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1. TECHNICAL SYNOPSIS 

This section of the report is a brief synopsis of the project’s scientific aims and 
accomplishments. The discussion is intended for a technical audience, but it does not 
assume that readers are specialists in mathematical modeling. The Appendix to this 
report, summarized in Section 2, consists of published scientific articles that describe 
the results of the project for specialists. 

1.1 Objectives 

The main aim of the research was to develop methodologies for modeling simultaneous 
groundwater flow and contaminant transport in highly heterogeneous aquifers. Most 
previously existing flow and transport models are based on techniques that, while 
adequate for nearly homogeneous aquifers , are inappropriate in the presence of signif- 
icant, fine-scale heterogeneities. The inappropriateness stems from two facts. First, 
the numerical methods used are inefficient or inaccurate in heterogeneous problems, 
so that modelers typically sacrifice accuracy in favor of affordability when running 
the codes. Second, the relationships between actual, fine-scale variations in the media 
and the parameter values that one should use to represent the media in affordable, 
coarse-scale models remain poorly understood. 

The proposed project had two objectives. The immediate objective was to incor- 
porate recent improvements in numerics to assemble a computer code that is com- 
put ationally efficient even when the aquifer being modeled is highly heterogeneous. 
The long-range objective was to use the code to investigate methods for scaling from 
individual realizations of heterogeneity to ensembles of realizations that are consistent 
with measured data and, more specifically, to investigate scaling of such parameters 
as hydraulic conductivity and hydrodynamic dispersion for use in standard flow and 
transport codes. 

1.2 Utility of the research. 

The research has utility to groundwater hydrologists who use models to understand 
the complex flow and transport phenomena affecting groundwater contamination. 
Natural aquifers can have permeabilities and porosities that exhibit large spatial 
variations as a consequence of variable depositional environments, diagenesis, and 
structural events. Among the problems that heterogeneities pose are the following: 

a It is extremely difficult to measure heterogeneous aquifer parameters, so the 
data used in mathematical models often fail to characterize aquifers realisti- 
cally. 

0 Even when heterogeneities are known, resolving them numerically often re- 
quires the modeler to discretize the aquifer into a large number of very small 
grid cells. This not only makes the equation sets to be solved large, hence 
expensive; it also makes them poorly conditioned, hence prone to slow conver- 
gence and accumulation of roundoff errors. 



0 Beyond the effect of small grid cells, heterogeneity itself leads to poor con- 
ditioning arising from the fact that important coefficients, such as hydraulic 
conductivity, can range in value over several orders of magnitude. 

0 Heterogeneity often occurs at scales that simply cannot be resolved in af- 
fordable models. In these cases, there arises the issue of how to scale aquifer 
parameters to arrive at values that adequately represent the physics in “megas- 
copic” models. Research into this question is in its infancy, since the compu- 
tational horsepower needed to explore relationships between fine- and coarse- 
scale models has evolved only recently. 

As a consequence of these facts, heterogeneity has been a source of tremendous 
difficulties in the transfer of modeling technologies from theoretical settings to field 
applications, where there is an increasing need for reliable predictive tools. The 
development of robust and efficient numerical techniques is a necessary step, not only 
for the direct application of models to field studies but also to the more fundamental 
task of understanding how to incorporate uncertain and sparsely measured geologic 
data into deterministic computer codes. 

The research also has implications for other areas of technology involving under- 
ground flow. For example, advances in numerical techniques for flows in heterogeneous 
porous media simultaneously improve the state of the art in the design of enhanced 
oil recovery technologies and the simulation of in-situ mining. 

1.3 Summary of accomplishments 

The project’s accomplishments fall into four categories. First, Some effort focused 
on enhancing the capabilities of a two-dimensional groundwater transport simulator 
developed in previous work for the Wyoming Water Research Center. This work 
led to the effective incorporation of a timestepping algorithm based on contaminant 
paths (“modified method of characteristics”) into an existing transport code based on 
alternating-direction collocation (Allen and Khosravani, 1992) and an adaptive local 
grid refinement algorithm for this code that allows for fine-scale spatial resolution in 
regions where contaminant concentrations vary rapidly in space (Curran, submitted). 

A second focus for the research was the implementation of an efficient, well- 
conditioned algorithm for solving the groundwater flow equation using the mixed 
finite-element method. Proper formulation of the mixed method allows one to solve 
for groundwater velocities whose accuracies are comparable to those of the computed 
heads. The method differs from standard finite-element approaches, in that it does 
not require one to diffferentiate heads numerically to compute velocities - a common 
procedure that introduces inherent inaccuracies. The new algorithm avoids the poor 
conditioning (and associated inefficiency) associated with fine-scale, heterogeneous 
simulations by using an iterative solver based on a multigrid approach (Allen, Ewing, 
and Lu, 1992). The algorithm has the additional feature that it is readily amenable 
to parallel processing (Allen and Curran, 1992). 

Summaries and overviews of these methodologies for groundwater flow and trans- 
port appear in Allen and Ewing (1991) and Allen and Curran (to appear). 



A third approach, tailored to a more specialized form of heterogeneity, incorporates 
a finite-layer technique into models of groundwater flow in highly stratified aquifers. 
This approach takes advantage of certain simplifying assumptions about the geometry 
of the heterogeneity to develop a discrete formulation that is suitable for large-scale 
computing (because of its inherent parallelism) and for microcomputing (because of its 
ability to decompose large problems into small subproblems). The project addressed 
both the practical implementation of the method (Smith, Allen, Puckett, and Edgar, 
1991; Smith, Allen, Puckett, and Edgar, 1992) and its theoretical basis (Smith, 1992; 
Smith and Allen, in preparation). 

Finally, some effort was devoted to an analysis of standard finite-element tech- 
niques for modeling contaminant transport in aquifers characterized by highly het- 
erogeneous adsorption. This analysis was mainly theoretical, although the work gen- 
erated a computer code that proved useful in testing error estimates derived using 
abstract methods (Chunyu, 1990). 

2. PUBLICATIONS RESULTING FROM THE WORK 

The following is a list of refereed journal articles, conference proceedings, doctoral dis- 
sertations, and MS papers that resulted from the project. Copies of these documents, 
except for the dissertation and MS paper, appear in the Appendix. The dissertation 
is available at the University of Wyoming Science Library and will soon be available 
from University Microfilms in Ann Arbor, Michigan. The MS paper is available from 
M.B. Allen, Department of Mathematics, University of Wyoming, (307) 766-4221. 

2.1 Refereed journal articles 

Allen, M.B., Ewing, R.E., and Lu, P., “Well-conditioned iterative schemes for 
mixed finite-element models of porous-media flows,” SIAM Journal of Scien- 
tific and Statistical Computing 13:3 (1992), 794-814. 

Curran, M.C., “An iterative finite-element collocation method for parabolic 
problems using domain decomposition,” submitted to Numerical Methods for 
Partial Differential Equations. 

Smith, S.S., Allen, M.B., Puckett, J. ,  and Edgar, T., “The finite layer method 
for groundwater flow models,” Water Resources Research 28:6 (1992), 1715- 
1722. 

Smith, S.S., and Allen, M.B., “Error analysis of the finite-strip method for 
parabolic equations,” MS in preparation, draft included in Appendix. 



2.2 Conference proceedings 

Allen, M.B., and Curran, M.C., “A multigrid-based solver for mixed finite- 
element approximations to groundwater flow,” Computational Methods in Wa- 
ter Resources IX ,  Vol. I: Numerical Methods in Water Resources, ed. by T.F. 
Russell et al., Elsevier Applied Science, London, 1992, 579-585. 

Allen, M.B., and Curran, M.C., “Parallelizable methods for modeling flow and 
transport in heterogeneous porous media,” to appear in Proceedings, Oberwol- 
fach Conference on Porous Media, June 21-27, 1992, Oberwolfach, Germany, 
ed. by U. Hornung et al., Birkhauser, Munich. 

Allen, M.B., and Ewing, R.E., “Mathematical challenges in groundwater con- 
taminant modeling,” Proceedings, Fourth Annual Meeting of the Wyoming 
State Section, American Water Resources Association, Laramie, Wyoming, 
November 6-7, 1991. 

Smith, S.S., Allen, M.B., Puckett, J.A., and Edgar, T.V., “Three-dimensional 
model of multi-well field using finite-layer models,” Proceedings, Eleventh An- 
nual American Geophysical Union Hydrology Days, Fort Collins, Colorado, 
April 2-4, 1991, Colorado State University, Fort Collins, Colorado, 23-34. 

2.3 Graduate papers and dissertations 

Chunyu, D., “Finite-element methods for contaminant transport with ad- 
sorption,” M.S. paper, Department of Mathematics, University of Wyoming, 
Laramie, Wyoming, December, 1990. 

Smith, S.S., “Finite-Strip and Finite-Layer Methods: Analysis and Applica- 
tions to Groundwater Modeling,” Ph.D. dissertation, Department of Mathe- 
matics, University of Wyoming, Laramie, Wyoming, May, 1992. 

3. GRADUATE STUDENT TRAINING 
Three graduate students received support from this project. Two of them completed 
degrees during the course of the project: 

0 Dongmei Chunyu, M.S., Mathematics, 1990. 

0 Stanley S. Smith, Ph.D., Mathematics, 1992. 

The third student, Azar Khosravani, received an M.S. before the project began, spent 
a summer working on the project, then transferred to Southern Illinois University, 
where her husband has a faculty position. 
APPENDIX: COPIES OF PUBLICATIONS 
Attached are copies of papers that resulted from the project. Also attached is a 
copy of a Wyoming Water Research Center Research Brief, which summarizes in 
nontechnical form some aspects of the work. 
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A Multigrid-Based Solver for Mixed Finite-Element 
Approximations to Groundwater Flow 
Myron B. Allen' 
Department of Mathematics, University of Wyoming, 
Laramie, WY 82071, U.S.A. 
Mark C. Curran2 
Applied and Numerical Mathematics Division, Sandia 
National Laboratories, Albuquerque, NM 871 85, U.S.A. 

ABSTRACT 

Mixed finite-element methods have several features that are attractive in the 
numerical simulation of groundwater flow. Chief among these is the possibil- 
ity of computing Darcy velocities whose accuracies are comparable to those 
of the computed hydraulic heads. Much current research centers on solving 
the large linear systems that arise from mixed finite-element discretizations. 
We examine an iterative method that largely overcomes the poor condition- 
ing associated with fine spatial grids and highly variable aquifer properties. 
The method incorporates a multigrid scheme inside an outer iteration whose 
convergence rate is independent of grid mesh size and variations in hydraulic 
conductivity. As we demonstrate, the multigrid algorithm is amenable to ef- 
fective parallelization on distributed-memory machines, making the overall 
algorithm a highly efficient one in such computing environments. 

1 The Wyoming Water Research Center partially supported this work 
through a grant-in-aid 

2This work received support from the Applied Mathematical Sciences Pro- 
gram, U.S. Department of Energy Ofice of Energy Research. The work was 
performed in part at Sandia National Laboratories for the U.S. DOE under 
contract number DEAC04-76DP00789. 
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1. INTRODUCTION 

The equations governing the steady flow of a single fluid in a two-dimensional 
porous medium s1 with no gravity drive have the following forms: 

u = -1Cgradp in 0, 

div u = f in 0. 
(1) 

Here u = (u",uy),p, and f represent the Darcy velocity, hydraulic head, 
and source term, respectively. In many natural groundwater aquifers, the 
hydraulic conductivity K(z ,  y ) exhibits irregular variations depending upon 
the lithology of the host rock. This heterogeneous structure causes many 
difficulties for numerical modelers, among which are two sources of poor 
conditioning in linear systems that approximate the differential equations. 
One source of poor conditioning is the need to use fine spatial grids to 
resolve the complexities of the medium and the resulting variations in p and 
u. Another source is the variability in K itself, which affects the coefficients 
in the matrices of the linear system. These difficulties af3ict essentially all 
discrete approximations to Equations (1). 

Among the enormous variety of such methods, mixed finite-element meth- 
ods have attracted a great deal of attention over the past decade. These 
methods, together with appropriate choices of trial spaces, yield solutions 
for p and u that have the same order of accuracy as the grid mesh size 
h 4 0 (Douglas et al?, Raviart and Thomas *). This property stands 
in contrast to many standard Galerkin and finite-difference formulations, 
where one first solves for p and then numerically differentiates to compute a 
less accurate approximation to u. Thus mixed methods are particularly well 
suited to problems where accurate velocities are critical to the prediction of 
underground contaminant movements. 

This paper examines an iterative scheme for solving the lowest-order 
mixed finite-element approximations to Equations (1) on rectangular grids. 
The overall structure of the scheme, analyzed in detail by Allen et al.3, 
consists of an outer iteration, whose convergence rate is independent of 
h and of spatial variations in K ,  coupled with an inner iteration on an 
elliptic linear system. Rapid execution of this inner iteration is crucial to 
the efficiency of the scheme. We use a highly parallelizable multigrid method 
to perform the inner iterations. 

Section 2 reviews the mixed finite-element method. Section 3 discusses 
the iterative scheme, reviews its theoretical properties, and describes the 
multigrid method used in the inner iteration. Section 4 presents numerical 
results that indicate the efficiency of the scheme. In Section 5 we briefly 
draw some conclusions, 
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2. THE MIXED FINITEELEMENT METHOD 

Consider Equations (l), subject to the boundary condition p = 0 on dQ. To 
discretize this system via the lowest-order mixed finite-element method, we 
establish a rectangular grid A on 0 having vertical grid lines at xo,x1, . . . , x, 
and horizontal grid lines at yo, y l , .  . . , yn, as drawn in Figure 1. The mesh 
size h of A is the maximum distance between adjacent grid lines x = xj or 
y = yj. With A we associate trial spaces2 QZ, Qy, and V for the s-velocity 
ux, the y-velocity u y ,  and the hydraulic head p ,  respectively. Functions in 
&z are piecewise linear in 2 and piecewise constant in y; functions in QY 

are piecewise constant in 5 and piecewise linear in y, and functions in V are 
piecewise constant on A. 

Each of these trial spaces has a finite nodal basis consisting of tensor 
products of the usual one-dimensional bases for piecewise constant and 
piecewise linear interpolation. As Figure 1 illustrates, we associate a nodal 
value p ; j  of head with the centroid of each cell [2;,1, z;] x [Yj-I, yj] formed by 
the grid A, a nodal value uzj of s-velocity with the midpoint (z;, yj-1/2) of 
each vertical cell edge, and a nodal value u t  with the midpoint (x;-lp,yj) 
of each horizontal cell edge. 

Given these trial spaces, the mixed finite-element method for solving 
Equations (1) is as follows: Find trial functions u h  E QZ X QY and p h  E v 
such that 

dxdy - / n p h  div v d x d y  = 0, 'V'V E QX x Qy, 

(2) 
L(div u h  - f)qdxdy = 0, V q E K  

This finite-element discretization yields approximations uh and p h  whose 
global errors are both O(h) in the norm 11 IIL2(*) (see Raviart and Thomas2). 

Under a natural ordering of equations and unknowns, Equations (2) yield 
a linear system having the following block structure: 

Here, U stands for a vector containing the nodal values of the velocities u" 
and up, and P is a vector containing nodal heads. The block matrix A is 
symmetric and positive definite and has the block structure 

L J 

The blocks Ax E lR,(m+l)nX(m+')n and A' E Rm("+l)x"("+') are tridiagonal, 
and their entries are integrals involving the variable hydraulic conductivity 
K .  The matrix N has the block structure 
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Y 

where N X  E R(m+’)nXmn and N Y  E Rm(”+’)X”” . These blocks reduce to the 
usual difference approximations to d/dz and a/ay. The vector F E IR”” 
contains integrals involving the source function f. For details concerning 
the construction of this linear system, we refer readers to Allen et aL3 

3. AN ITERATIVE SCHEME 

We solve the system (3) iteratively, using the following matrix splitting: 

Here, D is a diagonal matrix that can have any of several structures, the 
simplest of which is just the diagonal part of A. This scheme has con- 
vergence rate that is independent of the mesh size h and the variations 
in hydraulic conductivity K; in fact, each iteration reduces the error by a 
factor no greater than f (see Allen et d.’). 

Computationally, the scheme (4) requires the following steps: 

Steps (i) and (Gi) in this algorithm require only matrix multiplication 
and addition and hence are quite cheap. Step (ii), however, requires more 
work, since the matrix NTL)-’N has the same pentadiagonal structure as 
the usual five-point finite-difference approximation to operators of the form 
div (I< grad). 

To execute this step efficiently, we use a multigrid scheme. Instead of solving 
step (ii) exactly, we perform several V-cycles to get an approximate solution 
for P@), then move on to step (iii). Each V-cycle involves two Gauss-Seidel 
iterations at each level in a nest A = A, 2 A1 2 2 AL of grids, ranging 
from the original grid A through coarser subgrids to the coarsest grid AL, 
then back up to the finest grid A. To map the problem from fine grids to 
coarse grids, we use full weighting as a restriction operator. To map from 
coarse grids to fine grids, we use bilinear interpolation as a prolongation 
operator. 

One attractive feature of the multigrid scheme is its amenability to parallel 
processing. Tuminaro and Womble4 discuss this prospect. By adopting a 
red-black ordering for the cells in each grid, we can decompose each Gauss- 
Seidel relaxation sweep into two sets of calculations. In particular, we label 
each cell [zi-l, z;] x [ Y j - l )  yj] in a grid as “red” or “black,” depending on 
whether i + j is even or odd. We can update each of the “red” cells using 
old values in the “black” cells, then use these updated values in “red” cells 
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to update each of the “black” cells. Since the calculations for “red” cells 
in any sweep are independent of each other, we can perform the arithmetic 
concurrently on a parallel computer. Similarly, the updates for “black” cells 
are also mutually independent and can be computed concurrently. 

This idea works especially well on distributed-memory machines, where it 
is feasible to have a large number of processors that communicate through 
message passing instead of accessing a shared memory. In coding the al- 
gorithm, we decompose the spatial domain of the problem so that each 
processor in a parallel machine performs the calculations for a subset of the 
grid.* At any instant during the calculations, a given processor is performing 
either “red” or “black” updates. The “red” and “black” processors work 
simultaneously, stopping synchronously to exchange results and “change 
colors. ” 

4. COMPUTATIONAL PERFORMANCE 

Since Allen et aL3 discuss the performance of the serial precursor to our 
scheme in the presence of a variety of heterogeneous conductivity fields 
K(z, y), we focus here on the performance of the parallel version. To assess 
this performance, we examine the execution time required by our code on a 
1024-processor n CUBE 2 having a dis t ribut ed-memory hypercube archt ec- 
ture. To gain some appreciation for the degree of parallelism in the code, we 
investigate the execution time required on subcubes of the machine having 
dimension 0 (1 processor), 1 (2 processors), . . . , 10 (1024 processors). 

We base our assessment on the notion of scaled speedup. To gauge the 
scaled speedup, we run problems of proportionately larger size on larger 
subcubes. Specifically, we run a problem in which we assign the work as- 
sociated with a 32 x 32-cell grid with each processor of a subcube of the 
machine. Thus we use a 32 x 32-cell grid on the one-processor subcube, one 
involving a 64 x 32-cell grid on the two-processor subcube, one involving 
a 64 x 64-cell grid on the four-processor subcube, and so forth, eventually 
running a problem involving a 1024 x 1024 grid on the 1024-processor cube. 
Since the ratio of problem size to number of processors remains constant in 
this sequence, an algorithm possessing ideal parallelism would require the 
same execution time for all runs. In practice, interprocessor communication 
and computational overhead, such as setup time, interfere with this ideal 
relationship. 

Table 1 lists the timings for the runs. The table shows the total execution 
times, along with the times associated with problem setup (e.g. initializa- 
tion and matrix assembly) and interprocessor communication, for various 
subcubes of the machine. The subcubes range in size from dimension zero 
(one processor operating on a 1024-cell grid) to dimension 10 (1024 proces- 
sors acting on a 1,048,576-cell grid). Each run represents 20 outer iterations 
of the scheme (4), each iteration of which requires five V-cycles in step (ii). 
The times listed in the second through fourth columns are averages over all 
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processors, while the times listed in the last column are the maximum times 
over all processors and thus more closely reflect the apparent execution time 
observed by a user. These timings suggest that the algorithm possesses ex- 
cellent parallelism in addition to its good performance in the presence of 
heterogeneities and fine grids. 

Table 1: RUNTIMES (SECONDS) FOR SCALED PROBLEMS ON THE nCUBE 2. 

Number of 
processors 

1 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

5. CONCLUSIONS 

Setup 
time 
6.5i5 
6.298 
6.109 
6.114 
6.150 
6.223 
6.371 
6.671 
7.290 
8.565 
11.141 

Communication 
time 
0.205 
1.783 
3.694 
4.640 
5.774 
5.832 
5.907 
5.949 
5.979 
6.028 
6.077 

Average 
total time 
41.119 
43.131 
45.389 
46.607 
48.088 
48.357 
48..681 
49.096 
49.789 
51.149 
53.795 

Maximum 
total time 
41.1 19 
43.133 
45.454 
46.647 
48.160 
48.526 
48.998 
49.721 
51.035 
53.693 
58.981 

Our algorithm appears to promise excellent opportunities for parallel com- 
puting as well as a reasonable way to overcome some of the numerical diffi- 
culties associated with heterogeneities. Given this promise, we see our next 
task as the extension of the method to time-dependent and nonlinear prob- 
lems, which have more general applicability to underground contaminant 
modeling. 
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Figure 1. Sample grid for the mixed finite-element method, showing nodes 
for the hydraulic head and the x-  and y-velocities. 
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Parallelizable Methods for Modeling Flow and Transport 
in Heterogeneous Porous Media ' 

Myron B. Allen and Mark C. Curran 

Groundwater contaminant modeling presents several challenges to the mathematician. 
Among these are the need to compute accurate water velocities and difficulties arising from 
fine-scale heterogeneities and sharp concentration fronts. This paper presents parallelizable 
numerical methods that address these challenges. 

For groundwater flow, mixed finite-element models yield velocities comparable in ac- 
curacy to computed heads. However, large variations in hydraulic conductivity can cause 
iterative matrix solvers to converge solwly. The fine grids needed to resolve heterogeneities 
aggravate the poor conditioning. A parallelizable, multigrid-based iterative scheme for the 
lowest-order mixed method largely overcomes both sources of poor behavior. 

For contaminant transport, finite-element collocation yields high-order spatial accu- 
racy. The timestepping scheme combines a modified method of characteristics, which 
reduces temporal errors when advection dominates, with an alternating-direction formu- 
lation, which is "embarassingly parallel" and has a favorable operation count. 

1.; Introduction 

The equations governing steady flow of water in a two-dimensional, rectangular porous 
medium fl have the following forms: 

u = - K V p  in fl, 

V - U =  f inf l .  

Here u = (u',uY),p, and f represent the Darcy velocity, hydraulic head, and source 
term, respectively. In natural aquifers, the hydraulic conductivity K(z, y> varies in . 

space depending upon the lithology of the host rock. We assume that Ii' is bounded 
above and that inf K(x,y)  > 0. 

The spatial variability, or heterogeneity, in I' causes difficulties for mathematical 
modelers. In particular, two sources of poor conditioning often affect the linear systems 
that approximate the governing equations. One source is the need to use fine spatial 
grids to resolve the-variations in the medium and the resulting variations in p and u. 
The other is the variability in li' itself, which affects the matrix entries of the linear 
system. 

In this context, mixed finite-element methods have attracted much attention. These 
methods, together with appropriate choices of trial spaces, yield solutions for p and 
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u that have the same order of accuracy as the grid mesh size h + 0 (Douglas et al., 
1983; Raviart and Thomas, 1977). Standard Galerkin and finite-difference formulations 
generally do not enjoy this property, since they require one to solve for p and then 
numerically differentiate to compute u. Since velocities determine the main features of 
the contaminant transport, mixed methods are therefore better suited to the coupled 
flow-and-transport problem. 

Contaminant transport poses another set of difficulties. Here, the governing equa- 
tion takes the form 

&c + u . Vc - V . (DHVc) = O in R, (2) 

where c(x, t )  is the contaminant concentration and DH represents the hydrodynamic 
dispersion tensor. This equation is formally parabolic. 

In many applications, advection dominates, with the dissipative effects of hydro- 
dynamic dispersion having only a small influence. In such regimes, Equation (2) ex- 
hibits hyperbolic behavior, and sharp fronts in contaminant concentration tend to 
persist. Low-order numerical methods, such as upstream-weighted finite-differences, 
smear these fronts. Even high-order methods typically fail to capture the fronts ac- 
curately unless one uses either globally or locally fine spatial grids. In two or three ' 

space dimensions, the computational effort associated with such grids can be onerous, 
especially on serial-architecture machines. 

Finite-element collocation on cubic trial spaces. offers high-order spatial accuracy, 
but, like other techniques, it yields unwieldy matrix equations in the multidimensional 
problems arising in practice. An alternating-direction algorithm similar to that pro- 
posed by Celia (1983) decomposes these unwieldy equations into parallelizable sets of 
smaller linear systems that can be solved with significantly fewer arithmetic operations. 
Moreover, the scheme is amenable to timestepping along approximate characteristic 
curves, a tactic that reduces the temporal truncation error (Russell, 1980). 

This paper examines these numerical methods. For the flow equations (1)) we con- 
sider an iterative scheme for solving the lowest-order mixed finite-element approxima- 
tions on rectangular grids. The overall structure of the scheme, analyzed in detail by 
Allen et al. (1992)) consists of an outer iteration, whose convergence rate is indepen- 
dent of h and of spatial variations in K ,  coupled with an inner iteration on an elliptic 
linear system. We use a highly parallelizable multigrid method to ensure that the 
inner iterations are rapid. For the transport equation (2), we examine an alternating- 
direction collocation ( ADC) scheme that employs a modified method of characteristics 
and exhibits excellent parallelism (Allen and Khosravani, 1992). 

2. The Mixed Finite-Element Method for Flow Equations 

Consider Equations (1)) subject to the boundary condition p t 0 on do. To discretize 
this system via the lowest-order mixed method, we construct a rectangular grid A, 
on R having vertical grid lines at x = zo, zl,. . . , x, and horizontal grid lines at y = 
YO, ~ 1 , .  . . , YN. The mesh size of A is h := max(xi-xi-1, yj-yj-l}. With A we associate 
trial spaces Qz, Qy, and V for the s-velocity u", the y-velocity uy, and the hydraulic 
head p ,  respectively. The space Qz contains functions that are piecewise linear in ~t: 

and piecewise constant in y; QY contains functions that are piecewise constant in z 
and piecewise linear in y, and V contains €unctions that are piecewise constant on 
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A. Crucial to the error estimates associated with these spaces is the fact that, if 
v E Qx x Qy, then V v E V (Raviart and Thomas, 1977). 

Each of these trial spaces has a tensor-product basis containing products of the 
usual one-dimensional basis functions for piecewise constant and piecewise linear in- 
terpolation. We associate a nodal value pi, j  of head with the centroid of each cell 
[xi-l, xi] x [yj-l, y j ]  formed by the grid A, a nodal value uzj of x-velocity with the 
midpoint (xi, yj-1/2) of each vertical cell edge, and a nodal value u [ j  with the midpoint 

Given these trial spaces, the mixed formulation for Equations (1) is as follows: Find 
y j )  of each horizontal cell edge. 

u h  E QZ x QY and p h  E v such that 

This finite-dimensional system yields approximations u h  and p h  whose global errors 
are both O(h)  in the norm 11 ll,p(n) (Raviart and Thomas, 1977). 

Under lexicographic ordering of equations and unknowns, Equations (2) yield a 
linear system having the following block structure: 

The vector U contains nodal values of the velocities u3: and u y ,  and P contains nodal 
heads. The matrix A is symmetric and positive definite and has the block structure 

A = [ " "  0 AY ' 1  
The blocks A" and AY are tridiagonal, their entries being integrals of the form 

where y k , p q  are functions belonging to the basis 
proximate these integrals using a two-point Gauss 
direction. 

The matrix N has the block structure 

for QZ x Qy. In practice, we ap- 
c.omposite rule in each coordinate 

where N" and NY. These blocks mimic the usual difference approximations to a / a x  
and a/ay. The vector F contains integrals involving the source function f .  For a 
detailed specification of the entries in this linear system, we refer readers to Allen et 
al. (1992). 
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3. An Iterative Scheme for the Mixed Method 

We solve the system (4) iteratively, using the following matrix splitting: 

Here, D is a diagonal matrix, the simplest effective structure for which is the diag ( A ) .  
This scheme has convergence rate that is independent of mesh size and of variations in 
I - .  In fact, each iteration reduces the error by a factor no greater than 4 (see Allen et 
al., 1992). 

Computationally, the scheme ( 5 )  requires the following steps: 

Steps (i) and (iii) in this algorithm are cheap. Step (ii), however, requires more work, 
since NTD-'N has the same pentadiagonal structure as the usual five-point finite- 
difference approximation to operators of the form V - Ii'V. 

Instead of executing step (ii) exactly, we use a multigrid scheme to solve the pentadi- 
agonal system approximately. Thus the matrix splitting serves as an "outer" iteration, 
while the multigrid cycles executed for step (ii) constitute and "inner" iteration. In 
particular, we perform several V-cycles to get an approximate value for then pro- 
ceed to step (izi). Each V-cycle involves two Gauss-Seidel iterations at each level in 
a nest A = A, 2 A1 2 0 . -  2 AL of successively coarser grids, the mesh size of Ak 
being 2". For the intergrid transfers, we use full weighting as a restriction operator 
and bilinear interpolation as a prolongation operator. 

One attractive feature of the multigrid scheme is its amenability to parallel pro- 
cessing. Tuminaro and Womble (to appear), for example, discuss this advantage. By 
adopting a red-black ordering for the cells in each grid, we decompose each Gauss- 
Seidel relaxation sweep into two sets of calculations. In particular, we designate each 
cell [2;-1,2;3 x [yj-l, yj] in a grid as red or black, depending on whether i + j is even or 
odd. We update each of the red cells using old values in the black cells, then use the 
new red values to update the black cells. In any sweep, calculations for red cells are 
independent of each other. Updates for black cells are also mutually independent. 

To implement the scheme on a distributed-memory machine, we arrange for each 
processor to manage a 32 x 32-cell rectangular region, or patch, of the original fine 
grid. The relaxation sweep on any patch requires some values of latest iterates from 
the nearest-neighbor patches. Therefore, before executing a relaxation sweep, a proces- 
sor must trade information about a "boundary layer" of nodal values with the processor 
that manages the nearest-neighbor patch. Therefore, the parallel implementation re- 
quires communication between processors before each "red" sweep and before each 
"black" sweep. This communication prevents ideal parallel speedups. 



4. Computational Performance of the Mixed-Method Scheme 

Allen et al. (1992) discuss the performance of the serial scheme in the presence of the 
following heterogeneous conductivity fields K(x, y)  on 52 = (0 , l )  x (0 , l ) :  

The experiments involve grids with h = 2-', where ! = 4,5,6,7,8. Each iteration 
of the solution scheme includes two V-cycles of the multigrid algorithm, where the 
coarsest grid in each cycle has mesh 2-', and the finest has mesh 2-'. Table 1 displays 
the convergence rates of the outer iteration versus coefficient and mesh size. The results 
confirm the theoretical bound of for the convergence rate. 

Table 1: Convergence rates for the outer iteration of the flow-equation scheme using various coefficients 
and grids. 

To assess the scheme's parallelism, we examine its execution time on a 1024-processor 
nCube 2 having a hypercube archtecture. To measure speedups, we examine execu- 
tion times required on subcubes of the machine having dimension 0 (1 processor), 1 
(2 processors), . . . , 10 (1024 processors), running problems of proportionately larger 
size on larger subcubes. Each subcube is a set of processors linked by the shortest 
possible physical paths in the machine. Hence proper subcubes suffer essentially no 
disadvantage in the lengths of communciation paths. 

Table 2 shows timings for a sequence of runs involving a 32 x 32-cell grid on the one- 
processor subcube, a 64 x 32-cell grid on the two-processor subcube, a 64 x 64-cell grid 
on the four-processor subcube, and so forth, up to a 512 x 512 grid on a 512-processor 
cube. Since the ratio of problem size to number of processors remains constant in 
this sequence, an algorithm possessing ideal parallelism would require the same execu- 
tion time for all runs. In practice, interprocessor communication and computational 
overhead clisrupt this ideal relationship. 



Table 2 also shows the times associated with problem setup (initialization and matrix 
assembly) and interprocessor communication. Each run represents 20 outer iterations of 
the scheme (4), each iteration of which requires five V-cycles in step (ii). In practice, the 
outer iterations typically converge to within machine precision tolerances in fewer than 
10 iterations, so practical runtimes are smaller, and setup time has a larger effect on 
speedup. Still, these timings suggest that the algorithm possesses excellent parallelism 
in addition to its good performance in the presence of heterogeneities and fine grids. 

Table 2: Runtimes (seconds) for scaled groundwater flow problems on the nCUBE 2. 

Number of 
processors 

1 
2 
4 
8 
16 
32 
64 
128 
256 
516 

Setup 
time 
0.178 
0.184 
0.201 
0.214 
0.251 
0.319 
0.530 
0.782 
1.396 
2.691 

Communication 
time 
0.205 
1.784 

. 3.690 
4.639 
5.775 
5.832 
5.908 
5.950 
5.979 
6.030 

Total 
time 

161.516 
159.274 
157.260 
158.484 
159.967 
160.23 1 
160.620 
160.985 
161.673 
163.005 

5 .  Collocation for the Transport Equation 

We turn now to Equation (2), which governs contaminant transport. Of special interest 
are flow regimes in which advection is dominant, in the sense that, if L is the diameter of 
the spatial domain, then the Peclet number ~ ~ U I [ ~ L / D ,  is much larger than unity. For 
such problems, it is useful to rewrite Equation (2) in terms of the material derivakive 
Di := at + u - V of the fluid-solute mixture. We get 

Consider the following ini tiai-boundary-value problem: 

D ~ c  - V - ( D H V C )  = 0, (x,t) E 0 x (O ,CO) ,  

C(X,O) = C I ( X ) ,  

c(x,t) = 0, 

x E 0, 

(x,t) E 30 x (0,oo). 

This problem models the movement of an initial contaminant plume CI(X), so long as 
the plume does not approach dR. 

To discretize this problem in space, we use finite-element collocation on piecewise 
Hermite bicubics, a standard method summarized, for example, in Curran and Allen 



(1990). Let A be a rectangular grid partitioning 5-l into rectangular elements bounded 
by adjacent grid lines x = 2; and y = y j .  AS before, h~ stands for the mesh size of this 
grid. Denote by M the trial space of all Hermite piecewise bicubics that vanish on do. 
The trial function ch E bf has the form 

where the functions Hpqij(x,y) form a nodal basis for M (Prenter, 1975). 
To determine the nodal unknowns in this expansion, we substitute ch into the left 

side of Equation ( 6 )  and force the residual to vanish at a set of collocation points 2,. 
For optimal-order accuracy, we choose these points to be the 2 x 2 Gauss quadrature 
abscissae in each element Q. This procedure yields a system of ordinary differential 
equations in time: 

These equations determine the evolution of the unknown coefficents of ch. We project 
the initial function CI onto Ad via interpolation to get an initial function ch(%,, 0). 

We discretize Equation (4) temporally in two steps. First, following Russell [2], 
we approximate Dtch using the modified method of characteristics (MMOC). This 
procedure leads to a difference expression of the form 

DtCh(%m,t)  - v [DHvch(X,,t)] = 0, (7) 

DtCh(%,) N k-’ [cL+’(%m) - c ; (xk ) ]  

where C;(X) denotes an approximate value of ch(x ,nk)  and k is the time step. The 
point xl is a backtrack point, which we compute according to the method of charac- 
teristics for the purely advective version of Equation (2). Theoretically, if ( s ( t ) ,  t )  is a 
parametrization of the characteristic curve d x / d t  = u passing through Xm, then 

xk = 2 + ~~~, u ( s ( t ) , t ) d t .  

In practice we compute xk approximately by solving dZ>/dt  = u, subject to the (‘final” 
condition x(tn) = si,, using an Euler scheme. 

The second step in discretizing Equation (7) is to use alternating-direction collo- 
cation. We perturb the discrete operator equations to obtain the following factoring 
along the x- and y-coordinate directions: 

(1 + ~ L , ) ( I  + kLy)ci+’(Xm) = c ; ~ ( x L )  + CJ(k2) . - (9) 

Here, Lz = -&(DH&) and L, = -a,(o&). By properly numbering the collocation 
equations and unknowns, one can reduce the equations (9) to an algebraic system that 
involves highly parallel sets of matrix equations, each of which has an inexpensive, 
one- dimensional structure. 

6. Computational Aspects of ADC 

Curran and Allen (1990) discuss efficient algorithms for solving the ADC equations 
on parallel-architecture computers. The computational problem is “embarrassingly 
parallel,” in the sense that it naturally decomposes into linear systems, having one- 
dimensional zero structure, that one can obviously solve concurrently. Speedup curves 
of slope greater than 0.8 are attainable on an Alliant FX/8 eight-processor machine. 



Aside from parallelism, two features of the ADC-MMOC approach make it an at- 
tractive one. First, the method inherits high-order spatial accuracy from the standard 
collocation approach. Percell and Wheeler (1980) show that standard collocation on 
piecewise Hermite cubics has U( h4) spatial accuracy for elliptic spatial operators. ADC 
attains this accuracy with “one-dimensional” matrices having bandwidth five. 

Second, the use of MMOC reduces both the temporal truncation error and the 
number of degrees of freedom needed to resolve sharp fronts. Russell (1980) d’ iscusses 
these advantages. A related observation that MMOC essentially removes the advective 
term from the spatial operator, leaving only the diffusive operator to be discretized via 
collocation. This fact is appealing on numerical grounds, since we expect collocation 
on Hermite cubics to yield O(h4) accuracy for Equation (2) in the parabolic case, when 
DH # 0, but only O(h3) accuracy in the hyperbolic case when DH = 0 (see Dupont, 
1973). With MMOC, the collocation procedure discretizes the part -V (DV) of the 
spatial operator for which it is best suited, even when the other term u - V  is physically 
dominant. 

. 

The ADC-MMOC scheme does not strictly conserve mass in the global sense 
n 

This effect is common in Eulerian-Lagrangian methods (Russell, 1980; Krishnamachari 
et al., 1989). Numerical experiments indicate, however, that the mass balance errors 
are typically not excessive. In a rotating plume problem on 0 = (-1,l) x (- 1,l) and 
T = 1, with h = 0.02, the mass balance error varies with the time step k. Table 3 
shows values of the relative mass balance error, 

for four choices of I;. Since accurate backtracking is necessary to obtain reasonable 
mass balance, the table also shows the number NE of Euler steps used to compute the 
backtrack points xk in each case. 

Table 3: Relative mass balance errors RM in the ADC-MMOC scheme for a rotating-plume problem 
on $2 = (-1,l) x (-1, l), with h = 0.02 and T = 1. N ,  is the number of Euler steps used in the 
b ack t r ack ing . 

Time step k I IV, I RM 
0.02 

0.005 
0.0025 

7. Discussion 

A variety of extensions are needed to make these numerical methods fully useful in 
modeling porous-media flows. The most obvious needs are to extend the scheme for 
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the flow equation to time-dependent, three-dimensional settings and to extend the 
ADC-MMOC scheme for the contaminant transport equation to three dimensions. 
These extensions involve modifications that, while conceptually straightforward, re- 
quire nontrivial changes to the codes and will result in more computationally intensive 
algorithms. The principles that allow parallelizations should remain intact, however, 
so the approaches described here should be even more attractive in higher-dimensional 
applications. 

More interesting is the need to extend the methods to problems involving tensor 
conductivities and tensor hydrodynamic dispersion. It is in the context of tensor con- 
ductivities that the two-level iterative scheme for the mixed-method equation has the 
greatest potential for practical use. Shen (1992), through delicate analysis, shows that 
one can lump the matrix A in the mixed-method system and preserve global accuracy 
in the scalar case. Thus one can eliminate the need for the outer iterations used here. 
However, the analysis does not appear to extend to the case when the conductivity K is 
a tensor. In this case, the inner-outer iteration scheme still offers reasonable prospects 
for effective parallelism. 

Incorporating tensor hydrodynamic dispersion into the ADC-MMOC formalism 
most likely will require an iterative formulation, in which one lags off-diagonal en- 
tries of Dw by an iteration. The use of iterations in this setting opens the way for 
simultaneous iterative reduction of the truncation error introduced in the operator 
splitting used to effect the alternating-direction strategy. The parallelism inherent in 
the ADC-MMOC approach makes iterations affordable. 

The overall approach of combining alternating-direction techniques with the MMOC 
is by no means restricted to finite-element collocation. Krishnamachari et al. (19S9) 
discuss a related approach for a Galerkin scheme using piecewise bilinear trial functions, 
and one can easily imagine analogous schemes involving finite differences. 
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MATHEMATICAL CHALLENGES IN GROUNDWATER CONTAMINANT MODELING 
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The use of computer models to simulate groundwater flow and contaminant transport 
has burgeoned in the past few years. There are good reasons for this phenomenon: 
Natural aquifers tend to have complicated geometries and highly variable rock prop- 
erties, and there is a pressing societal need for quantitative predictions of contaminant 
movements in these complex geologic settings. Computer models offer the only real- 
istic hope for meeting this need. 

Despite the apparent power of computer models, many technical problems conspire 
to reduce their accuracy in field studies. Obvious to most water resources professionals 
are difficulties associated with aquifer characterization and the “garbage in, garbage 
out” syndrome. More subtle, however, are several mathematical issues that require 
adequate resolution before we can expect realistic aquifer simulations. This abstract 
is a brief summary of our research into these issues. 

Three concepts are common to all numerical models of underground flows. First, 
one must make some assumptions about the physics and chemistry of the flows. These 
assumptions give rise to complicated and often nonlinear sets of partial differential 
equations that govern fluid velocities, movements and fates of contaminant plumes, 
and other variables of interest. Second, to solve the governing equations, one must 
approximate them, usually by converting the differential equations to discrete alge- 
braic analogs. Among the most common “discretization” methods are finite-difference 
and finite-element techniques. These methods partition the aquifer into grid cells or 
nodes, associating with each cell or node algebraic equations analogous to the mass 
or momentum balance for that zone. The results are systems of algebraic equations, 
characterized by matrices that can have tens of thousands or even millions of entries. 
Third, given such large matrix analogs of the original flow and transport equations, 
one must devise efficient ways to solve them on digital computers. 

Some of our work focuses on the first phase of the modeling enterprise, the deriva- 
tion of governing equations. Although the physics of flows in porous media are well 
established at small scales, they are poorly understood at  scales where the natural 
heterogeneities of the rock matrix are prominent. Such heterogeneities arise from 
variations in depositional environment, diagenetic changes in the pore geometry of 
the rock, and structural events that cause fracturing and faulting. To the modeler, 
these heterogeneities pose a severe challenge: How can we scale our knowledge, gained 
from measurements on cores, well tests, and wireline data, to the scale of typical grid 
cells? 
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As an example of the utility of numerical models in answering scaling prob- 
lems, consider the small-scale fingering and channeling of water-soluble contaminants 
through an aquifer that has high-conductivity streaks distributed irregularly in space. 
Capturing the precise geometry of such plumes in a model is typically infeasible: It 
simply requires too much fine-scale knowledge of an aquifer’s properties, and this 
knowledge is expensive even in bench-scale studies. However, one can use numerical 
models to investigate connections between well understood, small-scale physics and 
the large-scale movement of plumes in the presence of heterogeneities. We have ex- 
plored techniques for modeling the average behavior of such plumes by incorporating 
“effective hydrodynamic dispersivities” in the governing equations. To incorporate 
geologic and petrologic information into the calculation of the new effective dispersiv- 
ity parameters, though, we need help from engineers and hydrogeologists, who have 
detailed knowledge of the types of measurements that are feasible and a sense of the 
statistical structure of the conductivity fields that occur in particular formations. 

We have also devoted considerable effort to the development of finite-difference 
and finite-element approximations to the equations governing groundwater flow and 
contaminant transport. For example, we have explored the calculation of accurate 
fluid velocities fro-m the groundwater flow equations, the resolution of steep concen- 
tration gradients in moving contaminant pluqes, and the efficient discretization of 
multiphase flows, such as those that occur beneath leaking gasoline tanks, TCE spills, 
and other nonaqueous liquid sources. 

Among the most promising methods for approximating the groundwater flow equa- 
tion are mixed finite-element methods. These methods solve the coupled system com- 
prising the mass balance for water and Darcy’s law. By choosing appropriate shape 
functions, one can generate approximate solutions for the water velocity having the 
same order of accuracy as the approximate hydraulic head. In contrast, standard 
finite-element and finite-difference methods, which differentiate numerical heads to 
compute Darcy velocities, yield approximate velocities that are less accurate than 
the heads and therefore less useful in modeling contaminant transport. 

In the realm of transport equations, we have focused much of our attention on 
cases where advective transport dominates the effects of hydrodynamic dispersion - 
a case of prime interest in many sandstone and unconsolidated aquifers. Plumes in 
this regime tend to have persistent, steep concentration gradients that are difficult 
to resolve numerically with coarse-celled grids. One strategy that we have used to 
overcome this difficulty is the use of adaptive  local grid re f inement .  The idea is to 
assign smaller grid cells to regions of the plume needing greater numerical resolution. 
However, the fact that the plume is moving makes implementation of the idea on 
the computer a delicate task. Among the algorithmic difficulties that we have tried 
to address are the disruption of efficient matrix structures associated with regular, 
coarse grids and the poor numerical conditioning that results from the use of cells 

. 
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ha.ving widely disparate sizes. 

We have employed a variety of other techniques in this arena. For example, it is 
possible to adopt a “hybrid” coordinate system in discretizing the contaminant trans- 
port equation, measuring temporal rates of concentration change along the paths of 
fluid particles, not at fixed spatial points. This modified method of characteristics 
allows more accurate timestepping than the usual formulation. Also, we have inves- 
tigated the use of finite-element collocation, a high-accuracy discretization technique, 
to reduce the numerical smearing associated with many low-order finite-element and 
finite- difference met hods. 

In modeling multiphase flows, we have developed a variety of improvements to the 
standard discretizations. Among these are mass-conserving formulations of the time 
derivatives in vadose-zone flows, splittings of the nonlinear fractional flow in satura- 
tion equations to facilitate the use of the modified method of characteristics, and the 
analysis of finite-element methods in the mathematically difficult case when capillary 
pressure gradients are negligible or degenerate. By no means has our work settled 
all of the important issues in this class of flows. Nonaqueous-phase contaminant flow 
promises to remain a significant challenge for modelers and engineers for years to 
come. 

Finally, our research has led to the development of several new approaches for solv- 
ing the large matrix equations associated with discretizations of the governing equa- 
tions. For example, we have examined iterative schemes for solving the mixed finite- 
element equations that use conjugate-gradient and multigrid techniques to overcome 
the slow convergence associated with highly heterogeneous conductivity fields. We 
haye also explored alternat ing-direction methods for decomposing multidimensional 
problems to one-dimensional structures that can be solved efficiently on parallel- 
processing computers. We have also developed efficient ways to decompose locally 
refined grids into coupled coarse-grid problems and fine-grid problems, thereby over- 
coming the disruption of regular coarse-grid structures and the conditioning problems 
associated with local grid refinement. 

Mathematicians often unwittingly give the impression that numerical problems 
associated with groundwater modeling are under control and that the remaining diffi- 
culties are attributable to poor input data. However, poor data constitute only part of 
the problem. RIany of the standard numerical techniques are blunt instruments in the 
presence of the mathernaticall_v difficult features of groundwater flow and transport. 
We aim to sharpen these instruments. 

. 
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WELL-CONDITIONED ITERATIVE SCHEMES FOR MIXED 
FINITEELEMENT MODELS OF POROUS-MEDIA FLOWS* 

MYRON B. ALLENt, RICHARD E. EWINGt, AND PENG LUS 

Abstract. Mixed finite-element methods are attractive for modeling flows in porous media 
since they can yield pressures and velocities having comparable accuracy. In solving the resulting 
discrete equations, however, poor matrix conditioning can arise both from spatial heterogeneity in 
the medium and from the fine grids needed to resolve that heterogeneity. This paper presents two 
iterative schemes that overcome these sources of poor conditioning. The first scheme overcomes poor 
conditioning resulting from the use of fine grids. The idea behind the scheme is to use spectral 
information about the matrix associated with the discrete version of Darcy’s law to precondition the 
velocity equations, employing a multigrid method to solve mass-balance equations for pressure or 
head. This scheme still exhibits slow convergence when the permeability or hydraulic conductivity is 
highly variable in space. The second scheme, based on the first, uses mass lumping to precondition 
the Darcy equations, thus requiring more work per iteration and minor modifications to the multigrid 
algorithm. However, the scheme is insensitive to heterogeneities. The overall approach should also 
be useful in such applications as electric field simulation and heat transfer modeling when the media 
in question have spatially variable material properties. 

Key words. mixed finite elements, iterative solution schemes, heterogeneous porous media 

AMS(M0S) subject  classification. 65 

1. Introduction. We consider methods for solving discrete approximations to 
the equations governing single-fluid flow in a porous medium. If the flow is steady 
and twa-dimensional with no gravity drive, Darcy’s law and the mass balance take 
the following forms: 

u = -Kgradp in s1, 
(1.1) * 

div u = f in 0. 

Here u,p, and f represent the Darcy velocity, pressure, and source term, respec- 
tively. For simplicity, we take the spatial domain to be a square, scaled so that 
Q = (0 , l )  x (0,l). The coefficient K ( z ,  y) is the mobility, defined as the ratio of the 
permeability of the porous medium to the dynamic viscosity of the fluid. In appli- 
cations to underground flows, the structure of K may be quite complex, depending 
on the lithology of the porous medium and the composition of the fluid. We assume, 
however, that this ratio is bounded and integrable on fi and satisfies K 2 Kinf  > 0. 
We impose the boundary condition p = 0 on aS2, so that p effectively represents the 
deviation in pressure from a reference value known along asl. 

Scientists modeling contaminant flows in groundwater or solvent flows in oil reser- 
voirs often need accurate finite-element approximations of u and p simultaneously. 
For this reason, mixed finite-element methods for solving the system (1.1) are 
particularly attractive, since they can yield approximations to u and p that have 
comparable accuracy (I], [5],  191. The key to achieving such approximations 
is the use of appropriate piecewise polynomial trial spaces, such as those proposed by 

~~ 
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Raviart and Thomas [ll]. As we review in 52, if we use the lowest-degree Raviart- 
Thomas spaces, the mixed formulation yields systems of discrete equations that have 
the form 

AU + N P  = 0, 

NTU = F. 
(1.2) 

Here, U and P signify vectors containing nodal values of the trial functions for u and 
p ,  defined on a grid over 0, and A and N are matrices. As we illustrate below, the 
matrix A contains information about the spatially varying material property K ,  while 
N and NT are essentially finite-difference matrices. 

Equations (1.2) can be quite difficult to solve efficiently, for the following reasons. 
When K varies over short distances, accurate finite-element approximations require 
fine grids on s1. For example, one might choose grids fine enough to allow reasonable 
approximations of K by piecewise constant functions. Fine grids, however, typically 
yield poorly conditioned matrix equations. For classical stationary iterative schemes, 
this increase in the condition number of the system leads to slow convergence, no 
matter how ('nice" K may be [2, $4.111. The problem is compounded whenever K 
exhibits large spatial variations, as can occur near lithologic changes in the porous 
medium or sharp contacts between fluids of different viscosity. In such problems, as we 
shall demonstrate, the poor conditioning associated with spatial variability typically 
aggravates that associated with the fine grids needed to resolve the physics of the 
problem. Thus, in problems with significant material heterogeneity, methods that are 
relatively insensitive to these two sources of poor conditioning can have considerable 
utility. 

In this paper we discuss two iterative schemes for the mixed-method equations 
(1.2). The first scheme possesses convergence rates that are independent of the fineness 
of the grid. The second scheme, derived from the first, also overcomes the sensitivity 
to the spatial structure of K ,  at the expense of somewhat more computation per 
iteration. Briefly, the first scheme proceeds as follows: Let (U(O), P(O)) be initial 
guesses for the value of (U, P) .  Then the kth iterate for (U, P )  is the solution of 

J 

.P 

where I stands for the identity matrix and w signifies a parameter, discussed below, 
that is related to the spectral radius p(A) of A. For each iteration level k, the main 
computational work in (1.3) is to solve a linear system of the form ( u - ' N ~ N ) P ( ~ )  = 
G("-'). However, the matrix w - ~ N * N  remains vulnerable to the poor conditioning 
associated with fine grids. We overcome this difficulty by using a multigrid scheme to 
solve for P(&), thereby greatly reducing the computational work in each iteration. 

An interesting feature of this approach is that N T N  is essentially the matrix 
associated with the five-point difference approximation to the Laplace operator with 
Dirichlet boundary conditions. Hence, the multigrid portion of the scheme does not 
encounter the variable coefficient, and the algorithm is particularly simple. The price 
paid for this simplicity, as we shall see, is sensitivity to the poor conditioning associ- 
ated with spatial variability. 

To overcome this second source of trouble, we modify the first scheme to get new 
ones of the form - 

D N  D - A  0 
(lS4) ( NT 0 ) ( ,"::: ) = ( ) -k ( 0 0 ) ( ) 9 

' p  

4. 

1 c -  

. .  
I .  . .T 
. ..' 
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where D denotes a diagonal matrix that we compute from A. This new class of 
schemes requires us to invert N T D N ,  which we again do using a multigrid method 
to preserve h-independence of the convergence rate. While the multigrid method 
must now accommodate spatially varying coefficients, the overall scheme possesses 
the advantage that its convergence rate is independent of the spatial structure of K ,  
provided K is piecewise constant on the grids of interest. 

Our paper has the following format. In 52 we review the mixed finite-element 
method that we use. Section 3 describes the first iterative scheme in more detail 
and analyzes its convergence. In 54 we discuss the application of multigrid ideas to 
the first scheme. Much of the motivation and groundwork for the second class of 
iterative schemes resides in 553 and 4. In 55 we present some numerical results for 
this algorithm. Section 6 describes the modifications necessary to produce the second 
class of iterative schemes and presents numerical results illustrating good convergence 
rates even in the presence of heterogeneities. 

2. A mixed finite-element method. We begin with a brief review of the 
mixed finite-element method, following the notation of Ewing and Wheeler [8]. Let 
H(div, s2) = {v E L2(s2) x L2(s2) : div v E L2(s2)). The variational form for (1.1) is 
as follows: Find a pair (u,p) E H(div, 52) x L2(s2) such that 

(div u - f)qdxdy = 0 V q E L2(s2). J ,  
By our assumptions on K ,  there exist constants Kinf, Ksup such that 0 < Kinf 5 K 5 
Ksup. Implicit in these equations is also the assumption that K-’ is integrable on n. 

< xm = 1) be a set 
of points on the z-axis and Ay = (0 = yo < y1 < - - - < yn = 1) a set of points on the 
y-axis. Let Ah = A, x Ay be the rectangular grid on s1 with nodes {(zi,yj)}z&. 
The mesh of this grid is 

To discretize the system (2.1), let A, = (0 = xo < x1 < 

h = m ~ { z i  - 26-17 yj  - Y j - l } .  
233 

We assume throughout the paper that As and A, are quasi-uniform in the sense that 
xi - zi-1 2 ah and Y j  - yj-1 2 ah for some fixed a E (0,l). With Ah we associate 
a finite-element subspace Qh x vh  of H(div,Q) x L2(n). The ‘’velocity space” is 
Q h  = Qi x QE, where QZ and QE are both tensor-product spaces of one-dimensional, 
finite-element spaces. In particular, we use the lowest-order Raviart-Thomas spaces 
in which Qi contains functions that are piecewise linear and continuous on As and 
piecewise constant on Ay. Similarly, Q; contains functions that are piecewise linear 
and continuous on Ay and piecewise constant on A,. The “pressure space” v h  consists 
of functions that are piecewise canstant on Ah.. 

Given these approximating spaces, the corresponding mixed finite-element met hod 
for solving (2.1) is as follows: Find a pair (uh ,ph)  E Q h  x vh such that 

=dX& - f ,ph div vhdxdy = 0 v Vh E Qh, K 
(2.2) 

(div uh - f)qhdzdy = 0 v qh E v h .  J ,  

t 
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This finite-element discretization yields approximations uh and p h  whose global er- 
rors are both O(h) in the norm 11 - jlp(~). Ewing, Lazarov, and Wang (61 also prove 
superconvergence results that guarantee smaller errors at special points in $2. This 
phenomenon appears in our numerical examples in 55. In contrast, standard a p  
proaches solve for approximations to p and then numerically differentiate to compute 
u = -K gradp, thereby losing an order of accuracy in the velocitv field f11. 

To see the linear 
the expansions 

algebraic equations implied by (2.2), suppise u h  L J  and p h  have 

m n  

i=l j=1 

Here, 4Zj, $Kj, and +i,j signify elements in the standard nodal bases for QZ, QI, 
and Vj. Define the column vectors U E IR2mn+m+n , P E R"" containing the nodal 
unknowns as. follows: 

UT = (uc1, Utl,. . * 9 ug,1, * .  * u c n ,  u c n , .  * * > u g , n ,  

PT = (Pl,1,P2,1~'~'~Prnli,..~~Pi,n,P2,n,'''7Pm,n)~ 
Figure 1 shows how to associate these coefficients with nodes on a spatial grid Ah 
with m = 4, n = 3. 
' 

With these bases, the problem (2.2) has a matrix representation of the form 

( N T  A N  0 )  (:)=(;)* 
Here A is a symmetric? positive definite matrix having the block structure 

in which A" E R(m+l)nx(m+l)n and Ay E IRm(n'l)xm(n+') have entries of the form 

respectively. Note that these entries contain information about the spatially varying 
coefficient K.  The matrix N has the block structure 

N =  ('q 

By calculating these integrals, one readily confirms that N" and NY reduce to the 
usual difference approximations to d/dx and d/ay. The vector F E IR"" has entries 
given by the integrals sn f $i,jdx dy. The appendix to this paper gives more detail on 
the construction of A and N .  
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? 
1 

FIG. 1. Sample 4 x 3 rectangular grid on R = (0 , l )  x (0, l), showing locations of the nodal 
unknowns an the velocity and pressure trial functions. 

3. An h-independent iterative method. Our first iterative scheme for solv- 

ALGORITHM 1. Beginning with initial guess (U('),P(O))* for (U,P), the kth 

ing the discrete system (2.4) is as follows. 

iterate (U(k ) ,  P(k))* is the solution of 

where I E IR(2m*+m+n)x(2mn+m+n) is the identity matrix and w is a parameter chosen 
to satisfy w 2 p(A) .  

Here, p(A) denotes the spectral radius of the matrix A. Later in this section 
we discuss a practical way to pick w that does not require detailed knowledge of the 
spectrum of A. 

Computationally, Algorithm 1 has the following compact form: Given an initial 
guess (U(O), P(O))*, compute (U("), P(')) T by executing three steps: 

I 
.i. 

A 

In each iteration, the main computational work is to solve for P ( k )  = w(NTN)-'G("'). 
An easy calculation shows that the matrix w- ' (NTN)  is positive definite, being pro- 
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portional to the standard five-point, finite-difference Laplace operator applied to P(&). 
Therefore, we expect the numerical solution for P(&) using stationary iterative meth- 
ods to be plagued by poor conditioning when the grid mesh h is small. 

This observation leads us to use a multigrid scheme to get approximations to 
P(k) .  (In fact, any fast solver for the five-point discrete Laplacian operator would be 
appropriate here.) Such a device preserves the h-independence of the overall scheme’s 
convergence rate. We discuss this facet of the algorithm in more detail in the next 
section. For now let us analyze the convergence properties of the overall iterative 
scheme, assuming an efficient “black-box” solver for P(&). 

We begin by writing (3.1) as a stationary iterative scheme 

where 

The convergence of Algorithm 1 depends on the spectral radius of the matrix M ,  for 
which the following proposition gives a bound. 

PROPOSITION 3.1. Let 

be the eigenvalues of the matrix A, and let w 2 Amax. Then the spectral radius of M 
obeys the estimate 

ProoJ Let X # 0 be an eigenvalue of A4 with eigenvector (UA,  PA)^. Thus 

so 

(3.9a) 

0 = X N T U ~ .  (3.9b) 

Since (UA,PA)~ # 0, (3.9a) shows that UA # 0; however, UA may be complex. Let 
U f  denote its Hermitian conjugate. If we multiply (3.9a)’by UF, observe that N is 
a real matrix, and apply (3.9b), we obtain 

5 a -  
; .i: 

2 .  
.>- 

r 
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This equation allows us to conclude that 

which implies . 

(3.10) 

Also, by (3.6) and the fact that w 2 Amax, we have 

p ( M )  5 p ( I  - w-'A).  

These last two inequalities imply the desired bound (3.7). 0 
If we choose w = Am, = p(A) ,  then the estimate (3.7) for the spectral radius of 

the iteration matrix M becomes 

To estimate Xmin/Xma, %he following proposition is helpful. . 

PROPOSITION 3.2. For the  matr ix  A appearing in (2.4), there exist constants ko 
and k l ,  independent of h, such that  

(3.11) koh2UTU 5 UTAU 5 klh2UTU. 

Proof. The representation of uh given in (2.3) leads to the identity 

m n  1 

i=l j = 1  Ri,, 

UTAU = &h12dxdy = cc/ z ( u d 2 d x d y ,  

where Q i , j  = (xi-1,zi) x (y j -1 ,y j ) .  Since K is bounded and integrable on Sti,j, 
the mean value theorem for integrals [lo, pp. 184-1851 guarantees the existence of a 
number Kilj, satisfying info,,, K 5 Kilj 5 SUPnij K ,  Such that 

luh I'dx dy = - 1 luhI2dxdy .  
Ki,j ni,, 

(If K- l  is continuous on i?&,j, then K- l  actually assumes the value K,Tj' somewhere 
on Qilj.) Calculating the last integrd using our basis for Qh, we get 

2 1  

where aij signifies the area of sl i , j .  To simplify notation, we notice that the 2 x 2 
matrix appearing in each term of this sum is positive definite. This observation allows 
us to define a new norm on R2 as follows: 

. .  

% 

I 
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-: ' - denotes the usual Euclidean norm on R2, then it is easy to check that 
I 

5 11 6 11; 5 311 . 11;. In terms of the new norm, 

- Ax quantity u T U  is easier to calculate: 

m n  m n  

3.12) 

SOT n-e use the bounds on K and the quasi uniformity of Ah to observe that 

oksermtion establishes the first inequality in 
2: c&.... To prove the second inequality in (3.11), 

(3.11), since we cam take ko = 
we rewrite (3.12) as follows: 



------*--- 

1 
t 
i 

i 
? 

C 

4 
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If we apply Proposition 3.2 to the case when U is an eigenvector of A associated 
with the eigenvalue Amin or Amax, respectively, we find that Amin 2 a2h2/6Ksup and 
Am, 5 h2/Kinf. Therefore, provided we choose w 2 A,, in Algorithm 1, the spectral 
radius of our iteration matrix M obeys the bound 

Q'Kinf (3.13) P(M) 5 1 - 6K,,,' 

Notice that the right side of this inequality is a constant independent of h. This is 
the sense in which the convergence rate of Algorithm 1 is independent of h. 

Two remarks about the practical implications of the estimate (3.13) are in order. 
First, the bound on p ( M )  depends strongly on the nature of the coefficient K(z,y). 
In particular, if Kinf/Kiup is very small, reflecting a high degree of heterogeneity in 
the physical problem, then we can expect the actual convergence of the algorithm 
to be slow, albeit independent of grid mesh. Several examples in 55 confirm this 
expectation. Second, even though the bound (3.13) suggests choosing w = Am, to 
accelerate iterative convergence, this choice is impractical owing to the expense of 
calculating A m a s  In practice, we typically pick w = llAlloo 2 Am,. This choice is 
easily computable as the maximum row sum of A,  and it preserves h-independence of 
convergence rate, even though it may be theoretically nonoptimal. 

4. Application of a multigrid solver. As we have mentioned, the computa- 
tion of the pressure iterate P(k)  in step (ii) of Algorithm 1 is inefficient if we use direct 
schemes or classical stationary iterative methods on fine grids. However, the fact that 
w- l  NTN is essentially the finite-difference Laplacian operator motivates us to reduce 
the computational work for each iteration by calculating an approximation to the kth 
pressure iterate by using several cycles of a multigrid method ori the system (3.3). 
We refer the reader to [3] for a discussion of the multigrid approach and for a Fortran 
code applicable in the context of our problem. The modified scheme is as follows. 

ALGORITHM 2. Begin with an initial guess (U(O),P(O)) , and suppose that we 
have computed (U(k - l ) ,  P ( k - l ) ) T .  Compute a new approximation ( U ( k ) ,  P ( k ) )  using 
the following steps: 

T 

T 

1. Compute the residual, 

2. Let p(k )  denote the exact solution of the problem 

Calculate an approximation P(k)  of p(k)  by applying P cycles of the multigrid 
algorithm [3] to (4.2), using P(k- l )  as initial guess. (We discuss the choice of 
T below.) 

3. Compute U ( k )  as in Algorithm 1:' 

Multigrid methods for solving elliptic problems have an advantage that is quite 
relevant to the conditioning problems associated with fine grids: Each cycle h& a 
convergence rate that is independent of h [4, Chap. 41. Therefore, we need only show 

. 

h 
' 

f 

.. . 
I . .  

t 
+. 
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that we can choose a j k e d  number r of multigrid cycles such that each iteration of -! i 
Algorithm 2 reduces the error norm by an appropriate factor close to p ( M ) .  We 
do this in Proposition 4.1. Since the factor is independent of h, Algorithm 2 has 
convergence rate independent of h. 

We begin by defining norms on the "pressure" and "velocity" spaces that will 
make the proof easier. Any p j  E Vj has a representation 

' 

P~(z, Y> = C E , j + i , j ( x ,  9 ) .  
i ,j 

Taking advantage of the fact that N T N  is positive definite, we compute a norm of .. 
. the vector 

by setting IIPIIE = PT(w-lNTN)P. On the other hand, any uj E Q h  has a repre- 
sent ation 

We compute a norm of the vector 

u = (ui1, utl? a 9 U Z , ~ , .  . 7 Ugn, ucn, * * * > ug,n, 

u:o, ~ ~ 1 7  * - 9 ucn) * .  * u$,o, UZ,~? * * * 9 uz,nlT 

by setting IlUll: = wUTU. 
The norm 11 - I l w  is just a scalar multiple of the Euclidean distance function 11 - 112, 

and since w is a constant related to p(A),  11 I lw is actually a discrete analog of 
the Euclidean norm 11 . I ( L ~ ( ~ ) ~ L ~ ( Q )  on the velocity space by Proposition 3.2. This 
norm is appropriate for measuring the convergence of velocity iterates U ( k )  to the 
true discrete approximation U. Also, since NTN is just the positive definite matrix 
associated with the five-point difference approximation to the Laplace operator, the 
norm 11 - llh is appropriate for measuring the rapidity with which the pressure iterates 
satisfy the discrete pressure equation (3.3) as the iterations progress. Ultimately, we 
want to relate our results to more familiar norms such as II.112 and 11 - Iloo; for this step 
we shall rely on the equivalence of norms for finite-dimensional Euclidean spaces. 

In the following proposition, we assume Y = p(l-w-'A) < 1. Thus v is an upper 
bound on p(M) .  Suppose the multigrid iteration used to approximate p(k )  in step (ii) 
of Algorithm 1 has convergence rate p E (0,l). This implies that, after T multigrid 
cycles for P ( ~ )  using P('-') as initial guess, 

(4.4) 

PROPOSITION 4.1. For any v' E (u, l), there exists a number T of multign'd cycles 
such that 

W 

c 
i 
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where (P, U) is the solution of the problem (2.4) and ( P ( k ) ,  U( )) is the approximation 
to (P, U) produced by the kth itemtion of Algorithm 2. 

Proof. Suppose we compute U ( k )  according to (3.4) with the exact (nonmultigrid) 
c pressure iterate P(lC). Thus, 

(4.5) 

where p(k )  satisfies (4.2). Then from (2.4), (4.1), (4.2), and (4.5), we have 

(4.6) 

oo(k) = (Wl - A)U(k-') - N P ( k ) ,  

. 
w (U - o(k)) + N ( P  - i.ck)) = ( w l  - A )  (U - U(k-'))  , 

. .  

T 
Multiplying (4.6) by (U - o(k)) and using the identity (4.7), we get 

p - 

Le velocity Therefore, t iterates obey the estimate 

< P - P(') p ( I  -w-'A) IlU - U(k-')llw a - / I  llh 

Hence? the pressure iterates obey the bound 
I 

Now we derive bounds on lIP - P ( k ) [ l ,  and IIU - U(k)llw in terms of their values at 
the previous iterative level. For I IP - P(') I I h ,  we use the triangle equality and the 
multigrid estimate (4.4) to get 

I lh 
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But the original iterative scheme (3.5) implies that 

So, in light of the inequality (3.1) bounding p ( M )  by u, we have 

This inequality allows us to simplify (4.8), getting 

(4.10) 

Since p < 1, pr +up‘ -+ 0 as r + 00. We can therefore choose r large enough so that 
u + pr  + upr + u 5 u’ < 1. In this way, 

In view of the norm equivalence mentioned earlier, Proposition 4.1 leads us to 
expect that, if we choose w as prescribed in $3, then the computed convergence rate 

(4.11) 

should be a constant independent of h as h 3 0. In fact, for “generic” initial guesses, 
the contribution from the eigenvector associated with the largest magnitude eigen- 
value of M will eventually dominate the error. We therefore expect ji to giye good 
approximations to‘-p(M) in computational practice [2, p. 1291. 
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, 

f 

d 
f 

5. Numerical examples of h-independence. To test our results, we apply 
Algorithm 2 to several versions of the following boundary-value problem: 

We use the lowest-order, mixed finite-element method on grids with h = 2-L, where 
L = 4,5,6,7,8. Each iteration of the solution scheme includes T = 2 V-cycles of the 
multigrid algorithm described in [3], where the coarsest grid in each cycle has mesh 
2-l, and the finest has mesh 2-c. We use the following realizations of the coefficient 
K ( z ,  Y): 

1 if x < y, 
0.1 if z 2 y, KIII(Z,Y) = { 

1 if x < y, 
0.01 if x 2 y. 

T 

To confirm the convergence properties of the mixed finite-element method as 

taking f(z, y> to be the function that results when the solution is p ( z ,  y) = z(1 - 
z) sin(.?ry) + y(1 - y) sin(nz). We compute the nodal error indicators IIUexact - Ulloo 
and IlPexact - Plloo, where Uexwt and Pexact stand for the vectors of nodal values 

I 

h + 0, we examine the exact and numerical solutions to (5.1) using K = KII and 
- .  

j 

i 

t 
I 

of the exact solutions u and p ,  and U and P are vectors containing nodal values of 
the finite-element approximations on a uniform grid of mesh h. Figure 2 shows plots 
of log IIUexact - Ulloo and log (IPexact - Pllm versus log h having least-squares slopes 

I 

! 

of 1.899 and 2.000, respectively. These results suggest that the nodal values of U 
and P are accurate to O(h2),  corroborating the equal-order accuracy available in the 
Raviart-Thomas subspaces and indicating superconvergent nodal values in accordance 

- ,  
i 

with the work of Ewing, Lazarov, and Wang [S]. - v -  T ,  ! -  

To check the convergence properties of the iterative scheme, we examine the 
behavior of the ratio ji, defined in (4.11), for each of the choices of K.  Our results, 
shown in Fig. 3, support the expectation that, as h + 0, the convergence rate of the 
scheme tends to a constant independent of h. Notice however that, as'K exhibits 
more spatial variation, the convergence of the algoritbm becomes slower. Ariy-efkts 
of variability in K on the conditioning of the discrete equations still influencethis 
first algorithm; the only effects of poor conditioning that we have eliminated so far 
are those associated with grid refinement. 

f -  

_ -  -- 

6. Modified schemes for heterogeneous media. To mitigate the difficulties 
associated with spatial-variability, we modify the first iterative scheme (3.1) to get a 
class of new schemes having the following form. 
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FIG. 2 .  Convergence plot for the mixed finite-element scheme for Poisson's equation, using 
lowest-order Raviart-Thomas trial spaces. The plots demonstrate the rate of decrease in the nodal 
errors as h -, 0 .  
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FIG. 3. Rate of convergence ji versus gr id  mesh h for Algorithm 2 ,  using the various choices 
of coeficient K(z ,  3). .- 
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ALGORITHM 3. Given initial guess (U(O), P(o))T,  the kth iterate (U(k) ,  P(k))T is 
the solution of 

Here, the "preconditioning" matrix D E IR(2mn+m+n) (2mn+m+n) is a diagonal matrix 
whose choice we discuss below. 

When we construct D properly, the iteration matrix 

D N -' D - A  0 
M ' ( N T  0 )  ( 0 0 )  

has spectral radius that is independent of both h and the structure of K.  The price 
we pay for this benefit is apparent in the computational form of the new algorithm: 

(6.4) (ii) Solve NTD- lNP(k )  = G("-1), 

(6.5) (iii) U@) + D-'(D - A)U("-') - D-lNP(k).  

In contrast to (3.3), solving for P(') in the new scheme calls for the inversion of 
NTD-'N instead of N T N .  Therefore, we must modify the multigrid segment of the 
algorithm to accommodate variable coefficients. As we discuss, this modification is 
fairly easy to make. This section establishes criteria for the construction of D, gives 
two examples that satisfy these criteria, comments on the multigrid solver used, and 
presents computational results. 

As with the original scheme presented in $3, the key to the convergence of the 
new scheme is the spectral radius of the iteration matrix 111 defined in (6.2). The 
following proposition gives sufficient conditions under which p ( M )  < 1. 

PROPOSITION 6.1. Suppose D is a diagonal matrix with positive entries on the 
diagonal, and suppose there exist constants b l ,  b2 E (0,'l) such that 

. 

< 2 - b 2  
UHAU 

bl  5 - UHDU 

for all vectors u E c ( ~ + ' ) ~ + ~ ( ~ + ' )  . Then the iteration m a t k  M defined in (6.2) 
satisfies 

(6.6) 0 < p ( M )  ,< max(1- b l ,  1 - b 2 )  < 1. 

Pmoj Let A # 0 be an eigenvalue of M with associated eigenvector (Ux,  PA)^, as 
in Proposition 3.1. Then steps similar to those yielding (3.9) show that 

, (D - A)Ux = X(DUx + NPx),  

Thus U,"(D -A)Ux = AU,"DUx, which is nonzero since D is positive definite. There- 
fore, 

0 = XNTtJx. 

I .  
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Hence, using the hypothesized bounds on UfAUx/U?DUx, we have the desired 
inequalities (6.6). 0 

To use this proposition, we need estimates on U H A U .  Given the structure of A 
as shown in the Appendix, one can calculate a useful expression for U H A U ,  assuming 
U E C(m+l)n+m(n+l) has the form (U", U y ) T  indicated in (2.3). In particular, 

1 1 
3 

UHAU = -S(U) + gR(U) ,  

where, in the notation of the Appendix, 

m n  

m n  

Here, Z denotes the complex conjugate of z. The coefficients T&, - - - , T.1 appearing 
in these expressions are values depending on K ( z ,  y) and arising from applications of 
the mean value theorem for integrals over each cell Qi,j in the finite-element grid Ah. 
By using the inequality lwI2 + 1zI2 2 -2lwllzI, we can estimate R(U) as follows: 

m n  
(6.7) 

-2xC (T:,:IUCjIIuT-l,jI +TGIUtjIIu(j-lI) 5 R(U)  
i=l j=1 

m n  

In general, the estimates 0 < KiRf 5 K 5 Ksup may be too coarse to provide 
enough control on the coefficients T$, - - , TZ1 for constructing a reasonable precon- 
ditioner D. Strictly speaking, the necessary level of control will be available only if 
we have information about the local variation of K on each cell fii,j. 

In practice, however, we rarely have such fine-scale knowledge of K ,  and even 
if we did we would not try to use it in calculating the Galerkin integrals f a  K-'u - 
vdz dy exactly. Instead, most practical codes use approximate quadrature schemes 
that effectively treat K-' as piecewise polynomial. In fact, as we suggested in 51, 
for sufficiently fine grids it is reasonable to treat K-' as piecewise constant. In such 
applications, we can use the second inequality in (6.7), together with the identities 
T',: = TG = Ti,j, to show that 

1 1 1 
UHAU = -S(U) 3 + gR(U)  5 sS(U) .  

Similarly, the first inequality in (6.7), together with the identities T:,j = T:,? = T:,: = 
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= q,j, shows that 

UHAU = -S(U) 1 + g [ S ( U )  1 + R(U)]  
6 

1 
- > p). 

In summary, i S ( U )  5 UHAU 5 i S ( U )  whenever K is piecewise constant on the grid 
A h .  

Now consider the choice D = $lump(A), where 

This is the matrix that results when we add entries along each row of A and assign the 
sum to the diagonal entry in that row. Gonzales and Wheeler (91 use this "mass lump 
ing" idea to improve conditioning in mixed finite-element discretizations of petroleum 
reservoir problems. This choice of D is also a simple instance of a preconditioner 
developed in [7] for other iterative schemes. It is a straightforward matter to show 
that, when K is piecewise constant, UHlump(A)U = $S(U),  so UHDU = iS (U) .  As 
a consequence, 

Therefore, by Proposition 6.1, p ( M )  5 i, and the iterative scheme converges with a 
rate independent of h and K. According to our remarks at the end of 54, we expect 
the ratio of error norms between successive iterates to approach f as the iteration 
counter k -P 00. 

As an even simpler example, consider the choice D = diag(A), where 

is the matrix A stripped of its off-diagonal entries. This choice has the attractive 
feature that &-is trivial to compute from A. With D defiiwd in'this way, we once 
again find that UHDU = $S(U)  when K $s piecewise constant on A h .  Therefore, 
p ( M )  5 f ,  and this iterative scheme also converges with a rate independent of h 
and K. 

Either choice of D requires us to solve a matrix equation of the form 
~ - 

. NTD-lNP(k) = G("1) 

at each iteration. To do this, we use two cycles of a multigrid scheme in which the 
Jacobi iteration is the smoother, the coarse-twfine interpolation is bilinear, and the 
fine-to-coarse restriction is accomplished using half-injection [4, p. 651. This scheme 
preserves the h-independence of the overall algorithm's convergence rate and appears 

1 

1 '  
t 

- ,  

. 

t 
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TABLE 1 
Convergence mtes for various coeficients and grids. 

to handle the variable coefficient K effectively. Alternative multigrid implementations 
are certainly possible here. 

To test the convergence rate of Algorithm 3, we apply it to the boundary-value 
problems described in 55, using the preconditioner D = $lump(A). Table 1 shows 
d u e s  of the convergence rate ,3 computed for each choice of coefficient K ,  for each of 
five different values of the grid mesh h. All of the tabulated values are very close to 
the spectral radius estimate p ( M )  5 4. We conclude that this scheme converges at a 
rate independent of both grid mesh h and the heterogeneity reflected in the mobility 
coefficient K. 

7. Conclusions. Poor conditioning associated with heterogeneity and fine spa- 
tial grids is a common problem. While this paper focuses on steady flows in porous 
media, similar equations and results apply in other fields. Two obvious applications 
for (1.1) arise in heat transfer, where temperature plays the role of pressure and 
heat flux plays the role of the Darcy velocity, and in electrostatics, where the electric 
potential and the electric field serve as the analogs of pressure and Darcy velocity, 
respectively. In either case, mixed finite-element methods can give useful approxi- 
mations. However, heterogeneity, either in the thermal diffusivity or in the dielectric 
coefficient, can lead to poor conditioning in precisely the same way as it does for 
porous media. One virtue of the mixed finite-element formulation is that it permits 
us to attack the two sources of poor conditioning separately, exploiting multigrid ideas 
to reduce the sensitivity to fine grids and using spectral information associated with 
the material coefficient to reduce the sensitivity to heterogeneity. 

Appendix: Matrix structure of the finite-element equations. The mixed 
finite-element equations (2.2) give rise to integral equations having the following forms. 
For the 2-velocity equation, 

For the y-velocity equation, 

For the mass balance, 
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The following integrals appearing in these expressions involve no spati lly varying 
coefficients and hence are easy to compute using the bases for Qh and Vh: 

However, the remaining integrals involve the spatially varying functions .K- (z , y ) 
and f ( x , y ) .  We compute these integrals using the mean value theorem for integrals 
[lo, pp. 184-1851 as follows: Since K-' is bounded and integrable on each cell I&,j, 

there exist numbers Ti', j ,  T;;, T:l;l such that 

Here, T , t j / [ ( x i  - Z i - l ) ( y j  - y j - l ) ]  is a number lying between the upper and lower 
bounds of K-  ' on the cell C$, j , and similarly for T:,; and T:,:'. Analogous calculations 
show that 

qp, t=j-1, s = i ;  

s = 2 ;  [ T,>+l/6> t = j + l ,  s = i .  

1 K-' 4s,"t 4iJ d x d y  = (T:$ + T$r+1)/3, t = j, 

The calculations of la f $i,j dx d y  can proceed similarly. 

ficients: 
Now let us adopt the following orderings for the vectors of unknown nodal coef: 

P =  

Then the entire algebraic system arising from (2.2) has the structure 

0 AY N" [!I=[ E l .  
Here, 

i 
1 

1 -  

1 

.. 
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where each block AT E R(m+')x("+') has the tridiagonal structure 

Similarly, 

where each b1ock.A: E 

1 A: = - 
6 

IR,("+')' ("+'I has the tridiagonal form 

Finally, the two "difference" matrices N" and NY have the following structures: 

N " =  i 
where 

while 

where 

1 

1 
-1 1 

-1 1 

1 
-1 
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Problems using Domain Decomposition 
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Abstract 

Advection-dominated flows occur widely in the transport of groundwater con- 

taminants, the movements of fluids in enhanced oil recovery projects, and many 

other contexts. In numerical models of such flows, adaptive local grid refinement 

is a conceptually attractive approach for resolving the sharp fronts or layers that 

tend to characterize the solutions. However, this approach can be difficult to 

implement in practice. A domain decomposition method developed by Bramble, 

Ewing, Pasciak, and Schatz, known as the BEPS method, overcomes many of 

the difficulties. We demonstrate the applicability of the iterative BEPS ideas 

to  finite-element collocation on trial spaces of piecewise Hermite bicubics. The 

resulting scheme allows one to refine selected parts of a spatial grid without de- 

I 

stroying algebraic efficiencies associated with the original coarse grid. We apply 

the method to two dimensional time-dependent advection-diffusion problems. 

1. Introduction 
The purpose of this paper is to investigate a numerical scheme for solving 

highly advective fluid-flow problems. The difficulty with these problems is that 
they tend to form transient, localized regions where the solution exhibits rapid 
variation. These regions are typically called shocks or fronts; they may persist 
through much of the time domain. 

Tracking the location of fronts and numerically resolving the solution near 
fronts are two important aspects of the problem. Tracking the front requires 
knowledge of the spatial rate of change of the solution, or the gradient. This 
suggests the use of a numerical scheme which also solves for the gradient of the 
solution. Better numerical resolution near fronts involves increasing the number 
of degrees of freedom within and near the front. This suggests a scheme which 
can adaptively introduce additional unknowns where necessary. 

First , to obtain high-order spatial accuracy while solving for the gradient 
as well as the solution,- finite-element collocation on piecewise Hermite cubics 
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is used. Second, an adaptive grid refinement scheme is implemented which 
decouples the regions possessing added degrees of freedom from the original, 
unrefined problem by domain-decomposition techniques. This preserves the 
efficient structure of the original problem and provides a method for transfer 
of information between regions containing h n t s  and outlying areas where the 
desired solution is more regular. 

The actual implementation of a local grid refinement scheme in two or more 
dimensions creates another problem. Heuristically, the idea of adding extra 
degrees of freedom only where needed is an intriguing one. Numerically however, 
i t  is quite difficult to administer. This is because the use of additional degrees 
of freedom implies additional unknowns in the numerical system and hence 
additional equations to be solved. The relationship between these unknowns 
and the equations in which they appear can severely disrupt the linear algebraic 
structure of the original coarse-grid system, for which we frequently have very 
efficient solution techniques. In this paper, alternating-direction schemes are 
the solvers of choice. Local grid refinement would disrupt the structure such 
that alternating direction methods could not be used. This is why domain 
decomposition techniques will be employed to decouple regions of refinement 
from the original system. A block Gauss-Siedel-like algorithm is incorporated to  
transfer information between regions of refinement and the original coarse-grid 
system. This approach allows the use of a very efficient matrix solver on both 
the original system and the refined systems, despite the algebraic disruption 
associated with the added degrees of freedom. 

To adaptively refine a grid there must first be some criteria for choosing h 
locally. In the advection-diffusion equation, h can be chosen to keep the grid 
Peclet number P = vL/D near sharp fronts below some tolerance to eliminate 
spurious oscillations in the numerical solution. Typically, when adaptive re- 
finement schemes have been proposed, a very complex data structure is needed 
to keep track of the evolving nature of the numerical solution from time step 
to  time step due to the relocation of numerical degrees of freedom. Thus an 
important aspect of the grid refinement problem is the development of compu- 
tationally efficient algorithms to implement the refinement scheme. BEPS-like 
methods hold continuing promise in this regard. 

This paper is limited in scope primarily to the development and coding 
of computationally efficient algorithms. The gridding criteria to be used are 
heuristically motivated and largely based on polynomial approximation theory. 
Problems considered do not involve highly complex frontal interactions. In 
complex applications, the use of a variation of the BEPS method called over- 
lapping domain decomposition is foreseen, as developed in [5] for Galerkin finite 
elemen ts. 

The new contributions are in Sections 3-5, which discuss domain decom- 
position, numerical results for grid refinement in two dimensions, and com- 
putationally obtained convergence rates respectively. The main novel idea is 
the extension of a BEPS-like preconditioned domain decomposition technique 
to  finite-element collocation. This extension is most profitabie in two space 
dimensions' {see [If €or one diinensional cat$), where it allows as' to:usei-&n 
alternating-direction solution procedure in ' spite of the irregular geometry of 
the locally refined grids. 'The'BEPS method was first developed €or Galerkin 
finite-element formulations and ,later was applied to cell-centered finite, diReri 
ences. This paper presents the first application of the BEPS ideas to collocation 
on Hermite cub-ics.. 

The organization of this paper is as follows: in Section 2, alternating- 
direction collocation (ADC) is introduced and discussed. This is an operator- 
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splitting technique which converts a time-dependent, multidimensional problem 
into a set of one-dimensional problems. In Section 3 a new approach for local 
grid refinement using a BEPS-like preconditioned iterative method applied to 
multidimensional problems is discussed. This method uses alternating-direction 
techniques to  solve equations involving coarse- and fine-grid matrices. Thus the 
domain-decomposition approach allows us  to achieve substantial computational 
efficiencies on both the coarse-grid and fine-grid problems, whereas no such ef- 
ficiencies seem to be available for the composite problem. Section 4 discusses 
some numerical experiments of the method and Section 5 presents computation- 
ally observed convergence rates and error estimates. Conclusions are discussed 
in Section 6. 

2. A1 t erna t ing-Direction Collocation 
Alternating-direction (AD) methods have been of interest in the numeri- 

cal solution of partial differential equations since their introduction in 1955 by 
Peaceman and Rachford [20]. In this paper, the amenability of ADC to im- 
plementation on parallel-architecture computers will be noted to some degree. 
In 1970 Douglas and Dupont [12] developed an alternating-direction Galerkin 
method, variants of .which have attracted the attention of several authors, in- 
cluding Dendy and Fairweather [13] and Hayes and Krishnamachari [18]. Anal- 
ogous alternating-direction collocation methods have also appeared in several 
papers, including those by Bangia et al. [3], Chang and Finlayson [lo], Hayes 
[17], Celia et  al. [8], Celia [7], and Celia and Pinder [9]. Another approach 
similar to ADC, pioneered by Guarnaccia [16], involves an iterative technique 
which can be used to solve problems involving a tensorial form for diffusion 
since it does not corrupt the cross derivative terms, as happens in standard 
ADC formulations. This paper does not consider tensor diffusion. 

We examine Celia’s ADC for the two-dimensional advection-diffusion equ& 
tion for solute transport in a known velocity field. Of interest here are algorith- 
mic features of ADC that enhance its efficiency in comparison with standard 
two-dimensional collocation. 

The aim of ADC is to modify the ordinary two-dimensional collocation 
procedure via an operator splitting. This splitting reduces the discrete problem 
to one involving a sequence of matrix equations, each of which has the same 
sparse structure as the one-dimensional collocation system. The following de- 
scription of this splitting approach is essentially a review of the development 
presented by Celia and Pinder in [9]. 

We begin the discussion by first presenting the advection-diffusion equation 
for two space dimensions and discretizing in time using a variably impicit finite- 
difference approximation. The advection-diffusion equation is 

. 

where 
LCx = v x d / d x  - a(Da/ax)/ax, 

and similarly, 

Here, v = ( v z , v y )  is a velocity field which we assume is known, and D is a 
diffusion coefficient. We formulate this problem on some space-time domain 
R x J ,  where R = (a ,  b).x (c ,  d )  is a rectangle in the x ,  y plane and J = ( to ,  T) is 

C, = vya/dy - a(Da/&)/ay. 
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an interval of time. For existence and uniqueness of solutions we need to specify 
an initial condition at  time t = t o  and some type of boundary condition on dR 
for u and the derivatives of u, such as u = 0 for all (2, y) E dR. 

We form a semidiscrete version of Equation 1 by employing a variably 
weighted, implicit finite-difference approximation in time: 

u"+l - un + At(& + IC,)u"+' = 0. (2) 

Here, At is the time step and 8 is the time stepping parameter with Y"+' given 
by un+' = (1 - S)un + Oun+l. With 8 = 0.5 we obtain the Crank-Nicolson 
method which has truncation error which is O((At)2). 

Next, we perturb Equation 2 by a term that is U((At)3) (and hence preserves 
consistency and stability of the approximation) to get 

(Reference [9] treats the advection-diffusion equation in a slightly different fash- 
ion, splitting only the diffusive part of the spatial operator.) Rearranging Equa- 
tion (3) and factoring gives 

(1 + AtOLC,)(l + At0Ez)(u"+' - u") = -At(& + LY)un 

Conceptually, we can solve (l+AtBl,)z = -At(L,+L,)u" for the intermediate 
unknown z ,  then solve (1 + AtOL,)(u"+' - Y") = z for the time increment in 
2 = U"+l- u". 

To see how this works algebraically, notice that substituting Hermite bicubic 
trial functions for .ir and collocating produces a matrix equation Ku"+' = r", 
where un+l is the vector of time increments for the unknown nodal coefficients 
of 2"". Consider a typical entry of the matrix K: 

where Hijlm is some basis function in the tensor-product interpolation space 
and (Zp,gq) are the coordinates of the collocation points. Each Hijlm(z,Y) = 
Hi t ( z )Hjm(y ) ,  so we can expand the expression (4) and factor i t  to get 

This factoring of each matrix entry, together with Celia's scheme for num- 
bering and renumbering equations and unknowns, allows us to  factor the entire 
matrix equation at each time level. If we number the equations and unknowns 
"vertically," that is, lexicographically along the lines t = zp, as shown in Fig- 
ure la, then the 4N,Ny-x 4N,N, matrix K factors as follows: 
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Each 2Ny x 2Ny block Y,,, has the five-band structure of a one-dimensional col- 
location matrix. Moreover, The entries in Y,,, depend only on the y-coordinates 
of collocation points. 

Now consider the matrix X. If we switch to the “horizontal” numbering 
scheme for equations and unknowns, illustrated in Figure l b ,  then X transforms 
to  a block-diagonal matrix that we denote as follows: 

I *  Xi,i 
x*= [ 

x; N, ,2 N, 

(The superscript * is used to indicate the result of switching to the “horizon- 
tal” numbering scheme. In computational practice, the renumbering can be 
accomplished without any computation by using double integer indices for grid 
variables and switching the order of the DO loops over the indices.) Again, 
each 2N, x ZN, block Xi,* has the five-band structure. It should be noted here 
that  the usual AD1 scheme is an iterative process but here we are solving the 
equations exactly a t  each step. 

In light of these observations, we can solve the two-dimensional matrix equa- 
tion Ku”+l = rn by the following procedure. 

1. Adopt the “vertical” numbering scheme, and solve Yz = rn for the in- 
termediate vector z by solving the independent problems YP,,zp = r;, 
p =  1, ..., 2Nz .  

2 .  Renumber according to the “horizontal” scheme, converting z to the re- 
ordered vector z+.  This renumbering, accomplished by simple DO loop 
inversion, transforms X to the block-diagonal form X’. 

3. Solve X*un+l = z* for the desired time increments by solving the inde- 

Thus each time step involves the solution of matrix equations that are a t  worst 
one-dimensional in structure. 

To examine the efficiency to be gained by the splitting scheme, let us assume 
that N,  = Ny = N .  In the fully two-dimensional matrix problem Kun+l = 
In, there are then 4N’ unknowns, and the matrix K is asymmetric. If we 
order equations and unknowns to allow for row reduction without pivoting, K 
has a bandwidth B2 = 8N + 16 (see Frind and Pinder, [15]). Assuming that 
row reduction accounts for the bulk of the computational work in the sparse 
matrix solver used, we expect the operation count for solving the fully two- 
dimensional equations at each time step to be roughly 4N2B,2 = 256N4 for 
large N .  By contrast, ARC calls for the solution of 4 N  matrix equations of 
bandwidth B1 = 5 and order 2N at each time level. Thus an upper bound for 
the number of arithmetic operations required in the row reductions for ADC is 
4N(ZNB?) = 200N2. By writing a row reduction scheme tailored to the zero 
structure of one-dimensional collocation matrices, one can reduce this operation 

pendent systems X;,au!+l = z;, q = 1,. . ., 2 N y .  

count somewhat. 
Furthermore, each of the “one-dimensional” systems in step 1 of ADC is 

independent of any other. Therefore the solution of these systems can be done 
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concurrently. Step 3 can also be completed in parallel for the same reason. The 
inherent parallelism of ADC is explored in [2]. 

3. Domain Decomposition for Two-Dimensional Collocation 
In this section we develop the domain decomposition techniques needed 

t o  apply an adaptive gridding scheme in two space dimensions. We extend the 
ideas of [l] and use the alternating direction methods of Section 2 for the matrix 
solvers. 

We begin by defining the necessary function spaces needed for the 
domain decomposition. We also describe the various sets of collocation points 
used. First consider the rectangular spatial domain $2 with associated regular 
coarse grid A0 = A, x Ay where A, = { a  = 20 < z1 < < z ~ ,  = b }  and 
Ay = {c = yo < y1 < . . . < y ~ ,  = d } .  Define the space of Hermite bicubics on 
A0 a ~ :  

M(Ao) = {f E C1(Q) : f is bicubic on each element formed by Ao}. 

We also define a set of collocation points for this grid to be the set of points 
whose coordinates are the twspoint Gauss quadrature abscissae for each of the 
intervals in A, and Ay. Thus we have a set KO of 4(N, - l)(Ny - 1) collocation 
points in R. 

The spatial domain R is decomposed into two disjoint subdomains R1 and 
Q 2 ,  where the boundary between Ql and Q2 lies strictly along coarse-grid lines 
in Ao. For ease of discussion we will assume s22 to be a rectangular region, 
say 0 2  = ( 2 1 , ~ ~ )  x ( y ~ , y ~ ) ,  where 0 5 I < J 5 N, and 0 5 IC < L 5 
Ny . A typical spatial domain decomposed into two subdomains, along with 
computational grid, is pictured in Figure 2. 
. Now consider solving the advection-diffusion problem (2) on the computa- 

tional domain in Figure 2. Suppose the solution has some type of local behavior 
in R2, such as steep gradients or shock-like fronts, which cannot be accurately 
resolved without grid refinement. Instead of lobally refining the entire domain 

and in the y-direction in a uniform way, so that  we now have N2p elements in 
the 2-direction and N; elements in the y-direction in 0 2 .  The composite grid 
formed in this manner is shown in Figure 3. This new fine grid in R2 is denoted 
by A2. The composite grid is A = A0 U Az, and the portion of the original 
coarse grid that lies in the unrefined region R1 is denoted by A,. 

The space of Hermite bicubics in which we seek a solution is defined on the 
composite grid A as follows: 

R we refine only locally in the subdomain R2 % y adding nodes in the 2-direction 

M(A) = {f E c'(Q) : f is bicubic on every element formed by A). 

I t  is of interest to note that the previously defined space M(&) is a subspace of 
M(A). We also need two other subspaces of M(A). The first is the subspace of 
M ( A )  containing only those functions whose support lies entirely in R2. This 
space is denoted by Mo(A2) and is defined as follows: 

Mo(A2) =-(I E Ci(Q?) : f is bicubic on each element formed by A2). 

I t  is important to restate that the functions in Mo(A2) are identically.zer9 
on the bomdary of Q 3 .  A2 contains ( N i  - l)(Ni - 1) interior nodes called 
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refinement nodes or fine grid nodes. Note that Hermite bicubics have four 
degrees of freedom at each node. Therefore there are 4( - 1)( iVJ - 1) degrees of 
freedom for functions in Mo(A2), since they are already completely determined 
on the boundary. Therefore there are 4(N,P - l ) ( N i  - I)  basis functions for 
the space Mo(A2). They are denoted by HGo0, HGlo, Hbol, and HGll, where 
i = 1 , 2 ,  ..., Ng - 1 and j = 1,2,  ..., N ;  - 1 .  

The final subspace of M(A) is also a subspace of M(A0) and is denoted by 
Mo(A0). This last space contains the functions of M(A0) whose supports are 
contained in the union of R1 with the adjacent layer of coarse-grid elements in 
s22. These functions are identically zero at  all the original coarse-grid nodes that 
now lie in the interior of R2. The basis for Mo(A0) is the subset of the basis for 
M(A0) containing only those basis functions centered at nodes in A,. In fact, 
Mo(A0) is such that any function f E M(A) can be written as a unique linear 
combination of functions fl and f2, where f1 E Mo(A0) and f2 E MO(A2). 
Furthermore, the basis for M(A) is the union of the bases for Mo(A2) and 

In summary, we have defined four function spaces. The principal space 
M(A) is the space of Hermite bicubics on the composite grid A. M(A0) is 
the subspace of M(A) containing the functions that are Hermite bicubic on 
the original coarse grid Ao. Mo(A0) is the subspace of M(A0) containing 
functions which are identically zero at all original coarse-grid nodes in Ao\A1. 
Finally, Mo(A2) is the subspace of M ( A )  containing functions whose support 
lies entirely in 522. 

Next we need to  describe the various sets of collocation points associated with 
these function spaces. We have already mentioned KO, which is the collection 
of 2 x 2 Gauss points associated with Ao. The subset of KO of points which lie 
in sZ1 is denoted by K 1 .  We now consider the collection of collocation points for 
the fine grid A2. The coordinates of these points are just the coordinates of the 
two-point Gauss quadrature absciscae for the intervals [z;-~, zr] and [P;-~, 3$], 
where i = 1 , 2  ,..., NC, and j = 1 ,2  ,..., N i .  This is a set of 4N,fN,' points, 
which is 4(N,' + Ny' - 1 )  points too many to completely determine a function 
in Mo(A2). Let I<, be the subset obtained by removing the points nearest 
to dR2. That outer ring of collocation points is precisely 4( N: + N; - 1) in 
number, which suffices to correct the surplus just mentioned. Justification for 
deleting these points is found by noting that functions in Mo(A2) are already 
completely determined on dR2, and hence collocation points nearest do2 are 
superfluous. Another subset needed are the points in that outer ring which are 
nearest to  coarse-grid points in A1 lying on the boundary between R1 and Q2. 
We denote this set of collocation paints by I{;. 

Two sets of collocation points which are only needed to  facilitate the discus- 
sion of the solution procedure are a separation of original coarse-grid collocation 
points from K O  which lie in 522. The first subset contains those points which lie 
in $22, except the outer ring of points nearest to a&. This set is denoted K 2 ,  
with the remainder of the coarse-grid collocation points in Rz being designated 
ICa, since they are located just inside the boundary of Q2. Note that there is a 
natural one-to-one correspondence between points in K a  and points in I<;. We 
use this correspondence in the next section 

Finally, the set of collocation points for the composite grid is a union of three 
of the sets previously defined, namely K = K1 U I<; U Kr. Figure 4 depicts the 

Mo(A0). 
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collocation points I< for the composite grid as well as the set K1, I<:, I<,., 
K 2 ,  and K B .  One way of describing K is by associating with each node of the 
composite grid A four collocation points, one in each of the four elements for 
which the node is a vertex. 

One final note: The fine-grid nodes that appear to be added along the bound- 
ary of $22 are not associated with unknown degrees of freedom but are necessarily 
slave nodes to preserve the continuous differentiability of functions in M(A). 
In other words, the values of u and its derivatives are determined at these nodes 
by interpolation from the nearest coarse-grid nodes. 

To motivate and describe the BEPS-like preconditioner, we consider a certain 
decomposition of functions in M(A). If we wish to solve an operator equation 
of the form Lu = 0 on A, then we decompose u E M(A) as u = 21, + u1, where 
21, E Mo(A2) and u1 satisfies 

u1 = 0 on 80,  
and 

LC.iir(K) = f(~), for each Y E  I<,. 

This problem uniquely determines ul on a2. In 01, the function ul is 
identically equal to u. Thus, this decomposition is unique for functions in M(A). 

We consider as our differential operator the fully implicit, temporally discrete 
advection-diffusion model. Throughout this section, we use the notation 

One important aspect of the BEPS iteration is that i t  utilizes the original 
coarse grid operator to invert the composite operator. Communication between 
the coarse- and fine-grid problems is achieved through manipulation of the right- 
hand side vectors in the matrix solution processes. The end result is a technique 
which can utilize efficient solvers for both the coarse-grid and fine-grid problems 
with very little rewriting of code. 

The problem we wish to solve is a finite-element collocation approximation 
to  

We assume the boundary data 
Lu"+l(x, Y) = fb, Y), v (z, Y) E Q. 

and some initial condition: 

U 0 k ,  Y, t o )  = UO(% Y), v (2, Y) E 0- 

Here, uo is the interpolant of the initial function in the space M(A). We search 
for solutions in the space M(A) such that the residual Lun+l(4) - j ( x k )  is 
equal to zero at aF1 cdocatiwn points SZk E K .  Recall that the bas= for MfA) 
is the union of the bases for Mo(A2) and Mo(Ao), and as such it is not a nodal 
basis. In particular, basis functions'for Mo(A1) that are centered a t  nodes 
on dR2 can have nonzero values over all of the fine-grid elements in the first 
row of coarse-grid elements in $22. Assembling the matrix for this system can 
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be an arduous task, since equations at  those fine-grid collocation points will 
not only involve the sixteen fine-grid basis functions that have support on that 
particular fine-grid element but could also involve as many as sixteen coarse-grid 
basis functions. Also, the composite system does not lend itself to solution by 
alternating-direction collocation, because the irregular composite mesh prevents 
us from factoring the composite matrix. So not only is the composite matrix 
going to be difficult to construct, but also i t  will have to be done for a full 
two-dimensional collocation sys tem. 

On the other hand, the BEPS method for finite-element collocation separates 
the coarse- and fine-grid problems and uses the original coarse-grid matrix when 
solving the coarse-grid part of the composite-grid problem. Hence, alternating- 
direction methods can still be used to solve the coarse-grid problem. Similarly, 
the fine-grid problem involves only fine-grid Hermite basis functions and fine- 
grid collocation points in the matrix formation, so that alternating-direction col- 
location can be used to solve the fine-grid problem as well. Thus we completely 
avoid having to form a composite matrix for a full twedimensional collocation 
system. 

The following is a description, in operator notation, of our BEPS-type method 
for finite-element collocation. The numerical scheme for solving the composite 
system is in some respects similar to the block Gauss-Seidel (BGS) method. It 
differs in that,  during each iteration, a fine, coarse and then another fine-grid 
solution is computed, as opposed to BGS, in which one would compute just a 
fine- and a coarse-grid solution. The benefit of the BEPS-like methods over BGS 
are twofold. First, there is the advantage of more efficient matrix formulation, 
discussed in the last paragraph. Also, with the added fine-grid iteration and 
the reorganization of collocation points in the coarse-grid solve, BEPS methods 
tend to converge at  a substantially faster rate than do BGS methods. 

The solution procedure at  each time step begins with a three-step initial- 
ization. This initialization starts by computing an initial solution involving the 
operator associated with the fine grid: 

where i$! f Mo(A2). The next step in the initialization involves the operator 
associated with the coarse grid, using a right-hand side modified by the new fine- 
grid information. Here, instead of using the composite operator, the original 
coarse-grid operator is used. However, the right-hand side is evaluated as it 
would be in the composite system. Thus we solve for ii: f M(A0)  such that 

where ji: E ICa is the coarse-grid collocation point associated with the fine-grid 
collocation point Z f I<; under the one-to-one correspondence described in the 
previous section. So indeed Equations (5) involve the coarse-grid operator, since 
ii: is a coarse-grid Hermite and all of the function evaluations on the left side 
of (5) are made a t  coarse-grid collocation points. Once ii: E M(A0)  is known, 
we form the restriction of ii: to the subspace Mo(Ao), denoted by C!. 
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The third step of the initialization is another solution involving the fine- 
grid operator to adjust the initial solution on the fine-grid. We solve for f iy  € 
Mo(A2) such that 

.C.li?(~) = -~.li;(~) vz E K r .  

Thus the initial composite solution is formed by summing the parts iio = ii:+iiy, 
where i i y  = ii: + iij. This completes the initialization of the unknown ii at the 
new time level. 

Next, the residual g is computed and an iteration procedure defined below 
is used to reduce llgllm to some predetermined tolerance. At any iteration level 
m, the residual g is evaluated at the collocation points of the composite system 
as follows: 

(6) 
g"(51) = f(51) - LiirE"(z), VK E Ii'l 
g"(X) = f(n) - L.lirE"(rr) - Li i?(X)  - qyz) ,  m E I<; u Ir;. 

Here we are using the perturbed time-discrete or alternating-direction operator 
to evaluate the residual. Another possiblity suggested by Ewing [14], which 
increases the convergence rate of the iteration for Galerkin finite element ap- 
proaches, is to use the actual unperturbed composite operator for collocation in 
evaluating the residual after each iteration. Thus, as the residual is driven to 
zero in the iteration, the ADC splitting error would also be driven to zero. We 
have not pursued this idea computationally. If exact methods are used to solve 
the matrix equations at each step, then the only nonzero values of the residual 
appearing in this list occur a t  points in I{;. If the residual is small enough in 
norm, the iteration procedure is halted and the solution for the new time level 
is saved. 

Otherwise, with the residual now known, the following sequence of steps is 
repeated, solving for an iterative correction zij"+l E M ( A ) ,  until the solution 
has converged. The first step involves the fine-grid operator: Find w+' E 
Mo(A2) such that 

The next step involves the coarse-grid operator with the residual modified by the 
new fine-grid information. Here again, instead of using the composite operator, 
the original coarse-grid operator is used. Thus we solve for G?+' E M(A0)  
such that: 

L&t"+l(Z) = g"(sT), VZ€ K T ,  

my+l(E) = g"(sT), WE I<l, 
LGz"+'(jz) = g"(X) - L?i?+l(rr), vj? E I<& 

CGE"+'(rr) =o, E E  IC2. 
(7) and each corresponding j~ E I<$, 

Once 67+' E M(A0) is.k 
Mo(Ao), denoted by e s  

The last step of the iteration to reduce the residual is another solution, 
involving the fine-grid operatw, to carrect the solution oabhe fine grid Aa. We 
solve for WT" E Mo(A3) suck that 

we form the restriction of G y + l  to 



Finally, with the composite iterative correction Gm+l = 
completely determined, we update the solution by adding Gm+l to Grn to get 

+ fir/"+' + fir,"+' 

and return to the step where the residual is evaluated. 

4. Local Refinement for the Rotating Plume Problem 
The rotating plume problem is a purely advective one in which the velocity 

is known a priori in the domain (-1,l) x (-1,l). Since diffusion is not present, 
the profile of the solution at  any given time will be a translation of the initial 
profile. 
Example 1 

In our first example of the rotating plume problem, the centroid of the 
plume is located at (20, yo) = (0.0, -0.4) and the standard deviation of the 
Gauss hill is c = 0.066. The coarse grid has mesh size Axc = Ayc = 0.2 
with the fine grid having a mesh size of Axf = Ayj = 0.05. Thus, this is an 
example of a 4 x 4,refinement. The refinement strategy used here is purely 
problem dependent in that the element containing the peak of the Gauss hill is 
refined along with all eight adjacent elements. Therefore we have a 12 x 12 fine- 
grid patch contained in a 3 x 3 coarse-grid element patch. Figure 5 shows the 
contours for the numerical solution at times t = 0.0, 0.2, 0.4, 0.6 and 0.8. This 
numerical solution was computed with an iteration parameter y = 1.0 using 
Crank-Nicolson time stepping with At = 0.0005. As in the one-dimensional 
case, one can search for different values of the iteration parameter y to obtain 
faster convergence. We discuss this idea briefly in the next section. 
Example 2 

To demonstrate the efficiency of the grid refinement scheme we examine a 
very large problem using globally fine grids with alternating-direction colloca- 
tion and a locally refined problem using our new technique. In this example of 
the rotating plume, the same initial data as in our first example is used. The 
globally fine mesh size is Ax = Ay = 0.01, and the time step is At = ,0005. 
Thus we are solving for 160000 unknowns per time step on 2000 time steps. 
This solution procedure thus takes approximately 8 x lo6 operations per time 
step. I t  is interesting to note if full twedimensional collocation were used in- 
stead of alternating-direction collocation the solution at  each time step would 
involve on the order of 4 x lo1' operations. We compare this problem with a 
locally refined version with Axc = Ayc = 0.1 and Axr = Ay' = 0.01. Thus we 
are using 10 x 10 refinement in each coarse-grid element on a 20 x 20-element 
coarse grid. We refine a 4 x 4 patch of the coarse grid. At each iteration of the 
algorithm, we are solving one fine-grid problem on 40 x 40-element grids with 
6400 unknowns. Thus, each fine-grid solution takes approximately 3.2 x l o 5  op- 
erations. Also, one coarse-grid problem on a 20 x 20-element grid involving 1600 
unknowns is solved. This coarse-grid solution requires on the order of 8 x lo4 
operations. Therefore, each iteration involves a total of 8000 unknowns which 
requires approximately 4 x lo5 operations to compute. Hence, each iteration of 
the local refinement algorithm (typically 3-7 are necessary) requires five percent 
of the computational effort needed for a complete global fine-grid solution. 
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Table 1: Discrete Loo norm of residual with 7 = 0.8 at  time t = 1.0. 

2 
3 

5 . 7 9 8 ~  -9.75 0.97 
2.778 x lo-' . -17.40 1.05 

Table 2: Discrete P norm of residual with 7 = 1.0 at  time t = 1.0. 

5. Discussion. 
In this section we discuss error estimates and convergence rates that were 

found computationally. Also, comparisons are made of the convergence rates 
for the BEPS iteration for differing values of the iteration parameter 7. Experi- 
mentally, for the rotating plume problem on the given grid, an optimal iteration 
parameter of 7 = 0.778 is found. A theory for predicting optimal values of 7 
in general would be helpful here. We also investigate the apparent convergence 
rate of the iterative scheme. 

Tables 1 and 2 contain values for the norm of the residual after each iter- 
ation and the natural logarithm of the norm for the rotating plume problem 
in Example 1. Residualske given after one complete rotation of the plume a t  
time t = 1.0. Table 1 shows the results for an iteration parameter of y = 0.8. 
Table 2 shows the results when no scaling of the iteration is done, in other words 
y = 1.0. 

In Table 1 the value of the iteration parameter is close to the optimal itera- 
tion parameter 7 = 0.778 and the BEPS iteration converges in only three steps 
with a tolerance of 5.0 x If scaling of the iteration is not done in Example 
1, the BEPS iteration takes seven steps to converge with the same tolerance 
as shown in Table 2. In both cases the BEPS iteration appears to converge 
linearly. 

The convergence of the numericd solution t o  the true solution as theklevel 
of,refinement increases is al$o investigated computationally. In Tahle 3 the C, 
error at time t =. 1.0 is tabulated for various levels of refinement. Here, h, is 
equal to the fine grid mesh size in the 1: and y directions. A 20 x Welement 
coarse grid is used for this example of the rotating plume. 

Taking the data from Table 3 and computing the line using least squares it 
is found that the the error is roughly e)(h:s4l). This represents a slight loss in 
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Table 3: Lm norm of the error at time t = 1.0. 

hr llelloo ’ ln(llelloo) , 

2 x 2 0.05 8.34 x -2.48 
4 x 4 0.025 7.91 x lo-” 
8 x 8 0.0125 7.03 x 

1 

-4.89 
-7.26 

the convergence rate compared with the 0(h4) error estimates that hold for the 
collocation scheme without local grid refinement. 

6. Conclusions 
This paper presents a numerical scheme for solving the advection-diffusion 

equation using finite-element collocation and domain-decomposition techniques 
with adaptive local grid refinement. On the basis of computational experience, it 
appears that  BEPS-like algorithms, which allow one to decouple composite-grid 
sytems into seperate coarse- and fine-grid problems, hold promise for collocation 
on Hermite bicubic trial spaces. 

While this computational experience is important practically, from a theoret- 
ical point of view much further work needs to  be done. For example, i t  would 
be desirable to show that the preconditioner for these methods is related to 
the original composite matrix by some bounds on the maximum and minimum 
eigenvalues. Another important result but a very difficult one to obtain is an 
analytical way to compute the optimum scaling parameter y for the BEPS-like 
iteration. For as we have seen, proper scaliiig of the iteration can dramatically 
decrease the number of iterations necessary for convergence at  each time level, 
even though we obtained reasonable convergence with the “naive” choice y = 1. 
Also, even though computationally found error estimates are promising, rigor- 
ous theoretical error estimates for the method need to be developed. Extension 
to nonlinear problems or coupled systems of partial differential equations is 
another useful avenue for further research. 

Extension of the method to three-dimensional problems should be consid- 
ered. Also, techniques should be studied for extending the local grid refinement 
ideas presented here to nonrectangular regions. Two methods for possibly doing 
this are by the inclusion of overlapping domain-decomposition ideas or methods 
where abutting regions are refined and problems along their boundaries need to 
be solved as well. 
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The finite layer method (FLM) is an extension of the finite strip method familiar in structural 
engineering. The idea behind the method is to discretize two space dimensions using truncated Fourier 
series, approximating variations in the third via finite elements. The eigenfunctions used in the Fourier 
expansions are orthogonal. and. consequently. the Galerkin integrations decouple the weighted 
residual equations associated with different Fourier modes. The method therefore reduces three- 
dimensional problems to sets of independent matrix equations that one can solve either sequentially on 
a microcomputer or concurrently on a parallel processor. The latter capability makes the method 
suitable for such computationally intensive applications as optimization and inverse problems. Four 
groundwater flow applications are presented to demonstrate the effectiveness of FLM as a forward 
solver. 

1 .  INTRODUCTION 

The finite layer method (FLM) is a numerical method that 
shows promise for modeling many aquifer flow problems. 
The idea behind the method is to discretize one dimension of 
the spatial domain using finite elements. approximating 
variations in the other two dimensions using truncated 
Fourier series. For problems having sufficient geometric 
simplicity this approach avoids much of the expense associ- 
ated with three-dimensional finite elements. When the Fou- 
rier series is composed of orthogonal eigenfunctions. the 
finite element integration decouples the equation sets for 
different Fourier modes, and it is therefore possible to solve 
many small. simultaneous matrix equations in parallel. This 
inherent parallelism can be especially important when it is 
necessary to execute a flow model iteratively. as in param- 
eter identification and optimization studies. This paper ex- 
amines the application of the FLM to several problems of 
interest to groundwater hydrologists. 

Much of the literature relevant to the FLM concerns its 
predecessor. the finite strip method (FSM) {Cheirrtg. 19761, 
and applications to structural engineering. The FSbl uses 
truncated Fourier series to discretize problems along one 
coordinate axis instead of two. Pitckett and Wsemnn [1987] 
review the literature on the FSM pertaining to structural 
analysis. The FLM itself has received some attention, for 
example, in the analysis of elastic. horizontally layered 
foundations [Clzeirng and Fair, 19791. It is also possible to 
extend the FLM to probIems with infinite layers having finite 
thickness. Rowe arid Booker [ 19821 apply this technique to 
elastic soils, as do Small and Booker [1984a]. Booker arid 
Small [1982a, 6 ,  19861 also use this approach-to model soil 
consolidation and surface deformation accompanying the 
extraction of water [Small and Booker, 1984bl. Slatter), 
[ 19861 and, subsequently, Pitckett and Sclrrnidt (I9901 utilize 
the FSM to obtain head distributions in two-dimensional 
well drawdown models. 
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One way to think of the FLM is as a quasi-analytic 
method, in which one incorporates analytic information 
about the initial boundary value problem (in this case, the 
eigenfunctions of the spatial operator) into the numerical 
approximation. Other quasi-analytic methods. similar in 
spirit but different in detail, have appeared in the water 
resources literature. including the finite analytic method 
[Hwairg e f  01.. 19851 and the Laplace transform Galerkin 
method [SridicX?. 19891, among others. The FLM is also 
related to the spectral method [Goftlieb atid Orsccig, 19771. 
The two methods share the idea of approximating spatial 
variations using truncated series of eigenfunctions. Where 
they differ is in the use of finite element approximations to 
discretize problems along one of the three spatial coordi- 
nates in the FLA1. This device facilitates the simulation of 
certain geometrically simple heterogeneities. such as those 
occurring in stratified sedimentary basins. 

In this paper we present the formulation of the FLM, 
discuss several coding aspects of the method. and demon- 
strate its application to four problems. The first problem 
involves a fully penetrating well: the second involves injec- 
tion of water at a single point in the aquifer: the third is a 
three-dimensional model of a leaky aquifer: and the fourth is 
a model of a multiwell field. We do not present a full error 
analysis for the method, which is logically the subject of 
another article. Such an analysis would clarify the trade-offs 
between accuracy and computational effort, both in the 
choice of Fourier discretizations and in the finite element 
gridding. 

. 

' 

. 

2. FORMULAT~ON OF THE FINITE LAYER METHOD 

The FLM rests on certain geometric assumptions about 
the problem's spatial domain 9. In particular. we consider 9 
to be a rectangular parallelepiped consisting of a saturated, 
confined aquifer in which Darcy's law applies. We assume 
that the coordinate axes coincide with the principal direc- 
tions of the hydraulic conductivity tensor and that principal 
hydraulic conductivities K,, K,,, and K ,  vary only with 
elevation 2 above datum. These bssumptions arz reasonable 
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Fig. 1. Typical rectangular parallelepiped domain 9. 

in many sedimentary formations where the bedding planes 
are nearly parallel. Figure 1 depicts a typical domain 9 with 
dimensions X, Y, and 2. 

We begin by establishing the boundary value problem to 
be solved and define the differential operator L[ J as 
follows: 

a *h a’h a dh 
ax2 . ay- az at  

L[h]  = -K, -- Ky 7 - - (K, + S, -. ( 1 

Here S, is the specific storage. Under our assumptions the 
equation governing the head h(x ,  y,  z, t )  is 

Lrh] t F = 0, (2) 
where the prescribed forcing function F ( x ,  y, z, r )  gives the 
rate of water withdrawal per unit volume of porous medium. 
We refer readers to Hicyakorn and Pinder 119831 and Walton 
[ 19701 for the derivation of (2). 

When the withdrawal (or injection) occurs at a point sink 
or source, one can take F to be a possibly time-dependent 
multiple of the Dirac 6 distribution. Superpositions of such 
distributions, centered at different spatial points, are also 
possible, as are more general functional farms. As with most 
discrete methods, the FLM has a limited ability to capture 
the steep head gradients that occur near point sources and 
sinks. In the examples discussed below the FLM produces 
results that appear reasonable, but for more accuracy one 
might employ some special technique. such as singularity 
removal [Lowry et al., 19891 to improve the approximations. 

In our first two test problems below we use the initial 
condition h ( x ,  y,  z, 0) = 0 and impose no-flow conditions 
(ah/dz = 0) on the two horizontal planes representing the 
impermeable confining layers. In the third problem we 
impose the condition h = 0 at the top of the semipermeable 
aquitard and a no-flow condition at the bottom of the aquifer. 
In all three problems we impose the condition h = 0 at the 
vertical planes x = 0, x = X, y = 0, and y = Y. 

To discretize these problems, we divide the domain 9 into 
J layers that are normal to the z axis. The j t h  layer has 
thickness ( A Z ) ~ ,  and the aquifer characteristics remain con- 
stant within each layer; however, they may vary from layer 
to layer. Each layerj is bounded above and below by nodal 
planes L = z j  and z = tj+ I ,  SO that (AZ) j  = Zj+l  - 2,. 

At any time t we represent the hydraulic head h(x ,  y ,  z j ,  
t )  on a single nodal plane z = Z j  by a function h j ( x .  y ,  t) 
satisfying the prescribed conditions hj(Oi Y ,  t )  = hj(X,  y ,  t )  
= h j ( x ,  0, t )  = h i ( x ,  Y ,  r )  = 0 at the vertical boundaries. 
These conditions allow an exact representation of the ( x ,  y) 

. 

variations in hi as a double Fourier sine series, in which the 
Fourier coefficients Qmnj are time-dependent: 

4 

m = l  n = l  

Here 

G m n (  x ,  y )  = sin (nnx/X) sin (m ~ y /  r) . (4) 

For the numerical method we truncate this series, getting an 
approximation 

where M and N are determined by the level of accuracy 
desired. 

To define the vertical variation of the approximate head h ,  
we linearly interpolate between nodal planes: 

’ 

(6 )  

Here the functions N j (  z )  are standard linear shape functions 
in the z direction: 

J + 1  M N 

h ( x ,  Y, Z, t )  = 2 [ C 2 Qmnj(t)Gmn(X, y )  
j - 1  m = l n = l  

Nj(t) = ( Z ~ . + ~ - Z ) / ( A Z ) ~  Z j < t l Z j + l -  

To determine the unknown coefficients we develop 
a linear system of ordinary differential equations in time by 
using the following weighted residual equations: 

We use as weight functions the shape functions associated 
with the unknown coefficients Qmn,, namely. 

(9)’ bvmen*j(x,  y ,  Z) = Nj(t)Gmrn’(-r, .v). 

If we interchange the operations of differentiation and inte- 
gration with the finite summation implicit in h ,  (8) becomes 

NiG,,,in* dx dy  d~ = 0 .  (10) 

We now integrate by parts to shift one order of differen- 
tiation from h to the weight function NiGmVnl. In doing so, 
we simplify matters by observing that the eigenfunctions 
G m n ( X ,  y) obey orthogonality relationships guaranteeing 
that, whenever rn f rn’ or n # n’ ,  
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Therefore the only terms that survive the integration and 
summation in (10) are those forwhich m = m’ and n =n’, 
and we get - 

I . .  

. *  

+ em,; = 0. . . (12) 

Here 

One equation of the form (12)  holds for each distinct triple ti, 
m. n) of indices associated with a weight function. For 
simplicity, we represent the forcing function F by a constant 
multiple of the Dirac 6 distribution S( x, y ) ) .  

As with the usual finite element method using piecewise 
linear basis functions, terms in (12) for which li -‘jl ’=i 2 
vanish, yielding tridiagonal systems with unknowns Q m n j .  If 
the bottom (or top) of the aquifer is a no-flow boundary, the 
contributions at z = 0 (or z = Z) that arise from the 
integration by parts also vanish. Moreover, owing to the 
orthogonality relations in (1 l ) ,  each Fourier mode (m ,’n) has 
its own matrix equation: - _  I - ’ . .  

’9- 

where [MI,, and {SJ,,, are tridiagonal rnatricewmd a,,,,, 
and Qm, are vectors with components @mnj and Q m n j v j  = 4, 
... , N + I ,  respectively. The typical [ M J m ,  and [B] , ,  
tridiagonal entries for a specific layerj (where 1 5 j 5 J )  are 
as follows: 
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Figure 2 depicts how [MI,,  and [B],, are assembled and 
what entries the 2 x 2 matrices have. 

We approximate the time derivative by a simple difference 
scheme in @: 

At  * 

a:: = ea,”,,+ + ( 1  - e)Qi,,. 
(15) 

dt I 

Here k indexes the most recent time level at which a,, is 
known, and k + 1 indexes the next time level. We represent 
the time increment between these two levels by At  and use 
8 to denote a weighting parameter, discussed shortly. The 
temporally discrete system therefore becomes 

Choosing various values of 6 E [0, 11 yields various temporal 
weightings of the scheme, with 0 = 0 giving an explicit 
scheme and 8 = 1 yielding a fully implicit scheme. We use 
8 = 1/2, which corresponds to the familiar Crank-Nicolson 
scheme. This scheme is unconditionally ‘stable and is sec- 
ond-order accurate in z .  

3. CODLNG CONSlDER4TIONS 

Together with initial conditions and boundary conditions, 
the model requires the following information: layer-. 
dependent variables, constant within each layer or nodal 
plane; mode-dependent variables, constant for each Fourier . 

. -  

I .  

Fig. 2. Matrix assembly for tridiagonal matrices 
[ B I n1,r - 
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Fig. 3. Geometry of the fully penetrating well. 

component; variables characterizing sources ( F ) ,  and timing 
variables. 

The layer-dependent variables include the number of 
layers J ,  the dimensions of each layer, and the conductivities 
and specific storage of each layer. Variables associated with 
the Fourier modes include the indices M and N at which the 
two-dimensional series will be truncated and a matrix [a] in 
which to store Fourier coefficients for each nodal plane.The 
initial value of [a] reflects the initial condition of the aquifer. 
The variables needed to characterize sources include well 
locations and volumetric flow rates between nodal planes. 
The timing variables include the total time ttOtal, the time 
step A t ,  and the temporal weighting parameter 8. 

The FLlM has advantages in both small-scale and large- 
scale computing environments. Because the method reduces 
three-dimensional problems to sets of one-dimensional prob- 
lems. one can often use a microcomputer to model large, 
three-dimensional aquifers that would otherwise require too 
much memory. On the other hand. since the one-dimension- 
a1 problems are uncoupled, the method is also very adapt- 
able to parallel computing environments. We discuss this 
possibility further in section 4. 

4. TEST PROBLEMS ASD RESULTS 
We examine four test problems. The first two probiems 

have exact solutions in ideal cases. when the sources have 
infinitesimal radius and the aquifers have infinite areal ex- 
tent. The third problem has no exact solution, but there is a 
classical, closed-form solution that is available if we accept 
certain simplifying assumptions. The exact solution for the 
first problem can be used with superposition to obtain an 
exact solution for the fourth case. 

Single, Firlly Penetrating Well 

Figure 3 depicts a fully penetrating well with a constant 
discharge rate Q and horizontal flow within the aquifer. and 
Table 1 summarizes the parameters defining the problem. 

TABLE 1. Input Data for the Fully Penetrating Well Problem 

Definition 

Depth of aquifer 
Plan dimensions 
.Well location 
Hydraulic conductivity 
Specific storage 
Discharge rate 
Number of modes 
Number of layers 
Time step 
Total time 

Z =  IOOm 
X =  Y =  1280m 

E ; = 4 m / d  
5, = 1.6 x 10-6/m 
Q = -1257 m3/d 
.\I = N = 32 
J = 1  
Af = 0.001 day 
ftord = 0.02 day 

(XS* y,) = (640, 640) 

2.0 
1 

t 1.0 

0.2 
0 20 40 60 SO 100 1-0 1:O 160 IS0 2;)O 

horizontal distance from source im] 

Fig. 4. Hydraulic head It versus distance r from the single, fully 
penetrating well. Solid curves depict the classical. one-dimensional 
radial solution. 

The exact solution that we use for comparison is a similarity 
solution for a line source having infinitesimal radius in a 
one-dimensional. radial problem, where r = (.r2 + y ' )  *'' is 
the distance from the well. Walton [1970] gives this exact 
solution as 

where ir = ( r 'SSZ) / (4KZr)  is the similarity variable and y = 
0.5772 is the Euler constant. 

In the numerical model we keep ttotal small and use large 
values for X and Y to reduce the influence of the zero-head 
boundary, since the similarity solution applies to a domain of 
infinite areal extent. As Figure 4 indicates. the FLM approx- 
imation in this case is essentially indistinguishable from the 
similarity solution. 

Point Soirrce Itljectiori 

The primary purpose of this test problem is to demonstrate 
the ability of the layers to model vertical gradients in head. 
Using a specific storage S, = 1.0 facilitates comparison of 
the results to the corresponding problem in heat conduction. 
Figure 5 depicts a point source injection well with a constant 
injection rate Q, corresponding to a well screened over a 
small vertical interval. Table 2 summarizes the parameters 
used to define a sample problem for this geometry. The layer 
thickness varies from 0.1 to 1.5 m, where we concentrate a 
large number of layers at and above the point source. The 
exact solution used for comparison represents radial flow 
from a point source in a domain having infinite areal extent. 
Carslaw and Jneger [1959] give this solution as 

. h(r ,  t )  = ( Q / 4 r K r )  erfc [r l (4Kt) '"] .  (18) 

Fig. 5 .  Geometry of the point source injection well. 
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TABLE 2. Input Data for the Point Source Injection Well 
- .  

Definition 

Depth of aquifer 
Plan dimensions 
Line source location 
Hydraulic conductivity 
Specific storage 
Injection rate 
Number of modes 
Number of layers 
Layer thickness 
Time step 
Total time 

Z = 3 1 . m  
X = Y-= gj m 
(.rs, u,) = (32. 32) 
K = 195.3 mid 
S, = 1 per meter 
Q = 1000 m3/d 
A! = N = 64 
J = 50 
0.1-1.5 m 
At = 0.001 day 
ttoral = 0.04 day 

We use a Chebyshev approximation to erfc (see Press et nf., 
19881. As in the first sample problem, we keep rtotal small to 
avoid the influence of the computational boundaries in the 
FLM model. 

We compare the exact solution with the FLM approxima- 
tion along two directions from the point source: one on the 
nodal plane normal to the t axis and one parallel to the t 
axis. Figures 6 and 7 show these comparisons. As with the 
fully penetrating well, the FLM gives a good approximation 
to the exact solution except near the well bore. The discrep- 
ancy for r < 1/2 m is attributable to the assumption in the 
exact solution that the source has infinitesimal radius, which 
implies that the exact solution is unbounded as r + 0. The 
pressure near the point source remains finite in the FLM 
solution. 

Single Well in R Led? ilqirifer 

As a third example we use the FLM to simulate unsteady 
radial flow in a leaky, isotropic. confined aquifer where a 
fully penetrating well discharges at a constant rate, as shown 
in Figure 8. We present two separate runs to illustrate the 
effectiveness of the FLM model: Table 3 contains the 
parameters defining them. Wnltotr [ 19701 provides a classical 
one-dimensional radial solution for this problem, again as- 
suming a well having infinitesimal radius in an aquifer of 
infinite radial extent: 

htr. t )  = (Q/4rK,Za4)M'(rr ,  8 ) .  (19) 

Here K A  and Z.4 are the conductivity and depth. respec- 
tively, of the aquifer. The well function W(u. B )  is repre- 
sented by the integral 

t = sT.5 ininUtes 

0- FWl points - 

t = sT.5 ininUtes 

0- FWl points - 

o 1 2  3 .I 3 6 7 S 9 10 

horizontal distance from source [rn] 

Numerical and classicai solutions for point source injec- 
tion dotted along the horizontal line ( ( x .  Y::) = ( s .  xC. 0)). The 

Fig. 6. 

mlut1on 

0.2 0.4 0.6 0.8 h 3  

- 1 ;  , , , , , , I /  

0 1 2  3 4 5 6 7 S 9 10 

vertical distance from source [rn] 

Fig. 7. Numerical and classical solutions for point source injec- 
tion plotted along the vertical line ((s, y, z )  = (.I-$, y , .  z ) ) .  The 
one-dimensional classical solution is depicted by the solid curve. 
The inset compares the solutions close to the source. 

x e - y  - r 2 K T  
Wrr, B )  = I, y exp ( ) dy,  (20) 

i 4K,Z,Zry 

where K T  and ZT stand for the conductivity and depth of the 
aquitard. To derive this solution. one must assume that the 
vertical component of water velocity vanishes in the aquifer. 
Thus the classical solution unrealistically requires ff ow lines 
to be refracted instantaneously from vertical to horizontal as 
they cross the aquirard-aquifer interface. The classical solu- 
tion also incorporates the assumption that water is not 
released from storage in the aquitard. Since S, = 0 in the 
aquitard, the drawdown, varies linearly with elevation, and 
the vertical velocity is independent of z in the aquitard. As 
we argue below, the numerical solutions depict more realis- 
tic values of the drawdown. capturing a vertical component 
of velocity in the aquifer and a changing vertical component 
of velocity in the semipermeable aquitard at early times. As 
time proceeds. the numerical model approaches the classical 
solution as expected. 

Figure 9 and Figure 10 summarize the first run.. Figure 9 
shows the drawdown in the classical solution and in the 
numerical solution generated by the FLM at a radius of 50 m 
from the source at two time intervals. Figure 10 shows the 
corresponding values of vertical velocity in the aquitard. The 
verticat velocity in the aquifer is essentially constant at 
about 0.001 m/d. The FLM solution at I = 2.55 min illus- . 
trates the effects of storage in the semipermeable layer, 
which the classical model cannot capture. Figure 11 depicts 
the results of the second run in a log-log format. at an 
elevation of IS m. These results are representative of those 
obtainable from the classical solution. However, the FLM 
method allows one to distinguish well function values asso- 

aquifer - - 

on+&mcnsional >lassicrd solution is depicted by the solid curve. Fig. 8. Geometry of a single well in a leaky aquifer. 
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TABLE 3. Input Data for the Single Well in a Leaky Aquifer 

Definition 

Z = ZA + ZT = 80 m 
ZA = 60 m 
2~ = 20 m 

Total depth 
Aquifer depth 
Aquitard depth 
Plan dimensions 

Run 1 X = Y = 1280 m 
Run 2 X = Y = 3200 m 

Run 1 
Run 2 

Well location 
(xs, Y,) = (630, 630) 
(x3, y , )  = (1600, 1600) 

XT = 0.12 m/d 
ssA = 2.0 x 10-6/m 
S,r = 1.5 x 10-6/m 
Q = 18.850 m3/d 

J = 120 

At = 0.00014.001 day 

Aquifer conductivity KA = 25 d d  
Aquitard conductivity 
Aquifer specific storage 
Aquitard specific storage 
Discharge rate 
Number of modes M = N = 6 4  
Number of layers 
Layer thickness 0.1-15 m 
Time step 

I clavieal 
1 = 28.8 I solution 
mnutes 

. \  

\ 

\ 
\ 

i I I 

ciated with different elevations within the aquifer, which the 
classical solution does not. The inset in Figure 11 shows the 
well function values at different elevations, 15 and 59 m. 

I 

I 

Midtiwell Field 

The primary purpose of the fourth test case is to demon- 
strate the ability of the FLM to model a multiwell field. Our 
example has three fully penetrating wells. The first well 
discharges at a constant rate starting at t = 0. The second 
and third wells inject at constant rates starting at t = 0.002 
day. Table 4 summarizes the parameters defining the prob- 
lem. The exact solution that we use for comparison is a 
superposition of similarity solutions like those used for the 
first problem. 
In the numerical model we keep ttotal small and use large 

values for X and Y to reduce the influence of the zero-head 
boundary, since the similarity solution applies to a domain of 
infinite areal extent. We compare numerical and exact 
solutions along the transect y = 600 m, which passes close to 
the three wells. As Figure 12 indicates, the FLM approxi- 
mation for the case &I = N = 32 shows virtually no spurious 
oscillations, being essentially indistinguishable from the sim- 
ilarity solution. At the coarser level of Fourier discretization 
in which M = iV = 16, the numerical solution is still 
reasonable, but some overshooting and oscillations, attrib- 
utabIe to the Gibbs phenomenon, are apparent. 

5 1 2 0  [ml 

drawdown [meters] 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

60 
SO 
40 

I 

e 
1 

a 
t. 

[ml 

V 

0 
n 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 
downward velocity [meters/day] 

Fig. 10. Vertical velocity in aquitard for the Ieaky aquifer 
problem at 50 m from the well, shown at two different times. The 
solid curve depicts the one-dimensional radial solution, and the 
dashed curves depict the FLM solution. 

Parallelizarion 
Although one can run all of our test problems on a 

personal computer by sequentially solving the tridiagonal 
matrix equations for the Fourier modes, it is noteworthy that 
our code is also amenable to parallel processing. To demon- 
strate this fact, we present results of the second test problem 
run on an Alliant FX/8 computer having a shared memory 
and eight vector processors. Parallelization in a FLM model 
consists of sending distinct tridiagonal systems to different 
processors, which then execute the solution algorithm con- 
currently until all Fourier modes have been computed. 

To quantify the efficiency of the parallelization, we exam- 
ine the CPU time required to solve problems using different 
numbersp of processors. For each value ofp the speedup S, 
is the ratio of the time taken by one processor in solving the 
problem to the time required for p processors. For an ideally 
parallel algorithm a plot of S, versus p ,  called a speedup 
curve, yields a line having unit slope. In practice, the need 
for processors to transfer information among themselves 
prohibits this ideal case. and speedup curves having average 
slope greater than 0.7 typically indicate excellent parallel- 
ism. Figure 13 shows the speedup curve for the second test 
problem, where M = N = 64. The ideal curve is represented 
by the top curve and has unit slope. The CPU time ratio 
which was required for just the FLM parallel algorithms is 
depicted by the lower curve and has a slope of approxi- 
mately 0.8. For much larger values of M and N we expect 
the speedups to be somewhat less favorable on shared- 
memory machines because of computational overhead asso- 

10' 

loo 

10'' 

4 r h  K.4 2, 
8 

1 B' = KAZAZT/KT 
I I 1 I . , 1 1 1 1  L I L n I I t t (  0 1 ' 

lo-' loo 1 0' 1 o2 
I/u = 4h'At/r2S,A 

Fig. 11. Normalized drawdown curves for a leaky aquifer. The 
inset shows the drawdowns at two different depths. as predicted by 
the FLM mode!. 

I 
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TABLE 4. Input Data for the Multiwell Problem 
L 

Definition 

Depth of acquifer Z = 1 0 0 m  
Plan dimensions X = Y = 1280 m 
Location 

Well 1 
Well 2 
Well 3 

(.T,, Y,) = (640, 640) 
(x,, y , )  = (480,560) 
(I,* Y,) = (640, 440) 

,S ,  = 1.6 x 10-6/m 

Q = -1257 m3/d 

Q = +257 m3/d 

Hydraulic conductivity K = 4 m / d  
Specific storage 
Discharge rate 

Injection rate 
Well 1 

Weli 2 Q = +1000m3id 
Well 3 

Run 1 M = N = 1 6  
Run 2 M = N = 3 2  

Number of modes 

Start time 

We11 2 
Well 3 

Number of layers J = l  
Time step 
Total time 

Well 1 t = 0.0 
t = 0.002 day 
t = 0.002 day 

Af = 0.001 day 
ttotal = 0.02 day 

ciated with the retrieval of data from cache. For such 
large-scale problems it is likely that distributed memory 
machines offer a more effective parallel environment. 

5.  CONCLUSIONS 

The FLM offers a numerical approach for modeling aqui- 
fer problems having reasonably regular, layered geometry. 
The method’s attractiveness stems from its ability to capture 
three-dimensional aspects of aquifer behavior in a highly 
parallelizable fashion, without the intensive computational 
requirements associated with fully three-dimensional matri- 
ces arising in traditional finite element methods. Of course, 
for complicated heterogeneities the simplified geometry as- 
sumed by the FLM is inadequate, and fully three-dimension- 
al models are needed. 

Y ’ Ova 

1200 - 
600 

-0 
- 0.6 

- 0.4 

- 0.2 f 
W 

- 0.0 
n 

- -0.2 [ml 

- -0.4 

- -0.6 

Fig. 12. Drawdown along the transect (x, Y ,  :) = (x, 600, z )  
for the multiwell problem. Shown are the exact solution and 
numerical solutions for two different Fourier discretizations, The 
inset shows the location of the transect (dashed line) with respect to 

number of processors 

Fig. 13. Speedup curve for FLM model on Alliant FX8 parallel 
computer. 

We see tremendous potential for the FLM in developing 
rapidly executable models of groundwater flow. The meth- 
od’s inherent parallelism may make it an attractive choice 
for applications that require repeated execution, since iter- 
atively running such standard flow codes as MODFLOW 
[McDonald and Harbaugh, 19841 can be prohibitively slow. . 
This advantage can be especially important, for example, in 
optimization studies and inverse problems. 

NOTATION 

Dimensions appear in square brackets. 

the three wells. t total 

finite element stiffness matrix for Fourier 
mode mn. 
three-dimensional domain, (0, X )  x (0, u) X 

(0, a. 
forcing function [ 1/T]. 
double sine or cosine function. 
hydraulic head .EL]. 
trial function for hydraulic head [L]. 
hydraulic head on nodal plane j [L]. 
nodal plane subscripts; 1 I i, j I J + 1. 
number of layers. 
time level superscripts, old and new, 
respectively . 
hydraulic conductivity in the x direction 
WTI - 
differential operator for transient groundwater 
flow. 
finite element mass matrix for a specific 
Fourier mode, mn. 
Fourier mode subscripts: 
truncation levels for Fourier series; 1 5 m 5 
M and 1 I n I N. 
linear shape function. 
number of processors. 
forcing vector, 7 equal to ( Q m n I  Q m n 2  9 9 

Qmn(N+ I )  1 * 

variational form of forcing function. 
radial distance from line and point sources 
ILI. 
speedup. 
specific storage [L -’I. 
time [TI .  
total time of simulation [TI. 

’ 

- 
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it similarity variable. Hwang, J. S., C. J. Chen, M. Sheikhoslami, and B. K. Panigrahi, 
Finite analytic solution for two-dimensional groundwater solute 
transport, Water Resour. Res., 21(9), 1354-1360, 1985. 

Lowry, T., M. B. Allen, and P. N. Shive, Singularity removal: A 
refinement of resistivity modeling techniques, Geophysics, 54(6), 
766-774, 1989. 

W(rc, B )  well function. 
x, y ,  t spatial coordinates (z is elevation above 

datum) [L]. 
X, Y, 2 dimensions of finite spatial domain [L]. 

x,, y,, z, coordinate of point source or line source [t]. 
z i  elevation of layer i; 1 I i 5 J + 1 [ L ] .  

Ar time step [TI. 
( A t ) [  thickness of layer [ L ] .  

a,,, vector of Fourier coefficients, equal to ( Q m n l ,  

Qmn,( t )  Fourier coefficient for nodal plane j. 
8 temporal weighting parameter; 0 5 6 5 1. 

[@] matrix composed of vectors 

T 
@/?In29 * ' 9 @ N t n ( N + I ) )  * 
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1 Introduction 

The finite-strip method (FSM) is a hybrid of the finite-element and spectral methods. 

Its typical applications are in the numerical solution of partial differential equations 

in two spatial variables, especially in problems that are geometrically regular in one 

coordinate direction. Owing to its unusual efficiency, the technique is a familiar one 

in structural mechanics [3]. It is also useful in models of stratified groundwater flow 

[7, lo]. A three-dimensional extension of the method, the finite-layer method, has 

utility in groundwater flow models [ll, 121 as well as in other applications. This paper 

presents an error analysis for the the FSM applied to time-dependent, parabolic partial 

differential equations. We also indicate how to extend the analysis to the finite-layer 

method. 

The FSM generates an approximate solution that, at each time level, belongs to a 

peculiar finite-element trial space. This space consists of functions that are piecewise 

polynomial in the z-direction and are truncated Fourier series in the z-direction. The 

space has a tensor-product basis, each element of which is a product of two types of 

one-dimensional basis functions. The first type is associated with traditional finite- 

element techniques. We partition the z-dimension of the spatial domain by a grid and 

define piecewise polynomials, such as standard piecewise linear basis functions t j  ( Z) , 
over the grid. The basis functions used for the z-dimension are the trigonometric 

functions associated with spectral methods [l]. If wm(x)  represents a typical element 

of the trigonometric basis, indexed by the Fourier mode number m, then a typical basis 

function of the trial space for the FSM has the form wm(z)! j(z). Section 3 discusses 

this basis in more depth. 

We discretize a given initial-boundary-value problem in space by using a Galerkin 

formulation [8], in which basis functions wm(z)t;(z)  serve as weight functions in the 

weighted-residual equations. We discretize in time using finite differences. Section 4 

outlines this formulation in more detail. 

In problems having sufficient geometric regularity, the FSM has several computa- 

tional advantages over traditional finite-element and spectral methods. Chief among 

these is the fact that it yields a sparse linear system to solve for each Fourier mode 

of the approximate solution. As discussed briefly in Section 4, the matrix equations 

for different modes are independent and therefore are amenable to parallel processing. 
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Several other papers [7, 11, 121 discuss such computational matters in detail. This 

paper focuses on the analysis of the FSM. 
The key question in the error analysis is the following: How does the error in the 

FSM solution decay as we refine the mesh size h of the finite-element grid in z or 

increase the number 2M + 1 of Fourier modes used in x? Our development shows 

that, when the trial function is piecewise linear in z, the FSM error is O(h2 + M-"). 
Here, the exponent r 2 2 increases with the smoothness of the exact solution in the 

x-direction. 

Our paper is organized as follows. Section 2 describes the physical problem of 

interest and the mathematical assumptions and notation. Section 3 discusses the FSM 
trial space, and Section 4 describes the FSM formulation. Section 5 estimates the 

approximation error associated with interpolation and projection maps into the trial 

space. Using these estimates, Section 6 derives an L2 estimate of the difference between 

the approximate FSM solution and the exact solution. This error estimate is then 

verified computationally in Section 7. In Section 8 we sketch the extension of the 

analysis to the finite-layer method. 

2 The Physical Problem and Notation 

Our analysis involves a two-dimensional generalization of the heat equation. Consider a 

rectangular spatial domain R := (-T, T) x (0 , l )  with homogeneous Dirichlet boundary 

conditions and coefficients that vary with z: 

i (l) 

. '  

U ( S , Z , t )  = 0, ( q z )  E dR, t E [O,T] 

u(x ,z ,  0) = uyx,  z) ,  (x, 2) E R. 

= &@z, @ := 'a2?;/ak2, 'and so forth. We adopt *the following notation to 

describe the spatial domain: X := (-T, k); Z :=̂  (0; 1); 0 := X x-2: Also, dR denotes 

the boundary of R. 
The problem (1) occurs in several applications. In two-dimensional saturated 

groundwater flow, the coefficientiS(z) represents specific storage. The coefficients I{&) 
and I{&) in this context denote hydraulic conductivities in the x- and z-directions, 
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respectively. Huyakorn and Pinder [5 ] ,  for example, discuss this application in detail. 

All three coefficients may vary with the vertical coordinate z, as occurs in horizontally 

uniform sedimentary beds. The function f(x,  z, t )  accounts for sources, and u(z,  z,  t )  
represents the unknown hydraulic head. The boundary-value problem (1) also has 

applications to conductive heat flow. For a two-dimensional, layered composite slab, 

S ( z )  = 1.0; I<&) and K Z ( z )  stand for thermal diffusivities, and u(x,z,t) represents 

temperature. In realistic problems, it is generally necessary to rescale the domain 

R = ( -T,  7r) x (0 , l )  to physical dimensions. Linear scalings may change the multi- 

plicative constants in our error estimates but do not affect their asymptotic orders. 

We assume that IC, and I - = ,  and S are piecewise constant with respect to z. We 

also assume that they are positive, bounded away from zero, and bounded above: 

0 < s 5 S ( z )  5 s*. (4) 

We assume that the forcing function f and the initial condition uo are smooth enough 

to guarantee that the solution u(z,  z,  t )  exists, is unique, and depends continuously on 

these data. 

We use a variety of normed function spaces in our analysis. Denote by L2(R) the 

space of square-integrable, complex-valued functions defined on St. The quantity 

defines the standard norm on this space. Here, Iv(z, z)I2 := v(x, z)v(z, z), the overbar 

indicating complex conjugation. We use analogous notation for the one-dimensional 

domains X and 2. For example, the space of square-integrable functions on X is 

L 2 ( X ) ,  and the corresponding norm is 

Given v E L2(R), v(x, - ) represents a family of functions in L 2 ( Z )  (that is, func- 

tions of z) ,  where z is a parameter. Similarly, v( , z )  represents a family of functions 

in L 2 ( X )  indexed by the parameter z. Thus llo(x, )11L2(z) represents a function in 
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L 2 ( X ) .  We sometimes abbreviate this function by writing llvllL2(z). Likewise, when 

v E L2(fl), 11v11L2(xl serves as shorthand for the function ilv( - + Z ) I I ~ ~ ( ~ ) .  
We denote by ( , - ) the inner product associated with L2(fl). In working with 

this inner product we occasionally employ Fubini’s Theorem (see Royden, [9]) and 

interchange the order of integration, Thus, if v1,v2 E L2(R), then 

We define Sobolev spaces associated with X and 2 and then use these definitions to 

define function spaces over the two-dimensional domain 0. The Sobolev spaces H 2 ( 2 ) ,  
H i ( 2 ) ,  and H,’(X) are defined in the usual way: 

H i ( Z )  := {V E H 2 ( Z )  : v(O)  = ~ ( 1 )  = 0} (9) 

H,’(X) := {v E L 2 ( X )  : a,”v E L 2 ( Z )  and is periodic for 0 5 a 5 r} .  (10) 

Following Canuto et al. [I], we define the nonisotropic Hilbert space 

space containing all functions v E L2’(fl) such that 

and 

We assume that r 2 1,- and we denote by 3c the space containing 

Hf+’)J (0) such that @’zw- f L2(R),and v(x, z )  = Q when (x,z) E dfl. 

3 The Finite-Strip Trial Space 

H:2(0)  as the 

functions v E 

What distinguishes the FSM from other weighted-residual techniques is its trial space. 

This space, f i , is a finite-dimensional subspace of ‘FI whose standard basis contains 

products Wm(x)e j (Z)  of functions defined on X and 2. For the functions l j ( Z ) ,  we use 

basis functions for piecewise h e a r  interpolation over a grid defined on 2. Trigonometric 
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functions, defined below, serve as the basis functions w,,,(x) defined on X. We now 

describe this trial space in detail. 

The piecewise linear basis {lj(z)};<: requires that 2 be partitioned by a grid. 

Figure 3 depicts the nodal lines associated with the grid 0 = zo < x1 < 0 .  < zJ = 1. 

We demand that the grid contain all loci of the jump discontinuities in the coefficients 

I<%, IC,, and S. The mesh size of this grid is 

A typical piecewise linear basis function, shown in Figure 3, has local support and 

satisfies the conditions 

These functions span a ( J  - 1)-dimensional subspace Y of L 2 ( Z ) ,  namely, 

Thus V contains all functions that are piecewise linear with respect to the given grid 

and that vanish at the endpoints zo = 0 and z1 = 1. 

The basis for approximation along the horizontal direction consists of trigonometric 

functions associated with truncated Fourier series on X .  Figure 3 depicts one such 

function. Although Fourier sine-cosine series are typically used in FSM computations, 

for succinctness we use the complex exponential form. Letting i2 = -1, we have 

Here, wm(x) := exp(imx), and e m  denotes the Fourier coefficient, 
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. .  

We denote by 24 the following (2M + 1)-dimensional subspace of L 2 ( X ) :  

Thus U contains all Fourier series on X that are truncated at mode number M .  
Functions in the trial space f i  are bilinear combinations of basis functions associated 

with U and V ,  that is 

Functions in f i  are thus piecewise linear in z and vary as truncated Fourier series in x .  

The dimension of f i  is therefore ( J  - 1) (2M + 1). 

4 Formulation of the FSM 

The FSM arises from the following weak form of the exact problem (1): Find a one- 

parameter family u( * , - , t )  in 3-1 such that, for all test functions w E Z and all times 

t f (0, TI, 
(S&u, w) + ( K x & u ,  8 x 2 0 )  + (rc,a,.ll, a,w) = (f, w). (20) 

To discretize this problem in space, we restrict u(- ,  0,t) and w to a finite-dimensional 

subspace of 3-1: Find a one-parameter family of functions ;i( - , - , t )  in G such that, 

for all w E f i  and all t f (0, TI, 

This condition yields a set of ( J  - 1) (2M + 1) ordinary differential equations in time. 

Instead of solving these ordinary differential equations, we use a temporally discrete 

approximation. We replace the function ; i (x ,  z,  t )  by a sequence of functions ; ik(x,  z )  = 
C ( x ,  z, h) in fi. Here, r represents the time step. Similarly, uk(z, z )  signifies the exact 

solution value u(x, z, k~). To solve for Gk(x ,  z) ,  we introduce the backward difference 

scheme 

Since iik has the form 
=. J-1  
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our objective is to determine the coefficients @k,j at each time level k. To start the 

calculations, we must choose an appropriate initial function Go(z, z). In practice, we 

project the exact initial condition uo(x,z) into the trial space f i  using projection op- 

erators defined in the next section. 

We determine the unknown coefficients at time level k by solving linear systems 

obtained using the basis functions l j ( z )um(z )  as weight functions 20. If we order the 

weighted-residual equations lexicographically according to the index pairs (m, j ) ,  then 

the choice of the linear basis functions ej (z)  for the vertical dimension implies that 

the linear system is tridiagonal. Our assumptions that IC, and K,  are strictly positive 

and bounded guarantee that the system is symmetric and positive definite and hence 

nonsingular at each time level. The system therefore generates a unique sequence iik 

in 77. 
One benefit of the FSM% its efficiency in parallel computing environments. This 

benefit owes its existence to the orthogonality of the trigonometric basis { ~ ~ ( x ) } ~ ~ ~ ~ ~ :  

O for m # n 
1 for m = n. 

'J w n G d x  = 
27r x 

* We also have 

Thus the tridiagonal system to be solved at each time level decouples into (2M + 1) 

independent matrix equations of size J - 1, one system for each Fourier mode. This 

decoupling allows one to solve for distinct Fourier modes in parallel, as demonstrated 

computationally in "7, 11, 121. 

5 Approximat ion Error Est irnat es 

In this section, we review error estimates for interpolation and projection into the trial 

space /ii. We use these estimates in the error analysis presented later. 

Define the interpolation map Z : L 2 ( Z )  3 Y as follows: 
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For functions v E 3c, we extend this map in the straightforward way: 

We denote by P : L 2 ( X )  -+ U the projection that truncates Fourier series to 2M+ 1 

terms. Provided that M 2 1 ,  we have 

Again, extension to functions of two variables is straightforward: For v E 31, 

where G m ( z )  := ( 2 ~ ) - ’  Jx V(X, z ) w ~ ( x )  dx. 
Composition of these maps yields the approximation map ZP : ‘H + fi. For v E X, 

In estimating the FSM error (Id - iLkll12(n)in the next section, we need an estimate 

of Ilv - Z P V I ~ ~ ~ ( ~ ) ,  which we call the approximation error. To develop this estimate, 

we first discuss the errors associated with Z and 7’. Strang and Fix [13] show that the 

interpolation error for v E H 2 ( Z )  obeys the bound 

Analogous estimates exist for the projection error associated with P. If v E H,’v2(i2), 
where r 2 1 is an integer, then 

Canuto et a1. [2] outline-a proof of this estimate, which we detail in Lemma 10 of the 

Appendix. * - .’. . _  - - .  

We now prove two lemmas giving an estimate of Ilv - ZPvII,p(n). In the proofs, 

we indicate parenthetically the steps where we use the Parseval equality, the Bessel 

inequality [6], and Fubini’s theorem [9]. The first lemma estimates the interpolation 

error when we apply Z to the truncate-d Fourier series Fv. 
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Lemma 1 Ifu E 3-1, then 

Proof: Using the definition of 11 IIL2(*), we have 

(Equation (31) ) 

(Fubini’s Theorem) 

(orthogonality) 

(Bessel inequality) 

= J ,  

<Jx 
I I2 

I 

When we combine Equation (32) and Lemma 1 using the triangle inequality, we get 

an estimate of the approximation error: 

Lemma 2 If v E 3-1, then 

Ilv - ZP4L2(*)  

Proof: The triangle inequality gives 

Ilv - ZWL2(i) 5 Ilv - PVIlL2(*) + IIPV - ZP,IIL2(*)* 

The desired result follows from the estimates ( 3 2 )  and ( 3 3 ) .  

(Canuto, Maday, and Quarteroni [l] obtain a comparable estimate.) 
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6 Error Analysis of the FSM 

We now estimate the difference between the exact solution uk(x ,  z )  of Problem (1) and 

the approximate solution i ik(s ,z)  generated by the FSM. We begin by defining three 

error components: 

qk := u k - ~ P u k  

tk := ZQuk-iik.  

(36) 

(37) 

The objective is to estimate IlekllL2(n) Since ek = qk + tk ,  the triangle inequality yields 

Lemma 2 provides an estimate for 7 , so an estimate for 11 ( kllL2(n) will suffice to 

Our development proceeds by the following plan: We first derive an equation using 

II kllLqR) 

bound ll IlL2(*) 

tk as the test function in the fully discretized weak formulation, Equation (22). We 

,then obtain estimates for individual terms in this equation. Finally, we apply a discrete 

form of Gronwall's lemma to yield the desired estimate for I l(kllp(*).  
We start by restricting the weight function w to 7? in Equation (20) and subtract 

Equation (22) from it. We also add the quantity 

to both sides of the resulting sum. It follows that, for all test functions w E f i  and all 

time levels k E ( ~ , T / T ] ,  

- = (s(u*-:k-l - a,,.), w). 

Since ek = qk + tk ,  we may rearrange Equation (39) to get 

(39) 
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v k  - 

7 9 w >  
= (s(uL-:k-l - a d ) ,  w )  - ( s  

- ( I { x a x $ ,  axw) - ( JC,&Vk,  a,w).  (40) 

Setting w = tk and multiplying through by r yields 

(st k k  , t ) - ( Stk-l  , tk) + .( I { x a x t k ,  &tk) + .( a d k )  

- a t u p >  - ( s  (vk - ok- - ' ) , t k )  = + tk - 7 uk-l 

We now analyze individual terms in Equation (41), beginning with ( Stk-', tk) .  
The inequality 2(a,  b) ,< (a,  a)  + (b ,  b) and the assumption that 0 < S imply that 

Next we obtain an estimate for T ( K ~ ~ , &  ax<k). Using the inequality 2(a, b) 5 
(a ,  a)  + (b ,  b ) ,  the definition of 77, and the assumption that 0 < Kx 5 K, we find that 

axtk)  5 &Kx 1 [&?Ak - zp(azuk), l ,  axuk - ZP(azuk)) 

Applying Lemma 2 then yields 
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Since t E (O,T], this last inequality allows us to deduce that 

where 

Although the 

approach to show 

(45) 

term (lC,Ozvk, may be analyzed similarly, we use a different 

that it vanishes. For any node 
00 

m=--oo 

Using the expansion (23) of iik E R) we write the quantity tk as follows: 

t k ( X )  2 )  = Z P U k ( X ,  r )  - i i k ( X )  2 )  

Differentiation with respect to z yields 

Because the value of 

(K,d,q", 
grid. Using Equation (48)) we get 

is a constant K z , j  for z E (rj-lyzj)) the integral over 2 in 

decomposes into a sum over the intervals formed by the  finite-element 

T 
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where 

d,,, k := i i i ( z j )  - U,,,(zj-1). 

The orthogonality property (25) then implies that 

as claimed. 

In addition, since KX and I(, are positive, the third and fourth terms on the left 

side of Equation (41) are nonnegative: 

and 

0 L T ( m t k ,  adk ) .  (51) 

Incorporating the estimates (42) through (51) into Equation (41) yields the inequality 

+S (M-Trl + h2r2)'. (52) 

We now estimate the first two terms on the right side of Equation (52). Lemmas 3 

through 5 concern the first term O;n the right, which involves the truncation error 

associated with the timestepping scheme. 

Lemma 3 Let uk E W for 0 5 k 5 TIT.  Then for all (x, z )  E 52, 

U k ( X ,  z )  - u y x ,  2) -1 k 7  
- &uk(x, z )  .= 7 jkelI7 [t - (k - 1)r] a?u(x, z,  t )  d t .  

Proof: The Fundamental Theorem of Calculus and integration by parts yield 

(53) 
7 

k 7  
Uk(X, z )  - uk-l(x, z )  = jk-l)7 a,u(x, 27 t ) d t  

t= k 7  

= [t - (k - l ) ~ ]  dtu(x,z,t)l t=( k- l )T  

k 7  

4 k - l ) T  
[t - (k - l)T] a;u(x) z ,  t )  d t  
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= [kT - (k: - 1)TJ atuk(x, 2) 

r k T  
- J - -  [t - (k - I )T]  a:u(x,z,t) d t .  

(k -1)T  

The desired result follows upon rearrangement. 

Lemma 4 Let uk E 7-l for 0 5 k 5 TIT.  Then 

Proof: Lemma 3 and the Cauchy-Schwarz inequality imply that 

1 kT < -  
- T211ik- l )T  

[t - (k - l ) ~ ]  ~ , " u ( x ,  ~ , t ) d t  

1 - 
- ,.L2 

1 
= FA2 f/" (i?:u)2dt dx dz 

3 (k - l )T  

The last step follows from Fubini's theorem. 

R 

(54) 

Lemma 5 Let uk E 7 i  for 0 _< k 5 TIT.  Then 

Proof: The assumption that 0 < S(z) 5 S* and the inequality 2(a ,  b) 5 ( a , a )  + ( b ,  b) 

imply that 
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The desired result follows from Lemma 4. 

We now analyze the second term on the right side of Equation (52). 

Lemma 6 . If 77' and E k  are as defined in Equations (36) and (37), then 

Proof: The Cauchy-Schwarz inequality, the assumption that S(z )  ,< S*, and the 

inequality 2(a ,  b) 5 (a ,  a)  + (b ,  b) yield 

Application of Lemma 5 and Lemma 6 to Equation (52) now produces the inequality 

We now make three observations to prepare for the application of the discrete 

Gronwall lemma. First, if p is any positive integer such that p r  5 T and if we sum 

Equation (57) from k = 1 through k = p ,  then we obtain the inequality . 
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* 

D Let us use the numerical initial condition ijo = Zpuo, so that to = 0 and thus (to, to) = 
0 0  0 and (St  ,t ) = 0. In this case, we can multiply Equation (58) by 2 and extend the 

integrations to the full time interval (0, T ]  to get 

( X P , I P )  5 2 S * T k  (I k k  , E  ) + P‘, 
k=O 

(59) 

where 

Second, the Fourier series for dtu may be written in terms of the Fourier coefficients 

of u. In particular, if u( - , , t )  E 7 i  for t E (0, TI, then 

m=-w 

and the series converges uniformly. Therefore, 

Thus we can estimate the term in (60) involving at7 using Lemma 2: 

Third, utilizing the assumption that 0 < s 5 S, we can move the last term of the 

sum in Equation (59) to the left side, getting 

Let us choose the time step T small enough SD that s - 2S*7 > 0.- Defining 

(63) 
255 

s -2s*r 
x := 

and 

we obtain 

p’ 
s - 2S*T7 

p := 

k=O 
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We now use a discrete form of Gronwall's lemma (reviewed in the Appendix) to 

establish the estimate on II(kIILz(n). If p is any integer such that PT 5 T ,  then 

for k = O , 1  ,..., P. 

Finally, the main error estimate for the FSM results when we use the estimate (66) in 

the triangle inequality (38): 

Theorem 1 (FSM Error). Let u( . , , t )  E ?-t satisfy the initial-boundary-value prob- 

lem ( I )  for t e (0,T). Let (Gk} be a sequence of functions in f i  determined using the 

FSM, Equation (22). If p is any integer such that pr 5 T ,  then, for time levels 

k = O , l ,  ..., p ,  

Here, 
2s*r 

s - 2s*r' 
x := 

P' 
s - 2S*r' 

p := 

I r \ 2  

This theorem asserts that th,e L2 error in the backward-Euler FSM applied to the 

problem (1) is U(M-' + h2 + 7). Here, r is the degree of smoothness of the exact 

solution in the 2-direction. The order of the estimate, M-' in the Fourier direction 

and h2 in the finite-element direction, remains unchanged if we scale the spatial domain 

to a more general rectangle R = ( a ,  b) x (c, d). In particular, the FSM converges in the 

sense that IIGk - ukllL2(n) + 0 as max{h,M-l,r} 3 0. 

i 
ZL 
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u = o r  

Figure 4: Partition of domain into strips. 

- u = o  

7 Computational Results 

We test Theorem 1 computationally with a dimensionless quenching problem from 

the classical theory of heat transfer. We solve the following model problem on R = 

(0 , l )  x (0 , l )  with the FSM: 

I u(x,z,o) = uo = 1, ( X , Z )  E 52, 

We use a uniform finite-element grid on 2, the mesh size of which varies among different 

tests, as discussed below. Figure 7 depicts the decomposition of the domain 0 into 

strips. 

- 

. -  

The exact solution to the problem (68) has a double Fourier series: 

4e -Kk7(7rm)2 00 4e-Kk7(rrn)2 

. u ( x , z , k ~ )  = 2 .J sin(mnx) C -'sin( nnz). . 'f69) 
m=1,3,5 ... mn n= 1,3,5 .. . nn 

The symmetry of the problem implies that only odd-numbered Fourier modes have 
nonzero amplitudes This solution is continuously differentiable to all orders in both z 

and z for t > 0 [4, Chapter 41. . 
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Using the exact solution, we compute the error term by term as follows: 

Orthogonality implies that the first term on the right side of this expansion collapses 

to the infinite sum 

(71) 
e- h'kT(nn)2 

n n 

Here, N is a positive integer at which we truncate the series in the computations. To 

determine an appropriate value of N ,  we observe that e-KkT(7n)2 decays quickly with 

n. We pick N such that e-KkT(nN)2 - < lo-'' 9 or 

10 log, 10 

for 1 5 k 5 T / T .  We also use the same value of N for the truncated series that arises 

from the second term on the right side of (70): 

- Kk-r (7rm)2 e 

m [ n = g s . . .  

-Kk7(nn)2 e 

n (73) 

where cj := 2sin(nnzj) - sin(nnzj-l) - sin(nnzj+l). We use all the terms of G k  to 

calculate its norm. Owing to orthogonality, mixed products of modes do not survive 

integration, and we obtain 

Since uk E H 2 2 ( f l )  for all r 2 1, Theorem 1 indicates that lluk - iikllL2(n) = O(h2 + 
M-' + r )  for all r 2 1. The idea behind the following tests is to generate numerical 

solutions using an extremely small time step r and to plot log 1121' - iik 

log h and log M-'. The slopes of the resulting plots should confirm Theorem 1. 
IIL2(*) 

The first computational test considers the effect of varying the finite-element mesh 

size h. The parameters for this test are summarized in Table 7. We use I< = .02 and a 

final time T = 0.5. To make the timestepping error negligible, we choose T = 0.0005. 

To render the O(M-')  error terms negligible, we choose M = 65 for the total number of 

Fourier modes. However, only the 32 odd-numbered modes contribute to the expansion 

of i ik .  With this fixed value of M ,  we vary h from 1/2 to 1/28. Figure 7 depicts the 

results. The graph indicates that, as h shrinks, the FSM error is indeed O(h2).  
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Table 1: Parameter Summary for Test 1 (varying h). 
r 

Diffusivity: Ii' = 0.02 

Output time: T = 0.5 

Time step: r = 0.0005 
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Figure 5: Convergence plot for changing mesh size h. 
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Next we examine the effect of varying the total number A4 of Fourier modes. In 
this test problem, the Fourier coefficients decay rapidly as t increases. While this 

phenomenon is beneficial in computational practice, in numerical testing it requires 

us to look at early solutions to distinguish the FSM error from errors associated with 

finite machine precision. Table 7 summarizes the parameters of this test. We present 

results for t = 0.03,0.1, and 0.3. To render the O(h2) portion of the error negligible, 

we fix h = 0.002. 

The efficiency of the FSM becomes apparent in computations of this magnitude. 

At each time level, the problem decouples into 32 separate tridiagonal problems, each 

of which determines 499 values j = 1,2,. . . ,499, for a distinct mode number 

m. Also calculated for each mode, using results of the lower-numbered modes, is the 

error, lluk - GkllL2(n).  To exploit the increasing smoothness of the solution in time, 

we increase the size of the-time step, T ,  as the calculations progress. Specifically, T 

ranges from 0.0001 initially to a maximum value of 0.0025, which is still small enough 

to keep the timestepping error negligible. Figure 7 shows a convergence plot of the 

errors computed for the three output times. The plot indicates convergence beyond 

all orders in r ,  until the machine's precision limits have been reached. This result is 

consistent with the fact that the exact solution in this test problem is smooth in 2, 

belonging to H;**(R) for all r 2 1. 

These computational tests verify that it is possible in practice to obtain O(M-'+h2) 
errors using the FSM, in accordance with Theorem 1. 



Table 2: Parameter Summary for Test 2 (varying M ) .  

Diffusivity: I< = 0.02 

Time Data: 

number of time step total time 

steps 7 t 

100 

80 

80 

100 

80 

0.0001 0 

0.00025 

0.00025 

0.00050 

0.00250 

0.01 

0.03* 

0.05 

0.10' 

0.30* 
~~~ 

* results included in Figure 7. 
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Figure 6: Convergence plot for changing number M of Fourier modes 
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8 Extension to the Finite-Layer Method 

It is possible to extend the error estimate of Theorem 1 to problems on three-dimensional 

domains R = X x Y x 2 in a straightforward way. We now sketch this extension. By 

analogy with the FSM, we consider problems that are geometrically regular and peri- 

odic in =c and y. Consider the following initial-boundary-value problem: 

u(x, Y7 2, t )  = 0, ( X , Y ,  2) E dfl, t E [o, 571 (75) 

U(X> Y7 2 , O )  = U0(X, Y., 4, (2, Y, 2) E Q* 

Here, the coefficients S, Kx, KY, and Kz vary as functions of z and obey bounds similar 

to those given in the inequalities (2), (3), and (4). 

Discretization in the finite-layer method is analogous to that used in the FSM. 
To discretize the problem in the z-direction, we again use the piecewise linear basis 

functions {lj(z)}fzf. For the x- and y-directions, we use truncated Fourier series. The 

exponential basis functions in this case have the following form: 

By orthogonality, we have 

O 

1 

for m # m' or n # n' 
for m = m' and n = n'. 

L/ WnmWm',n'dx= { 
4n2 XXY 

We again use backward differences to approximate time derivatives. 

(77) 

The appropriate nonisotropic Hilbert space H;*qi2(fl) in this setting contains all 

v E L*(fl) such that 
2 

and 

By analogy with the FSM, the space 'H contains all functions v E H;~q*~(fl) for 

which a,"axv, d,2dyv, aLa;v, a:+'aiv, a:a,"+'v E L2(f2)  and v vanishes on dfl. The trial 
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J 

space 7? is the span of the tensor-product 

1,2,. . . , J  - 1, Iml 5 M ,  and In1 5 
that used in the analysis of the FSM. 
Fourier series: 

( P V ) ( X , Y )  := 

where 

basis functions l j ( Z ) W m l n ( x ,  y ) ,  where j = 

N .  The interpolation operator Z is analogous to 

The projection P in this context truncates double 

When we extend P to functions v E X) we have a projection error estimate comparable 

to Equation (32). 

Lemma 7 . Ifv E Z, then 

(ParseVal equality) = 

( Parsevd equality) = 
t -  

. .  

We now state the approximation error estimate corresponding to Lemma 1 and 

Lemma 2. The proofs of the next two lemmas are identical to 'those of the earlier 

lemmas, except for the following changes: Integrations over X become integrations 
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over X x Y; the basis function wm(z )  is replaced by w,,,,(x, y ) ;  and the sums over m 

are replaced by double sums over m and n. 

Lemma 8 . If v E 3-1, then 

Lemma 9 If v E 3-1, then 

We obtain an error estimate for the finite-layer method by a sequence of arguments 

analogous to those leading to Theorem 1, incorporating the following changes: 

1. Replace integration over X by integration over X x Y .  

2. Replace sums over m by double sums over m and n and use the respective trun- 

cation limits M and N where appropriate. 

3. Manipulate the term ( KYtlyiik, in the error equation in a manner identical 

to that used for the term (Kz&iik, &w) in the FSM analysis. 

The following theorem results. 

Theorem 2 (Finite-Layer Error). Let uk E 3-1 denote the solution to the problem (75) 

at t = kr, and let Let iik E f i  be the corresponding solution to the finite-layer method. 

If p is any integer such that pr 5 T ,  then 
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*- where 

A =  

,P L 

2s*7 
s - 2s*r' 

Thus the error is O(M-' + N-q + h2 + T ) ,  in close analogy with the error estimate of 

Theorem 1. 
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Appendix 

Projection Error 

Lemma 10 . Let r and A4 be positive integers, and let v E H,'y2(SI). Then 

Proof: By definition, 

Ilv - w l ; 2 ( * )  

(ParseVal equality) 

( ParseVal equality) 
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8.- 

i Discrete Form of Gronwall's Lemma 

Lemma 11 Suppose that the real sequence { v k } c = o  satisfies the inequality 

where A, p, and T are nonnegative real numbers: Then 

I V k I < P e  (APT 7 for k = O,l , -* ,P.  

Proof: Define the sequence { & } r . o  by 

' The definition of z k  and the inequality of the hypothesis imply that 

and 

that is, 

Apply the above result k-1 times. Since  AT)^ ,< expT for any integer k ,  0 5 k 5 P, 
we have 

The inequality in the hypothesis implies the desired result. 
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Computer models of groundwater flow and contaminant transport are important tools in designing 
aquifer cleanup schemes. Models also aid in the investigation of poorly understood aspects of 
underground flows. Examples include the spread of contaminants by random velocity variations 
and the effects of measurement uncertainty on model predictions. Both applications -- the 
practical and the theoretical -- require more efficiency and accuracy than standard models 
provide. This research focuses on better numerical methods for such models. 

Groundwater models are based on differential equations. The solutions to these equations give 
the water velocity, pressure (or head), and contaminant concentrations. For real aquifers, it is 
usually impossible to solve the equations exactly. Instead, engineers use complex computer codes 
to generate approximate solutions. Most codes employ finite differences or finite elements, which 
partition aquifers into cells and compute local mass and momentum balances. These discrete 
techniques require billions of arithmetic operations, taking hours or days to run on 
supercomputers. 

Careful studies, involving the world's most 
thoroughly measured contamination sites, 
show that standard models are often too 
inaccurate to be realistic, even when good site 
data exist. Especially troublesome are 
heterogeneous sites, where rock properties 
vary over several orders of magnitude. 

Two approaches help overcome these 
difficulties. First, proper discrete techniques 
can maximize the accuracy available for a 
given number of arithmetic operations. 
Second, new solution algorithms can reduce 
numerical sensitivity to heterogeneity. Also, 
well designed algorithms can exploit the 
emerging generation of fast, parallel- 
architecture computers. 

For the flow equations a technique called 
mixed finite elements produces accurate 
water velocities, unlike standard methods that 
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and in parallel, even when heterogeneity forces modelers to use extremely small cells for 
resolution. 

A technique called alternating-direction collocation yields highly accurate solutions to the 
transport equation. The technique works well on parallel machines, and it admits embellishments 
that make it suitable for high-velocity flows. Among these are timestepping along natural 
contaminant paths (method of characteristics) and adaptively locating small cells to resolve 
moving contaminant fronts (local grid refinement). 

One can extend the techniques to accommodate more complicated physics. Of special interest are 
tensor rock properties and the nonlineacities associated with nonaqueous contaminants. Other 
research involves new scaling rules for aquifer properties. These rules translate hydrogeologic 
data to the scale of cells used in field-wide models. 
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