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ABSTRACT 

This research studies the monthly precipitation information content 
in the Snowy Range Observatory. The Observatory currently consists of 20 
precipitation gages with varying length of record. The study was 
proceeded through three phases. 

Phase I - Estimation of Missing Values Due to various reasons, 
records of all gages involves missing values. The study was first 
performed to compare various methods of different complexity to estimzte 
the missing values. Although there was no single method that is 
universally superior in all circumstances, a simple method of linear 
inverse distance method was found to be rather accurate. It was then used 
to fill the missing values in all precipitation gages. 

Phase I1 - Analysis of Monthly Precipitation The time series of 
monthly total precipitation was first analyzed station by station. The 
accuracy of different methods of estimating the spatial distribution of 
the average precipitation were investigated. Then, the spatial structures 
of the monthly total precipitation were identified using variogram 
analysis of geostatistics. Information derived from this phase serves as 
the basis for precipitation network analysis in the next phase. 

Phase I11 - Precipitation Network Analysis The objective of this 
phase is t o  examine the effect of having a reduced network, in terms of 
gage number, on the l o s s  of information content. The present network 
containing 21 gages was used as the basis for comparison. Two reduced 
networks each containing 15 and 12 gages, respectively, were subjectively 
selected on the basis of geographical location, accessibility, and 
aesthetic considerations. Nonstationary Kriging technique was employed to 
estimate the spatial distribution of error based on different network 
configurations. It was found that the two reduced networks have a sinall 
increase in error, as compared with 21 stations, during the months of Nay 
- September. However, increase in error could be as high as 25%--30% 
during the months of October - April. High error occurs on the upper 
third of the watershed resulting from the removal of gages from the area 
due to accessibility consideration. 
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CHAPTER I 

INTRODUCTION 

The Snowy Range Observatory has been maintained since the mid- 
1960's. Great environmental diversity is found within the relatively 
small geographical area. The Snowy Range, thus, has been utilized as a 
study for many research projects. Centered in the Nash Fork Creek 
drainage of the Medicine Bow National Forest in the upper North Platte 
River basin (Figure 1.1) , the Observatory consists of a network of 21 
recording precipitation gaging stations and other stations measuring 
streamflow, humidity, temperature and wind. The list of the stations is 
presented on Table 1.1. 

From 1972 to 1988, precipitation data were collected and the various 
types of the gaging instruments were increased to suit the needs of the 
research being conducted. During the same period, data collection was 
interrupted in 1974-1975 which was attributed to the 'energy-boom' in 
Wyoming resulting in a shift of research focus from high-mountain 
watershed projects to environmental assessment. 

-- 

Two primary objectives in this research: (1) to evaluate the existing 
precipitation gage network in Snowy Range Observatory and (2) to determine 
the reduced network which retains the maximum amount of precipitation 
information subject to geographical and strategical constraints. 

This research analyzes the monthly precipitation data that have been 
stored in Water Resources Data System (WRDS) maintained by the Wyoming 
Water Research Center. Due to unexpected interruption in data collection 
system, the study first estimates missing values occurring in each 
station. Before missing values were estimated, various techniques were 
applied and their performances were examined, Statistical analysis of 
monthly precipitation data, which is nonstationarity, was performed which 
served as the basis for formulating the optimal reduced precipitation 
network model. 

The report is organized as the following: Chapter I1 discusses the 
estimation of missing values by different methods and compares their 
performance. In Chapter 111, procedures are described and applied to 
transform a nonstationary monthly precipitation time series to a 
stationary one. Chapter IV considers the spatial distribution of the 
monthly precipitation by two types of method: (1) the spatially weighted 
average using "Inverse Distance" and "Gaussian Smoothing" methods without 
considering spatial correlation, and (2) 'non-stationary kriging' 
considering the spatial correlation of monthly precipitation. The 
performance of  these methods were compared on the basis of contour maps 
for the estimated means and the associated errors. Chapter V presents the 
model formulation for the optimum precipitation network design using zero- 
one mixed integer programming. The summary of final results and some 
recommendations are presented in Chapter VI. The contour maps resulting 
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S t a t i o n  
I D  

0101 

3 

Locat i o n  Number of 
y e a r s  

La t i tude  Longitude Eleva t ion  of r eco rd  

41-18-00 106-09-00 8440.00 12 y r s  

~ 

0103-1 

0103-2 

41-21-00 106-14-00 9940.00 14 y r s  

41-21-00 106-14-00 9940.00 14 y r s  

0123 

0124 

0125 

41-21-00 106-15-00 10380.00 12 y r s  

41-21-00 106-15-00 10440.00 12 y r s  

41-23-00 106-15-00 10800.00  12 yrs 

0126 

0127 

41-22-00 106-16-00 11020.00 12 y r s  

41-21-00 106-13-00 9840.00 12 y r s  

11 0103-A I 41-21-00 1106-13-00 I 10060.00 I 14 y r s  

11 0106 I 41-20-00 1106-11-00 I 9100.00 I 12 y r s  

11 0108-2 I 41-22-00 I 106-15-00 I 10360.00 I 14 y r s  

11 0108-A I 41-22-00 I 106-15-00 1 10360.00 I 14 y r s  - 

, -  

11 0109 I 41-22-00 I 106-16-00 I 10740.00 I 1 2  yrs 

11 0115-2 I 41-22-00 I 106-15-00 I 10640.00 I 14 y r s  

11 0115-A I 41-22-00 I 106-15-00 I 10560.00 I 14 yrs 

11 0119 1 41-21-00 1106-13-00 I 9880.00 I 12 y r s  

11 0120 I 41-21-00 1 106-13-00 I 9960.00 I 12 yrs 

11 0121 I 41-22-00 I 106-14-00 I 10320.00 I 12 y r s  

11 0121-A 1 41-21-49 1106-13-50 I 10320.00 I 07 yrs 

11 0122 I 41-21-00 1106-15-00 I 10380.00 I 12 y r s  

I--- ___ I I 1 I 

Table 1.1 : L i s t  of P r e c i p i t a t i o n  S t a t i o n s  i n  Snowy 
Range Observatory (WescheJ982) 



from Chapter IV and a FORTRAN program developed for the analysis are given 
in Appendices A and B, respectively. 
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CHAPTER I1 

ESTIMATION OF MISSING DATA 

11.1 Introduction 

The precipitation data from Snowy Range Observatory had been 
analyzed in this study starting from June 1962 to June 1988 (a total of 
169 months). There are, however, observations missing in the data set. 
When a designed analysis is spoiled by missing data there are basically 
two ways to perform the analysis. One is to analyze the observed incorn- 
plete data set. Alternatively, an approach can be applied to estimate the 
missing values and then to analyze the 'complete' precipitation data with 
these estimated values inserted. The first approach is undesirable for 
this study, in particular, because the missing data occurred very irregu- 
larly through the recording period in all existing stations. For esarnpfe, 
two monthly precipitation time series containing missing data from 
stations 106 and 108-2, are shown in Figures 11.1 and 11.2. 

Simultaneous time-space data are required at all stations to charac- 
terize the temporal and spatial correlation structures of the precipi- 
tations. Only 51 months throughout the entire 169 months were recorded 
concurrently at the Snowy Range watershed. Thus, ignoring the missing 
values results in losing about two thirds of the observations at all 
precipitation gages (on the average, each individual station out of all 21 
stations has about 150 observations). For this reason, it is undesirable 
to conduct this study without estimating the missing values. 

In the first attempt, the Box-Jenkins univariate forecasting method 
(Markridakis et al., 1983 and Vandaele, 1983) was used to analyze temporal 
correlation o f  monthly precipitation for each individual station. This is 
because the missing values occurred irregularly making it difficult to use 
multivariate time series analysis which requires the observations to occur 
concurrently. 

In univariate time series analysis, the first step is to identify i f  
the time series has a specific ARIMA structure. For this, the autocorre- 
lation function is obtained by SAS/ETS (SAS, 1984) for each individual 
station. Sample results for stations 102 and 119 are shown in Figures 11.3 
and 11.4. By using the Ljung-Box test (Bowerman et al., 1987 and Markri- 
dakis et al., 1983). The auto-correlations were not significant because 
x2 with 30 degrees of freedom is 43.77 at 5% significant level which is 
large than the statistic value of 39.56 for station 102 and 38.78 for 
station 119. This implies that the time series of monthly precipitation 
data for stations 102 and 119 are random with no significant temporal 
correlation structure. This situation occurs throughout all the remaining 
19 precipitation stations in the Observatory. Since no specific ARIMA 
models could be identified for monthly precipitation data, the use of the 
Box-Jenkins forecasting method for estimating missing values was 
abandoned. 
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ARIMA PROCEDURE (STATION 102) 
AUTOCORRELATI ONS 

LAG COVARIANCE -1 9 8 7 6 5 4 3 2 1 0  1 2  3 4 5 6 7 8 9 1 
I * * * * * * * * * * * * * * * * * * * * '  

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 

1 
1 

1 
1 
1 

1 

1 
1 
1 

1 

I 
* I *  
. I '  

2.57152 ' I 
I 
I 
I 

0 
1 0.053595 
2 0.0110287 
3 -0.083829 
4 0.026479 
5 0.0395429 
6 -0.42218 
7 0.168414 
8 0.375776 
9 -0.11497 

1 0  -0.43619 
11 -0.196167 
1 2  0.263037 
1 3  -0.246032 
1 4  0,0974338 
1 5  -0.162852 
1 6  0.428415 
17 -0 .233829 
1 8  -0.102615 
1 9  0.201029 
2 0  -0.19482 
2 1  -0,396177 
22  0 .188901  
23  0.488366 

2 5  -0.0557214 
2 6  0.0913949 
2 7  0.0177282 
28  0.160982 
29  -0,490346 

: * I  
I 1 :  
I : *** I 
I I *  : 
1 I ***, 
I : * I  
I *** I  
I . * * I  

I I *  : 

. 
. . 

. / * *  : 1 

: * I  . 1 
I *** :  

. * I  . 1 

I / *  **** * .  1 
24  0.35209 / * * *  i 

I . **** I *  : 1 

I 
I 

I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 

. ** 

. ** 
** . . I : * * I  

I . *** I 
. . 
. . I *  : . I 
. 
. I ! * *  : 1 3 0  0.249222 I 

AUTOCORRELATION CHECK FOR WHITE NOISE 

TO CHI AUTOCORRELATIONS 
LAG SQUARE DF PROB 

6 3.32 6 0.768 0 .021  0.004 -0.033 0.010 0,015 -0,164 
1 2  12 .03  1 2  0.444 0.065 0.146 -0.045 -0.170 -0 ,076  0.102 
1 8  18 .69  1 8  0 . 4 1 1  -0.096 0.038 -0.063 0.167 -0 .091  -0.040 
24 31.87 24 0 .130 0.078 -0.076 -0.154 0.073 0.190 0.137 
3 0  39 .56  30 0.114 -0.022 0.036 0.007 0.063 -0.191 0.097 

Figure 11.3 : Autocorrelations at station 102 
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ARIMA PROCEDURE (STATION 119) 
AUTOCORRELATIONS 

LAG COVARIANCE -1 9 8 7 6 5 4 3 2 1 0 1 2  3 4 5 6 7 8 9 1 
. . . . . . . . . . . . . . . . . . . . . .  

1 
1 

1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

- 1  
1 
1 
1 

1 
1 
1 
1 

I 

* I *  
* I *  

2.73073 I I 
I 
I 
I 
I 
I 

0 
1 - 0 . 0 1 3 3 3 0 1  
2 -0.249693 
3 0.0658215 
4 -0 .0275677 
5 -0 .0601951 
6 -0.363533 
7 -0 . 0297245 
8 0.433612 
9 -0.124588 

10  -0,206754 
11 -0.18758 
1 2  0.287082 
1 3  -0.186568 
1 4  0.19402 
15  -0.121405 
1 6  0.324022 
17  -0.155573 
1 8  -0.248737 
19 0.100324 
2 0  -0.210515 
2 1  -0.515838 
22  0 .0325981  
23  0.654807 
2 4  0.634183 
2 5  -0.308912 
2 6  -0.133387 
2 7  -0.257144 
28  0.177734 
2 9  -0.589677 
3 0  0.127712 I 

: * * /  : 1 

I :***I : 1 . I I * * *  : 
I : * I  
1 . * * I  
I . * I  
I I * *  : 
1 * I  
I I *  : 
I : * '  
I I * *  : 
I : * I  

. . 
. 

. . I . ** I  * .  1 

I I : . **** * * /  1 

I I : * * /  * 1 

I 

. 
. I I 

I ****: 
I ***** 

I : * * I  

I . **** 
I I *  1 

t 

. . . . . I *  
I . 

1 

. . 
AUTOCORRELATION CHECK FOR WHITE NOISE 

TO CHI AUTOCORRELATIONS 
LAG SQUARE DF PROB 

6 2.43 6 0.876 -0.005 -0.091 0,024 -0.010 -0.022 -0.133 
1 2  7.08 1 2  0.852 -0 .011  0.159 -0.046 -0.076 -0.069 0.105 
1 8  10 .97  1 8  0.896 -0.068 0 .071  -0.044 0.119 -0.057 -0 .091 
24 2 8 . 9 4  24 0.222 0.037 -0.077 -0.189 0,012 0.240 0 .232 
3 0  38 .78  30 0 . 1 3 1  -0.113 -0.049 -0.094 0.065 -0.216 0.043 

Figure 11.4 :Autocorrelations at station 119 
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Alternatively, several estimation methods considering spatial corre- 
lation were used to estimate the missing observations. The missing data 
at a station can be estimated by the weighted average of the observed 
precipitations from the surrounding stations as 

S 

s= 1 
(11.1) 

A 

where X(0,t) is the estimated precipitation amount for a station with 
missing data at time t, X(s,t) is the observed precipitation from a 
surrounding station s at time t, w, is the weight for station s ,  and S is 
the total number of surrounding stations used in estimation. 

Three types of method are used to in this study estimate the missing 
values: (1) inverse distance weighing technique, (2) nonlinear programming 
technique to minimize the variance of the estimates, and ( 3 )  regression 
technique considering the cross-correlations between the station with 
missing values and the surrounding stations with observations. The 
resulting regression statistics such as variance, standard error, and R2 
were also used to define the weights for estima.ting the missing values. 

11.2 Es t ima t ion Methods 

Since the estimates are a weighted linear combination of the 
observations from the surrounding stations, the results of estimation 
depend on how the weighing factors are calculated. 

1 1 . 2 . 1  Inverse Distance Weinhinn Method 

The inverse distance weighing method considers the premise that 
weight contributed from a station with observations to the estimated 
precipitation amount at the station with missing values is inversely 
proportional to the physical distance between the two stations. The 
contributing weight for the station s with observation to the station with 
missing values, ws, is computed by 

S= C($) 1 

(11.2) 

where D, is the distance between the station s with odservations and the 
station with missing values, n is a constant by which the distance is 
weighted, S is the number of surrounding stations used (Tung, 1983) in the 
estimation. If the value of a! is very large, the weights will be concen- 
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trated on a few stations that are very close to the station with missing 
values. On the other hand, the weight may be dispersed to a large number 
of the surrounding stations for a small a. For instance, if a equals 
zero, then every surrounding station under consideration would have an 
equal weight. 

In this study, the values ail and 2 are used and they are called the 
linear inverse distance (IDLIN) method and square inverse distance (IDSQ) 
method, respectively. For these two methods, the IDSQ technique gives 
higher weight for the station closer to the point of estimation than the 
IDLIN method. The amount of monthly precipitation at the station with 
missing values can be determined by the IDLIN method as 

and by the IDSQ method as 

s= k 1 ( x ( ; ; t ) )  
X ^ ( O , t )  = c 

s- 1 (2) 

(11.3) 

(11.4) 

11.2.2 Optimal WeiPhinn Method 
A 

Referring to Eq.(II.l), X(0,t) is a random variable because it is a 
linear function of random observations of the surrounding stations. Its 
degree o f  uncertainty, represented by the variance, can be computed as 

S 

s= 1 

11 

- . , : ._ . 



= W W t W  

in which 

(11.5) 

(11.6) 

(11.7) 

(11.8) 

with C,- being the covariance matrix between stations for month t; X, and 
pt are Sxl  vectors of the random observation and the mean of monthly 
precipitation at station s, for s=1,2,..,S, in month t and T is transpose 
of a vector or a matrix. It is, then, desirable to find the yeighing 
factors that minimizes the variance associated with the estimator X ( 0 ,  t) , 

This method is called herein the optimum weighing method (OPTIM) in 
that it has the object function of minimizing the error variance of the 
estimator subject to the constraint that the sum of weights is 1. That 
is, 

minimize 020t  (11.9) 

subject to 

S c w s =  1 (I1 . 10) 
s=1 

in which %(w,X) is the Lagrange function and X is the Lagrangian 
multiplier. The above minimization problem is solved by the Lagrange 
multiplier method which converts the original constrained minimization 
problem into an unconstrained minimization one as 

min ( w ,  A )  = wrC tw + 2A ( ~ ~ 1 - 1 )  

Then, the solution to Eq.(II.11) must satisfy the following 
equations 

(11.11) 

1 2  

. .  . .  



s = 2c=, w +  21 1 = 0 
d W  I. 

(11.12) 

(11.13) 

where 1 is a vector of ones. Solving Eqs.(II.12) and (11.13), the optimal 
weighing factors can be obtained as 

(11.14) 

in which W' is the vector of optimum weight for the observed stations. 
Then the missing values can be estimated by 

S 

2 c 0 ,  t) = c w,* x(s, t) 
s=l 

in which w,' is the optimum weight for the observed station s. 

(11.15) 

11.2.3 Cross Correlation Weighing (RSQR) Method 
Since the monthly precipitation could exhibit spatial 

correlation, measures of correlation between existing stations can be used 
to compute the weights. The basic idea is that if a measured station s is 
strongly correlated to the station with missing values through the whole 
recording period, then the station s should be given higher weight. 
Specifically, the weight for station s ,  w,, by the RSQR method is computed 
as 

(11.16) 

S= 1 

where r20s is the coefficient of  determination between the station with 
missing values and the station s with observations. 

11.2.4 Variance (or Standard Deviation) Weighing - - Method 

Based on the results of simple regression analysis between two 
stations, the statistics, such as standard error or its squared value, can 
a l s o  be used to compute the weight. Intuitively, the larger the variance 
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or the standard error for the station, the smaller the weight should be 
assigned to it. Therefore, the weight should be inversely proportional to 
the variance and standard error. The inverse variance (INVAR) and inverse 
standard error (INSTD) techniques are similar to the IDSQ and IDLIN 
methods, respectively. The only difference is that the IDLIN and the IDSQ 
techniques require only physical distances between stations to calculate 
the weights whereas the INVAR and the INSTD methods require the observed 
monthly precipitation data to compute the statistics to obtain the weights 
for all stations used. The weights by the INVAR method are calculated as 

1 

00s 
2 

, s=1,2, . . .  s Ws= 

s=1 t+ '30, 

and by the INSTD method 

1 

(11.17) 

Ws= I s=1,2, . . . I  s e l  
s=l 00s 

(11.18) 

where oos is standard error from regression between the station with 
missing values and station s with observations. 

1 1 . 2 . 5  Hybrid Method 

In the above methods, the missing monthly precipitation data are 
estimated from the weighted average of the surrounding observed values 
using various weighing techniques. In these methods, the actual observed 
monthly precipitation data from the surrounding stations are used. 
Alternatively, simple regression equations can be developed for the 
station to be estimated and all other surrounding stations based on the 
data concurrently available. These regression equations can be used, as 
the first attempt, to estimate the missing value from each surrounding 
station. The resulting estimated missing values from the regression 
equations are further weighted by the above methods. That i s ,  

(11.19) 
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where '(0,t) is the missing monthly total precipitation estimated by the 
regression equation from station s with observations and X(0,t) is the 
estimated missing monthly total Precipitation computed by the weighted 
average of regression estimates, X(0,t). 

11.3 Comparison Study for the Performance of Estimation 
Methods 

Among the estimation methods, it is desirable to 
examine the performance of each method and identify the most accurate one. 
Two criteria are used in this performance evaluation and they are the 
root-mean-square-error (RMSE) 

and the mean-absolute-error (MAE) 

(11.20) 

(11.21) 

A 

in which T is total months used, and &(s,t) is the value estimated by 
weighing method k. 

In this comparison, precipitation stations were selected under the  
condition that there exists, among them, as many concurrently observed 
values as possible and that all of them are not too close to each other. 
Nine such stations were chosen and they were 102, 103-1, 108-2, 115-2, 
119, 122, 123, 124 and 125. Three different periods data set observed 
concurrently at all 9 stations were selected to establish regression 
equations between two stations to compute the corresponding correlation, 
variance, or standard error for purpose of determining the weights from 
different weighing techniques. These periods were a 12-month period 
(7/1982-12/1983), a 24-month period (2/1981-12/1983), and a 48-month 
period (8/1978-12/1983). Then it was assumed that the observed monthly 
precipitation (1/1985-7/1988) for these nine stations were missing. The 
estimated values for the assumed missing period by the different 
estimation methods on the basis of different record lengths (i.e., 12-, 
24-, and 48-month) were compared with the actual observations to calculate 
the RMSE and MAE. 
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11.4 Results and Discussion 

The r e s u l t s  a s s o c i a t e d  with two s t a t i o n s  ( 1 2 5 ,  103-1) ou t  of  9 a r e  
presented  h e r e .  Tables  1 1 . 1 - 1 1 . 2  show t h e  r e s u l t s  of  RMSE and MAE 
inc lud ing  t h e  ind iv idua l  weight and r e g r e s s i o n  equat ion  f o r  each s t a t i o n  
used.  The va lues  of e r r o r  c r i t e r i a  a r e  a l s o  p l o t t e d  i n  Figures  1 1 . 5  and 
1 1 . 6 .  

Table 11.1 p r e s e n t s  t h e  comparison o f  each weighing technique f o r  
s t a t i o n  125.  Re fe r r ing  t o  Table I I . l ( b ) ,  t h e  IDLIN method e s t i m a t e s ,  
wi thout  u s ing  r e g r e s s i o n ,  has  t h e  sma l l e s t  v a l u e s  of  RMSE (0.592) and MAE 
( 0 . 4 3 6 )  f o r  a l l  t h r e e  d i f f e r e n t  pe r iods .  The IDSQ method has  the  second 
smallest va lues  of e r r o r s  (RMSE = 0.626,  MAE = 0 . 4 5 6 ) .  The INVAR 
technique ,  cons ide r ing  r e g r e s s i o n ,  y i e l d s  t h e  l a r g e s t  va lues  o f  RMSE 
(0.983)  and MAE ( 0 , 7 3 5 )  f o r  a 12-month p e r i o d ,  

D i f f e r e n t  r e s u l t s  f o r  s t a t i o n  103-1 i n  Table 1 1 . 2  show t h a t  t he  
INSTD method cons ide r ing  r e g r e s s i o n h a s  the  s m a l l e s t v a l u e  of RMSE (0.348)  
b u t  a s l i g h t l y  l a r g e  MAE ( .269)  f o r  a 12-month pe r iod  whereas t h e  IDSQ 
method, w i thou t  cons ide r ing  r eg res s ion ,  has  t h e  smallest va lue  of  MAE 
(0.255)  and a r a t h e r  l a r g e  RMSE (0 .398) .  Not presented  h e r e ,  t he  r e s u l t s  
f o r  s t a t i o n  123 shows t h a t  t he  OPTIM method wi thout  us ing  r eg res s ion  has  
t h e  s m a l l e s t  va lues  of RMSE (0 .570)  and MAE ( 0 . 3 8 9 ) .  I t  was a l s o  found 
t h a t  when t h e  number o f  yea r s  used t o  e s t a b l i s h  r eg res s ion  equat ions 
inc reased ,  t h e  corresponding e r r o r s  decreased .  

There i s  no s i n g l e  e s t ima t ion  technique t h a t  i s  uniformly supe r io r  
i n  a l l  c i rcumstances .  Overa l l  speaking,  t h e  l i n e a r  inverse  d i s t a n c e  
weighing method (IDLIN) i s  b e t t e r  than a l l  o t h e r  methods throughout the  9 
s t a t i o n s .  The IDLIN method i s  then used t o  estimate the  missing monthly 
p r e c i p i t a t i o n  f o r  f u r t h e r  a n a l y s i s .  

1 6  

. . -  . 1. 

d I . . . .  I .  



1 7  

Stat ion ' Methods \ 

Precipitation Data from Snowy R a n g e  

W e i g h t s  for e a c h  Stations 

STA 1 0 2 l S T A  1031 STA1082 STA 1152bTA119 STA 122 ISTA 123 lsTA 124 

Station t o  be estimated : 1 2 5  

IDSQ 0 . 0 1 4  0.040 

0 . 0 4 9  0 . 0 8 2  

1 1 ~ ~  0 . 1 0 0 l  0 .120  

f D L l N  

Stations u s e d  : 102,1031,1082,1152, 

( A ) .  Weights 1 1 9 , 1 2 2 , 1 2 3 , 1 2 4  
I 7 

0.181 0.510 0 . 0 2 7  0 . 0 9 8  0 .052  0.077 

0 .176  0 . 2 9 2  1 0 . 0 6 7  0 . 1 2 8  0 .093  I 0 . 1 1 4  

0 . 1 3 1  0 . 1 3 3  IO.100 0 . 1 6 5  0.137 1 0.114 1 
I N S - ~ ~  

RSQR 

~~ ~~ - ~- 

2 *a 0 .092  0 . 1 1 2  0.1511 - 0 . 1 6 1  0.088 0.152 0.128-1 0.117 

'4 0 . 0 9 7  0.111 0.1511 0.168 0 . 0 8 7  0.149 0.118 1 0 . 1 1 8  

1 (a  0 . 1 1 5 1  0 . 1 2 7  0 . 1 3 2  0 . 1 2 5  0.118 0 . 1 3 6  0 .120  I 0.128 
2 ** 0.100 0.118 0 . 1 4 7  0 . 1 3 6  0.105 0.135 0.126 0 . 1 3 3  

4 - I 0 . 1 0 8 ,  0.118 , 0 . 1 4 2 ,  0 . 1 3 5  0 .108  0 .135  0 . 1 2 6  I 0 . 1 2 8  , 

L 

1 ** 

INYAR 2 

4 .. 
1 ** 

(B). Estimation uithout using Regression from Individual S t a t i o n  

- - -~ ~ . -  -~ 

0 , 1 3 2  0 .128  0 . 0 8 5 -  0.094 - 0 . 1 4 9  0 . 1 2 7  I 0 . 1 6 3  I 0.122 
0 . 1 5 9  0 . 1 3 7  0.079 0 . 0 9 1  0 . 1 6 2  0.121 0.138 0.112 

0.154 0.138 0.082 0 . 0 9 1  0.164 0.116 0.233 0.122 
0 . 1 1 6  0 . 1 3 2  0 . 0 6 1  0 . 0 6 9  0 . 1 5 6  0 . 2 5 0  0.192 1 0.121 

OPTIH 2 0 .136  1 0 . 1 3 8  I 0 . 0 7 2  0.082 0 . 1 5 2  0.141 10.160 0 .119  

Table 11.1 : Comparison of Estimation Method f o r  S t a t i o n  125 

. 4 ** * 0 . 1 4 6  0 .140  0 . 0 7 1  0.078 0.164 

f 

0.128 0.146 0 . 1 2 7  

Error 
Years Criterion 

Methods 

IDSQ I I D L I N  I ~ N ~ ~ ' C .  1 R S O R  I I N V A R  1 O P T ' I Y  1 
2 

RHSE 0 . 6 2 6  0 . 5 9 2  0 . 6 9 8  0.710 0.709 0.83.5 

' MAE 0 . 4 5 6  0 . 4 3 6  0 . 6 8 2  0 . 4 9 0  0 . 5 3 0  I 0 . 5 5 6  

RNSE 0 , 6 2 6  0 . 5 9 2  0 . 6 6 4  0 . 6 9 2  0.821 U . P , 7 1  

M A E  0 . 4 5 6  0 . 4 3 6  0.470 0.481 0 . 5 i l  0 . 5 4 5  

RHSE 0 . 6 2 6  0 . 5 9 2  0.660 0 . 6 9 0  0 . S 2 0  0.839 

1 MAE 1 O.rc56 I O . f c 3 G  O . O t i 8  1 0 . 4 ~ 2  I 0 . 5 . i ~ )  1 0 . 5 5 3  
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c 

1 

Stat ion Weights f o r  each Stations ' Methods \' STA102 STAt082 ISTA1152) STA119 STA 1 2 2  lSTXl23 STA Z t & ) S T A ? 2 5  

IDSQ 0 . 0 6 6  0 . 1 2 0  0.060 0 . 3 2 8  0 . 1 9 2  0 . 1 2 8  0.@72 0.035 

IDLIN 0 .096  0.129 0 . 0 9 2  0 . 2 1 4  0 . 1 6 4  0 . 1 3 b  0 . 1 0 1  1 0 . 0 7 0  

llyrs 0 . 1 5 5  0 . 1 1 2  0 . 1 5 7  0 . 1 0 4  0 . 1 0 0  0 .088  0 . 1 9 4  I 0 . 0 9 0  

I N S T D  , ! 2  '* 0 . 1 5 8  0 . 1 0 2 '  0 . 1 4 3  ' 0 . 0 9 5  0 . 1 3 0  0 . 1 0 7  0.186 0 . 0 7 8  

'* 0 .162  0 . 0 9 6  0 , 1 3 7  0.091 0.1251 0 . 1 1 6  0 . 1 8 2  n . O Q ?  

1 ** 0 .128  0 . 1 2 0  0 . 1 2 1  0 . 1 3 4  0 . 1 1 9  0 . 1 3 3  0 . 1 3 4  I 0 . 1 1 1  

RSQR 2 ** 0 . 1 3 3  0 . 1 2 3  0 . 1 2 5  0 . 1 3 8  0 . 1 2 0  0 . 1 3 6  0 . 1 3 7  0 . 0 8 8  

4 * *  0 . 1 3 1  0 . 1 2 3 ,  0 . 1 2 5  , 0 . 1 3 4  0 . 1 2 3 -  0 . 1 3 3  0 , 1 3 3  0 . 0 9 8  

19 

, 

. 

Precipitation Data from Snowy Range 

1 " 0 .119  0 . 0 9 4  0 . 0 9 7  0 . 1 3 2  

INVAR 2 *' 0 . 1 2 6  0 . 0 9 9  0 . 1 0 4  0 . 1 2 8  

0 " 0 .133  0 . 0 9 9  0 . 1 0 2  0 . 2 3 8  

1 " 0.116 0 . 0 6 3  0 . 0 6 9  0 . 1 5 5  

OPTIM 2 *' 0 . 1 4 3  0 . 0 7 6  0.086 0 . 1 5 9  

' '4 " '0.153 0.075 0 . 0 5 2  0 . 1 7 2  

Station to be estimated : 1n31 

0 . 1 4 5  0 . 1 4 7  1 0 . 1 1 6  0 . 1 5 0  

0 . 1 4 2  0 . 1 3 3  I 0.IiS 0.156 

0 . 1 3 3  0 . 1 3 1  0 . 1 2 2  0 . 1 4 1  

0 . 1 4 9  0.101 0 . 1 2 0  n.13*  

0 . 1 4 8  0.168 0 . 1 2 6  0.09& 1 

. 0 . 1 3 4  0 . 1 5 3  1 0.1?& I 0.006 

(B). Estimation uithout using Regre.ssion from Individual Station 

E r r o r  M e t h o d s  

I IDLIN 1 XtdsTD 1 R S Q R  I I?;\'AR 1 @?TI?! Criterion IDSa 
Years 



I i 
I 

1 NS
Q

R 

,
3
5
7
 

,
2
7
4
 

.3
64

 

-
2
0
5
 

,.
36

8 

.2
86

 

i -. 

lW
A

R
 
OP

TI
H 

-
3
7
4
 

.3
66

 

.
2
8
0
 

.2
64

 

.3
89

 
.3

56
 

.3
0

4
 

.2
75

 

.3
76

 
.3

56
 

.2
93

 
.2

74
 

..
 

. 
. 

I 
I 

I 
I 

i 
I 

I 
I 

I 

(C
).

 
E
i
t
i
n
a
t
l
o
n
 
ur

in
(l

 R
e
g
r
e
e
l
i
o
n
 

fr
om

 
l
n
d
l
v
l
d
u
a
l
 
S
t
8
t
l
o
n
d
 

Ye
 

H
A

€
 

,
3
9
4
 
,
5
4
7
 

.3
96

 
.4

19
 
.6

32
 

.6
06

 
.
2
5
8
 

R
H

S
E

 
.4

44
 
.
6
9
0
 

.4
94

 
.7

40
 
.
5
4
0
 

.6
57

 
.3

78
 

H
A

E
 

.
3
5
7
 
.
5
4
0
 

,
3
8
7
 

.4
38

 
,
3
6
7
 

.4
72

 
.2

74
 

.7
23
1 
.
2
7
9
 I 

.2
84

 I 
.2

84
 

R
H

S
E

 
-
4
1
8
 ,

6
9
8
 

.4
90

 
.7

39
 
.
5
3
7
 I 

.3
70

 

.2
59

 
4 

M
A

E
 

.3
24

 
,
5
2
9
 

.3
88

 
.4

27
 
,
3
6
7
 

I 
I
 

1
 

1
 

I 
I 

I 
I 

H
 

H
 

E
3 . 

Y1
03

1,
1 

- .4
80
 +

 .
61
8 
X
1
0
8
2
~
 S
E 

= 
1

.3
1

3
 
(0
.7
91
) 

Y,
03

1,
2 

=
I 
.3
89
 

+ 
,6
35
 X
lo

BZ
l 

SE
 =
.a
83
 

(0
.7
70
) 

Yl
o3

1,
4 

= 
.2
94
 

+ 
.6
37
 X

10
82

~ 
SE

 =
 
,6
17
 
(0
.8
03
) 

Y1
03
1,
1 

=
-.

64
0 

+ 
l.
18
SX
12
3 

t 
SE

 - 1.6
66

 
(0
09
6s
) 

Y1
03

1,
2 

--
.2
86
 

+ 
1.
04
5X
12
3 

a 
SE

 - ,8
40
 

(0
-9

45
) 

Y1
03
1,
4 

= 
-.

08
8+

 
.9

8
8

 
X1

23
 t

 
SE

 =
 .

S
13

 
(0

.9
3

9
) 

* 
re

p
re

se
n

ts
 R

-S
qu

ar
e 



PRECIPITATION mnoN 12s WITHOUT REGRESSION? 

r 
w 

- : IDSQ --- : mAR .---- : mLIN ----- : ORL'I 

----- : INSTD : REQX -.- _I  
c 

a! 
1 1 NUMBER OF YEARS a 

f 

~ _ _  
I 3 
NUMBER OF YEARS 

PREClPrrATlON 
STATION 96 WITH REQRESSlON7 , 

PR ECIPrrATlON 
8TATlON 725 WITH REGRESSIOX? 

1 a 
NUMBER OF Y U R S  

1 ¶ I 

NUMlER OF YMR8 

Figure 11.5 : Errors of Estimation Methods for Station 12s 
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PRECIPITATIOM 
8TATlON 1051 W m O U T  REQRE8810N 

PREClPlTATlON 
6TATlON 1031 WtTHOIIT REQRESZIION 

- .  . IDSQ - .  . INVAR - : IDLXN 
am-mrn : OPTIH 
-*- : RSQR -- : 1511, 

-4 
1 I a 

NUMB€R OF YEARS 
t a 
NUMBER OF YEARS 

8TATION 
PA ECIPKARON 
1031 W m  REGRESSION PRECl#TAXON 

8TATlON 1031 WITH REQRES8lON 

I 

r ~~ 
~~~ 

1 a i 
NUMBER OF YEARS 

1 a 
NUMBER OF W R S  

4 

Figure 11.6 : Errors of Estimation Methods f o r  Station 103-1 
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CHAPTER I11 

ANALYSIS OF MONTHLY PRECIPITATION 

When a time series is studied, the observed value of the series at 
a particular time period should be viewed as a random value. If the 
series exhibits a systematic change over time, some transformation proce- 
dures can be applied to the series to make it stationary, Detrending and 
deseasonalizing procedures were employed in this study. 

111.1 Removal of Long Term Trend 

The trend in a time series can be defined as any systematic change 
in the level with respect to time. When a time series is steadily 
increasing or decreasing over time, the annual or some periodic mean of 
the series also intends to change through the whole period. In this case, 
the analysis of the data might not yield consistent results because of the 
presence of such trend. Hence it is necessary to remove the trend over 
time if it exists. 

To examine if the monthly precipitation has the over-year trend, the 
annual mean of each precipitation station is computed as 

(111.1) 

in which X(y) is the arithematic average of monthly precipitation in year 
y, X(m,y) is the observed monthly precipitation in month m and year y, and 
1’ is the total number of years in the record. The annual mean precipi- 
tations for all 21 stations are plotted in Figures 111.1-111.7. Although 
there are some fluctuations in the annual average precipitations, all 
stations do not appear to have any visible over-year changes in the annual 
mean. There is a slightly large fluctuation for the first several years 
at station 109, but the annual mean seems to stabilize after that, The 
annual mean at station 121-A has a decreasing trend for the last three 
years, but there was no more data afterward because the station was 
removed. 

A simple linear regression analysis is performed to fit the annual 
average precipitation over time. The resulting regression equations are 
shown in Table 111.1 with the p-values for the slope. As can be seen, all 
the slopes of the fitted regression lines are insignificant at both 10% 
and 5% levels. Based on these results, the conclusion was made that there 
were no long-term trend in monthly precipitation. Therefore, it is not 
necessary to detrend the monthly precipitation data. 

I 

2 3  
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24 

Station 101 ____  r- __-  ._..-. - - # . .  - . .-. . 

-. 1 .. ... -- = r - - .  _ .  , ,,- ..... . -  I . 1- I 1 I 

? , . - . (  * .  I I 1 I 

Station 103-1 
0 *- 

O r  

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 
Years 

Figure 111.1 Long Term 'bend of Monthly 
Precipitation 
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Station 103-2 

1 4 1 I I I I I 

Station 103-A 

C 

I I I i I 1 1 

Station 106 

O !  
0.0 i . 0  4.0 6.0 8.0 10.0 12.0 14.0 

Years 
Long Term Trend of Monthly 
Precipitation 



Station 108-2 

26 

I 1 I 1 4 I L 1 ‘  

Station 108-A 

1 I i 1 L I 1 I 

? Station 109 
0 ’. 
“I 

I 1 L 1 1 1 I 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 
Years 

Figure 111-3 Long Term Trend of Monthly 
Precipitation 
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Station 115-2 

27 

L 
L I 1 b L I I 4 

Station 115-A 

I I I 1 I I I 

0.0 ! 2.0 4.0 6.0 8.0 10.0 12.0 14.0 

Years 
Figure 111-4 Long Term Rend of Monthly 

Precipitation 
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Station 121 
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Figure 111.5 Long Term Trend of Monthly 
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Station 122 

29 
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Station 123 

Station 124 
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Figure 111.6 Long Term Trend of Monthly 
Precipitation 
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Station 125 
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Station 126 
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Figure 111.7 Long Term Trend of Monthly 
Precipitation 
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31 

101 2 = 2.22 - 0.0132 Y, (0.815)* 

102 = 2.11 + 0.0708 Y, (0.062) 

]I Station I Regression Equations f o r  Annual Trend 

103-A 

106 

108-2 

108-A 

109 

115-2 

= 2.64 + 0.0182 Y, (0.627) 

= 1.96 + 0.0506 Y, (0.166) 

= 3.33 + 0.0856 Y, (0.206) 

= 3.71 - 0.0795 Y, (0.443) 

= 3.55 + 0.1219 Y, (0 .453)  

= 3.32 + 0.0793 Y, (0.269) 

I I  -103-1 I = 3.90 - 0.1041 Y, (0.316) 

115-A 

119 

120 

121 

11 103-2 I = 3.68 - 0 . 0 4 0 4  Y, ( 0 . 3 8 7 )  

= 3.76 - 0.0336 Y, (0.555) 

= 2.24 + 0.0409 Y, (0.409) 

= 2.61 + 0.0370 Y, (0.562) 

= 3.41 + 0.0002 Y, (0 .997 )  

~ 

125 

126 

127 

= 2.17 + 0.1422 Y, (0.130) 

= 3.42 - 0,0869 Y, (0.135) 

= 1.81 + 0.0845 Y, (0.211) 

I G 1 - A  I = 4.34 - 0.2414 Y, (0.133) 

1 1 1 2 2  I = 3.05 + 0.0177 Y ,  (0.813) 

i r  123 I = 2.93 + 0.0182 Y, (0.762) 

1 1 - 1 2 4  1 = 2.96 + 0.0025 Y, (0.959) 

: Annual mean of monthly precipitation 
Y : number of years, 
* : P-value of regression coefficient 

Table 111.1 : Regression Equations of Annual 
Mean Precipitation 

. ..- 
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111.2 Removal of P e r i o d i c i t y  

In monthly precipitation time series, some types of seasonal pat- 
terns would be likely to exist at 12-month intervals. This fluctuation 
reveals a seasonal cycle or periodicity that recurs about every 12 months. 
To make the time series stationary, deseasonalization is needed to remove 
the within-year seasonal fluctuation in the monthly precipitation time 
series. Two methods (Parzen, 1981) were used in this study to desea- 
sonalize the monthly precipitation data. 

111.2.1 Using Monthly Sample Statistics 

The monthly averages of the total precipitation for each station on 
a given month m can be computed as 

(111.2) 

in which X(y) is the average precipitation for month m. Then, the 
standardization procedure is applied to obtain the deseasonalized data as 

(111.3) 

in which S ( m )  is the sample standard deviation of monthly precipitation 
for month m ,  

Y c [ X ( m , y )  - m m >  1 
y= 1 ,m=1,2,...,12 

Y- 1 S ( m )  = 
(111.4) 

The sample statistics of the monthly precipitation are shown in 
Tables 111.2 and 111.3. The standardized monthly precipitations for 
stations 106 and 108-2 are presented in Figures 111.8 and 111.9 to compare 
with the original time series shown in Chapter I. A s  can be observed, the 
seasonal fluctuation that appeared in the original time series data is 
removed. The standardized monthly precipitation, then, can be considered 
stationary having zero mean and unit variance. 

111.2.2 Using Fourier Series 

Another method of deseasonalization is to fit the monthly average 
mean by a Fourier series (Bloomfield, 1975). Then, the above standar- 
dization procedure can be performed using the fitted average, instead of 
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Station Month 
J a n  . Feb. Mar . Apr. May . Jun  . 

101 2.03 1.51 2.34 2.47 2.40 1.24 

2.85 1.41 102 2.58 2.15 3.33 3.54 

3.33 1.61 103-1 3.04 1.39 3.67 4.05 

103-2 3.53 2.82 4.26 4.43 3.78 1.69 

103-A 2.94 2.29 3.47 3.90 3.29 1.59 

106 2.34 1.79 2.85 3.06 2.82 1.27 

108-2 6.28 5.09 4.45 5.77 4.97 4.55 

108-A 3 . 12 2.48 3.78 3.99 3.32 1.59 

109 6.51 5.02 6.33 6.25 4.48 2.02 

115-2 4.85 3.79 5.48 5.55 4.45 1.91 

115-A 4.25 3.10 4.87 4.82 3.92 1.67 

119 2.63 1.95 3 . 07 3.55 3.16 1.40 

120 3.03 2.35 3-48, 3.74 3 . 19 1.53 

12 1 4.23 3.01 4.73 4.92 4 0 12 1.75 

12 1-A 4.03 3.01 4.70 4.70 4.09 1.68 

122 4.00 2.92 4.13 4.17 3.69 1.52 

123 3.19 2.83 3.87 4.37 3.48 1.50 

124 3.18 2.49 3.84 4.22 3.37 1.57 

125 4.82 3.37 5.06 4.34 3.45 1.55 

126 3.05 2.64 3.55 3.64 2.90 1.74 

127 2.39 1.94 3.01 3.31 2.70 1.27 
i 
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Station 

101 

102 

103-1 

103-2 

103-A 

106 

108-2 

108-A 

109 

115-2 

115-A 

119 

120 

12 1 

121-A 

122 

123 

124 

125 

126 

127 

34 

(continued) 

J u l .  I Aug. Sep. Oct . Nov . Dec. 

2.50 1.52 1.47 1.63 2.29 2.49 

2.51 1.48 1.86 2.18 3.31 3.26 

2.71 1.85 1.82 2.47 3.83 3.56 

2.70 1.90 1.90 2.61 4 . 19 3.87 

2.61 1.75 1.84 2.29 3.41 3.21 

2.49 1.56 1.63 1.95 2 .69  2.79 

2.27 2.92 2.19 2.32 3.29 5.00 

2.81 2.00 1.96 2.47 3.28 3.62 

3.02 2.23 2.39 3.23 5.06  5.81 

2.83 2.18 2.09 3.31 4.78 5.47 

2.70 1.96 1.87 2.75 4.01 5.03 

2.46 1.58 1.52 2.15 2.97 2.84 

2.58 1.64 1.63 2.24 3.58 3.55 

2.87 1.97 1.91 2.78 4.46 4.56 

2.57 1.93 1.89 2.76 4.34 4.44 

2.77 2.00 2.09 2.75 3.63 4.17 

2.51 1.77 1.77 2.63 3.82 3.72 

2.49 1.74 1.77 2.53 3.48 3.61 

2.53 1.86 1.80 2.76 4.25 4.76 

2.70 2.26 1.94 2.53 3.21 2.85 

3.30 1.65 1.64 2.11 3.28 2.82 

. Month 

Table 111.2 : Monthly Average Precipitations in 
Snowy Range Observatory 
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Station 

101 

102 

103-1 

103-2 

103-A 

106 

108-2 

108-A 

109 

115-2 

115-A 

119 

120 

121 

121-A 

122 

123 

124 

125 

126 

127 

- -~ 
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Month 
Jan. Feb. Mar . Apr . May . Jun. 

1.32 1.18 0.72 1.33 0.94 0.84 

1.84 1.35 1.33 1.95 1.49 0.88 

2.04 1.61 1.46 2.28 1.46 1.05 

2.28 1.75 1.62 2.58 1.66 1.07 

1.46 1.06 2.46 1.38 1.24 2.07 

1.13 0.90 1.57 1.31 1.36 1.61 

4.46 3.55 1.96 2.18 1.71 1.74 

1.94 1.35 1.36 1.69 1.39 1.04 

4.52 3.43 3.24 2.92 1.65 0.99 

3.07 2.20 1.94 2.58 1.75 1.34 

1.52 1.02 2.48 1.47 2.01 2.23 

1.81 1.33 1.25 1.91 1.46 0.92 

1.63 2.29 1.50 0.98 2.18 1.87 

2.67 1.55 1.72 2.47 1.78 1 0 .94 

1.78 2.34 1.97 1.02 2.72 1.84 

2.18 1.76 1.75 1.92 1.77 1.00 

2.32 1.96 1.53 2.19 1.48 1 0,93 

1.48 1.64 2.03 1.43 0.98 2.19 

4.11 2.10 2.40 2.11 1.51 1.04 

1.28 1.15 1.00 1.72 

1.77 1.44 1.42 2.02  1.52 0.97 

1.59 1.62 

Table 111.3 : Standard Error of Monthly Precipitation 
in Snowy Range Observatory 
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Stat i on  

101 

102 

103-1 

103-2 

103-A 

106 

108-2 

108-A 

109 

115-2  

115-A 

119 

120 

1 2 1  

121-A 

122 

123 

124 

125 

126 

127 

36 

Month * J u l  . Aug Dec. 

1.50 0.65 0.94 0.68 1.46 1.63 

1.92 1.86 1.83 0.75 1.14 0.81 

1.61 0.93 1.05 0.87 2.44 2.44 

2.51 2.42 1.56 0.97 1.14 0.89 

1.53 1.03 0.94 0.68 1.99 1.84 

1.72 0.78 0.97 0.71 1.52 1.57 

1.43 1.30 0.96 1.43 1.04 2.75 

1.42 0.90 1.05 0.59 1.76 2.13 

1.63 0.94 1 . 2 3  1.40 2.25 3.24 

1.74 1.02 1.18 1.04 2.65 3.28 

1.65 0.90 0.99 0.79 2.43 2.94 

1.46 0.78 1.12 0.71 2.00 1.67 

1.57 0.86 1.08 0.89 2.34 2.30 

2.42 2.56 1.70 0.89 1.17 0.91. 

1.82 0.97 1.19 0.89 2.28 2.66 

1.47 0.95 1.15 0.72 1.74 2.50 

1.40 0.93 1.18  0.87 2.32 2.32 

1.36 1.81 1.04 0.76 2.06 2.12 

1.45 0.98 2.11 0.69 2 . 12 2 . 4 0  

1.61 1.41 1.22 0.92 0.63 1.17 

3.10 0.99 1.13 0.95 2.23 1.83 

(continued) 

Table 111.3 : Standard E r r o r  of Monthly Precipitation 
in Snowy Range Observatory 
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sample means. The Fourier s e r i e s  

1 1  2 n f m  
f = l  1 2  1 2  

(111.5) 

i s  an approach t o  f ind the "hidden pe r iod ic i ty"  i n  a time s e r i e s  i n  - which 
& ( m )  i s  the f i t t e d  sample mean by a Fourier s e r i e s  i n  month m ,  X i s  an 
ove ra l l  mean t h a t  i s  computed by 

- - 

(111.6) 

i n  which T i s  the t o t a l  months i n  the time s e r i e s  used and af and pf a re  
Fourier c o e f f i c i e n t s  t ha t  can be computed as  

12 

, f = 1,2,. . . , 6  
6 m=i 

6 

p f  = $-x ~ ( m )  sin(-) 2 * f m  , f = 1,2, . . . ,  6 
12 m= 1 

(111.7) 

(111.8) 

I t  should be noted t h a t  not all Fourier coe f f i c i en t s  a r e  
To t e s t  t h e i r  significance fo r  each frequency s t a t i s t i c a l l y  s ign i f i can t .  

f ,  a t e s t  s t a t i s t i c  vf (Parzen, 1981) 

(111.9) 

i s  used i n  which's i s  the average of the  monthly sample standard deviation 
o f  the  monthly p rec ip i t a t ion  t h a t  can be 
computed by 

(111.10) 

The t e s t  s t a t i s t i c  vf has a x2 d i s t r i b u t i o n  with 2 degree o f  freedom. 
I f  the  s t a t i s t i c  vf > 1 2 . 0 ,  f o r  f = 1 , 2 , .  . , 5  and vf > 3 . 8 4  f o r  f = 6 ,  the 
c o e f f i c i e n t s  a t  the corresponding frequency can be accepted as s i g n i f i c a n t  
and thus the  cycles o f  the period 12/f , f o r  f = 1 , 2 , . . , 6 ,  which correspond 
t o  1 2 ,  6 ,  4 ,  3 ,  2 . 4  and 2 months a re  a l s o  s i g n i f i c a n t .  Then the seasonal 

3 9  
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means can be estimated using those significant coefficients. The 
estimated coefficients are presented in Tables 111.4 and 1 1 1 . 5 .  These 
tables also show the results o f  significant tests of the Fourier coeffi- 
cients. By the results of this analysis, the frequencies f-1, 2 ,  3 and 6 
are mostly significant throughout all 21 stations. The corresponding 
coefficients are used to estimate the mean precipitation for each month. 
Using the results from Fourier analysis, the fitted monthly mean, &(m), 
is used to transform the detrended time series into a monthly stationary 
series 

- 

(111.11) 

. .  
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Station 

101 

102 

103-1 

103-2 

103-A 

106 

108-2 

108-A 

109 

115-2 

115-A 

119 

120 

121 

121-A 

122 

123 

124 

1 2 5  

1 2  6 

1 2 7  

4 1  

f = 4  f=5  f = 6  
af 

f = l  f = 2  f = 3  

0 . 0 7  0.24 - .20 a . 0 6  0.19 0.36 

- , 0 3  0.43 -031 -009 0.11 0.40 

0.41 -001 0.52 -034 -001 0.10 

0.01 0.56 -.32 0.03 0.11 0.51 

0.09 0.45 - . 2 4  -.03 0.09 0.42 

0 . 4 0  0.08 0.34 -.21 - .06  0.19 

0.57 0.25 0 . 5 7  -002 -.30 0.36 

0.06 0.35 -025 -010 0.21 0.35 

-017 0.30 -017 -. 17 0.05 0.54 

-013 0.62 - .28 -009 0 . 2 5  0.38 

0 - 3 8  -.08 0.52 -.26 -.16 0.29 

0.14 0.45 0 .20  -.03 0.15 0.39 

-002 0.49 - 0 3 0  -002 0.13 0.41 

-.03 0.62 -.30 0 . 0 5  0.16 0.56 

0 . 0 5  0.61 - 0 2 7  - 0 0 0  0.19 0.52 

-010 0.37 -012 -009 0.25 0.47 

0.31 -001 0.52 -.29 0.02 0.13 

0.05 0.50 -.25 -.09 0.15 0.33 

-.29 0.34 -.29 -.15 0.18 0.54 

0 . 0 5  0.16 - .26 0.30 0.05 0.28 

0.04 0 . 3 3  - . 47  - .06 0.14 0 .54  

_ . .  



S t a t i o n  Bf f=l I f=2 I f=3 f=4 f=5 f=6 

101 0.23 0.05 -.35* -.16 -012  - 0  oo*  
102 - , 6 0 *  -.17* -.42* -.14 0.16 -. oo*  

103-1 -.70* -.16* - .50*  - .23 -.07 - .oo*  
103-2 -.95* -,20* -.51* - .22 -002 - .oo* 
103-A -.64* -.17* - . 4 5 *  -.23 -.08 - 0  oo* 

106 -.41* -.09* - * 4 0 *  -019 -010 - 0  oo*  
108-2 -1.60* 0.49* - .29*  -.07 -022 - .oo* 

108-A -.68* -.15* -.51* -,21 - .07  - . o o *  

109 -2.10* -.12 - .67*  -.36 0.04 - 0  oo*  

115-2 -1.53* - .20*  - ,70*  -.23 0.03 -.oo* 

115-A -1.30* -.19* - . 72*  -.16 0.02 -. oo*  
119 - . 5 5 *  -.14* -.41* -.28 9 - 0 5  - * o o *  

120 - . 7 4 *  - .06* -.47* 0 . 2 0  - . 0 8  - .oo*  

121 -1.19* -.13* - .65*  m.27 0.02 - . o o *  

121-A -1.19* -.19* -.60* -.20 0.04 - .oo*  

122 - .96*  -.lo* -.52* - .26  -002 -. oo*  

123 -.91* -.258 -.48* 0.27 -011 -. oo*  

124 -,84* -.22* - .50*  -.23 -.04 - 0  o o *  

125 -.15* - .04 -.55* 0.19 0.15 - 0  oo*  

126 - . 5 3 *  -.19 -.31* -.27 0.03 -. oo*  

r 

-021 -. o o *  1 2 7  - 0 3 5  - .04 -.41* -.34 
ii 

42 

Table 111.5 : Estimates of Fourier Coefficients, P f  
( *  represents vf is significant) 
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CHAPTER IV 

ANALYSIS OF SPATIALLY NONSTATIONARY MONTHLY PRECIPITATION 

In Chapter 111, the monthly total precipitation data under study 
shows the nonstationarity over the study area (see Table 111.2 and 111.3) 
indicated by that the mean and the variance are not constant. It is, 
therefore, necessary to have a mechanism to estimate the mean as well as 
the variance in space so that the standardized stationary random field can 
be transformed back to preserve the original spatial nonstationary charac- 
teristics. Firstly, two different methods that do not consider spatial 
correlation were used to estimate the monthly average precipitation over 
the space. The inverse distance weighing technique and the Gaussian 
smoothing method were used. Secondly, to consider the spatial correlation 
between stations at Snowy Range Observatory, the nonstationary kriging 
technique was used to estimate the monthly total precipitation over the 
space. 

IV.l Estimation without Considering Spatial Correlation 

The inverse distance weighing technique and the Gaussian smoothing 
weighing method use a weighted average of the values from the recording 
stations to estimate the monthly average precipitation at the specified 
ungaged location. The weights computed by inverse distance or Gaussian 
smoothing techniques are only functions of the physical distance between 
two stations. They do not explicitly account for the spatial variability 
of monthly precipitation under study. These two techniques also do not 
allow for computation of the reliability of the estimates. 

IV.1.1 Inverse Distance Method 

The linear inverse distance weighing technique has the same concept 
as the IDLIN technique in Chapter I1 used for estimating the missing 
values in which the contributing weight of the existing station to ungaged 
location is determined as 

i=1 q$) (IV. 1) 

where D, is the distance between the specified ungaged location and a 
recording station s ,  S is the total number of stations used in estimation, 
and w , , ~ ~  is the weight for the station s by inverse distance - method. 
Then, the monthly average precipitation at the ungaged location, )6,1v(m), 
for month in, is estimated by 
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(IV. 2) 

where x(m) is the calculated total monthly average precipitation at the 
recording station s in a given month m. The method does not consider any 
other factors affecting the estimate except the distances between two 
locations. This technique a l s o  can be employed to estimate the variance 
of monthly precipitation at the ungaged location in a similar manner as 

h 

in which So,Iv2(m) and SS2(m) are the variances at the ungaged location and 
the recording station s ,  respectively. 

IV.1.2 Gaussian Smoothing Method 

The Gaussian smoothing technique (Borgman, 1990; Kallianpul, et al., 
1988) uses the Gaussian function 

1 
-2p Ds2 f(Q = e (IV. 4 )  

to compute the weights where Q is a constant representing the effective 
width of smoothing. The weights are determined by 

, s = 1 ,2  , “ . ,  s - f (D,) 
ws,GS - S (IV. 5)  

The value of Q can be determined subjectively with the idea that the 
larger the value of Q is, the more smoothing the result will be. A very 
small value of Q allows only those recording stations in close vicinity of 
the estimation point to be used to estimate the monthly precipitation at 
the ungaged location. A s  can be seen, the weight also depends only on the 
distance. The estimates of monthly average precipitation can be deter- 
mined by 

(IV. 6 )  
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In this study, Fibonacci search technique (Luenberger, 1984) is 
applied to find the optimal Q which minimizes the error associated with 
the estimates using the observed data at all recording stations. The 
objective function is to minimize 

A 

in which ~,,,(m) is the estimates of monthly average precipitation 
resulting from Gaussian smoothing weights. This process can also be 
- applied to estimate the variance, S2,(m). The optimal Q ’ s  for estimating 
&(m) and S2,(m) for each month, m=1,2, . . . ,  12, by the Fibonacci search are 
shown in Table IV.l. 

IV.2 Estimation considering S p a t i a l  Correlation (Kriging) 

Unlike the inverse distance weighing technique and Gaussian smooth- 
ing weighing method, a geostatistical kriging method is based on the 
structure of the spatial variability of monthly total precipitation (Royle 
et al., 1980; Borgman, 1990; Bras et al., 1985). The measured monthly 
total precipitation in Snowy Range watershed allows one to analyze the 
spatial correlation structure in the study area and to incorporate such 
information to determine the optimum weight which minimizes the variance 
estimation. The kriging procedure has been developed around the variogram 
or covariance function and the best linear unbiased estimation. 

IV.2.1 Analysis of Spatial Correlation Structure 

The computation of the correlation matrix is essential in kriging to 
find the variogram or covariance structure. Computation of the spatial 
correlation structure requires that the random field is stationary. 
Therefore, the standardized monthly total precipitation series described 
in Chapter I11 were used. Since the standardization requires estimating 
the means and variances of the monthly total precipitation, the above 
Gaussian smoothing method and two other techniques were used. One 
technique was simply to use sample means and sample variances at the 
recording stations and the other used t-he monthly total precipitation 
statistics calculated by the Fourier Series described in Chapter 111. 

Using the standardized monthly total precipitation series, the 
functional relationship between correlations and distances computed by the 
three different methods are plotted in Figures IV.l, IV.2 and IV.3. -All 
three plots are similar thus indicating that the correlation-distance 
relationship is not sensitive to the method used to compute the local mean 
and variance of the monthly total precipitation in Snowy Range watershed. 
It is interesting to observe that the correlation function is separated 
into two distinct parts. One, which locates at the lower part, parallel to 
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Month 

January 

February 

March 

Apr i l  

May 
June 

J u l y  

Augu s t 
September 

October 

November 

December 

Optimal 0 
For Mean For Variance 

0.3819663 0.5280327 

0 . 3068254 0 .2938475 

0.2755167 0 . 7782433 

0 . 3068254 0.4530374 

0.5197246 0 .1029390 

0 .5322481  0 .3942531  

0.2003758 0 .8325485 

0.3318724 0.5290438 

0.2755167 0.5932542 

0.1565436 0 .2842049 

0.2191610 0 . 3 2 9 0 3 8 1  

0.4383220 0.2374398 

Table I V . 1  : Optimal Q for Gaussian Smoothing 

f 
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the horizontal axis indicating that the correlation associated these 
points is a constant against the distances. This part consists of 20 
points and all these points are related to station 108-2. This implies 
that the monthly precipitation collected by station 108-2 is independent 
of the catch by all other stations. This lower part associated with 
station 108-2 is assumed to be a constant having the correlation value o f  
the average o f  the total 20 points. 

The upper part of the plot reveals an inverse linear relationship 
with the distances. This means that the closer the distance between two 
stations is, the higher the correlation is. These correlations were 
fitted by regression to find the structure for the three different 
methods. The resulting regression equations that define t;he functional 
relationship for correlation between station s and s ’ ,  p(ds,s,) is as 
follows: when station 108-2 is considered to compute correlation, for all 
three techniques 

6 = constant (IV. 8) 

When all other stations are used to calculate the correlation, the 
resulting regression equation, using sample means and variances, is 

8 (dS,g) = 0 , 9 2 8  - 0 . 0 2 6 3 d s , s ~  

When using the Gaussian smoothing method the 

8 ( d s , s / )  = 0 . 9 1 4  - O . O 2 5 7 d S s /  

and using the Fourier Series it is 

8 ( d s , s / )  = 0 . 9 0 1  - 0 . 0 2 9 1 d S s /  

, R2 = 3 6 . 6 %  (IV.9) 

regression equation is 

, R2 = 30.0% (IV-10) 

The resulting regression lines from the three different techniques are not 
distinguishable. Hence the correlation relation computed by the sample 
means and the sample variances is adapted in the further study. It should 
also be noted that there exists a nugget (random) effect (indicated in 
Figure 1V.l) in these plots. The correlation function used in the 
nonstationary kriging for this study is 

0 . 0 2 8 ,  ds .1>0, I 
for s ’  = station 108-2 and 1 

8 (ds,,/) =( 0 , 9 2 8 - 0 ,  0 2 6 3 d s , s ~ ,  d,,.1>0, 

for s ’  # station 108-2 
for all s, s ’  (IV. 14)  
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From the above correlation function, the covariance function can be 
computed as 

(IV. 15) 

where C(ds,sl) and p(ds,s,) are the covariance and the correlation between 
two stations s and s ’  separated by distance ds,sl, respectively. 

I V . 2 . 2  Nonstationarv Kriging 

Nonstationary kriging proposes that the monthly total precipitation 
value over the specified block or point can be estimated by the known 
functions, G,s  for s= l ,  2,. . , S ,  as 

S 

s= 1 

(IV. 16) 

where S is the total number of recording precipitation stations in the 
region. The basic function, G,s, is known, but the weighing coefficients, 
w,, are to be determined. 

I V . 2 . 2 . 1  Definition 

The mean of the time-space random process, &,s, which is assumed to 
be second-order and nonstationary, is defined as 

Pm, s = E sl (IV. 17) 

where s represents a location in a region and m is a given month (Borgman, 
1990). The variance can also be expressed as 

(IV.18) 

The covariance allows modeling of the spatial dependence of the random 
process &,s. The covariance function at any two locations, s and s ’  for 
month m, is defined as 

where s=1,2, . . . ,  S and s’=1,2, . . . ,  S .  If s = s ’ ,  C , ( s , s ‘ )  is called 
autocovariance and if not, C,(s,s’) is called cross-covariance. 
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The objective of nonstationary kriging is to estimate the monthly 
t o t a l  precipitation over the specified area B in a given month m as 

When the block B reduces to a point, then 

xEm = xm, so 
h 

(IV. 20) 

(IV.21) 

To construct the contour maps of the mean and the error, the use  of 
The expectation of point nonstationary point estimation is preferred. 

kriging is 

(IV.22) 

IV.2.2.2 Formulation of Nonstationary Kriging Model 

The point monthly total precipitation in month m at the estimation 
point so can b e  expressed as a linear combination of the observed data, 
&,s, for s=1,2,. . , S ,  by 

(IV.23) 

The mean square error of monthly total precipitation at a given estimation 
point s o ,  in a given month m, can be rewritten as 

S 

CI 2 (m> = E[ (gm,so 
s= 1 

Assume that the estimator is unbiased, that is, 

Then the mean square error, aE2(m), is reduced t o  

5 2  

(IV.25) 

. .  . . . -  . _ .  



s s  S 

= w=c,w + a,,s02 - 2w=cm,s,  

The elements on the right-hand side of Eq.(IV.26) can be computed, using 
information extracted from the data, as 

(IV. 28) 

(IV. 29) 

(IV.30) 

A A 

in which p , ( s , s ' )  and p m ( s , s o )  are the correlation estimated by the 
structured correlation function, Eq.(IV.12), (IV.13) or (IV.14), between 
stations s and s '  and between ungaged point so and station s in month m, 
respectively; w , , ~ ~  is the inverse distance weight contributed from the 
existing station s ;  s,,, and a,,,2 are the mean, standard deviation, 
and variance measured at station s in month m ,  respectively. 

After the above terms are computed, the nonstationary kriging model 
can be expressed as the following 
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(Model I) 

Minimize 

U E 2 ( r n )  = w=c,w + u m , s o ~  - 2 W = c m 0 s 0  

subject to 

W T 1  = 1 , 

w, 2 0 ,s=1,2,. I*,S 

(IV.3la) 

(IV.3lc) 

( I V .  3 Id) 

The commonly used kriging model involves only one constraint Eq.(IV,3lb). 
The solution to such model do not ensure that all weighing factors are 
nonnegative and add up to one. Therefore, constraint Eqs.(IV.3lc) and 
(IV.3ld) are added to the kriging model. 

In model I, the local variance, a,,s2, is considered as a constant. 
However, it is actually a function of the variances measured at every 
existing station, O ~ , ~ ~ ' S ,  and the corresponding weights which are unknown. 
Therefore, om,S2 should be considered as a decision variable and model I is 
modified as the following 

(Model 11) 

Minimize 

0 E' (m) = W T m W  + 4m,,02 - 2 W T c m , s ,  

subject to 

W T P m  = P,,,, ' 

W T 1  = 1 , 
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w, 2 0 I s = lI2, . . .  t s  

(1V.32~) 

(IV.32e) 

in which om,s2 is an additional decision variable representing unknown 
variance at the estimation point so. 

IV.2.2.3 Solution Procedure 

The Lagrange multiplier method has been used to solve the conven- 
tional kriging model subject to only a single unbiased constraint 
(Borgman, 1990; Journel et al., 1978). However, the Lagrange multiplier 
method-is inefficient for solving models I and I1 formulated above, which 
involves several constraints, including non-negativity constraints. In 
this study, a nonlinear programming code, called GRG2 (Lasdon et al., 
1986), is used which is based on the generalized reduced gradient 
algorithm (Lasdon, 1979; Murtagh, 1978) 

IV.3 Comparison Study 

In this section, the results of contour maps for means and errors 
obtained by the different methods for each month are compared. 

IV.3.1 Comparison between Nonstationarv Krininn - -  Models I 
and I1 

Figure IV.4 shows the mean precipitation contour maps for January 
derived by nonstationary kriging models I and 11. It appears that the two 
nonstationary kriging models do not yield a significant difference between 
the mean monthly precipitation with regard to its spatial distribution. 
The contour maps (see Figure IV.5) for the differences in means are almost 
flat at zero level. Slightly greater value of the mean precipitations are 
estimated by model I1 around stations 109 and 108-2, which are located in 
the lower-left corner of the study region. Model I, however, has the 
larger error than model I1 for every month except August (see Figure 
IV.6). The error patterns between the two models are distinctly different 
at the lower-center area (see Figure IV.5) or at the lower-left area 
(Appendix A). The contour maps for the remaining months are shown in 
Appendix A. 
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Model I, Mean 
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Model 11, Mean 

Figure I V . 4  Comparison of Mean Contours 
f rom Model I &  I1 for January 
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Model I, Error 

Model 11, Error 
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Figure I V . 6  Comparison of Error Contours 
from Model I & I1 fo r  January 
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IV.3.2 Comparison of Krininn Models, Inverse Distance and 
Gaussian Smoothing 

It is interesting to compare the contour maps resulting from the 
Gaussian smoothing weighing method, the inverse distance weighing 
technique and the kriging method. The contour for the means and the 
errors estimated by the Gaussian smoothing and the inverse distance 
methods for January are drawn in Figures IV.7 and IV.8, respectively. The 
mean precipitation pattern computed by the inverse distance method is 
quite similar to that computed by the two nonstationary kriging methods. 
However, the error estimated by the inverse distance technique is always 
greater over the entire study region than the error estimated by kriging 
procedures. 

The means and the errors obtained by the Gaussian smoothing method 
vary greatly over the basin compared to those by the other two methods. 
The Gaussian smoothing technique yields larger values of monthly preci- 
pitation at the left area of the watershed than the others and smaller 
values in the right part. 

IV.3.3 Discussion 

Models I and I1 yield almost identical spatial patterns of mean 
monthly total precipitation, but model I has a larger error in estimation. 
The reason f o r  model I1 having smaller error is probably due to the fact 
that model I1 treats local variance as a decision variable. In model I, 
the local variance is considered as a constant computed by the initial 
weights, w,,~~. The nonstationary kriging model I does not allow the local 
variance to use updated optimum weights. 

The contour maps for the mean monthly total precipitation obtained 
by the inverse distance method have a similar pattern to those obtained by 
the nonstationary kriging. It, however, has larger errors than the 
kriging results (see Figure IV.7). This might be because the kriging is 
an optimization procedure which minimizes the estimation error while the 
inverse distance method does not. 

The Gaussian smoothing method yields larger mean monthly total 
precipitations and errors than all other methods at the left portion of 
the study area and the lowest values at the right (see Figure IV.8). 
Referring to Table IV.l, the optimal Q’s representing the effective width 
of smoothing, for the means and the variances have relatively small values 
less than 1. However, a lot of smoothing is done for estimating the 
monthly precipitations and the errors (see Figure IV.8). 

This comparison study indicates that the kriging method is superior 
which could be attributed to the fact that the kriging procedure considers 
the spatial variability while the Gaussian smoothing and the inverse 
distance methods do not. 
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Figure 1v.7 Mean 8c Error Contours from 
Inverse Distance for January 
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CHAPTER V 

PRECIPITATION NETWORK REDUCTION AND DESIGN 

Operation and maintenance of large number of gage station in a 
remote area requires significant fiscal and manpower commitment. 
Currently, the Wyoming Water Research Center is contemplating the 
possibility of future budget reallocation. The task then is set out to 
examine the possible reduction of network size without sacrificing too 
much hydrologic information content in the Snowy Range Observatory. 

In this Chapter, the formulation of the precipitation network design 
model that takes into account the spatial characteristics of monthly total 
precipitation in the study area was considered. 

First, the subjective selection o f  the reduced precipitation network 
was made based on the geographical locations of the existing stations and 
other considerations such as the accessibility of the station and the 
aesthetic aspect. Since precipitation catches are correlated spatially, 
those stations having similar statistical characteristics for the monthly 
total precipitation can be reduced without affecting the hydrologic 
information contents in the study area. Consultations were made with the 
WRRC researchers and two reduced precipitation networks in the Snowy Range 
watershed were obtained. Of course, this reduced network so subjectively 
determined does not guarantee to be the optimum result in statistical 
information contents. 

The model for optimal precipitation network configuration is also 
considered. The objective of the model is to determine the optimal 
precipitation network configuration in the Snowy Range watershed that 
optimizes some types of statistical information measures. In particular, 
the nonstationary kriging variance is used to construct the object 
function of the model. In hydrologic network design, there are, 
generally, two criteria used in the model: (1) accuracy and (2) cost. 
Some papers that treated this subject considered both (Bras et al., 1976; 
Loaiciga, 1989) or only accuracy (Shamsi et al., 1988; Bardsley, 1985; 
Sorman, 1983). This study shall only consider accuracy to find the 
minimum kriging variance. Mixed integer programming (MIP) is applied to 
this problem. 
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V.l Network Reduction 

Two reduced network configurations were considered (see Figures V.l 
and V.2). One consisted of 15 stations (101, 102, 103-1, 103-2, 106, 108- 
2, 109, 115-2, 119, 120, 121, 122, 123, 124 and 127) and the other had 12 
stations (101, 103-2, 106, 108-2, 109, 115-2, 119, 120, 121, 122, 123 and 
124). The contour maps for the means and the variances of the monthly 
total precipitation were constructed for each month. The resulting 
contour maps based on the reduced networks with 15 and 12 stations were 
compared with those of all 21 precipitation station. 

Figure V.3 contains the error maps generated from the nonstationary 
kriging model I based on 15 and 12 stations, respectively. A s  can be 
seen, the errors increase as the number of retained stations decreases. 
The contour maps of the percentage increment in error associated with the 
reduced networks related to the full network of 21 stations are plotted in 
Figure V.4 for January representing the months (from October to April) 
during which the precipitation is most likely in the form of snow. Figure 
V . 5  is for July representing the months (from May to September) during 
which the precipitation in general is in the form of rain. Contour maps 
of error percentage increment for the remaining months are shown in 
Appendix B. It was observed that, during June - September, the percentage 
increase in error associated with the reduced network is rather small. 
However, during the snow months (October-April), the error increases up to 
about 27% in the upper part of the watershed with a reduced network of 15 
stations. Further reduce the network to 12 stations resulted in a 
slightly higher percentage increment in error to about 30%. The error 
increment associated with the reduced network in the lower part of the 
watershed is insignificant all year around. This comparison is also made 
using the nonstationary kriging model I1 (see Figures V . 6  and V.7). The 
results from model I1 are similar to those from model I. 

The comparison is also performed for the mean monthly precipitation 
The results show that the differences in means between (see Figure V . 8 ) .  

15 and 21 or 12 and 21 stations are not distinctly different. 

V.2 Optimal Network Design 

V.2.1 Model 

Consider that there are K estimation points and S existing preci- 
pitation stations in the study area. The objective is to identify the 
optimal subset of existing stations to be retained to minimize the 
estimation error. Based on E q .  (IV. 31a), the error, measured by the MSE, at 
the k-th estimation point within the study area for the month m 
is 
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where wk is a Sxl vector of weights for the k-th estimation point, c,,k is 
a Sxl  vector of the estimated covariance between the estimation point k 
and the existing stations S ,  o,,k2 represents the local variance at the 
estimation point k f o r  month m estimated by the contributing weights and 
the corresponding variances at the retained stations. A representative 
measure of the estimation error for a study area is the aerial averaged 
error or, equivalently, the total aerial error 

K K 

In the network design context, the status of each existing station, 
to be retained or removed, is unknown. Therefore, zero-one integer 
variables, z,, for s=1,2,. . ,S, are introduced to the model. If the station 
s is to be retained, z, has the value of one, otherwise, z,=O. 

The objective of this precipitation network design problem is to 
minimize the total MSE over the specified area. The proposed mixed 
integer programming (MIP) model to optimally select the existing 
precipitation stations for month m is the following: 

K K 

The constraints in the model include the following: 
(a) The sum of contributing weight from the retained stations to 

individual estimation point is unity. 

wkT 1 = 1 I k = 1 , 2 , .  . . ,K ( V * 4 )  

(b )  The mean monthly total precipitation at the estimation point k is a 
linear weighted average of the monthly mean precipitation measured 
from the retained stations 

(c) Because any existing station s ,  if retained, can possibly contribute 
to compute monthly 
upper bound value 
existing station s 
bution from station 

K c ws,k 
k= 1 

precipitation at all K estimation points, the 
for the sum of contributing weights from the 
will be K. If not retained (z,=O), the contri- 
s will be zero. 

- z,K 5 0 / s = 1,2/. . ,,s 
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The number of stations to be retained cannot exceed the specified 
number N determined by fiscal or geographical consideration. 

S 

S=l 

The contributing weights are non-negative. 

( V - 8 )  
w k k o l  k = 1,2,. . .,KI 
z , = o  or 1 ,  s = 1,2,. . , , s  

first and second constraints are the same as those of model I for 
nonstationary kriging described in Chapter IV. 

The proposed optimal network design model is nonlinear. For each 
month, the MIP problem includes the zero-one integer variables, z,, and 
non-negative real decision variables, w k ,  k=l,2,..,K. The number of 
decision variables is S+SxK real-valued decision variables for the 
weighing factors and S zero-one integer decision variables. The number of 
constraints is 2K+S+1 (not including nonnegativity constraints). 

V.2.2 Solution Algorithm 

Since the optimal network design model is a nonlinear MIP problem, 
there is na solution software immediately available. It is proposed to 
linearize the objective function by retaining the first order Taylor 
expansion term. The first-order Taylor expansion of the MSE for the given 
estimation point k about wk'wko is 

f ( W J  = W k T m  W k  - 2 Wk* Cm,k + am,k2 (V.9) 

= constant,O + 2 [WkT ern wko - w k T  c ~ , ~ ]  

( V .  10) 

( V .  11) 

( V .  12) 
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(V. 13) 

Substituting Eq.(V.13) into Eq.(V.3), the linearized objective function of 
the network design model is 

Minimize 

K K 

K X 
(V. 14) -C constantko + 2 C w k T  [C, w k o  - c , , ~ ]  

k= 1 k= 1 

The above objective function is equivalent to 

minimize 

K 
( V .  15) 

subject to 

(V. 16) 

( V .  17) 

K c WSk - 2, K s o  I s = 1,2,* @ . I S  
k= 1 

(V. 18) 

S czs I, N 
s= 1 

( V .  19) 

k = 1,2,. . . / K  I 
s = 1,2,* . , s  ( V .  20) 

The linearized network design model is then solved by the computer program 
ZOOM (Zero-One Optimization Methods) developed by Marsten (1988). 
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Note that the linearized network design model requires initial guess 
on the weighing factors, which may or may not be the optimal one. There- 
fore, the linearized model must be solved iteratively each time the 
weighing factors are revised and updated if the current solutions are 
different from the previous solutions. The procedure then is repeated 
until the solutions converge. 

V . 2 . 3  Numerical Results and Discussion 

Knowing that station 121-A had already been removed from the Snowy 
Range Observatory, the remaining twenty stations were then used in the 
model to find the optimum subset of precipitation stations to be retained. 
The network model was solved to select six stations (N=6) out of 20. Six 
stations (103-1, 106, 108-2, 119, 121, 124) which were not too c lose  to 
each other were chosen as the initial solution. After numerous itera- 
tions, the best six stations did not converge; they varied from one 
iteration to another even though the minimum error was smaller or stayed 
the same. Different initial solutions for the weighing factors such as 
those computed by inverse distance or from previous kriging results were 
used and the algorithm still failed to converge. 

One possible explanation for the algorithm failure was that the 
solutions to the optimal network design model was very sensitive to the 
initial stations chosen in linearization p To select the best 6 
out of 20 existing stations, there are ("7 = 38760 possibilities. The 
solution selected may be far away from the 6 optimal one. 

cedure. 

f 
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CHAPTER VI 

SUMMARY AND RECOMMENDATION 

In Chapter 11, several estimation methods were used to estimate 
missing values and the accuracy of each method was compared with M S E  and 
MAE, There was no single estimation method that is uniformly superior in 
all circumstances. However, in the majority of the cases considered, the 
linear inlrerse distance weighing method (IDLIN) was better than all other 
methods through all 9 stations. 

In Chapter 111, detrending and deseasonalizing procedures were 
employed to make the time series data stationary, It was found that there 
was no discernable long-term trend in annual average precipitation. Both 
monthly sample statistics and the fitted monthly sample mean by a Fourier 
series were used to standardize the monthly precipitation for removing the 
within-year seasonal pattern in monthly precipitation time series. 

In Chapter IV, the inverse distance and Gaussian smoothing weighing 
methods, which do not consider spatial correlation, were used to estimate 
the monthly average precipitation over the space. The nonstationary 
kriging, which considers spatial correlation, was also used to estimate 
the monthly precipitation. Two models were formulated by the nonsta- 
tionary kriging and they were compared with the contour maps f o r  the means 
and the errors. The models I and I1 yielded almost identical spatial 
patterns of monthly precipitation, but the model I had large errors in 
estimation. The kriging models, the inverse distance method, and Gaussian 
smoothing technique were also compared with the contour maps for the means 
and the errors. It was observed that the kriging method was superior to 
other two methods . 

In Chapter V, two reduced precipitation networks, each retains 15 
and 12 gages, are subjectively selected on the basis of spatial locations 
of gages, record length of gage, and aesthetic reason. The results 
indicated that error increases as the number of retained stations 
decreases. The maximum increase in error during May-September associated 
with the reduced networks of 15 (28% reduction in network size) and 12 
(43% reduction in network size) stations, from an original 21 stations, 
are about 8% and l o % ,  respectively. However, during October-April when 
precipitation is most likely to be in the form of snow, the percentage 
error increases to a maximum of 28% for the 15-station network and 30% for 
the 12-station network, The area within the watershed where larger error 
occurs is above the Brooklyn Lake. 

A model for optimal precipitation network configuration was deve- 
loped. The resulting formulation was a nonlinear integer programming 
model to which there is no commercial software available for use. A 
procedure was attempted to linearize the nonlinear function and so that 
the well developed linear integer progamming technique can be applied. 
Unfortunately, the solutions from the linearization procedure were not 
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stable. Two possible alternative methods can be applied to solve the 
problem. One is to use dynamic programming approach which might be 
applied to find improved solutions. By dynamic programming approach, the 
optimization problem is divided into stages representing the number of 
existing stations to be retained or removed. In each stage, the state can 
be the list of all existing stations in the network to be retained o r  
removed. The problem can be solved backward or forward using appropriate 
recursive procedure. Alternatively, recognizing the network design model 
has a quadratic objective function, it is possible to solve the model by 
embedding the quadratic programming algorithm into the branch and bound 
algorithm. 

From the study, the following conclusions can be made: 
During the months of May-September the precipitation gage number can 
be significantly reduced without loosing much precipitation 
information content in the Snowy Range watershed. 

(1) 

( 2 )  During months of snow (October-April), larger error could occur in 
the upper part of the watershed above Brooklyn Lake with reduced 
network. The accuracy on the lower portion of the watershed is not 
significantly affected by the reduced network. 

( 3 )  From the above observation, it places quite a dilemma in the present 
operation o f  the precipitation network. The upper portion of the 
watershed area where high error occurs is generally difficult to 
access especially during the winter season. Currently, the gages 
are maintained and checked by Water Center staff on the weekly 
basis. To reduce labor intensiveness of maintaining the gages and 
to retain the precipitation accuracy one or two gages that can 
operate over longer period with high reliability can be insta.lled in 
the remote area. 

. .  
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Appendix A : Contour Maps for Means and Erro r s  
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C 

C 

C 

10 

data blvar/istat*O.O/,buvar/istat*l,O/, 
data blcon /O.O,O.O,O.O/, bucon /l.OE3,0.0,0.0/ 
data ttitle /19*4h / 

inprnt-. true. 
o tprnt- . true. 

do 10 i = = 1 , 1 9  

continue 
defaul(i)-1.0 

nnob j -1 
call GRGSUB(inpmt,otpmt,ncore,nnvars,nfun,maxbas, 
1 maxhes,nnobj , ttitle,blvar,buvar,blcon, 
1 
1 pphlep,nnstop,iitllm,llmser,iipr,iipn4, 
1 iipn5,iipn6,iiper,iidump,iiquad,lderiv, 
1 mmodcg,ramcon,ramvar,xx,fcns ,inbind, 
1 rmults,nonbas,redgr,nbind,nnonb,inform,z) 

bucon, defaul, fpnewt, fpinit, fpstop, fpspiv, 

write(10,200) (xx(j),j-1,nnvars) 
write(10,210) (fcns(i),i-1,nfun) 
write(10,220) (nonbas(i),redgr(i),i-1,nnonb) 
write(10,230) (inbind(i),rmults(i),i-1,nbind) 
write(10,240) nnonb,nbind 
write(10,250) inform 

200 format(///lhl,lx,'FINAL VALUES OF DECISION 

210 fonnat(/lx,'FINAL VALUES OF CONSTRAINTS AND 

220 fonnat(/lx,'REDUCED GEUDIENT:'/5(5(5X,I3,2X,E12.5)/)) 
230 format(/lx,'VALUES OF LAGRANGE MULTIPLIERS:'/ 

1 5(5X,I3,2X,E12.5)) 
240 format(/lx,'NUMBER OF STRUCTURAL NONBASIC VARIABLES:', 

1 SX,15/1X,"UMBER OF BINDING CONSTRAINTS:'SX,I5) 
250 format(/lx,'REASON FOR TERMINATION:',SX,IS) 

I VARIABLES:'/5(5(5X,E12.5)/)) 

1 OBJECTIVE:'/5(5X,El2.5)) 

return 
end 
















