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Myron B. Allen and Mark C. Curran 

Groundwater contaminant modeling presents several challenges to the mathematician. 
Among these are the need to compute accurate water velocities and difficulties arising from 
fine-scale heterogeneities and sharp concentration fronts. This paper presents parallelizable 
numerical methods that address these challenges. 

For groundwater flow, mixed finite-element models yield velocities comparable in ac- 
curacy to computed heads. However, large variations in hydraulic conductivity can cause 
iterative matrix solvers to converge solwly. The fine grids needed to resolve heterogeneities 
aggravate the poor conditioning. A parallelizable, multigrid-based iterative scheme for the 
lowest-order mixed method largely overcomes both sources of poor behavior. 

For contaminant transport, finite-element collocation yields high-order spatial accu- 
racy, The timestepping scheme combines a modified method of characteristics, which 
reduces temporal errors when advection dominates, with an alternating-direction formu- 
lation, which is “embarassingly parallel” and has a favorable operation count. 

1; Introduction 

The equations governing steady flow of water in a two-dimensional, rectangular porous 
medium 0 have the following forms: 

u = - I N p  in 

F u = f  i d .  
(1) 

Here u = (u“, uY),p, and f represent the Darcy velocity, hydraulic head, and source 
term, respectively. In natural aquifers, the hydraulic conductivity K (  2, y) varies in 
space depending upon the lithology of the host rock. We assume that IC is bounded 
above and that inf Ic (z ,y)  > 0. 

The spatial variability, or heterogeneity, in IC causes difficulties for mathematical 
modelers. In particular, two sources of poor conditioning often affect the linear systems 
that approximate the governing equations. One source is the need to use fine spatial 
grids to resolve the-variations in the medium and the resulting variations in p and u. 
The other is the variability in Ii‘ itself, which affects the matrix entries of the linear 
system. 

In this contest, mixed finite-element methods have attracted much attention. These 
methods, together with appropriate choices of trial spaces, yield solutions for p and 
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u that have the same order of accuracy as the grid mesh size h 3 0 (Douglas et al., 
1983; Raviart and Thomas, 1977). Standard Galerkin and finite-difference formulations 
generally do not enjoy this property, since they require one to solve for p and then 
numerically differentiate to compute u. Since velocities determine the main features of 
the contaminant transport, mixed methods are therefore better suited to the coupled 
flow-and-transport problem. 

Contaminant transport poses another set of difficulties. Here, the governing equa- 
t ion takes the form 

(2) . &c + u - Vc - V (DHVC) = 0 in 0, 

where c(x, t )  is the contaminant concentration and DH represents the hydrodynamic 
dispersion tensor. This equation is formally parabolic. 

In many applications, advection dominates, with the dissipative effects of hydro- 
dynamic dispersion having only a small influence. In such regimes, Equation (2) ex- 
hibits hyperbolic behavior, and sharp fronts in contaminant concentration tend to 
persist. Low-order numerical methods, such as upstream-weighted finite-differences, 
smear these fronts. Even high-order methods typically fail to capture the fronts ac- 
curately unless one uses either globally or locally fine spatial grids. In two or three 
space dimensions, the computational effort associated with such grids can be onerous, 
especially on serial-architecture machines. 

Finite-element collocation on cubic trial spaces. offers high-order spatial accuracy, 
but , like other techniques, it yields unwieldy matrix equations in the multidimensional 
problems arising in practice. An alternating-direction algorithm similar to that pro- 
posed by Celia (1953) decomposes these unwieldy equations into parallelizable sets of 
smaller linear systems that can be solved with significantly fewer arithmetic operations. 
Moreover, the scheme is amenable to timestepping along approximate characteristic 
curves, a tactic that reduces the temporal truncation error (Russell, 1980). 

' This paper examines these numerical methods. For the flow equations (l), we con- 
sider an iterative scheme for solving the lowest-order mixed finite-element approxima- 
tions on rectangular grids. The overall structure of the scheme, analyzed in detail by 
Allen et al. (1992), consists of an outer iteration, whose convergence rate is indepen- 
dent of h and of spatial variations in K ,  coupled with an inner iteration on an elliptic 
linear system. We use a highly parallelizable multigrid method to ensure that the 
inner iterations are rapid. For the transport equation (2), we examine an alternating- 
direction collocation ( ADC) scheme that employs a modified method of characteristics 
and exhibits excellent parallelism (Allen and Iihosravani, 1992). 

2. The Mixed Finite-Element Method for Flow Equations 

Consider Equations (l), subject to the boundary condition p = 0 on dn. To discretize 
this system via the lowest-order mixed method, we construct a rectangular grid A 
on R having vertical grid lines at x = 2 0 ,  XI , .  . . , x, and horizontal grid lines at y = 
yo, ~ 1 , .  . . , Y N .  The mesh size of A is h := max(xi-xi-1, yj-yj-l}. With A we associate 
trial spaces Qz, Qv, and V for the x-velocity u", the y-velocity u y ,  and the hydraulic 
head p ,  respectively. The space Q x  contains functions that are piecewise linear in x 
and piecewise constant in y; Qy contains functions that are piecewise constant in x 
and piecewise linear in y,  and V contains functions that are piecewise constant on 
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A. Crucial to the error estimates associated with these spaces is the fact that, if 
v E Qz x Qy, then V v E V (Raviart and Thomas, 1977). 

Each of these trial spaces has a tensor-product basis containing products of the 
usual one-dimensional basis functions for piecewise constant and piecewise linear in- 
terpolation. We associate a nodal value p;,j  of head with the centroid of each cell 
[ X ~ - ~ , X ; ]  x [yj-l ,yj]  formed by the grid A, a nodal value u t j  of x-velocity with the 
midpoint ( x i ,  yj-1/2) of each vertical cell edge, and a nodal value u[i with the midpoint 
( ~ i - ~ / 2 ,  y j )  of each horizontal cell edge. 

Given these trial spaces, the mixed formulation for Equations (1) is as follows: Find 
u h  E QZ: X QY and p h  E v such that 

This finite-dimensional system yields approximations u h  and Ph whose global errors 
are both O ( h )  in the norm 11 - II,pp) (Raviart and Thomas, 1977). 

Under lexicographic ordering of equations and unknowns, Equations (2) yield a 
linear system having the following block structure: 

The vector U contains nodal values of the velocities z P  and u y ,  and P contains nodal 
heads. The matrix A is symmetric and positive definite and has the block structure 

The blocks A" and AY are tridiagonal, their entries being integrals of the form 

where p k , y e  are functions belonging to the basis for QZ x Qy. In practice, we ap- 
proximate these integrals using a two-point Gauss composite rule in each coordinate 
direct ion. 

The matrix N has the block structure 

where N" and NY. These blocks mimic the usual difference approximations io d/dx 
and 0/8y. The vector F contains integrals involving the source function f.  For a 
detailed specification of the entries in this linear system, we refer readers to Allen et 
al. (1992). 
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3. An Iterative Scheme for the Mixed Method 

We solve the system (4) iteratively, using the following matrix splitting: 

Here, D is a diagonal matrix, the simplest effective structure for which is the diag ( A ) .  
This scheme has convergence rate that is independent of mesh size and of variations in 
IC. In fact, each iteration reduces the error by a factor no greater than 4 (see Allen et 
al., 1992). 

Computationally, the scheme ( 5 )  requires the following steps: 

Steps (i) and (iii) in this algorithm are cheap. Step (ii), however, requires more work, 
since NT D-’N has the same pentadiagonal structure as the usual five-point finite- 
difference approximation to operators of the form V * KV. 

Instead of executing step (ii) exactly, we use a multigrid scheme to solve the pentadi- 
agonal system approximately. Thus the matrix splitting serves as an “outer” iteration, 
while the multigrid cycles executed for step (ii) constitute and “inner” iteration. In 
particular, we perform several V-cycles to get an approximate value for P ( k ) ,  then pro- 
ceed to step (iii). Each V-cycle involves two Gauss-Seidel iterations at each level in 
a nest A = A, 2 A1 3 2 A L  of successively coarser grids, the mesh size of Ak 
being 2“. For the intergrid transfers, we use full weighting as a restriction operator 
and bilinear interpolation as a prolongation operator. 

One attractive feature of the multigrid scheme is its amenability to parallel pro- 
cessing. Tuminaro and Womble (to appear), for example, discuss this advantage. By 
adopting a red-black ordering for the cells in each grid, we decompose each Gauss- 
Seidel relaxation sweep into two sets of calculations. In particular, we designate each 
cell xi] x [yj-l,  yj] in a grid as red or black, depending on whether i + j is even or 
odd. We update each of the red cells using old values in the black cells, then use the 
new red values to update the black cells. In any sweep, calculations for red cells are 
independent of each other. Updates for black cells are also mutually independent. 

To implement the scheme on a distributed-memory machine, we arrange for each 
processor to manage a 32 x 32-cell rectangular region, or patch, of the original fine 
grid. The relaxation sweep on any patch requires some values of latest iterates from 
the nearest-neighbor patches. Therefore, before executing a relaxation sweep, a proces- 
sor must trade information about a “boundary layer” of nodal values with the processor 
that manages the nearest-neighbor patch. Therefore, the parallel implementation re- 
quires communication between processors before each “red” sweep and before each 
“black” sweep. This communication prevents ideal parallel speedups. 



4. Computational Performance of the Mixed-Method Scheme 

Allen et al. (1992) discuss the performance of the serial scheme in the presence of the 
following heterogeneous conductivity fields K ( x ,  y)  on 0 = ( 0 , l )  x (0,l) :  

The experiments involve grids with h = 2- l ,  where t = 4,5,6,7,8. Each iteration 
of the solution scheme includes two V-cycles of the multigrid algorithm, where the 
coarsest grid in each cycle has mesh 2-l, and the finest has mesh 2-'. Table 1 displays 
the convergence rates of the outer iteration versus coefficient and mesh size. The results 
confirm the theoretical bound of 3 for the convergence rate. 

Table 1: Convergence rates for the outer iteration of the flow-equation scheme using various coefficients 
and grids. 

To assess the scheme's parallelism, we examine its execution time on a 1024-processor 
nCube 2 having a hypercube archtecture. To measure speedups, we examine execu- 
tion times required on subcubes of the machine having dimension 0 (I processor), 1 
(2 processors), . . . , 10 (1024 processors), running problems of proportionately larger 
size on larger subcubes. Each subcube is a set of processors linked by the shortest 
possible physical paths in the machine. Hence proper subcubes suffer essentially no 
disadvantage in the lengths of communciation paths. 

Table 2 shows timings for a sequence of runs involving a 32 x 32-cell grid on the one- 
processor subcube, a 64 x 32-cell grid on the two-processor subcube, a 64 x 64-cell grid 
on the four-processor subcube, and so forth, up to a 512 x 512 grid on a 512-processor 
cube. Since the ratio of problem size to number of processors remains constant in 
this sequence, an algorithm possessing ideal parallelism would require the same execu- 
tion time for all runs. In practice, interprocessor communication and computational 
overhead disrupt this ideal relationship. 
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Table 2 also shows the times associated with problem setup (initialization and matrix 
assembly) and interprocessor communication. Each run represents 20 outer iterations of 
the scheme (4), each iteration of which requires five V-cycles in step (ii). In practice, the 
outer iterations typically converge to within machine precision tolerances in fewer than 
10 iterations, so practical runtimes are smaller, and setup time has a larger effect on 
speedup. Still, these timings suggest that the algorithm possesses excellent parallelism 
in addition to its good performance in the presence of heterogeneities and fine grids. 

Table 2: Runtimes (seconds) for scaled groundwater flow problems on the nCUBE 2. 

Number of 
processors 

1 
2 
4 
8 
16 
32 
64 
128 
256 
516 

Setup 
time 
0.178 
0.184 
0.201 
0.214 
0.251 
0.319 
0.530 
0.752 
1.396 
2.691 

Communication 
time 
0.205 
1.784 
3.690 
4.639 
5.775 
5.832 
5.908 
5.950 
5.979 
6.030 

Total 
time 

161.516 
159.274 
157.260 
158.484 
159.967 
160.231 
160.620 
160.985 
161.673 
163.005 

5 .  Collocation for the  Panspor t  Equation 

We turn now to Equation (a), which governs contaminant transport. Of special interest 
are flow regimes in which advection is dominant, in the sense that, if L is the diameter of 
the spatial domain, then the Peclet number l lullmL/D~ is much larger than unity. For 
such problems, it is useful to rewrite Equation (2) in terms of the material derivakive 
Dt := at + u V of the fluid-solute mixture. We get 

Consider the following initial-boundary-value problem: 

Dtc - V ( D H V C )  = 0 ,  ( x , t )  E R x (O,CO) ,  

c ( x , t )  = 0, (x$) E dR x (0,w). 

This problem models the movement of an initial contaminant plume CI(X), so long as 
the plume does not approach 30. 

To discretize this problem in space, we use finite-element collocation on piecewise 
Hermite bicubics, a standard method summarized, for example, in Curran and Allen 



(1990). Let A be a rectangular grid partitioning 0 into rectangular elements bounded 
by adjacent grid lines x = xi  and y = y j .  AS before, h. stands for the mesh size of this 
grid. Denote by A4 the trial space of all Hermite piecewise bicubics that vanish on 30. 
The trial function c h  E M has the form 

where the functions H p g i j ( x , y )  form a nodal basis for M (Prenter, 1975). 
To determine the nodal unknowns in this expansion, we substitute ch into the left 

side of Equation (6) and force the residual to vanish at a set of collocation points 2,. 
For optimal-order accuracy, we choose these points to be the 2 x 2 Gauss quadrature 
abscissae in each element a;. This procedure yields a system of ordinary differential . 
equations in time: 

These equations determine the evolution of the unknown coefficents of c h .  We project 
the initial function cy onto M via interpolation to get an initial function ch(%,, 0). 

We discretize Equation (4) temporally in two steps. First, following Russell [2], 
we approximate .Dtch using the modified method of characteristics (MMOC). This 
procedure leads to a ‘difference expression of the form 

& C h ( X , , t )  - v - [DHVCh(Xrn,t)] = 0, (7) 

DtCh(Q N k-l [C;l+l(%,) - c;(x;)] , 
where cz(x) denotes an approximate value of ch(x,nk) and k is the time step. The 
point x~ is a backtrack point, which we compute according to the method of charac- 
teristics for the purely advective version of Equation (2). Theoretically, if ( s ( t ) , t )  is a 
parametrization of the characteristic curve dx/dt = u passing through X,, then 

x: = 2 + I“” u(s(t),t)dt. 

In practice we compute xk approximately by solving cE;/dt = u, subject to the %rial" 
condition x(tn) = X,, using an Euler scheme. 

The second step in discretizing Equation (7) is to use alternating-direction collo- 
cation. We perturb the discrete operator equations to obtain the following factoring 
along the x- and y-coordinate directions: 

(1 + kL,)( 1 + kL,)c;+l (x,) = CE(Xk) + O( k 2 )  . (9) 
Here, L, = -&(D&) and L, = -a,(&.&,). By properly numbering the collocation 
equations and unknowns, one can reduce the equations (9) to an algebraic system that 
involves highly parallel sets of matrix equations, each of which has an inexpensive, 
one-dimensional structure. 

6. Computational Aspects of ADC 

Curran and Allen (-1990) discuss efficient algorithms for solving the ADC equations 
on parallel-architecture computers. The computational problem is “embarrassingly 
parallel,” in the sense that it naturally decomposes into linear systems, having one- 
dimensional zero structure, that one can obviously solve concurrently. Speedup curves 
of slope greater than 0.S are attainable on an Alliaat FX/S eight-processor machine. 



Aside from parallelism, two features of the ADC-MMOC approach make it an at- 
tractive one. First, the method inherits high-order spatial accuracy from the standard 
collocation approach. Percell and Wheeler (1980) show that standard collocation on 
piecewise Hermite cubics has O( h4) spatial accuracy for elliptic spatial operators. ADC 
attains this accuracy with “one-dimensional” matrices having bandwidth five. 

Second, the use of MMOC reduces both the temporal truncation error and the 
number of degrees of freedom needed to resolve sharp fronts. Russell (1980) discusses 
these advantages. A related observation that MMOC essentially removes the advective 
term from the spatial operator, leaving only the diffusive operator to be discretized via 
collocation. This fact is appealing on numerical grounds, since we expect collocation 
on Hermite cubics to yield O( h4) accuracy for Equation (2) in the parabolic case, when 
DH # 0, but only O(h3) accuracy in the hyperbolic case when DH = 0 (see Dupont, 
1973). With MMOC, the collocation procedure discretizes the part -V (DV) of the 
spatial operator for which it is best suited, even when the other term u V is physically 
d om i n an t . 

, 

The ADC-MMOC scheme does not strictly conserve mass in the global sense 

Timestep k 
0.02 
0.01 
0.005 
0.0025 

n 

N E  RM 
10 0.018 
5 0.007 
2 0.027 
2 0.015 

:= /fl (c;t - c i )  dv + k f ( u c i  - DVc;l) - nds = 0. 
v=o aQ 

This effect is common in Eulerian-Lagrangian methods (Russell, 1980; Krishnamachari 
et al., 1989). Numerical experiments indicate, however, that the mass balance errors 
are typically not excessive. In a rotating plume problem on 0 = (-1,l) x (-1,l) and 
T = 1, with h = 0.02, the mass balance error varies with the time step k. Table 3 
shows values of the relative mass balance error, 

for four choices of I;. Since accurate backtracking is necessary to obtain reasonable 
mass balance! the table also shows the number NE of Euler steps used to compute the 
backtrack points x> in each case. 

Table 3: Relative mass balance errors RM in the ADC-h4MOC scheme for a rotating-plume problem 
on R = (-1) 1) x (-1) 1))  with h = 0.02 and T = 1. NE is the number of Euler steps used in the 
back tracking. 

7. Discussion 

A variety of extensions are needed to make these numerical methods fully useful in 
modeling porous-media flows. The most obvious needs are to extend the scheme for 
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the flow equation to time-dependent, three-dimensional settings and to extend the 
ADC-MMOC scheme for the contaminant transport equation to three dimensions. 
These extensions involve modifications that, while conceptually straightforward, re- 
quire nontrivial changes to the codes and will result in more computationally intensive 
algorithms. The principles that allow parallelizations should remain intact, however, 
so the approaches described here should be even more attractive in higher-dimensional 
applications. 

More interesting is the need to extend the methods to problems involving tensor 
conductivities and tensor hydrodynamic dispersion. It is in the context of tensor con- 
ductivities that the two-level iterative scheme for the mixed-method equation has the 
greatest potential for practical use. Shen (1992), through delicate analysis, shows that 
one can lump the matrix A in the mixed-method system and preserve global accuracy 
in the scalar case. Thus one can eliminate the need for the outer iterations used here. 
However, the analysis does not appear to extend to the case when the conductivity K is 
a tensor. In this case, the inner-outer iteration scheme still offers reasonable prospects 
for effective parallelism. 

Incorporating tensor hydrodynamic dispersion into the ADC-MMOC formalism 
most likely will require an iterative formulation, in which one lags off-diagonal en- 
tries of DH by an iteration. The use of iterations in this setting opens the way for 
simultaneous iterative reduction of the truncation error introduced in the operator 
splitting used to effect the alternating-direction strategy. The parallelism inherent in 
the ADC-MMOC approach makes iterations affordable. 

The overall approach of combining alternating-direction techniques with the MMOC 
is by no means restricted to finite-element collocation. Krishnamachari et al. (1989) 
discuss a related approach for a Galerkin scheme using piecewise bilinear trial functions, 
and one can easily imagine analogous schemes involving finite differences. 
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