 1280 m 

Q = +lo00 m3/d 
Q = +257 m3/d 

M = N = 1 6  
M = N = 3 2  

f = 0.0 
f = 0.002 day 
t = 0.002 day 
J = l  
At = 0.001 day 
ttotd = 0.02 day 

ciated with the retrieval of data from cache. For such 
large-scale problems it is likely that distributed memory 
machines offer a more effective parallel environment. 

5 .  CONCLUSIONS 
The FLM offers a numerical approach for modeling aqui- 

fer problems having reasonably regular, layered geometry. 
The method's attractiveness stems from its ability to capture 
three-dimensional aspects of aquifer behavior in a highly 
parallelizable fashion, without the intensive computational 
requirements associated with fully three-dimensional matri- 
ces arising in traditional finite element methods. Of course, 
for complicated heterogeneities the simplified geometry as- 
sumed by the FLM is inadequate, and fully three-dimension- 
al models are needed. 

1200 - 0.8 

Y 6 0 0 t - : - {  

0 t = 28.8 minutea 
0 640 1280 

,'N = M =  16 -0.6 

I I I I I 
0 2M) 400 600 800 1000 1200 

x-coordinate, [m] 

Fig. 12. Drawdown along the transect ( x ,  y, :) = (x,  600, :) 
for the multiwell problem. Shown are the exact solution and 
numerical solutions for two different Fourier discretizations. The 
inset shows the location of the rransect (dashed line) with respect to 
the three wells. 

1 2  3,  4 5 6 7 8 

number of processors 

Fig. 13. Speedup curve for FLM model on Alliant FX/8 parallel 
computer. 

We see tremendous potential for the FLM in developing 
rapidly executable models of groundwater flow. The meth- 
od's inherent parallelism may make it an attractive choice 
for applications that require repeated execution, since iter- 
atively running such standard flow codes as MODFLOW 
[McDonald and Harbaugh, 19841 can be prohibitively slow. 
This advantage can be especially important, for example, in 
optimization studies and inverse problems. 

NOTATION 

Dimensions appear in square brackets. 
finite element stiffness matrix for Fourier 
mode mn. 
three-dimensional domain, ( 0 ,  X )  x (0, Y) X 

(0, a. 
forcing function [ 1/T]. 
double sine or cosine function. 
hydraulic head .[I.]. 
trial function for hydraulic head [ L ] .  
hydraulic head on nodal plane j [ L ] .  
nodal plane subscripts; 1 I i, j zs J + 1. 
number of layers. 
time level superscripts, old and new, 
respectively. 
hydraulic conductivity in the x direction 
[ L f  TI. 
differential operator for transient groundwater 
flow. 
finite element mass matrix for a specific 
Fourier mode, mn.  
Fourier mode subscripts. 
truncation levels for Fourier series; 1 I rn 5 
&I and 1 I n I N. 
linear shape function. 
number of processors. 
forcing vector, equal to ( Q m n l ,  Qmn2t 9 

Qmn(N+ 1 1 )  '* 

variational form of forcing function. 
radial distance from line and point sources 
[LI. 
speedup. 
specific storage [ L  -' I. 
time [TI .  
total time of simulation [?I. 

' 
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> &; N similarity variable. 4. 
W ( M ,  B )  well function. 
x, y ,  L spatial coordinates ( z  is elevation above 

datum) [L). 
X, Y, 2 dimensions of finite spatial domain [ L ] .  

x,, ys, t, coordinate of point source or line source [t]. 
t i  elevation of layer i; 1 5 i 5 J + 1 [ L ] .  

At  time step [a. 
( A z ) ~  thickness of layer [ L ] .  
[a] matrix composed of vectors a,,,,. 

@,nn vector of Fourier coefficients, equal to ( Q t n n l ,  

Qmnj ( t )  Fourier coefficient for nodal plane j .  
8 temporal weighting parameter; 0 5 8 I 1. 

T 
@)mn2,  * 9 @ t n n ( N + I ) )  * 

Acknowledginents. The Wyoming Water Research Center sup- 
ported this work through a grant in aid. We also received support 
from NSF grant RII-8610680 and ONR grant 0014-88-K-0370. 

REFERENCES 
Booker, J. R., and J. C. Small, Finite layer analysis of consolida- 

tion, I, Int. J. Niitner. Anal. hferhods Geomech., 6(2) ,  151-171, 
1982a. 

Booker, J. R., and J. C. Small, Finite layer analysis of consolida- 
tion, 11, Int. J. N m e r .  Anal. Methods Geomech., 6 (2 ) ,  173-194, 
1982b. 

Booker, J. R., and J. C. Small, Finite layer analysis of viscoelastic 
layered materials. Int. J. Nitmer. Anal. Methods Gromech., 
10(4), 415130, 1986. 

Carslaw, H. S., and J. C. Jaeger, Conduction ofHeat in Solids, 2nd 
ed., Oxford University Press. New York. 1959. 

Cheung, Y .-K., Finite Strip Method in Strirctiiral Mechanics, Per- 
gamon. New York, 1976. 

Cheung, Y.-K., and S .  C. Fan, Analysis of pavements and layered 
foundations by finite layer method, in Proceedings of tile Third 
Inrernational Conference on h’irmerical Methods in Geomechan- 
ics, pp. 1129-3 135. edited by W. Wittke, A. A. Balkema. Rotter- 
dam, Netherlands. 1979. 

Gottlieb, D., and S. A. Orszag, Nitmerical Analysis of Spectral 
Methods: Theory and Applications, Society for Industrial and 
Applied Mathematics. Philadelphia, Pa., 1977. 

Huyakorn, P. S., and G. F. Pinder, Cornpitrational Methods in 
Siibsurface Flow. Academic, San Diego. Calif., 1983. 

. 

Hwang, J. S., C. J. Chen, M. Sheikhoslami, and B. K. Panigrahi, 
Finite analytic solution for two-dimensional groundwater solute 
transport, Water Resour. Res., tf (91, 1354-1360, 1985. 

Lowry, T., M. B. Allen, and P. N. Shive, Singularity removal: A 
refinement of resistivity modeling techniques, Geophysics, 54(6), 
766-774, 1989. 

McDonald, hi. G., and A. W. Harbaugh, A modular three-dimen- 
sional finite-difference ground-water flow model, U.S. Geol. SUW. 
Open File Rep. ,  83-875, 1981. 

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. 
Vetterling, Numerical Recipes in C, The Art of Scientific Com- 
puting, Cambridge University Press, New York, 1988. 

Puckett, 3. A.. and R. J. Schmidt. Finite strip method for ground- 
water modeling in a parallel computing environment, Eng. Comp., 
7(2), 1990. 

Puckett, J. A., and D. L. Wiseman, Recent developments in the 
finite strip methods, paper presented at the Structures Congress, 
Am. SOC. Civ. Eng., Orlando, Fla., Aug. 1987. 

Rowe, R. K., and J. R. Booker, Finite layer analysis of nonhomo- 
geneous soils, J. Eng. Mech. Div., Am. SOC. Civ. Eng., 108(EM1), 

Slattery, J. E., The Finite Strip Method in Groundwater Hydrology, 
M.S. thesis, Colorado State Univ., Fort Collins, 1986. 

Small, J. C., and J. R. Booker, Finite layer analysis of layered 
elastic materials using a flexibility approach, 1, Strip loadings, Int.  
J. iVurner. Methods Eng., 20(6), 1025-1037, 1984a. 

Small, J. C., and J. R. Booker, Surface deformation of layered soil 
deposits due to extraction of water, in Ninth Australasian Con- 
ference on rile Mechanics of Stncctures and Materials, vol. 9, pp. 
33-38. University of Sydney, School of Civil and Mining Engi- 
neering, Sydney, Australia, 1984b. 

Sudicky, E. A., The Laplace transform Galerkin technique: A 
time-continuous finite element theory and application to mass 
transport in groundwater, Water Resour. Res., 25(8), 1833-1846, 
1989. 

Walton, W. C., Groirndwater Resource Evaluation, McGraw-Hill, 
New York. 1970. 

115-132, 1982. 

. 

hl. B. Allen and S. S. Smith, Department of Mathematics, 

T. Edgar and J. Puckett, Departmentbof Civil Engineering, Uni- 
University of Wyoming, Box 3036, Laramie, WY 82071. 

versity of Wyoming. Box 3295, Laramie. WY 82071. . 

(Received April I .  1991; 
revised February 5 .  1992; 

accepted February 13. 1992.) 


