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ABSTRACT 

Mixed finite-element methods have several features that are attractive in the 
numerical simulation of groundwater flow. Chief among these is the possibil- 
ity of computing Darcy velocities whose accuracies are comparable to those 
of the computed hydraulic heads. Much current research centers on solving 
the large linear systems that arise from mixed finite-element discretiiations. 
We examine an iterative method that largely overcomes the poor condition- 
ing associated with fine spatial grids and highly variable aquifer properties. 
The method incorporates a multigrid scheme inside an outer iteration whose 
convergence rate is independent of grid mesh size and variations in hydraulic 
conductivity. As we demonstrate, the multigrid algorithm is amenable to ef- 
fective parallelization on distributed-memory machines, making the overall 
algorithm a highly efficient one in such computing environments. 
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contract number DEAC04-76DP00789. 
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1. INTRODUCTION 

The equations governing the steady flow of a single fluid in a two-dimensional 
porous medium 0 with no gravity drive have the following forms: 

u = -Kgradp in R, 

div u = f in R. 

Here u = (u",uY),p, and f represent the Darcy velocity, hydraulic head, 
and source term, respectively. In many natural groundwater aquifers, the 
hydraulic conductivity K (  z, y) exhibits irregular variations depending upon 
the lithology of the host rock. This heterogeneous structure causes many 
difficulties for numerical modelers, among which are two sources of poor 
conditioning in linear systems that approximate the differential equations. 
One source of poor conditioning is the need to use fine spatial grids to 
resolve the complexities of the medium and the resulting variations in p and 
u. Another source is the variability in I< itself, which affects the coefficients 
in the matrices of the linear system. These difficulties afflict essentially all 
discrete approximations to Equations (1). 

Among the enormous variety of such methods, mixed finite-element meth- 
ods have attracted a great deal of attention over the past decade. These 
methods, together with appropriate choices of trial spaces, yield solutions 
for p and u that have the same order of accuracy as the grid mesh size 
h 4 0 (Douglas et al.', Raviart and Thomas 2). This property stands 
in contrast to many standard Galerkin and finite-difference formulations, 
where one first solves for p and then numerically differentiates to compute a 
less accurate approximation to u. Thus mixed methods are particularlywell 
suited to problems where accurate velocities are critical to the prediction of 
underground contaminant movements. 

This paper examines an iterative scheme for solving the lowest-order 
mixed finite-element approximations to Equations (1) on rectangular grids. 
The overall structure of the scheme, analyzed in detail by Allen et al.3, 
consists of an outer iteration, whose convergence rate is independent of 
h and of spatial variations in K ,  coupled with an inner iteration on an 
elliptic linear system. Rapid execution of this inner iteration is crucial to 
the efficiency of the scheme. We use a highly parallelizable multigrid method 
to perform the inner iterations. 

Section 2 reviews the mixed finite-element method. Section 3 discusses 
the iterative scheme, reviews its theoretical properties, and describes the 
multigrid method used in the inner iteration. Section 4 presents numerical 
results that indicate the efficiency of the scheme. In Section 5 we briefly 
draw some conclusions. 
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2. THE MIXED FINITE-ELEMENT METHOD 

Consider Equations (l), subject to the boundary condition p = 0 on dSl. To 
discretize this system via the lowest-order mixed finite-element method, we 
establish a rectangular grid A on 0 having vertical grid lines at xo,x1,. . . , x, 
and horizontal grid lines at yo, yl , .  . . , yn, as drawn in Figure 1. The mesh 
size h of A is the maximum distance between adjacent grid lines x = x; or 
y = yj. With A we associate trial spaces2 QZ, Qar, and V for the $-velocity 
u", the y-velocity up, and the hydraulic head p ,  respectively. Functions in 
Qz are piecewise linear in x and piecewise constant in y; functions in Qy 
are piecewise constant in x and piecewise linear in y, and functions in V are 
piecewise constant on A. 

Each of these trial spaces has a finite nodal basis consisting of tensor 
products of the usual one-dimensional bases for piecewise constant and 
piecewise linear interpolation. As Figure 1 illustrates, we associate a nodal 
va1uep;j of head with the centroid of each cell [xi-l, x;] x [yj-l, yj] formed by 
the grid A, a nodal value uTj of x-velocity with the midpoint (x;,yj-lp) of 
each vertical cell edge, and a nodal value u& with the midpoint ( z ; 4 2 , y j )  

of each horizontal cell edge. 
Given these trial spaces, the mixed finite-element method for solving 

Equations (1) is as follows: Find trial functions u h  E QO x Q Y  and p h  E v 
such that 

Ly dz dy - /,.. div v dx dy = 0, V v E QX x Qar, 

l ( d i v  u h  - f)qdxdy = 0, 

This finite-element discretization yields approximations uh and p h  whose 
global errors are both O( h )  in the norm 11 1 1 ~ 2 ( * )  (see Raviart and Thomas2). 

Under a natural ordering of equations and unknowns, Equations (2) yield 
a linear system having the following block structure: 

Here, U stands for a vector containing the nodal values of the velocities u" 
and u y ,  and P is a vector containing nodal heads. The block matrix A is 
symmetric and positive definite and has the block structure 

The blocks A" E lR(m+l)nX(m+l)n and AY E Rm("+l)xm(n+l) are tridiagonal, 
and their entries are integrals involving the variable hydraulic conductivity 
K.  The matrix N has the block structure 
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where N" E JR,(m+')"x"" and N Y  E JR,m("+l)X"" . These blocks reduce to the 
usual difference approximations to a/& and a/dy. The vector I;' E lRmn 
contains integrals involving the source function f. For details concerning 
the construction of this linear system, we refer readers to Allen et al.3 

3. AN ITERATIVE SCHEME 

We solve the system (3) iteratively, using the following matrix splitting: 

[,4 ; ] [ ; I  = [ ; ] + [ D g A  ; ] [ ; ] ( k ) *  (4) 

Here, D is a diagonal matrix that can have any of several structures, the 
simplest of which is just the diagonal part of A. This scheme has con- 
vergence rate that is independent of the mesh size h and the variations 
in hydraulic conductivity I(; in fact, each iteration reduces the error by a 
factor no greater than 4 (see Allen et aL3). 

Computationally, the scheme (4) requires the following steps: 

Steps (i) and (iii) in this algorithm require only matrix multiplication 
and addition and hence are quite cheap. Step (ii), however, requires more 
work, since the matrix NTD-lN has the same pentadiagonal structure as 
the usual five-point finite-difference approximation to operators of the form 
div ( K  grad). 

To execute this step efficiently, we use a multigrid scheme. Instead of solving 
step (ii) exactly, we perform several V-cycles to get an approximate solution 
for P(k) ,  then move on to step (iii). Each V-cycle involves two Gauss-Seidel 
iterations at each level in a nest A = A, 2 Al 3 3 AL of grids, ranging 
from the original grid A through coarser subgrids to the coarsest grid AL, 
then back up to the finest grid A. To map the problem from fine grids to 
coarse grids, we use full weighting as a restriction operator. To map from 
coarse grids to fine grids, we use bilinear-interpolation as a prolongation 
opera tor. 

One attractive feature of the multigrid scheme is its amenability to parallel 
processing. Tuminaro and Womble4 discuss this prospect. By adopting a 
red-black ordering for the cells in each grid, we can decompose each Gauss- 
Seidel relaxation sweep into two sets of calculations. In particular, we label 
each cell [z;-1, 5;] x [yj-l, ~ j ]  in a grid as "red" or "black," depending on 
whether i + j is even or odd. We can update each of the "red" cells using 
old values in the "black" cells, then use these updated values in "red" cells 

. 
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to update each of the “black” cells. Since the calculations for “red” cells 
in any sweep are independent of each other, we can perform the arithmetic 
concurrently on a parallel computer. Similarly, the updates for “black” cells 
are also mutually independent and can be computed concurrently. 

This idea works especially well on distributed-memory machines, where it 
is feasible to have a large number of processors that communicate through 
message passing instead of accessing a shared memory. In coding the d- 
gorithm, we decompose the spatial domain of the problem so that each 
processor in a parallel machine performs the calculations for a subset of the 
grid.4 At any instant during the calculations, a given processor is performing 
either “red” or “black” updates. The “red” and “black” processors work 
simultaneously, stopping synchronously to exchange results and “change 
colors. ’ 
4. COMPUTATIONAL PERFORMANCE 

Since Allen et al.3 discuss the performance of the serial precursor to our 
scheme in the presence of a variety of heterogeneous conductivity fields 
K ( z ,  y), we focus here on the performance of the parallel version. To assess 
this performance, we examine the execution time required by our code on a 
1024-processor nCUBE 2 having a distributed-memory hypercube archtec- 
ture. To gain some appreciation for the degree of parallelism in the code, we 
investigate the execution time required on subcubes of the machine having 
dimension 0 (1 processor), 1 (2 processors), . . . , 10 (1024 processors). 

We base our assessment on the notion of scaled speedup. To gauge the 
scaled speedup, we run problems of proportionately larger size on larger 
subcubes. Specifically, we run a problem in which we assign the work as- 
sociated with a 32 x 32-cell grid with each processor of a subcube of the 
machine. Thus we use a 32 x 32-cell grid on the one-processor subcube, one 
involving a 64 x 32-cell grid on the two-processor subcube, one involving 
a 64 x 64-cell grid on the four-processor subcube, and so forth, eventually 
running a problem involving a 1024 x 1024 grid on the 1024-processor cube. 
Since the ratio of problem size to number of processors remains constant in 
this sequence, an algorithm possessing ideal parallelism would require the 
same execution time for all runs. In practice, interprocessor communication 
and computational overhead, such as setup time, interfere with this ideal 
relationship. 

Table I lists the timings for the runs. The table shows the total execution 
times, along with the times associated with problem setup (e.g. initializa- 
tion and matrix assembly) and interprocessor communication, for various 
subcubes of the machine. The subcubes range in size from dimension zero 
(one processor operating on a 1024-cell grid) to dimension 10 (1024 proces- 
sors acting on a 1,048,576-cell grid). Each run represents 20 outer iterations 
of the scheme (4), each iteration of which requires five V-cycles in step (ii). 
The times listed in the second through fourth columns are averages over all 
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processors, while the times listed in the last column are the maximum times 
over all processors and thus more closely reflect the apparent execution time 
observed by a user. These timings suggest that the algorithm possesses ex- 
cellent parallelism in addition to its good performance in the presence of 
heterogeneities and fine grids. 

Table 1: RUNTIMES (SECONDS) FOR SCALED PROBLEMS ON THE nCUBE 2. 

Number of 
processors 

1 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

5. CONCLUSIONS 

Setup 
time 

6.515 
6.298 
6.109 
6.114 
6.150 
6.223 
6.371 
6.671 
7.290 
8.565 

11.141 

Communication 
time 
0.205 
1.783 
3.694 
4.640 
5.774 
5.832 
5.907 
5.949 
5.979 
6.028 
6.077 

Average 
tot a1 time 

41.119 
43.131 
45.389 
46.607 
48.088 
48.357 
48.681 
49.096 
49.789 
51.149 
53.795 

. ... 

Maximum 
total time 

41.1 19 
43.133 
45.454 
46.647 
48.160 
48.526 
48.998 
49.721 
51.035 
53.693 
58.981 

Our algorithm appears to promise excellent opportunities for parallel com- 
puting as well as a reasonable way to overcome some of the numerical diffi- 
culties associated with heterogeneities. Given this promise, we see our next 
task as the extension of the method to time-dependent and nonlinear prob- 
lems, which have more general applicability to underground contaminant 
modeling. 

ACKNOWLEDGMENT 

The authors thank Dick Ewing, whose insights guided much of our work. 

REFERENCES 

1. Douglas, J., Ewing, R.E., and Wheeler, M.F., "The Approximation of the 
Pressure by a Mixed Method in the Simulation of Miscible Displacement," 
R.A.I.R.O. Analyse Numerique 17, pp. 17-33, 1983. 

6 



c 

2. Raviart, P.A., and Thomas, J.M., "A Mixed Finite Element Method for 
Second Order Elliptic Problem," in Mathematical Aspects of Finite Ele- 
ment Methods, Lecture Notes in Mathematics vol. 606, ed. by I. Galligani 
and E. Magenes, pp. 292-315, Springer-Verlag, Berlin, 1977. 

3. Allen, M.B., Ewing, R.E., and Lu, P., "Well Conditioned Iterative 
Schemes for Mixed Finite-Element Models of Porous-Media Flow," to ap- 
pear in SIAM Jour. Sci. Stat. Comp. 

4. Tuminaro, R.S., and Womble, D.E., "Analysis of the Multigrid FMV 
Cycle on Large-Scale Parallel Machines," to appear in SIAM Jour. Sci. 
St at. Comp. 

+ x  
"12 p22 p 2  OP32 

+ x  
'11 '21 pi1 "31 

c x  

u33 

* x  
'32 '42 

Y ,u,, 
* x  

"31 '41 

* x  

+ x  
u42 

* x  
'4 1 

4 

Figure 1. Sample grid for the mixed finite-element method, showing nodes 
for the hydraulic head and the x- and y-velocities. 
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