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WELL-CONDITIONED ITERATIVE SCHEMES FOR MIXED 
FINITEELEMENT MODELS OF POROUS-MEDIA FLOWS* 

MYRON B. ALLENt, RICHARD E. EWINGt, AND PENG LUt 

Abstract .  Mixed finite-element methods are attractive for modeling flows in porous media 
since they can yield pressures and velocities having comparable accuracy. In solving the resulting 
discrete equations, however, poor matrix conditioning can arise both from spatial heterogeneity in 
the medium and from the fine grids needed to resolve that heterogeneity. This paper presents two 
iterative schemes that overcome these sources of poor conditioning. The first scheme overcomes poor 
conditioning resulting from the use of fine grids. The idea behind the scheme is to use spectral 
information about the matrix associated with the discrete version of Darcy’s law to precondition the 
velocity equations, employing a multigrid method to solve massbalance equations for pressure or 
head. This scheme still exhibits slow convergence when the permeability or hydraulic conductivity is 
highly variable in space. The second scheme, based on the first, uses mass lumping to  precondition 
the Darcy equations, thus requiring more work per iteration and minor modifications to the multigrid 
algorithm. However, the scheme is insensitive to heterogeneities. The overall approach should also 
be useful in such applications as electric field simulation and heat transfer modeling when the media 
in question have spatially variable material properties. 

Key words. mixed finite elements, iterative solution schemes, heterogeneous porous media 
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1. Introduction. We consider methods for solving discrete approximations to 
the equations governing single-fluid flow in a porous medium. If the flow is steady 
and two-dimensional with no gravity drive, Darcy’s law and the mass balance take 
the following forms: 

(1.1) * 

u = -Kgradp in R, 

div u = f in Q. 

Here u,p, and f represent the Darcy velocity, pressure, and source term, 
tively. For simplicity, we take the spatial domain to be a square, scaled 

respec- 
so that 

R = (0 , l )  x (0,l) .  The coefficient K ( z ,  y) is the mobility, defined as the ratio of the 
permeability of the porous medium to the dynamic viscosity of the fluid. In appli- 
cations to underground flows, the structure of K may be quite complex, depending 
on the lithology of the porous medium and the composition of the fluid. We assume, 
however, that this ratio is bounded and integrable on and satisfies K 2 Kinf  > 0. 
We impose the boundary condition p = 0 on aQ, so that p effectively represents the 
deviation in pressure from a reference value known along dR. 

Scientists modeling contaminant flows in groundwater or solvent flows in oil reser- 
voirs often need accurate finite-element approximations of u and p simultaneously. 
For this reason, mixed finite-element methods for solving the system (1.1) are 
particularly attractive, since they can yield approximations to u and p that have 
comparable accuracy [I], [5],  [9]. The key to achieving such approximations 
is the use of appropriate piecewise polynomial trial spaces, such as those proposed by 

* Received by the editors April 12, 1990; accepted for publication (in revised form) February 20, 
1991. This research was supported by National Science Foundation grant MI-8610680, Office of 
Naval Research grant 001488-K-0370, and the Wyoming Water Reseach Center. 

t Department of Mathematics, University of Wyoming, Laramie, Wyoming 82071-3036. 
3 Department of Mathematics, University of Georgia, Athens, Georgia 30605, 

794 



ITERATIVE SCHEMES FOR MIXED FINITE ELEhlENTS 795 

Raviart and Thomas [ll]. As we review in $2, if we use the lowest-degree Raviart- 
Thomas spaces, the mixed formulation yields systems of discrete equations that have 
the form 

A U + N P = O ,  

NTU = F. 
Here, U and P signify vectors containing nodal values of the trial functions for u and 
p ,  defined on a grid over 0, and A and N are matrices. As we illustrate below, the 
matrix A contains information about the spatially varying material property K ,  while 
N and NT are essentially finite-difference matrices. 

Equations (1.2) can be quite difficult to solve efficiently, for the following reasons. 
When K varies over short distances, accurate finite-element approximations require 
fine grids on Q. For example, one might choose grids fine enough to allow reasonable 
approximations of K by piecewise constant functions. Fine grids, however, typically 
yield poorly conditioned matrix equations. For classical stationary iterative schemes, 
this increase in the condition number of the system leads to slow convergence, no 
matter how “nice” K may be [2, $4.111. The problem is compounded whenever K 
exhibits large spatial variations, as can occur near lithologic changes in the porous 
medium or sharp contacts between fluids of different viscosity. In such problems, as we 
shall demonstrate, the poor conditioning associated with spatial variability typically 
aggravates that associated with the fine grids needed to resolve the physics of the 
problem. Thus, in problems with significant material heterogeneity, methods that are 
relatively insensitive to these two sources of poor conditioning can have considerable 
utility. 

In this paper we discuss two iterative schemes for the mixed-method equations 
(1.2). The first scheme possesses convergence rates that are independent of the fineness 
of the grid. The second scheme, derived from the first, also overcomes the sensitivity 
to the spatial structure of K ,  at the expense of somewhat more computation per 
iteration. Briefly, the first scheme proceeds as follows: Let (U(O),P(O)) be initial 
guesses for the value of (U, P). Then the lcth iterate for (U, P )  is the solution of . 

where I stands for the identity matrix and w signifies a parameter, discussed below, 
that is related to the spectral radius p(A) of A.  For each iteration level k, the main 
computational work in (1.3) is to solve a linear system of the form ( u - ’ N ~ N ) P ( ~ )  = 
G ( k - l ) .  However, the matrix w-’NTN remains vulnerable to the poor conditioning 
associated with fine grids. We overcome this difficulty by using a multigrid scheme to 
solve for P ( k ) ,  thereby greatly reducing the computational work in each iteration. 

An interesting feature of this approach is that N T N  is essentially the matrix 
associated with the five-point difference approximation to the Laplace operator with 
Dirichlet boundary conditions. Hence, the multigrid portion of the scheme does not 
encounter the variable coefficient, and the algorithm is particdasly simple. The price 
paid for this simplicity, as we shall see, is sensitivity to the poor conditioning associ- 
ated with spatial variability. 

To overcome this second source of trouble, we modify the first scheme to get new 
ones of the form - 

* 

i v 

f 
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where D denotes a diagonal matrix that we compute from A. This new class of 
schemes requires us to invert N T D N ,  which we again do using a multigrid method 
to preserve h-independence of the convergence rate. While the multigrid method 
must now accommodate spatially varying coefficients, the overall scheme possesses 
the advantage that its convergence rate is independent of the spatial structure of K ,  
provided K is piecewise constant on the grids of interest. 

Our paper has the following format. In 52 we review the mixed finite-element 
method that we use. Section 3 describes the first iterative scheme in more detail 
and analyzes its convergence. In 54 we discuss the application of multigrid ideas to 
the first scheme. Much of the motivation and groundwork for the second class of 
iterative schemes resides in 553 and 4. In 55 we present some numerical results for 
this algorithm. Section 6 describes the modifications necessary to produce the second 
class of iterative schemes and presents numerical results illustrating good convergence 
rates even in the presence of heterogeneities. 

2. A mixed finite-element method. We begin with a brief review of the 
mixed finite-element method, following the notation of Ewing and Wheeler [8]. Let 
H(div, SZ) = {v E L 2 ( 0 )  x L2(s2) : div v f L 2 ( 0 ) ) .  The variational form for (1.1) is 
as follows: Find a pair ( u , p )  E H(div, 0) x L2(SZ) such that 

1 y d x d y  - l p  div v d x d y  = 0 V v E H(div,Q), 
_ _  

(2.1) 
(div u - f ) q d x d y  = 0 V q E L2(SZ). 

By our assumptions on K ,  there exist constants Kinf, Ksup such that 0 < Kinf 5 K 5 
Ksup. Implicit in these equations is also the assumption that K-’ is integrable on a. 

< xm = 1) be a set 
of points on the z-axis and Ay = (0 = yo < y1 < - - - < yn = 1) a set of points on the 
y-axis. Let Ah = A, x A y  be the rectangular grid on SZ with nodes {(zi ,yj))zt , j=O. 
The mesh of this grid is 

To discretize the system (2.1), let A, = (0 = zo < z1 < - 

h = mq{zi  - xi-1, y j  - yj-1). 
2 ?3 

We assume throughout the paper that A, and Ay are quasi-uniform in the sense that 
xi - xi-1 2 ah and y j  - Yj-1 2 ah for some fixed cr f (0,l). With Ah we associate 
a finite-element subspace Q h  x vh of H(div,Q) x L2(n). The ‘‘velocity space” is 
Qh = QE x QK, where Q$ and QK are both tensor-product spaces of one-dimensional, 
finite-element spaces. In particular, we use the lowest-order Raviart-Thomas spaces 
in which QZ contains functions that are piecewise linear and continuous on Az and 
piecewise constant on Ay. Similarly, Qi contains functions that are piecewise linear 
and continuous on Ay and piecewise constant on A,. The “pressure space” Vh consists 
of functions that are piecewise constant on Ah. 

Given these approximating spaces, the corresponding mixed finite-element met hod 
for solving (2.1) is as follows: Find a pair (Uh ,Ph)  E Q h  x v h  such that 

(div u h  - f)QhdX dy = O 6 
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This finite-element discretization yields approximations u h  and p h  whose global er- 
rors are both O(h) in the norm 11 - IJLz(n). Ewing, Lazarov, and Wang [6] also prove 
superconvergence results that guarantee smaller errors at special points in R. This 
phenomenon appeimrs in our numerical examples in $5. In contrast, standard ap- 
proaches solve for approximations to p and then numerically differentiate to compute 
u = -Kgradp, thereby losing an order of accuracy in the velocity field [l]. 

To see the linear algebraic equations implied by (2.2), suppose uh and p h  have 
the expansions 

m n  

Here, 4Zj, 4Ej, and $i,j signify elements in the standard nodal bases for Qg, Qi, 
and Vj. Define the column vectors U E R2mn+m+n , P E IRnn containing the nodal 
unknowns as. follows: 

UT = (Uc1, Uc1, * * * 9 ug,1, * * * uO",n ucn * ug,n > 

Figure 1 shows how to associate these coefficients with nodes on a spatial grid Ah 
with m = 4, n = 3. 
' 

With these bases, the problem (2.2) has a matrix representation of the form 

. (2.4) 
A N  

( N T  0 )  (:)=(:)* 
Here A is a symmetric, positive definite matrix having the block structure 

respectively. Note that these entries contain information about the spatially varying 
coefficient K.  The matrix N has the block structure 

By calculating these integrals, one readily confirms that N x  and NY reduce to the 
usual difference approximations to d/dz and d/dy. The vector F E Rmn has entries 
given by the integrals f +i,jdx dy. The appendix to this paper gives more detail on 
the construction of A and N .  
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FIG. 1. Sample 4 x 3 rectangular grid on R = (0 , l )  x (0, l), showing locations of the nodal 
unknowns in the velocity and pressure trial functions. 

3. An h-independent iterative method. Our first iterative scheme for solv- 
ing the discrete system (2.4) is as follows. 

ALGORITHM 1. Beginning with initial guess (U(o),P(o))T for (U,P), the kth 
iterate (U("), P(k) )T  is the solution of 

where I E IR(2mn+m+n)x(2mn+m+n) is the identity matrix and w is a parameter chosen 
to satisfy w 2 p ( A ) .  

Here, p(A)  denotes the spectral radius of the matrix A. Later in this section 
we discuss a practical way to pick w that does not require detailed knowledge of the 
spectrum of A. 

Computationally, Algorithm 1 has the following compact form: Given an initial 
, guess (U(O), P(o))T,  compute (U("), P(")) T by executing three steps: 

(3.2) (i) G("') + -F + w-lNT(wI - A)U("--'), 

In each iteration, the main computational work is to solve for P(k)  = u ( N ~ N ) - ~ G ( " ' ) .  
An easy calculation shows that the matrix w-'(NTN) is positive definite, being pro- 

, 

. 
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portional to the standard fivepoint, finite-difference Laplace operator applied to P('). 
Therefore, we expect the numerical solution for # I E )  using stationary iterative meth- 
ods to be plagued by poor conditioning when the grid mesh h is small. 

This observation leads us to use a multigrid scheme to get approximations to 
(In fact, any fast solver for the five-point discrete Laplacian operator would be 

appropriate here.) Such a device preserves the h-independence of the overall scheme's 
convergence rate. We discuss this facet of the algorithm in more detail in the next 
section. For now let us analyze the convergence properties of the overall iterative 
scheme, assuming an efficient "black-box" solver for P(&). 

We begin by writing (3.1) as a stationary iterative scheme 

(3-5) 

where 

L =  ( $  ;)-l(;), 

M = ( $  ;)-l( u I - A  0 o ) -  0 

The convergence of Algorithm 1 depends on the spectral radius of the matrix M ,  for 
which the following proposition gives a bound. 

PROPOSITION 3.1. Let 

be the eigenvalues of the matrix A, and let w 2 Am=. Then the spectral radius of M 
obeys the estimate 

(3.7) 

Proof. Let A # 0 be an eigenvdue of M with eigenvector (Ux, PA)*. Thus 

so 

(3.9b) 0 = "UA. 

Since (Ux,pX)* # 0, (3.9a) shows that UA # 0; however, Ux may be complex. Let 
UF denote its Hermitian conjugate. If we multiply (3.9a)'by U f ,  observe that N is 
a real matrix, and apply (3.9b), we obtain 

V,"(WI - A)Ux = AwUFUA + A ( N T U ~ ) H P ~  



I .  
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This equation allows us to conclude that 

which implies 

(3.10) p ( M )  5 p(I  - w-'A). 

Also, by (3.6) and the fact that w 2 Am,, we have 

Xmin p ( I  - w-'A) 5 1 - -. 
W 

4 

These last two inequalities imply the desired bound (3.7). 

the iteration matrix M becomes 

0 
If we choose w = Am, = p(A), then the estimate (3.7) for the spectral radius of 

Xmin AM) 5 1 - -. 
Xmax 

To estimate Xmin/Xmax, the following proposition is helpful. 

and k l ,  independent of h, such that 

. 

PROPOSITION 3.2. For the matrix A appearing in (2.4), there exist constants ko 

(3.11) koh2UTU 5 UTAU 5 klh2UTU. 

Proof. The representation of u h  given in (2.3) leads to the identity 

where Oi,j = (zi-1,zi) x ( y j - 1 , y j ) .  Since K is bounded and integrable on %,j, 
the mean value theorem for integrals [lo, pp. 184-1851 guarantees the existence of a 
number Kilj, satisfying infni,j K 5 Kilj 5 K ,  such that 

W L  

Ir 

f' I :  (If K-l is continuous on ni,j, then K-l actually assumes the value KiTj' somewhere 
on i l i , j . )  Calculating the last integral using our basis for Q h ,  we get 

where aij signifies the area of Ri,j. To simplify notation, we notice that the 2 x 2 
matrix appearing in each term of this sum is positive definite. This observation allows 
us to define a new norm on R2 as follows: 
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-z ' . 2 denotes the usual Euclidean norm on IR2, then it is easy to check that - 
- ? 5 11 - 11; 5 311 - 11;. In terms of the new norm, 

- -ze quantity UTU is easier to calculate: 

m n  m n  

3.12) 
i=l j = O  

:<OK n-e use the bounds on K and the quasi uniformity of Ah to observe that 

- a2h2 UTU. -- 
6h',up 

7-5s oiwrntion establishes the first inequality in 
2: 6Ksx?. To prove the second inequality in (3.11), 

(3.11), since we can take ko = 
we rewrite (3.12) as follows: 

*-- \ ' b e  concl.Jde that UTAU <'klh2UTU, where kl = l/Kinf. 0 
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C 

If we apply Proposition 3.2 to the case when U is an eigenvector of A associated 
with the eigenvalue Amin or Amax, respectively, we find that Amin 2 aZh2/6KsUp and 
Amax 5 h2/Kinf. Therefore, provided we choose w 2 Am, in Algorithm 1, the spectral 
radius of our iteration matrix M obeys the bound . .  

9 (3.13) 

I Notice that the right side of this inequality is a constant independent of h. This is 
the sense in which the convergence rate of Algorithm 1 is independent of h. 

Two remarks about the practical implications of the estimate (3.13) are in order. 
First, the bound on p ( M )  depends strongly on the nature of the coefficient K(z,y). 
In particular, if Kinf/Kiup is very small, reflecting a high degree of heterogeneity in 
the physical problem, then we can expect the actual convergence of the algorithm 
to be slow, albeit independent of grid mesh. Several examples in 55 confirm this 
expectation. Second, even though the bound (3.13) suggests choosing w = Amax to 
accelerate iterative convergence, this choice is impractical owing to the expense of 
calculating Amax. In practice, we typically pick w = llAlloo 2 A m u s  This choice is 
easily computable as the maximum row sum of A, and it preserves h-independence of 

4. Application of a multigrid solver. As we have mentioned, the computa- 
tion of the pressure iterate P(') in step (ii) of Algorithm 1 is inefficient if we use direct 
schemes or classical stationary iterative methods on fine grids. However, the fact that 
w-lNTN is essentially the finite-difference Laplacian operator motivates us to reduce 
the computational work for each iteration by calculating an approximation to the kth 
pressure iterate by using several cycles of a multigrid method ori the system (3.3). 
We refer the reader to [3] for a discussion of the multigrid approach and for a Fortran 
code applicable in the context of our problem. The modified scheme is as follows. 

ALGORITHM 2. Begin with an initial guess (U('),P(O)) , and suppose that we 
have computed ( U ( k - l ) ,  P ( k - l ) ) T .  Compute a new approximation (U('), P ( k ) )  using 
the following steps: 

I 
i 

I 
I 
, convergence rate, even though it may be theoretically nonoptimal. 

T 

T 

1. Compute the residual, 

2. Let p ( k )  denote the exact solution of the problem 

Calculate an approximation P(') of p(k)  by applying r cycles of the multigrid 
algorithm [3] to (4.2), using P(k- l )  as initial guess. (We discuss the choice of 
r below.) 

3. Compute U(') as in Algorithm 1:' 

hfultigrid methods for solving elliptic problems have an advantage that is quite 
relevant to the conditioning problems associated with fine grids: Each cycle has a 
convergence rate that is independent of h [4, Chap. 41. Therefore, we need only show 
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that we can choose a f i e d  number r of multigrid cycles such that each iteration of 
Algorithm 2 reduces the error norm by an appropriate factor close to p ( M ) .  We ' 
do this in Proposition 4.1. Since the factor is independent of h, Algorithm 2 has 
convergence rate independent of h. 

We begin by defining norms on the "pressure" and "velocity" spaces that will 
make the proof easier. Any p h  E Vh has a representation 

Taking advantage of the fact that N T N  is positive definite, we compute a norm of 
.. . the vector 

The norm 1 1 -  / I w  is just a scalar multiple of the Euclidean distance function 11 - JI2, 
and since w is a constant related to p(A), 11 - 11" is actually a discrete analog of 
the Euclidean norm 11 - I(~2(n)~L2(n) on the velocity space by Proposition 3.2. This 
norm is appropriate for measuring the convergence of velocity iterates U ( k )  to the 
true discrete approximation U. Also, since NTN is just the positive definite matrix 
associated with the five-point difference approximation to the Laplace operator, the 
norm 11 - llh is appropriate for measuring the rapidity with which the pressure iterates 
satisfy the discrete pressure equation (3.3) as the iterations progress. Ultimately, we 
want to relate our results to more familiar n o r m  such as 11 112 and 11 - lloo; for this step 
we shall rely on the equivalence of norms for finite-dimensional Euclidean spaces. 

In the following proposition, we assume v = p ( l - w - ' A )  < 1. Thus v is an upper 
bound on p ( M ) .  Suppose the multigrid iteration used to approximate p(k)  in step (ii) 
of Algorithm 1 has convergence rate p E (0,l). This implies that, after r multigrid 
cycles for P(') using P ( ~ - ' )  as initial guess, 

(4.4) 

> PROPOSITION 4.1. For any v' E (v, l), there exists a number r of multigrid cycles 
such that 

. 
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where (P, U) is the solution of the problem (2.4) and ( P ( k ) ,  U ( k ) )  is the approximation 
to (P, U) produced by the kth iteration of Algorithm 2. 

Proof. Suppose we compute U @ )  according to (3.4) with the exact (nonmultigrid) 
. *  pressure iterate P ( k ) .  Thus, 
; :  (4.5) uo(k) = (uI - A)U(k-l) - N p ( k ) ,  

* where $(k) satisfies (4.2). Then from (2.4), (4.1), (4.2), and (4.5), we have 

(4.6) . w (U - irc",) + N (I' - P(")) = (w1- A )  (U -' U('-')) , 

(4.7) 

Multiplying (4.6) by (U - irck)) and using the identity (4.7), we get 

NT (U - I?(')) = 0. 

T 

IIU - o(k)II: = (U - U ( k ) ) T  (wI - A )  (U - U@-l) )  

Hence, the pressure iterates obey the bound 

Now we derive bounds on I 1P - P(h) I I and I IU - U ( k )  I 1, in terms of their values at 
the previous iterative level. For I IP - P(') I I h ,  we use the triangle equality and the 
multigrid estimate (4.4) to get 

f 

r 

I 

, 
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But the original iterative scheme (3.5) implies that 

So, in light of the inequality (3.1) bounding p ( M )  by u, we have 

This inequality allows us to simplify (4.8), getting 

(4.9) 

nrn ing  to 1IU - U(k) l lw,  we use (4.3), multiplied by w-', to write 

(U - U ( k ) )  = (1 - w-lA) (U - U("-')) + w-'N 

(4.10) 

805 

Combining the 

I 

_. . 

Since p < 1, pr + up" -, 0 as T + 00. We can therefore choose T large enough so that 
u + p" + up" + u 5 v' < 1. In this way, 

In view of the norm equivalence mentioned earlier, Proposition 4.1 leads us to 
expect that, if we choose w as prescribed in 53, then the computed convergence rate 

(4.11) 

should be a constant independent of h as h -+ 0. In fact, for "generic" initial guesses, 
the contribution from the eigenvector associated with the largest magnitude eigen- 
value of llil will eventually dominate the error. We therefore expect ii to giye good 
approximations to p ( M )  in computational practice [2, p. 1291. 
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5. Numerical examples of h-independence. To test our results, we apply 
Algorithm 2 to several versions of the following boundary-value problem: 

We'use the lowest-order, mixed finite-element method on grids with h = 2-!, where 
.t = 4,5,6,7,8. Each iteration of the solution scheme includes r = 2 V-cycles of the 
multigrid algorithm described in [3], where the coarsest grid in each cycle has mesh 
2-l, and the finest has mesh 2-t. We use the following realizations of the coefficient 
K ( z ,  Y>: 

1 if x < y, 
0.1 if x 2 y, KIII(X,Y) = { 

1 i f z < y ,  
0.01 if z 2 y. 

To confirm the convergence properties of the mixed finite-element method as 
h + 0, we examine the exact and numerical solutions to (5.1) using K = KII and 
taking f(z, y) to be the function that results when the solution is p(x, y) = x(1 - 
z) sin(7ry) + y(1 - y) sin(nz). We compute the nodal error indicators (IUexact - UIJm 
and IlPexact - Pllm, where Uexact and Pexact stand for the vectors of nodal values 
of the exact solutions u and p ,  and U and P are vectors containing nodal values of 
the finite-element approximations on a uniform grid of mesh h. Figure 2.shows plots 
of log IlUexact - Ulloo and log (IPexact - PllW versus log h having least-squares slopes 
of 1.899 and 2.000, respectively. These results suggest that the nodal values of U 
and P are accurate to O(h2),  corroborating the equal-order accuracy available in the 
Raviart-Thomas subspaces and indicating superconvergent nodal values in accordance 
with the work of Ewing, Lazarov, and Wang [6]. 

To check the convergence properties of the iterative scheme, we examine the 
behavior of the ratio ji, defined in (4.11), for each of the choices of K.  Our results, 
shown in Fig. 3, support the expectation that, as h + 0, the convergence rate of the 
scheme tends to a constant independent of h. Notice however that, as'K exhibits 
more spatial variation, the convergence of the algorithm becomes slower. Any effects 
of variability in K on the conditioning of the discrete equations still influence this 
first algorithm; the only effects of poor conditioning that we have eliminated so far 
are those associated with grid refinement. 

6. Modified schemes for heterogeneous media. To mitigate the difficulties 
associated with spatial-variability, we modify the first iterative scheme (3.1) to get a 
class of new schemes having the following form. 
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FIG. 2 .  Convergence plot for the mixed finite-element scheme for Poisson's equation, using 
lowest-order Raviart-Thomas trial spaces. The plots demonstrate the rate of decrease an the nodal 
e m r s  as h -+ 0.  
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ALGORITHM 3. Given initial guess (U(O), P(o))T, the lcth iterate (U('), P('))* is 
the solution of 

D N  
(6.1) ( N T  0 ) ( :::; ) = ( ) -!- ( iA ) ( ) 
Here, the "preconditioning" matrix D E IR(2mn+m+n) x(2mn+m+n) is a diagonal matrix 
whose choice we discuss below. 

When we construct D properly, the iteration matrix 

has spectral radius that is independent of both h and the structure of K .  The price 
we pay for this benefit is apparent in the computational form of the new algorithm: 

In contrast to (3.3), solving for P(') in the new scheme calls for the inversion of 
NTD-lN instead of N T N .  Therefore, we must modify the multigrid segment of the 
algorithm to accommodate variable coefficients. As we discuss, this modification is 
fairly easy to make. This section establishes criteria for the construction of D, gives 
two examples that satisfy these criteria, comments on the multigrid solver used, and 
presents computational results. 

As with the original scheme presented in 53, the key to the convergence of the 
new scheme is the spectral radius of the iteration matrix 1cI defined in (6.2). The 
following proposition gives sufficient conditions under which p ( M )  < 1. 

PROPOSITION 6.1. Suppose D is a diagonal matrix with positive entries on the 
diagonal, and suppose there exist constants b l ,  b2 E (0,'l) such that 

* 

bl I - 5 2 - b2 
UHDU 

for all vectors U E C(m+l)n+m(n+l). Then the iteration matrix M defined in (6.2) 
satisfies 

(6.6) 0 < p ( M )  5 max(1- b 1 , l -  b2} < 1. 

Proof. Let X # 0 be an eigendue of M with associated eigenvector (Ux,  PA)^, as 
in Proposition 3.1. Then steps similar to those yielding (3.9) show that 

( D  - A)Ux = X(DUx + NPx),  
0 = ANTUx. 

Thus U,"(D -A)Ux = AUFDUx, which is nonzero since D is positive definite. There- 
fore, 

1x1 = 

4 -; 
1 .  
f .,: 

i 

1 I '  
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Hence, using the hypothesized bounds on UfAUx/UfDUx,  we have the desired 
inequalities (6.6). 0 

To use this proposition, we need estimates on U H A U .  Given the structure of A 
as shown in the Appendix, one can calculate a useful expression for U H A U ,  assuming 
U E C(m+')n+m(n+l) has the form (U", indicated in (2.3). In particular, 

1 1 
UHAU = z S ( U )  + gR(U) ,  

where, in the notation of the Appendix, 

m n  

m n  

Here, , 7'' appearing 
in these expressions are values depending on K ( z ,  y) and arising from applications of 
the mean value theorem for integrals over each cell Oi,j in the finite-element grid A h .  
By using the inequality Iwl2 + 1zI2 2 -21wllzI, we can estimate R(U) as follows: 

denotes the complex conjugate of z. The coefficients T/,j, 

(6.7) 
m n  

m n  

In general, the estimates 0 < Ki,.,f 5 K 5 Ksup may be too coarse to provide 
enough control on the coefficients T/,j, . - . , Tc for constructing a reasonable precon- 
ditioner D. Strictly speaking, the necessary level of control will be available only if 
we have information about the local variation of K on each cell &. 

In practice, however, we rarely have such fine-scale knowledge of K ,  and even 
if we did we would not try to use it in calculating the Galerlun integrals sa K%-'u - 
VG?X dy exactly. Instead, most practical codes use approximate quadrature schemes 
that effectively treat K-l as piecewise polynomial. In fact, as we suggested in $1, 
for sufficiently fine grids it is reasonable to treat K-' as piecewise constant. In such 
applications, we can use the second inequality in (6.7), together with the identities 
T:lf = TZ = Ti,j, to show that 

i i 1 

UHAU = i S ( U )  3 + i R ( U )  5 i S ( U ) .  

Similarly, the first inequality in (6.7), together with the identities T/,j = Tly = T/lT = 

. 

ip. 

i: 
J !  

t 
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Tz1 = Ti,j, shows that 

1 1 
6 

UHAU = -S(U) + ,[S(U) + R(U)] 

1 
2 f ( U ) .  

In summary, i S ( U )  5 UHAU 5 $S(U) whenever K is piecewise constant on the grid 
Ah. 

Now consider the choice D = $lump(A), where 

i f i #  j, 

This is the matrix that results when we add entries along each row of A and assign the 
sum to the diagonal entry in that row. Gonzales and Wheeler [9] use this ''mass lump 
ing" idea to improve conditioning in mixed finite-element discretizations of petroleum 
reservoir problems. This choice of D is also a simple instance of a preconditioner 
developed in [7] for other iterative schemes. It is a straightforward matter to show 
that, when K is piecewise constant, UHlump(A)U = $S(U) ,  so UHDU = $S(U) .  As 
a consequence, 

Therefore, by Proposition 6.1, p ( M )  5 3, and the iterative scheme converges with a 
rate independent of h and K.  According to our remarks at the end of 54, we expect 
the ratio of error norms between successive iterates to approach $ as the iteration 
counter k -, 00. 

As an even simpler example, consider the choice D = diag(A), where 

is the matrix A stripped of its off-diagonal entries. This choice has the attractive 
feature that it is trivial to compute from A. With D defined in this way, we once 
again find that UHDU = $S(U) when K is piecewise constant on Ah. Therefore, 
p ( M )  5 $, and this iterative scheme also converges with a rate independent of h 
and K.  

Either choice of D requires us to solve a matrix equation of the form 

at each iteration. To do this, we use two cycles of a multigrid scheme in which the 
Jacobi iteration is the smoother, the coarse-to-fine interpolation is bilinear, and the 
fine-to-coarse restriction is accomplished using half-injection [4, p. 651. This scheme 
preserves the h-independence of the overall algorithm's convergence rate and appears 

I 
f 

I '  
i 

- .  

\ 

., . 
3 

.. .1 . 'I ' 

t 

t 
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TABLE 1 
Convergence rates for various coeficients and grids. 
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to handle the variable coefficient K effectively. Alternative multigrid implementations 
are certainly possible here. 

To test the convergence rate of Algorithm 3, we apply it to the boundary-value 
problems described in 55, using the preconditioner D = $lump(A). Table 1 shows 
values of the convergence rate p computed for each choice of coefficient K ,  for each of 
five different values of the grid mesh h. A11 of the tabulated values are very close to 
the spectral radius estimate p ( M )  5 i. We conclude that this scheme converges at a 
rate independent of both grid mesh h and the heterogeneity reflected in the mobility 
coefficient K.  

7. Conclusions. Poor conditioning associated with heterogeneity and fine spa- 
tial grids is a common problem. While this paper focuses on steady flows in porous 
media, similar equations and results apply in other fields. Two obvious applications 
for (1.1) arise in heat transfer, where temperature plays the role of pressure and 
heat flux plays the role of the Darcy velocity, and in electrostatics, where the electric 
potential and the electric field serve as the analogs of pressure and Darcy velocity, 
respectively. In either case, mixed finite-element methods can give useful approxi- 
mations. However, heterogeneity, either in the thermal diffusivity or in the dielectric 
coefficient, can lead to poor conditioning in precisely the same way as it does for 
porous media. One virtue of the mixed finite-element formulation is that it permits 
us to attack the two sources of poor conditioning separately, exploiting multigrid ideas 
to reduce the sensitivity €0 fine grids and using spectral information associated with 
the material Coefficient to reduce the sensitivity to heterogeneity. 

Appendix: Matrix structure of the finite-element equations. The mixed 
finiteelement equations (2.2) give rise to integral equations having the following forms: 
.For the z-velocity equation, 

For the y-velocity equation, 

For the mass balance, 



; .  
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The fa*awing integrals appearing in these expressions involve no spatially varying 
coefficients and hence are easy to compute using the bases for Qh and V,: 

However, the remaining integrals involve the spatially varying functions.K-' (2, y) 
and f(x, y). We compute these integrals using the mean value theorem for integrals 
[lo, pp. 184-1851 as follows: Since K-' is bounded and integrable on each cell C?i,j, 
there exist numbers Tlf , Tl; , q!;' such that 

Here, q',j/[(xi - zi-l)(yj - ~ j - l ) ]  is a number lying between the upper and lower 
bounds of K-' on the cell ni,j) and similarly for T':li and T!;:'. Analogous calculations 
show that 

The calculations of Jo f $i, j dx dy can proceed similarly. 
Now let us adopt the following orderings for the vectors of unknown nodal coef- 

ficients: 

ly" = ) u y =  , 

Then the entire algebraic system arising from (2.2) has the structure 

> 
'! . 

- .  

1 
I.* . 

- - f  
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where each block A: E zR("+')x(m+l) has the tridiagonal structure 

T 

1 
.3 
. .? Similarly, 

I 

7 R("+l)x (n+') has the tridiagonal form where each b1ock.A: E 

1 
I .  1 A: = - 

6 

Finally, the two "difference" matrices N x  and NY have the following structures: 

where 

I-: 1 

while 

where 
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