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                                                       Laramie, WY 82071

The  use of  computer  models to  simulate groundwater flow and  contaminant transport
has burgeoned in the past few years.  There are  good reasons  for this phenomenon:
Natural aquifers tend  to have complicated geometries  and highly  variable rock prop-
erties, and there is a pressing societal need for quantitative predictions of contaminant
movements  in  these complex  geologic settings.  Computer models  offer the only real-
istic hope for meeting this need.
    Despite the  apparent  power of  computer models,  many  technical  problems  conspire
to reduce their accuracy in field  studies. Obvious  to most water resources professionals
are  difficulties  associated  with aquifer  characterization  and the "garbage in, garbage
out" syndrome. More subtle, however, are several mathematical issues that require
adequate  resolution  before  we  can  expect  realistic  aquifer  simulations.  This  abstract
is a brief summary of our research into these issues.
     Three  concepts  are  common  to  all numerical models of  underground flows.  First,
one must make some assumptions about the physics and chemistry of the flows. These
assumptions give rise to complicated and often nonlinear sets of partial differential
equations  that  govern  fluid  velocities, movements  and  fates of  contaminant plumes,
and other variables of interest. Second, to solve the governing equations, one must
approximate them,  usually  by  converting the  differential  equations  to discrete alge-
braic analogs.  Among  the  most  common "discretization" methods are finite-difference
and finite-element techniques.  These  methods  partition the aquifer into grid cells or
nodes,  associating with  each  cell or  node  algebraic  equations  analogous  to  the  mass
or momentum balance for that zone. The results are systems of algebraic equations,
characterized  by  matrices  that  can  have  tens  of  thousands  or  even  millions of entries.
Third,  given  such  large matrix  analogs  of  the original flow and  transport  equations,
one must devise efficient ways to solve them on digital computers.
      Some of our work focuses on the first phase of  the  modeling  enterprise, the deriva-
tion of governing equations. Although the physics of flows in porous media are well
established at small scales, they are poorly understood at scales where the natural
heterogeneities of the rock matrix are prominent.  Such heterogeneities arise from
variations  in  depositional  environment,  diagenetic  changes  in  the  pore  geometry of
the  rock, and  structural  events  that  cause  fracturing  and  faulting.  To the modeler,
these heterogeneities pose a severe challenge: How can we scale our knowledge, gained
from measurements on cores, well tests,  and wireline data, to the scale of typical grid
cells?
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      As an example of the utility of numerical  models in answering  scaling prob-
lems, consider the small-scale fingering and channeling of water-soluble contaminants
through an aquifer that has high-conductivity streaks distributed irregularly in space.
Capturing the precise geometry of such plumes in a model is typically infeasible: It
simply requires too much fine-scale knowledge of an aquifer's properties, and this
knowledge is expensive even in bench-scale studies. However, one can use numerical
models to investigate connections between well understood, small-scale physics and
the large-scale movement of plumes in the presence of heterogeneities. We have ex-
plored techniques for modeling the average behavior of such plumes by incorporating
"effective hydrodynamic dispersivities" in the governing equations. To incorporate
geologic and petrologic information into the calculation of the new effective dispersiv-
ity parameters, though, we need help from engineers and hydrogeologists, who have
detailed knowledge of the types of measurements that are feasible and a sense of the
statistical structure of the conductivity fields that occur in particular formations.
     We have also devoted considerable effort to the development of finite-difference
and finite-element approximations to the equations governing groundwater flow and
contaminant transport. For example, we have explored the calculation of accurate
fluid velocities from the groundwater flow equations, the resolution of steep concen-
tration gradients in moving contaminant pluses, and the efficient discretization of
multiphase flows, such as those that occur beneath leaking gasoline tanks, TCE spills,
and other nonaqueous liquid sources.
     Among the most promising methods for approximating the groundwater flow equa-
tion are mixed finite-element methods. These methods solve the coupled system com-
prising the mass balance for water and Darcy's law. By choosing appropriate shape
functions, one can generate approximate solutions for the water velocity having the
same order of accuracy as the approximate hydraulic head. In contrast, standard
finite-element and finite-difference methods, which differentiate numerical heads to
compute Darcy velocities, yield approximate velocities that are less accurate than
the heads and therefore less useful in modeling contaminant transport.
     In the realm of transport equations, we have focused much of our attention on
cases where advective transport dominates the effects of hydrodynamic dispersion —
a case of prime interest in many sandstone and unconsolidated aquifers. Plumes in
this regime  tend to  have persistent,  steep concentration  gradients that are difficult
to resolve numerically with coarse-celled grids. One strategy that we have used to
overcome this difficulty is the use of adaptive local grid refinement. The idea is to
assign smaller grid cells to regions of the plume needing greater numerical resolution.
However, the fact that the plume is moving makes implementation of the idea on
the computer a delicate task. Among the algorithmic difficulties that we have tried
to address are the disruption of efficient matrix structures associated with regular,
coarse grids and the poor numerical conditioning that results from the use of cells
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having widely disparate sizes.
     We have employed a variety of other techniques in this arena. For example, it is
possible to adopt a "hybrid" coordinate system in discretizing the contaminant trans-
port equation, measuring temporal rates of concentration change along the paths of
fluid particles, not at fixed spatial points.  This modified method of characteristics
allows more accurate timestepping than the usual formulation. Also, we have inves-
tigated the use of finite-element collocation, a high-accuracy discretization technique,
to reduce the numerical smearing associated with many low-order finite-element and
finite-difference methods.
      In modeling multiphase flows, we have developed a variety of improvements to the
standard discretizations. Among these are mass-conserving formulations of the time
derivatives in vadose-zone flows, splittings of the nonlinear fractional flow in satura-
tion equations to facilitate the use of the modified method of characteristics, and the
analysis of finite-element methods in the mathematically difficult case when capillary
pressure gradients are negligible or degenerate. By no means has our work settled
all of the important issues in this class of flows. Nonaqueous-phase contaminant flow
promises to remain a significant challenge for modelers and engineers for years to
come.
      Finally, our research has led to the development of several new approaches for solv-
ing the large matrix equations associated with discretizations of the governing equa-
tions. For example, we have examined iterative schemes for solving the mixed finite-
element equations that use conjugate-gradient and multigrid techniques to overcome
the slow convergence associated with highly heterogeneous conductivity fields. We
have also explored alternating-direction methods for decomposing multidimensional
problems to one-dimensional structures that can be solved efficiently on parallel-
processing computers. We have also developed efficient ways to decompose locally
refined grids into coupled coarse-grid problems and fine-grid problems, thereby over-
coming the disruption of regular coarse-grid structures and the conditioning problems
associated with local grid refinement.
     Mathematicians often unwittingly give the impression that numerical problems
associated with groundwater modeling are under control and that the remaining diffi-
culties are attributable to poor input data. However, poor data constitute only part of
the problem. Many of the standard numerical techniques are blunt instruments in the
presence of the mathematically difficult features of groundwater flow and transport.
We aim to sharpen these instruments.
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