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ABSTRACT

This research studies the monthly precipitation information content
in the Snowy Range Observatory. The Observatory currently consists of 20
precipitation gages with varying length of recoxd. The study was
proceeded through three phases.

Phase I — Estimation of Missing Values Due to various reasons,
records of all gages involves missing values. The study was first
performed to compare various methods of different complexity to estimate
the missing wvalues. Although there was no single method that is
universally superior in all circumstances, a simple method of linear
inverse distance method was found to be rather accurate. It was then used
to £ill the missing wvalues in all precipitation gages.

Phase I — Analysis of Monthly Precipitation The time series of
monthly total precipitation was first analyzed station by station. The
accuracy of different methods of estimating the spatial distribution of
the average precipitation were investigated. Then, the spatial structures
of the monthly total precipitation were identified using variogram
analysis of geostatistics. Information derived from this phase serves as
the basis for precipitation network analysis in the next phase.

Phase III — Precipitation Network Analysis The objective of this
phase is to examine the effect of having a reduced network, in terms of
gage number, on the loss of information content. The present network
containing 21 gages was used as the basis for comparison. Two reduced
networks each containing 15 and 12 gages, respectively, were subjectively
selected on the basis of geographical location, accessibility, and
aesthetic considerations. Nonstationary Kriging technique was employed to
estimate the spatial distribution of error based on different network
configurations. It was found that the two reduced networks have a small
increase in error, as compared with 21 stations, during the months of May
—~ September. However, increase in error could be as high as 25%-30%
during the months of October - April. High error occurs on the upper
third of the watershed resulting from the removal of gages from the area
due to accessibility consideration.
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CHAPTER I
INTRODUCTION

The Snowy Range Observatory has been maintained since the mid-

1960’s. Great environmental diversity is found within the relatively
small geographical area. The Snowy Range, thus, has been utilized as a
study for many research projects. Centered in the Nash Fork Creek

drainage of the Medicine Bow National Forest in the upper North Platte
River basin (Figure I.l), the Observatory consists of a network of 21
recording precipitation gaging stations and other stations measuring
streamflow, humidity, temperature and wind. The list of the stations is
presented on Table I.1.

From 1972 to 1988, precipitation data were collected and the various
types of the gaging instruments were increased to suit the needs of the
research being conducted. During the same period, data collection was
interrupted in 1974-1975 which was attributed to the ’'energy-boom’ in
Wyoming resulting in a shift of research focus from high-mountain
watershed projects to environmental assessment.

Two primary objectives in this research: (1) to evaluate the existing
precipitation gage network in Snowy Range Observatory and (2) to determine
the reduced network which retains the maximum amount of precipitation
information subject to geographical and strategical constraints.

This research analyzes the monthly precipitation data that have been
stored in Water Resources Data System (WRDS) maintained by the Wyoming
Water Research Center. Due to unexpected interruption in data collection
system, the study first estimates missing wvalues occurring in each
station. Before missing values were estimated, various techniques were
applied and their performances were examined. Statistical analysis of
monthly precipitation data, which is nonstationarity, was performed which
served as the basis for formulating the optimal reduced precipitation
network model.

The report is organized as the following: Chapter II discusses the
estimation of missing values by different methods and compares their

performance. In Chapter III, procedures are described and applied to
transform a nonstationary monthly precipitation time series to a
stationary one. Chapter IV considers the spatial distribution of the

monthly precipitation by two types of method: (1) the spatially weighted
average using "Inverse Distance" and "Gaussian Smoothing" methods without
considering spatial correlation, and (2) ’'non-stationary kriging'
considering the spatial correlation of monthly precipitation. The
performance of these methods were compared on the basis of contour maps
for the estimated means and the associated errors. Chapter V presents the
model formulation for the optimum precipitation network design using zero—
one mixed integer programming. The summary of final results and some
recommendations are presented in Chapter VI. The contour maps resulting
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Station Location Number of
ID years

Latitude | Longitude | Elevation of record
0101 41-18-00 | 106-09-00 8440.00 12 yrs
0102 41-20-00 | 106-12-00 9400.00 12 yrs
0103-1 41-21-00 | 106-14-00 9940.00 14 yrs
0103-2 41-21-00 | 106-14-00 9940.00 14 yrs
0103-A 41-21-00 | 106-13-00 10060.00 14 yrs
0106 41-20-00 | 106-11-00 9100.00 12 yrs
0108-2 41-22-00 | 106-15-00 10360.00 14 yrs
0108-A 41-22-00 | 106-15-00 10360.00 14 yrs
0109 41-22-00 | 106-16-00 10740.00 12 yrs
0115-2 41-22-00 | 106-15-00 10640.00 14 yrs
0115-a 41-22-00 | 106-15-00 10560.00 14 yrs
0119 41-21-00 | 106-13-00 9880.00 12 yrs
0120 41-21-00 | 106-13-00 9960.00 12 yrs
0121 41-22-00 | 106-14-00 10320.00 12 yrs
0121-A 41-21-49 | 106-13-50 10320.00 07 yrs
0122 41-21-00 | 106-15-00 10380.00 12 yrs
0123 41-21-00 | 106-15-00 10380.00 12 yrs
0124 41-21-00 | 106-15-00 10440.00 12 yrs
0125 41-23-00 | 106-15-00 10800.00 12 yrs
0126 41-22-00 | 106-16-00 11020.00 12 yrs
0127 41-21-00 | 106-13-00 9840.00 12 yrs
Table I.1 : List of Precipitation Stations in Snowy

Range Observatory (Wesche,1982)
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from Chapter IV and a FORTRAN program developed for the analysis are given
in Appendices A and B, respectively.



CHAPTER II
ESTIMATION OF MISSING DATA
II.1 Introduction

The precipitation data from Snowy Range Observatory had been
analyzed in this study starting from June 1962 to June 1988 (a total of
169 months). There are, however, observations missing in the data set.
When a designed analysis is spoiled by missing data there are basically
two ways to perform the analysis. One is to analyze the observed incom-
plete data set. Alternatively, an approach can be applied to estimate the
missing values and then to analyze the ’'complete’ precipitation data with
these estimated values inserted. The first approach is undesirable for
this study, in particular, because the missing data occurred very irregu-
larly through the recording period in all existing stations. For example,
two monthly precipitation time series containing missing data from
stations 106 and 108-2, are shown in Figures II.1l and II.2.

Simultaneous time—space data are required at all stations to charac-—
terize the temporal and spatial correlation structures of the precipi-
tations. Only 51 months throughout the entire 169 months were recorded
concurrently at the Snowy Range watershed. Thus, ignoring the missing
values results in losing about two thirds of the observations at all
precipitation gages (on the average, each individual station out of all 21
stations has about 150 observations). For this reason, it is undesirable
to conduct this study without estimating the missing values.

In the first attempt, the Box—Jenkins univariate forecasting method
(Markridakis et al., 1983 and Vandaele, 1983) was used to analyze temporal
correlation of monthly precipitation for each individual station. This is
because the missing values occurred irregularly making it difficult to use
multivariate time series analysis which requires the observations to occur
concurrently.

In univariate time series analysis, the first step is to identify if
the time series has a specific ARIMA structure. For this, the autocorre-
lation function is obtained by SAS/ETS (SAS, 1984) for each individual
station. Sample results for stations 102 and 119 are shown in Figures II.3
and I1.4. By using the Ljung—Box test (Bowerman et al., 1987 and Markri-
dakis et al., 1983). The auto-correlations were not significant because
x? with 30 degrees of freedom is 43.77 at 5% significant level which is
large than the statistic value of 39.56 for station 102 and 38.78 for
station 119. This implies that the time series of monthly precipitation
data for stations 102 and 119 are random with no significant temporal
correlation structure. This situation occurs throughout all the remaining
19 precipitation stations in the Observatory. Since no specific ARIMA
models could be identified for monthly precipitation data, the use of the
Box—Jenkins forecasting method for estimating missing values was
abandoned.
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LAG COVARIANCE

ARIMA PROCEDURE (STATION 102)

AUTOCORRELATIONS

AUTOCORRELATION CHECK FOR WHITE NOISE

AUTOCORRELATIONS

0.021 0.004 -0.033 0.010 0.015
0.065 0.146 -0.045 -0.170 -0.076
-0.096 0.038 -0.063 0.167 =-0.091
0.078 -0.076 -0.154 0.073 0.190

0 2.57152 |
1 0.053595 ‘
2 0.0110287
3 -0.083829
4 0.026479 l
5 0.0395429 |
6 -0.42218
7 0.168414
8 0.375776
9 -0.11497
10 -0.43619 |
11 -0.196167 I
12 0.263037
13 =-0.246032
14 0.0974338
15 =-0.162852 {
16 0.428415 |
17 -0.233829
18 -0.102615
19 0.201029
20 -0.19482
21 -0.396177
22 0.188901
23 0.488366
24 0.35209
25 -0.0557214
26 0.0913949 |
27 0.0177282 I
28 0.160982
29 -0.490346
30 0.249222 |
TO CHI
LAG SQUARE DF PROB
6 3.32 6 0.768
12 12.03 12 0.444
18 18.69 18 0.411
24 31.87 24 0.130
30 39.56 30 0.114

Figure II.3

-0.022 0.036 0.007 0.063 -0.191

: Autocorrelations at station 102
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ARIMA PROCEDURE (STATION 119)
AUTOCORRELATIONS

-0.133
0.105
-0.091
0.232
0.043

COVARIANCE -1 9 8 76 543 2101234561728291
2.73073 | lhdkkdhdhhkdhhhkhkhkhkkkk
-0.0133301 } . % .
-0.249693 | . **' .
0.0658215 l . ‘
-0.0275677 | . | .
-0.0601951 . | .
-0.363533 .***I .
-0.0297245 . .
0.433612 | . i*** .
-0.124588 ] . *{ .
-0.206754 %% .
~-0.18758 . *I .
0.287082 . I** .
-0.186568 } *} .
0.15402 * .
-0.121405 . *} .
0.324022 I . *k o,
-0.155573 * .
-0.248737 *% .
0.100324 . * .
-0.210515 l . k% .
-0.515838 ' .****l .
0.0325981 . .
0.654807 . *kkkk
0.634183 *hkkk
-0.308912 l . K*
-0.133387 . *l
-0.257144 ] . **I .
0.177734 . *
-0.589677 ] . ****I .
0.127712 ! . !* .
AUTOCORRELATION CHECK FOR WHITE NOISE
CHI AUTOCORRELATIONS
SQUARE DF PROB
2.43 6 0.876 -0.005 -0.091 0.024 -0.010 -0.022
7.08 12 0.852 -0.011 0.159 -0.046 -0.076 =-0.069
10.97 18 0.896 -0.068 0.071 -0.044 0.1192 -0.057
28.94 24 0.222 0.037 -0.077 -0.189 0.012 0.240
38.78 30 0.131 -0.113 -0.049 -0.094 0.065 =-0.216
Figure II.4 :Autocorrelations at station 119
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Alternatively, several estimation methods considering spatial corre-
lation were used to estimate the missing observations. The missing data
at a station can be estimated by the weighted average of the observed
precipitations from the surrounding stations as

S
X(0,t) =) w, X(s,t) (II.1)
s=1

. A
where X(0,t) is the estimated precipitation amount for a station with

missing data at time t, X(s,t) 1is the observed precipitation from a
surrounding station s at time t, w, is the weight for station s, and S is
the total number of surrounding stations used in estimation.

Three types of method are used to in this study estimate the missing
values: (1) inverse distance weighing technique, (2) nonlinear programming
technique to minimize the variance of the estimates, and (3) regression
technique considering the cross—correlations between the station with
missing values and the surrounding stations with observations. The
resulting regression statistics such as variance, standard error, and R?
were also used to define the weights for estimating the missing values.

II1.2 Estimation Methods

Since the estimates are a weighted linear combination of the
observations from the surrounding stations, the results of estimation
depend on how the weighing factors are calculated.

IT1.2.1 Inverse Distance Weighing Method

The inverse distance weighing method considers the premise that
weight contributed from a station with observations to the estimated
precipitation amount at the station with missing values is inversely
proportional to the physical distance between the two stations. The
contributing weight for the station s with observation to the station with
missing values, w,, is computed by

(II.2)

53

n
s=1{ Dg

where D, is the distance between the station s with observations and the
station with missing values, n is a constant by which the distance is
weighted, S is the number of surrounding stations used (Tung, 1983) in the
estimation. If the value of a is very large, the weights will be concen-

10
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trated on a few stations that are very close to the station with missing
values. On the other hand, the weight may be dispersed to a large number
of the surrounding stations for a small a. For instance, if @ equals
zero, then every surrounding station under consideration would have an
equal weight.

In this study, the values o=1 and 2 are used and they are called the
linear inverse distance (IDLIN) method and square inverse distance (IDSQ)
method, respectively. For these two methods, the IDSQ technique gives
higher weight for the station closer to the point of estimation than the
IDLIN method. The amount of monthly precipitation at the station with
missing values can be determined by the IDLIN method as

s
X(s, £)
% [#5)

X(0,¢t) = £ g (I1.3)

5=1 DS
and by the IDSQ method as
i (X(s, t))

A = D2

20,t) = 22 s (II.4)
s
Y (2
s=1 1)2

I1.2.2 Optimal Weighing Method

Referring to Eq.(II.1l), X(0,t) is a random variable because it is a
linear function of random observations of the surrounding stations. Its
degree of uncertainty, represented by the variance, can be computed as

S
0%, . = Bl [X(0,t)-E(£(0,t))]% = El (£(0,¢6)-) w, E(X(s,£))]%
s=1

N 2 :
E{([X(0, ) -} weu(s, £)] } = E{[{X(0, &) -wTu(£)]%)
s=1

E{ (wZx(t)-wTu(£)]? ) = El wT[X (&) -p (&) ] T(X(E) -p(t) Iw)

11



= wiC,w

(II.5)
in which
C.=E{[X(£)-p (&)1 T(X(E)-p(E)]} , (II.6)
S
X0,t) = Y w, X(s,8) , (II.7)
S=1
pis, t) = ElX(s,t)] (II.8)

with C, being the covariance matrix between stations for month t; X, and
g are Sx1 vectors of the random observation and the mean of monthly
precipitation at station s, for s=1,2,..,S, in month t and T is transpose
of a vector or a matrix. It is, then, desirable to find the weighing
factors that minimizes the variance associated with the estimator X(0,t).

This method is called herein the optimum weighing method (OPTIM) in
that it has the object function of minimizing the error variance of the
estimator subject to the constraint that the sum of weights is 1. That
is,

minimize a3, (II.9)
subject to
s
E WS = 1 (II.].O)
s=1

in which Z(w,X) 1is the Lagrange function and X 1is the Lagrangian
multiplier. The above minimization problem is solved by the Lagrange
multiplier method which converts the original constrained minimization
problem into an unconstrained minimization one as

min & (w,A) = wiC .w + 21 (wT1-1) (IT.11)

Then, the solution to Eq.(II.1l1) must satisfy the following
equations

12
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szct'“z}'l:o (II.12)
oL _ vy -
- =1Tw-1=20 (II.13)

where 1 is a vector of ones. Solving Eqs.(II.12) and (II.13), the optimal
weighing factors can be obtained as

M

in which w* is the vector of optimum weight for the observed stations.
Then the missing values can be estimated by

S
X0,t) = Y w; X(s,t) (II.15)

s=1

in which w.,” is the optimum weight for the observed station s.

I1.2.3 Cross Correlation Weighing (RSQR) Method
Since the monthly precipitation could exhibit spatial

correlation, measures of correlation between existing stations can be used
to compute the weights. The basic idea is that if a measured station s is
strongly correlated to the station with missing values through the whole
recording period, then the station s should be given higher weight.
Specifically, the weight for station s, w,, by the RSQR method is computed
as

(II.16)

where r%,, is the coefficient of determination between the station with
missing values and the station s with observations.

I1.2.4 Variance (or Standard Deviation) Weighing Method

Based on the results of simple regression analysis between two
stations, the statistics, such as standard error or its squared value, can
also be used to compute the weight. Intuitively, the larger the variance

13
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or the standard error for the station, the smaller the weight should be
assigned to it. Therefore, the weight should be inversely proportional to
the variance and standard error. The inverse variance (INVAR) and inverse
standard error (INSTD) techniques are similar to the IDSQ and IDLIN
methods, respectively. The only difference is that the IDLIN and the IDSQ
techniques require only physical distances between stations to calculate
the weights whereas the INVAR and the INSTD methods require the observed
monthly precipitation data to compute the statistics to obtain the weights
for all stations used. The weights by the INVAR method are calculated as

1
2
_ Oos =1 2 s
“E‘"E_———" , S=1,2,... (IT.17)
2: 1
s=1 Ogs
and by the INSTD method
1
W= 05 s=1,2 s
=5 , s=1,2,..., (IT.18)
E 1
s=1 Yos

where o,, is standard error from regression between the station with
missing values and station s with observations.

I1.2.5 Hybrid Method

In the above methods, the missing monthly precipitation data are
estimated from the weighted average of the surrounding observed values
using various weighing techniques. In these methods, the actual observed
monthly precipitation data from the surrounding stations are used.
Alternatively, simple regression equations can be developed for the
station to be estimated and all other surrounding stations based on the
data concurrently available. These regression equations can be used, as
the first attempt, to estimate the missing value from each surrounding
station. The resulting estimated missing values from the regression
equations are further weighted by the above methods. That is,

S
X(0,t) w
=1

s

X,t) = £ (IT1.19)

s
> Vs

s=1

14



where X(O,t) is the missing monthly total precipitation estimated by the

regression equation from station s with observations and X(0,t) is the
estimated missing monthly total precipitation computed by the weighted
average of regression estimates, X(0,t).

II.3 Comparison Study for the Performance of Estimation
Methods

Among the estimation methods, it is desirable to
examine the performance of each method and identify the most accurate one.
Two criteria are used in this performance evaluation and they are the
root—-mean—square-error (RMSE)

T
Y x(s, t)-X (s, £)]2 (II.20)

RMSE, , = y| == = , §=1,2,...8

and the mean—absolute-error (MAE)

Y x(s, 6)-X (s, b) | (I1.21)

in which T is total months used, and X (s,t) is the value estimated by
weighing method k.

In this comparison, precipitation stations were selected under the
condition that there exists, among them, as many concurrently observed
values as possible and that all of them are not too close to each other.
Nine such stations were chosen and they were 102, 103-1, 108-2, 115-2,
119, 122, 123, 124 and 125. Three different periods data set observed
concurrently at all 9 stations were selected to establish regression
equations between two stations to compute the corresponding correlation,
variance, or standard error for purpose of determining the weights from
different weighing techniques. These periods were a 12-month period
(7/1982-12/1983), a 24-month period (2/1981-12/1983), and a 48-month
period (8/1978-12/1983). Then it was assumed that the observed monthly
precipitation (1/1985-7/1988) for these nine stations were missing. The
estimated wvalues for the assumed missing period by the different
estimation methods on the basis of different record lengths (i.e., 12—,
24—, and 48-month) were compared with the actual observations to calculate
the RMSE and MAE.

15
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II.4 Results and Discussion

The results associated with two stations (125, 103-1) out of 9 are
presented here. Tables II.1-II.2 show the results of RMSE and MAE
including the individual weight and regression equation for each station
used. The values of error criteria are also plotted in Figures II.5 and
II.6.

Table II.1 presents the comparison of each weighing technique for
station 125. Referring to Table II.1l(b), the IDLIN method estimates,
without using regression, has the smallest values of RMSE (0.592) and MAE
(0.436) for all three different periods. The IDSQ method has the second
smallest values of errors (RMSE = 0.626, MAE = 0.456). The INVAR
technique, considering regression, yields the largest values of RMSE
(0.983) and MAE (0.735) for a 12-month period.

Different results for station 103-1 in Table II.2 show that the
INSTD method considering regression has the smallest value of RMSE (0.348)
but a slightly large MAE (.269) for a 12-month period whereas the IDSQ
method, without considering regression, has the smallest value of MAE
(0.255) and a rather large RMSE (0.398). Not presented here, the results
for station 123 shows that the OPTIM method without using regression has
the smallest values of RMSE (0.570) and MAE (0.389). It was also found
that when the number of years used to establish regression equations
increased, the corresponding errors decreased.

There is no single estimation technique that is uniformly superior
in all circumstances. Overall speaking, the linear inverse distance
weighing method (IDLIN) is better than all other methods throughout the 9
stations. The IDLIN method is then used to estimate the missing monthly
precipitation for further analysis.

16
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Data from Snowy Range

(A). Weights

Station to be estimated : 125

Stations used : 102,1031,1082,1152,

119,122,123,124

Station Weights for each Stations
Methods STA 102§STA 1031 |STA1082|sSTA IISZETA 119 STA 122 |STA 123 |STA 124
IDsQ 0.014 ) 0.040 0.181] 0.510] 0.027 0.098 0.0S52 0.077
IDLIN 0.049 | 0.082 0.174) 0.292 ] 0,067 0.128 0.093 0.114
lyrs| 0.100) 0.120 0.131} 0.133 ) 0,100 0.165 0.137 0.114
INSTD {2 »| 0.092] 0.112 0.151] 0.161{0.0838 | 0.152 | 0.128 | 0.117
4" 0.097{ 0.111 0.151} 0.168 | 0.087 0,149 0.118 | 0.118
1~ 0.115} 0.127 0.132] 0.125 ) 0.118 0.136 0.120 0.128
RSQR 2" 0.100} 0.118 0.147] 0.136 | 0.105 0.135 0.125 0.133
4 - 0.108} 0.118 0.142} 0.135 | 0.108 .| 0.135 0.126 0.128
1" 0.132} 0.128 0.085] 0.094 { 0.149 0.127 0.163 0.122
INVAR 2" 0.159 ] 0.137 0.079} 0.091 | 0.162 0.121 0.138 0.112
4w 0.154 | 0,138 0.082) 0.091 {0.164 0.116 0.133 0.122
1 | 0.116} 0.132 0.064} 0.069 §0.156 0.150 0.192 0.121
oPTIM |2 | 0.136) 0.138 0.072| 0.082 }0.152 | 0.141 | 0.160 | 0.119
’ 4 "}-0,146| 0.140 0,071 0.078 | 0.164 0.128 0.146 0.127

‘(B). Estimation without using Regression from Individual Station

Error Methods
Yea™s } criterion | 1p5q IDLIN | INSTE | RSQR INVAR l OPTIY
- RMSE 0.626 | 0.592 0.698 0.710 | 0.709 | 0.83a
! MAE 0.456 | 0.436 0,482 0.490 | 0.530 | 0.556
) RMSE 0.626 | 0.592 0,664 0.692 | 0.82 0,321
MAE 0.456 | 0.436 0.470 0.481 | 0.531 0.545
4 RMSE 0.626 0.592 0.660 0.690 0.320 0,838
MAE 0.456 | 0.436 0.468 0.482 | o0.5430 | 0.553

Table II.1 : Comparison of Estimation Method for Station 125
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Precipitation
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Data from Snowy Range

(A). Weights

Station to be estimated : 710131

Stations used : 102,1082,1152,119,

122,123,124,125

_ . Station for each Stations
Methods STA102 STA1152| STAL119 |STA 122 |STA123 |STA 12415TA125
IDsSQ 0.066 0.060 | 0.328 | 0.192] 0.128 | 0.072 | 0.035
- IDLIN 0.096 0.092 | 0.214 | 0.164| 0.134 | 0.101 | 0.070
1yrs| 0.155 0.157 | 0.104 | 0.100| 0.088 | 0.1%94 | 0.090
INSTR ‘2 *|o0.158 0.143 | 0.095§ 0.130]| 0,107 | 0.186 | 0.078
4" 10,161 0,137 | 0.091 | 0.1251 0.116 | 0.182 ! 0,091
1"]0.128 0.121 | 0.134} 0.119] 0.133 | 0.134 | 0.111
- RSQR 2"}10,133 0.125 | 0,138 | 0,120} 0.136 | 0.137 | 0.088
410,131 0.125 | 0.134} 0.123| 0.133 | 0.133 | 0.098
1"}o0.119 0.097 | 0.132| 0.145} 0,147 | 0.116 | 0.150
— INVAR {2 »]0.126 0.104 | 0.128 | 0.142} 0.133 | 0.115 | 0.15¢4
410,133 0.102 | 0.138 } 0.133] 0.131 | 0.122 | 0.141
, 1 "|0.116 0.069 | 0.155 | 0.149} 0.191 | 0.120 | 0,139
- OPTIM |2 "|0.143 0.086 | 0.159 | 0.148] 0.168 | 0.126 | 0.094
14 "lo.153 0.082 | 0.172} 0.134) 0,153 | 0.13¢ | 0.096
(B). Estimation without using Regréssion from Individual Station
- Error Methods
Years : .
Criterion IDLIN | INSTD RSOR INVAR CPTIM
- 1 RMSE 0.439 0,481 0,482 0,472 0513
HMAE 0.311 0,370 0,361 0,30 v, 203
2 RMSE 0.439 D.462 0,470 | 0,483 tos0d
_ . MAE 0.311 0,355 0,355 | 0.133 L9
4 RMSE 0.439 0,461 0,479 ,auns RN
HAE n.311 0.353 0,361 | 0,553 CLIE0

Table IT.2 : Comparison of Estimation Method for Station 103-i
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Figure II.5 : Errors of Estimation Methods for Station 125




PRECIPITATION
STATION 1031 WITHOUT REGRESSION
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Figure II1.6 : Errors of Estimation Methods for Station 103-1



CHAPTER III
ANALYSIS OF MONTHLY PRECIPITATION

When a time series is studied, the observed value of the series at
a particular time period should be viewed as a random value. If the
series exhibits a systematic change over time, some transformation proce-
dures can be applied to the series to make it stationary. Detrending and
deseasonalizing procedures were employed in this study.

I1I1.1 Removal of Long Term Trend

The trend in a time series can be defined as any systematic change
in the 1level with respect to time. When a time series is steadily
increasing or decreasing over time, the annual or some periodic mean of
the series also intends to change through the whole period. 1In this case,
the analysis of the data might not yield consistent results because of the
presence of such trend. Hence it is necessary to remove the trend over
time if it exists. ’

To examine if the monthly precipitation has the over—year trend, the
annual mean of each precipitation station is computed as

12
X(y) = ——I—ZX(m,y) Ly =1,2,...,Y (III.1)

m=1

in which R(y) is the arithematic average of monthly precipitation in year
y, X(m,y) is the observed monthly precipitation in month m and year y, and
Y is the total number of years in the record. The annual mean precipi-
tations for all 21 stations are plotted in Figures III.1-III.7. Although
there are some fluctuations in the annual average precipitations, all
stations do not appear to have any visible over-year changes in the annual
mean. There is a slightly large fluctuation for the first several years
at station 109, but the annual mean seems to stabilize after that. The
annual mean at station 121-A has a decreasing trend for the last three
years, but there was no more data afterward because the station was
removed.

A simple linear regression analysis is performed to fit the annual
average precipitation over time. The resulting regression equations are
shown in Table III.1 with the p-values for the slope. As can be seen, all
the slopes of the fitted regression lines are insignificant at both 10%
and 5% levels. Based on these results, the conclusion was made that there
were no long—term trend in monthly precipitation. Therefore, it is not
necessary to detrend the monthly precipitation data.

23



Station 101

Tl — " ” . y

Station 102

PR I3 \ |

Station 103-1

Annual Average Precipitation

00 2.0

Figure III.1

| I

40 6.0 80 10.0 12.0 14.0
Years

Long Term Trend of Monthly
Precipitation

24



Station 103-2

Station 103—A

i i 1 ] i ]

Station 106

8 10

Annual Average Precipitation

-4

o T

(=]

B__E/B\S\S/E:——E—E—E’B\E/a

00 20 40 6.0 80 100 120 14.0
Years

Figure 11I.2  Long Term Trend of Monthly

Precipitation

25
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Annual Average Precipitation

Station 115—-2

) i b ] l 1 {

Station 115—A

Station 119

M

] | i

0.0' 20 40 6.0 8.0 10.0 12.0 14.0
Years

Figure III.4  [ong Term Trend of Monthly

Precipitation

27



Annual Average Precipitation
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Equations for Annual Trend

Station Regression
101 X 2.22 - 0.0132 ¥, (0.815)"
102 2.11 + 0.0708 ¥, (0.062)
103-1 3.90 - 0.1041 Y, (0.316)
103-2 3.68 - 0.0404 Y, (0.387)
103-A 2.64 + 0.0182 Y, (0.627)
106 1.96 + 0.0506 ¥, (0.166)
108-~2 3.33 + 0.0856 ¥, (0.206)
108-A 3.71 - 0.0795 Y, (0.443)
109 3.55 + 0.1219 Y, (0.453)
115-2 3.32 + 0.0793 Y, (0.269)
115-A 3.76 - 0.0336 ¥, (0.555)
119 2.24 + 0.0409 Y, (0.409)
120 2.61 + 0.0370 Y, (0.562)
121 3.41 + 0.0002 Y, (0.997)
121-A 4.34 - 0.2414 Y, (0.133)
122 3.05 + 0.0177 ¥, (0.813)
123 2.93 + 0.0182 Y, (0.762)
124 2.96 + 0.0025 Y, (0.959)
125 2.17 + 0.1422 Y, (0.130)
126 3.42 - 0.0869 Y, (0.135)
127 1.81 + 0.0845 Y, (0.211)

.
.

Table III.1 : Regression Equations of Annual
Mean Precipitation

X : Annual mean of monthly precipitation
Y : number of years,
* P-value of regression coefficient




P

II1.2 Removal of Periodicity

In monthly precipitation time series, some types of seasonal pat—
terns would be likely to exist at 12-month intervals. This fluctuation
reveals a seasonal cycle or periodicity that recurs about every 12 months.
To make the time series stationary, deseasonalization is needed to remove
the within-year seasonal fluctuation in the monthly precipitation time
series. Two methods (Parzen, 198l) were used in this study to desea-
sonalize the monthly precipitation data.

I1I1.2.1 Using Monthly Sample Statistics

The monthly averages of the total precipitation for each station on
a given month m can be computed as

Y
X(m = =Y X(m,y) , m=1,2,...,12 (III.2)
YY=1
in which R(y) is the average precipitation for month m. Then, the

standardization procedure is applied to obtain the deseasonalized data as

Z(m,y) - X(m,Y) —_X'(m) (ITII.3)

S(m)

in which S(m) is the sample standard deviation of monthly precipitation
for month m,

Y
Y (xX(m,y)-X(m)]? (III.4)
y=1

S (m) ,m=1,2,...,12

y-1

The sample statistics of the monthly precipitation are shown in
Tables III.2 and III.3. The standardized monthly precipitations for
stations 106 and 108-2 are presented in Figures III.8 and III.9 to compare
with the original time series shown in Chapter I. As can be observed, the
seasonal fluctuation that appeared in the original time series data is
removed. The standardized monthly precipitation, then, can be considered
stationary having zero mean and unit variance.

I1I1.2.2 Using Fourier Series

Another method of deseasonalization is to fit the monthly average
mean by a Fourier series (Bloomfield, 1975). Then, the above standar-
dization procedure can be performed using the fitted average, instead of

32
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Station Month

Jan. Feb. Mar. Apr. May. Jun.

101 2.03 1.51 2.34 2.47 2.40 1.24
102 2.58 2.15 3.33 3.54 2.85 1.41
103-1 3.04 1.39 3.67 4.05 3.33 1.61
103-2 3.53 2.82 4.26 4.43 3.78 1.69
103-A 2.94 2.29 3.47 3.90 3.29 1.59
106 2.34 1.79 2.85 3.06 2.82 1.27
108-2 6.28 5.09 4.45 5.77 4.97 4.55
i08-A 3.12 2.48 3.78 3.99 3.32 1.59
109 6.51 5.02 6.33 6.25 4.438 2.02
115-2 4.85 3.79 5.48 5.55 4.45 1.91
115-A 4.25 3.10 4.87 4.82 3.92 1.67
119 2.63 1.95 3.07 3.55 3.16 1.40
120 3.03 2.35 3.48 3.74 3.19 1.53
121 4.23 3.01 4.73 4.92 4.12 1.75
121-A 4.03 3.01 4.70 4.70 4.09 1.68
122 4.00 2.92 4.13 4.17 3.69 1.52
123 3.19 2.83 3.87 4.37 3.48 1.50
124 3.18 2.49 3.84 4.22 3.37 1.57
125 4.82 3.37 5.06 4.34 3.45 1.55
126 3.05 2.64 3.55 3.64 2.90 1.74
127 2.39 1.94 3.01 3.31 2.70 1.27

Table III.2 : Monthly Average Precipitations in

Snowy Range Observatory
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(continued)
Station Month

Jul. | Aug. Sep. oct. Nov. Dec.
101 2.50 1.52 1.47 1.63 2.29 2.49
102 2.51 1.438 1.86 2.18 3.31 3.26
103-1 2.71 1.85 1.82 2.47 3.83 3.56
103-2 2.70 1.90 1.90 2.61 4.19 3.87
103-Aa 2.61 1.75 1.84 2.29 3.41 3.21
106 2.49 1.56 1.63 | 1.95 2.69 2.79
108-2 2.27 2.92 2.19 2.32 3.29 5.00
108-A 2.81 2.00 1.96 2.47 3.28 3.62
109 3.02 2.23 2.39 3.23 5.06 5.81
115-2 2.83 2.18 2.09 3.31 4.78 5.47
115-A 2.70 1.96 1.87 2.75 4.01 5.03
119 2.46 1.58 1.52 2.15 2.97 2.84
120 2.58 1.64 1.63 2.24 3.58 3.55
121 2.87 1.97 1.91 2.78 4.46 4.56
121-A 2.57 1.93 1.89 2.76 4.34 4,44
122 2.77 2.00 2.09 2.75 3.63 4.17
123 2.51 1.77 1.77 2.63 3.82 3.72
124 2.49 1.74 1.77 2.53 3.48 3.61
125 2.53 1.86 1.80 2.76 4.25 4.76
126 2.70 2.26 1.94 2.53 3.21 2.85
127 3.30 1.65 1.64 2.11 3.28 2.82

Table III.2 : Monthly Average Precipitations in

Snowy Range Observatory
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Station Month

Jan. Feb. Mar. Apr. May. Jun.

101 1.32 1.18 0.72 1.33 0.94 0.84
102 1.84 1.35 1.33 1.95 1.49 0.88
103-1 2.04 1.61 1.46 2.28 1.46 1.05
103-2 2.28 1.75 1.62 2.58 1.66 1.07
103-A 2.46 1.38 1.24 2.07 1.46 1.06
106 1.57 1.31 1.36 l1.61 1.13 0.90
108-2 4.46 3.55 1.96 2.18 1.71 1.74
108-A 1.94 1.35 1.36 1.69 1.39 1.04
109 4.52 3.43 3.24 2.92 1.65 0.99
115-2 3.07 2.20 1.94 2.58 1.75 1.34
115-A 2.48 1.47 2.01 2.23 1.52 1.02
119 1.81 1.33 1.25 1.91 1.46 0.92
120 2.18 1.87 1.63 2.29 1.50 0.98
121 2.67 1.55 1.72 2.47 1.78 0.94
121-A 2.72 1.84 1.78 2.34 1.97 1.02
122 2.18 1.76 1.75 1.92 1.77 1.00
123 2.32 1.96 1.53 2.19 1.48 0.93
124 2.19 1.48 1.64 2.03 1.43 0.98
125 4.11 2.10 2.40 2.11 1.51 1.04
126 1.72 1.59 1.62 1.28 1.15 1.00
127 1.77 1.44 1.42 2.02 1.52 0.97

Table III.3

Standard Error of Monthly Precipitation

in Snowy Range Observatory



(continued)

Station Month

Jul. Aug. Sep. Oct. Nov. Dec.

101 1.50 0.65 0.94 0.68 1.46 1.63
102 1.83 0.75 1.14 0.81 1.92 1.86
103-1 1.61 0.93 1.05 0.87 2.44 2.44
103-2 1.56 0.97 1.14 0.89 2.51 2.42
103-A 1.53 1.03 0.94 0.68 1.99 1.84
106 1.72 0.78 0.97 0.71 1.52 1.57
108-2 1.43 1.30 0.96 1.43 1.04 2.75
108-A 1.42 0.90 1.05 0.59 1.76 2.13
109 1.63 0.94 1.23 1.40 2.25 3.24
115-2 1.74 1.02 1.18 1.04 2.65 3.28
115-A 1.65 0.90 0.99 0.79 2.43 2.94
119 1.46 0.78 1.12 0.71 2.00 1.67
120 1.57 0.86 1.08 0.89 2.34 2.30
121 1.70 0.89 1.17 0.91 2.42 2.56
121-A 1.82 0.97 1.19 0.89 2.28 2.66
122 1.47 0.95 1.15 0.72 1.74 2.50
123 1.40 0.93 1.18 0.87 2.32 2.32
124 1.36 1.81 1.04 0.76 2.06 2.12
125 1.45 0.98 2.11 0.69 2.12 2.40
126 1.41 1.22 0.92 0.63 1.17 1.61
127 3.10 0.99 1.13 0.95 2.23 "1.83

Table III.3

Standard Error of Monthly Precipitation

in Snowy Range Observatory
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sample means. The Fourier series

21rfm

+ B sin (28I, (III.5)

X.(m) =X+ Z la ,cos( >

is an approach to find the "hidden periodicity" in a time series in which

% (m) is the fitted sample mean by a Fourier series in month m, X is an
overall mean that is computed by

1 Yy 12
= _E X(m,y) (III.6)
Ty=1m=l

>l

in which T is the total months in the time series used and a; and B; are
Fourier coefficients that can be computed as

o, = 1§ X(m) cos|2Tim 1,2 6 (III.7)
£~ "6_' 12 ’ = ’ ’ ’ .
m=1
B, = 126: X(m) sin(-2TIM = 1,2 6 (III.8)
£ - —6—m_l 12 7 - 7 ’ ’ .

It should be noted that mnot all Fourier coefficients are
statistically significant. To test their significance for each frequency
f, a test statistic v, (Parzen, 1981)

T(a2+ 2
v, = fé. B (III.9)

is used in which B is the average of the monthly sample standard deviation
of the monthly precipitation that can be
computed by

s=-LY s (ITI.10)

The test statistic v, has a x? distribution with 2 degree of freedom.
If the statistic v, > 12.0, for £=1,2,..,5 and v, > 3.84 for f=6, the
coefficients at the corresponding frequency can be accepted as significant
and thus the cycles of the period 12/f ,for £=1,2,..,6, which correspond
to 12, 6, 4, 3, 2.4 and 2 months are also significant. Then the seasonal
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means can be estimated wusing those significant coefficients. The
estimated coefficients are presented in Tables III.4 and III.5. These
tables also show the results of significant tests of the Fourier coeffi-
cients. By the results of this analysis, the frequencies f=1, 2, 3 and 6
are mostly significant throughout all 21 stations. The corresponding
coefficients are used to estimate the mean precipitation for each month.
Using the results from Fourier analysis, the fitted monthly mean, X.(m),
is used to transform the detrended time series into a monthly stationary
series

X(m,y)-X (m)

(III.11)
S (m)

Zg(m,y) =
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Station o
f=1 £=2 £=3 f=4 £=5 £=6

101 0.07 0.24 -.20 -.06 0.19 0.36
102 -.03 0.43 -.31 -.09 0.11 0.40
103-1 -.01 0.52 -.34 -.01 0.10 0.41
103-2 0.01 0.56 -.32 0.03 0.11 0.51
103-A 0.09 0.45 -.24 -.03 0.09 0.42
1b6 0.08 0.34 -.21 -.06 0.19 0.40
108-2 0.57 0.25 0.57 -.02 -.30 -.36
108-A 0.06 0.35 -.25 -.10 0.21 0.35
109 -.17 0.30 -.17 | -.17 0.05 0.54
115-2 -.13 0.62 -.28 -.09 0.25 0.38
115-A -.08 0.52 .26 -.16 0.29 0.38
119 0.14 0.45 -.20 -.03 0.15 0.39
120 ~-.02 0.49 -.30 -.02 0.13 0.41
121 -.03 0.62 -.30 -.05 0.16 0.56
121-A -.05 0.61 -.27 -.00 0.19 0.52
122 -.10 0.37 -.12 -.09 0.25 0.47
123 -.01 0.52 -.29 0.02 0.13 0.31
124 0.05 0.50 | -.25 | =-.09 0.15 0.33
125 -.29 0.34 -.29 -.15 0.18 0.54
126 0.05 0.16 -.26 0.30 0.05 0.28
127 0.04 0.33 -.47 -.06 0.14 0.54
Table III.4 : Estimates of Fourier Coefficients, «
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Station B
f=1 f=2 =3 =4 £=5 £=6
101 -.23 0.05 -.35% -.16 -.12 -.00%*
102 -.60% -.17% | ~-.42% -.14 -;16 ~.00%*
103-1 -.70% -.16* | -.50%* -.23 -.07 -.00%*
103-2 -.95% -.20* | -.51%* -.22 ~-.02 -.00%*
103-A -.64%* =.17*% | —-.45%* -.23 -.08 -.00*
106 ~.41%* -.09% | ~,40% -.18 -.10 -.00%*
108-2 1.60% 0.49% | -,29%* -.07 ~-.22 -.00%*
108-A -.68%* -.15% | =.51% -.21 -.07 -.00%*
109 2.10%* -.12 -.67% -.36 0.04 -.00%*
115-2 1.53%* -.20% | -.70% -.23 | 0.03 -.00%
115-A 1.30% -.19% | =.72% -.16 0.02 -.00%*
119 -.55% -.14*% | -.41%* -.28 -.05 -.00*
120 -.74%* -.06% | -.47%* -.20 -.08 -.00%*
121 1.19% -.13% | -.65% -.27 0.02 ~.00%*
121-A 1.19%* -.19%* -.66* -.20 0.04 -.00%*
122 -.96% -.10*% | -.52% -.26 -.02 -.00%*
123 -.91% -.258 | -.48% -.27 -.11 -.00%*
124 -.84%* -.22% | =.50% -.23 -.04 -.00%*
125 -.15% -.04 -.55%* -.19 0.15 -.00*
126 -.53% -.19 -.31* -.27 0.03 -.00%*
127 -.35> -.04 -.41%* -.34 -.21 -.00%*
Table III.5 : Estimates of Fourier Coefficients, B;

(* represents v, is significant)




CHAPTER IV
ANALYSIS OF SPATIALLY NONSTATIONARY MONTHLY PRECIPITATION

In Chapter III, the monthly total precipitation data under study
shows the nonstationarity over the study area (see Table III.2 and III.3)
indicated by that the mean and the variance are not constant. It is,
therefore, necessary to have a mechanism to estimate the mean as well as
the variance in space so that the standardized stationary random field can
be transformed back to preserve the original spatial nonstationary charac—
teristics. Firstly, two different methods that do not consider spatial
correlation were used to estimate the monthly average precipitation over
the space. The inverse distance weighing technique and the Gaussian
smoothing method were used. Secondly, to consider the spatial correlation
between stations at Snowy Range Observatory, the nonstationary kriging
technique was used to estimate the monthly total precipitation over the
space.-

IV.1 Estimation without Considering Spatial Correlation

The inverse distance weighing technique and the Gaussian smoothing
weighing method use a weighted average of the values from the recording
stations to estimate the monthly average precipitation at the specified
ungaged location. The weights computed by inverse distance or Gaussian
smoothing techniques are only functions of the physical distance between
two stations. They do not explicitly account for the spatial variability
of monthly precipitation under study. These two techniques also do not
allow for computation of the reliability of the estimates.

IV.1.1 Inverse Distance Method

The linear inverse distance weighing technique has the same concept
as the IDLIN technique in Chapter II used for estimating the missing
values in which the contributing weight of the existing station to ungaged
location is determined as

L
D,

We 1v = (IV.1)

%(3)

bl}“‘ ~—
N

where D, is the distance between the specified ungaged location and a
recording station s, S is the total number of stations used in estimation,

and w, ;y is the weight for the station s by inverse distance method.

Then, the monthly average precipitation at the ungaged location, ¥y ;y(m),

for month m, is estimated by
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Xo, rvlm) = EWzv X, (m) (IV.2)

where X,(m) is the calculated total monthly average precipitation at the
recording station s in a given month m. The method does not consider any
other factors affecting the estimate except the distances between two
locations. This technique also can be employed to estimate the variance
of monthly precipitation at the ungaged location in a similar manner as

S, v (m) = E s v S (m) (IV.3)

A
in which SOJvz(m) and S.2(m) are the variances at the ungaged location and
the recording station s, respectively.

IV.1.2 Gaussian Smoothing Method

The Gaussian smoothing technique (Borgman, 1990; Kallianpul, et al.,
1988) uses the Gaussian function

.1 po2
f(Ds) = g 20 D, (IV.4)

to compute the weights where Q is a constant representing the effective
width of smoothing. The weights are determined by
£(Dy)

S
Wegs = —5—— .+ S=1,2,...,8

Y £(Dy)
i=1

(IV.5)

The value of Q can be determined subjectively with the idea that the
larger the value of Q is, the more smoothing the result will be. A very
small value of Q allows only those recording stations in close vicinity of
the estimation point to be used to estimate the monthly precipitation at
the ungaged location. As can be seen, the weight also depends only on the
distance. The estimates of monthly average precipitation can be deter-
mined by

X;,6s(m) = ZWS,GS X (m) (IV.6)
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In this study, Fibonacci search technique (Luenberger, 1984) is
applied to find the optimal Q which minimizes the error associated with
the estimates using the observed data at all recording stations. The
objective function is to minimize

S

e2(ml0) = Y [ X (m) - X, oo(m|O)] (IV.7)

s=1

A
in which X ¢s(m) is the estimates of monthly average precipitation

resulting from Gaussian smoothing weights. This process can also be
applied to estimate the variance, S?,(m). The optimal Q’s for estimating
X, (m) and st(m) for each month, m=1,2,...,12, by the Fibonacci search are

shown in Table IV.1.

IV.2 Estimation considering Spatial Correlation (Kriging)

Unlike the inverse distance weighing technique and Gaussian smooth-
ing weighing method, a geostatistical kriging method is based on the
structure of the spatial variability of monthly total precipitation (Royle
et al., 1980; Borgman, 1990; Bras et al., 1985). The measured monthly
total precipitation in Snowy Range watershed allows one to analyze the
spatial correlation structure in the study area and to incorporate such
information to determine the optimum weight which minimizes the variance
estimation. The kriging procedure has been developed around the variogram
or covariance function and the best linear unbiased estimation.

IV.2.1 Analysis of Spatial Correlation Structure

The computation of the correlation matrix is essential in kriging to
find the variogram or covariance structure. Computation of the spatial
correlation structure requires that the random field is stationary.
Therefore, the standardized monthly total precipitation series described
in Chapter III were used. Since the standardization requires estimating
the means and variances of the monthly total precipitation, the above
Gaussian smoothing method and two other techniques were used. One
technique was simply to use sample means and sample variances at the
recording stations and the other used the monthly total precipitation
statistics calculated by the Fourier Series described in Chapter III.

Using the standardized monthly total precipitation series, the
functional relationship between correlations and distances computed by the
three different methods are plotted in Figures IV.1, IV.2 and IV.3. -All
three plots are similar thus indicating that the correlation~distance
relationship is not sensitive to the method used to compute the local mean
and variance of the monthly total precipitation in Snowy Range watershed.
It is interesting to observe that the correlation function is separated
into two distinct parts. One, which locates at the lower part, parallel to
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Month Optimal O :
For Mean For Varilance
January 0.3819663 0.5280327
February 0.3068254 0.2938475
March 0.2755167 0.7782433
April 0.3068254 0.4530374
May 0.5197246 0.1029390
June 0.5322481 0.3942531
July 0.2003758 0.8325485
August 0.3318724 0.5290438
September 0.2755167 0.5932542
October 0.1565436 0.2842049
November 0.2191610 0.3290381
December 0.4383220 0.2374398
Table IV.1l : Optimal Q for Gaussian Smoothing
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the horizontal axis indicating that the correlation associated these
points is a constant against the distances. This part consists of 20
points and all these points are related to station 108-2. This implies
that the monthly precipitation collected by station 108-2 is independent
of the catch by all other stations. This lower part associated with
station 108-2 is assumed to be a constant having the correlation value of
the average of the total 20 points.

The upper part of the plot reveals an inverse linear relationship
with the distances. This means that the closer the distance between two
stations 1is, the higher the correlation is. These correlations were
fitted by regression to find the structure for the three different
methods. The resulting regression equations that define the functional
relationship for correlation between station s and s’, p(dg ) 1is as
follows: when station 108-2 is considered to compute correlation, for all
three techniques

p(d

s.¢/) = constant (IV.8)

When all other stations are used to calculate the correlation, the
resulting regression equation, using sample means and variances, is

p(ds o) = 0.928 - 0.0263d,  , R* = 36.6% (IV.9)

When using the Gaussian smoothing method the regression equation is

p(ds

30.0%  (IV.10)

s = 0.914 - 0.0257d, o , R?

and using the Fourier Series it is

p (dg

38.4%  (IV.11)

,SA = 0.901 - 0.0291d&s/ , R?

The resulting regression lines from the three different techniques are not
distinguishable. Hence the correlation relation computed by the sample
means and the sample variances is adapted in the further study. It should
also be noted that there exists a nugget (random) effect (indicated in
Figure 1IV.1l) 1in these plots. The correlation function used in the
nonstationary kriging for this study is

0.028, d, >0, (IV.12)

for s’ = station 108-2 and

p(ds o) =40.928-0.0263d, o, d ;0, (IV.13)

for s’ = station 108-2
1, dg s =0 for all s, s’ (IV.14)
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From the above correlation function, the covariance function can be
computed as

C(dg o) = C(s,s’) (IV.15)

where C(dy ) and p(d, 4. ) are the covariance and the correlation between
two stations s and s’ separated by distance d, .., respectively.

IV.2.2 Nonstationary Kriging

Nonstationary kriging proposes that the monthly total precipitation
value over the specified block or point can be estimated by the known
functions, X, , for s=1,2,..,S, as

S
B = Yo We Xp o (IV.16)
s=1

where S is the total number of recording precipitation stations in the
region. The basic function, X, ,, is known, but the weighing coefficients,
w,, are to be determined.

IV.2.2.1 Definition

The mean of the time-space random process, X, ,, which is assumed to
be second-order and nonstationary, is defined as

Bas = BIX, (] (IV.17)

where s represents a location in a region and m is a given month (Borgman,
1990). The variance can also be expressed as

Ops =Bl(X, o~ Bpo?l (IV.18)

m,s

The covariance allows modeling of the spatial dependence of the random
process X, .. The covariance function at any two locations, s and s’ for
month m, is defined as

c,(s,s’) = E[(Xm.s_um,s) T(Xm,s/—p'm,s’)] (IV.19)

where s=1,2,...,5 and s'=1,2,...,S. If s=s', C,(s,s') 1is called
autocovariance and if not, C,(s,s’) is called cross-covariance.
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The objective of nonstationary kriging is to estimate the monthly
total precipitation over the specified area B in a given month m as

A 1 ’
Xom = 5 X,sds , m=1,2,..,12 (IV.20)
B

When the block B reduces to a point, then

Lom = X, (IV.21)

m, Sy

To construct the contour maps of the mean and the error, the use of
nonstationary point estimation is preferred. The expectation of point
kriging is

Bms, = BlX, g1 »m=1,2,..,12 (IV.22)

IV.2.2.2 Formulation of Nonstationary Kriging Model

The point monthly total precipitation in month m at the estimation
point s; can be expressed as a linear combination of the observed data,
Xn s, for s=1,2,..,5, by

X s, = Ews Xn s (IV.23)

The mean square error of monthly total precipitation at a given estimation
point sy, in a given month m, can be rewritten as

S 2

‘JE.'2 (m) = E[(Xm sy Xm,so)z] = E (Z WeXn s = Xm,so)

s=1

2
S S
= E Z Wg (Xm.s—""m,s) +Z Wsknp, s~ (Xm, so—p'm,so) —I"Lm,so)

s=1 s=1

Assume that the estimator is unbiased, that is,

ElX,, - X

m,

sl =0 (IV.25)

Then the mean square error, oz2(m), is reduced to
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2
s s

= E(E WolXp o = Bps) = (Xm’so-pm'so) + (Z wsp,m's-pm'so)]
[\s=1 s=1

2
S
= E (E Ws (Xm, s~Hn,s) ] + E[(Xm, 5o Hm, 50)2]
\s=1

S
-2E Z W (Xp, s=Ba,s) (X, so Hm, 50)]

s=1

S S
o2(m =Y Y wwiC,(s,8)+C,(s5,,8)) -2y w,Cp(s,s,)
s=1 5/=1 s=1
- wT 2 _ T
=wiC,w+ o, 2-2wic,,

The elements on the right-hand side of Eq.(IV.26) can be computed, using
information extracted from the data, as

Cpls,s) = s, 8, Pplds o) (IV.27)
S
Bmsy’ = Sms’ = . Ws,1v Spm ot (IV.28)
s=1
Cn(S.80) = Sp s Sp s, Bmldss) (IV.29)
S
T Y Wy Bms (IV.30)
s=1

in which p,(s,s’) and p,(s,sy) are the correlation estimated by the
structured correlation function, Eq.(IV.12), (IV.13) or (IV.1l4), between
stations s and s’ and between ungaged point s, and station s in month m,
respectively; w, 1y is the inverse distance weight contributed from the
existing station s; p, ., Sn s and am§2 are the mean, standard deviation,
and variance measured at station s in month m, respectively.

After the above terms are computed, the nonstationary kriging model
can be expressed as the following
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(Model 1)
Minimize

o (m = wilCow+ o, 2-2wic, (IV.31a)

subject to

wil =1 , (IV.31c)

w,20 ,s=1,2,...,8 (IV.31d)

The commonly used kriging model involves only one constraint Eq.(IV.31lb).
The solution to such model do not ensure that all weighing factors are
nonnegative and add up to one. Therefore, constraint Egs.(IV.31lc) and
(IV.31d) are added to the kriging model.

In model I, the local variance, amﬁz, is considered as a constant.

However, it is actually a function of the variances measured at every
existing station, o, %'s, and the corresponding weights which are unknown.
Therefore, asz should be considered as a decision variable and model I is
modified as the following

(Model II)

Minimize

2 - by 2 _ T
o/ (m =wiCw+ o, °-2wcC,

= wT (me + 0,2,,'50 - ZWT[Um,soSm,s ﬁm(ds’so)] (IV.32a)

subject to

m= Wms, - (IV.32Db)

wil =1 , (IV.32d)
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wio,? = ons (IV.32c)
w,20 ,s8=1,2,...,8 (IV.32e)

in which o, ., is an additional decision variable representing unknown

variance at the estimation point sg.

IV.2.2.3 Solution Procedure

The Lagrange multiplier method has been used to solve the conven-—
tional kriging model subject to only a single unbiased constraint
(Borgman, 1990; Journel et al., 1978). However, the Lagrange multiplier
method is inefficient for solving models I and II formulated above, which
involves several constraints, including non-negativity constraints. In
this study, a nonlinear programming code, called GRG2 (Lasdon et al.,
1986), is wused which is based on the generalized reduced gradient
algorithm (Lasdon, 1979; Murtagh, 1978)

IV.3 Comparison Study
In this section, the results of contour maps for means and errors

obtained by the different methods for each month are compared.

IV.3.1 Comparison between Nonstationarv Kriging Models I
and T1

Figure IV.4 shows the mean precipitation contour maps for January
derived by nonstationary kriging models I and II. It appears that the two
nonstationary kriging models do not yield a significant difference between
the mean monthly precipitation with regard to its spatial distribution.
The contour maps (see Figure IV.5) for the differences in means are almost
flat at zero level. Slightly greater value of the mean precipitations are
estimated by model II around stations 109 and 108-2, which are located in
the lower—left corner of the study region. Model I, however, has the
larger error than model II for every month except August (see Figure
IV.6). The error patterns between the two models are distinctly different
at the lower—center area (see Figure IV.5) or at the lower-left area
(Appendix A). The contour maps for the remaining months are shown in
Appendix A.

55



‘Model I, Mean

56

h
AN
324 ™
\
\
N
~
Y
N
\
\
rd

w\
N
32¢ ™
\\
AN
N
~
N
N\
AN
I~ )
)

Figure v.s Comparison of Mean Contours

from Model I & II for January



Mean

57

Figure 1v:s

Contours of Difference between
Model I & II for January



Model I, Error
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Figure 1v.s

Comparison of Error Contours
from Model I & II for January
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IV.3.2 Comparison of Kriging Models, Inverse Distance and
Gaussian Smoothing

It is interesting to compare the contour maps resulting from the
Gaussian smoothing weighing method, the inverse distance weighing
technique and the kriging method. The contour for the means and the
errors estimated by the Gaussian smoothing and the inverse distance
methods for January are drawn in Figures IV.7 and IV.8, respectively. The
mean precipitation pattern computed by the inverse distance method is
quite similar to that computed by the two nonstationary kriging methods.
However, the error estimated by the inverse distance technique is always
greater over the entire study region than the error estimated by kriging
procedures.

The means and the errors obtained by the Gaussian smoothing method
vary greatly over the basin compared to those by the other two methods.
The Gaussian smoothing technique yields larger values of monthly preci-
pitation at the left area of the watershed than the others and smaller
values in the right part.

IV.3.3 Discussion

Models I and II yield almost identical spatial patterns of mean
monthly total precipitation, but model I has a larger error in estimation.
The reason for model II having smaller error is probably due to the fact
that model II treats local variance as a decision variable. In model I,
the local variance is considered as a constant computed by the initial
weights, wg ;y. The nonstationary kriging model I does not allow the local
variance to use updated optimum weights. ’

The contour maps for the mean monthly total precipitation obtained
by the inverse distance method have a similar pattern to those obtained by
the nonstationary kriging. It, however, has larger errors than the
kriging results (see Figure IV.7). This might be because the kriging is
an optimization procedure which minimizes the estimation error while the
inverse distance method does not.

The Gaussian smoothing method yields larger mean monthly total
precipitations and errors than all other methods at the left portion of
the study area and the lowest values at the right (see Figure IV.8).
Referring to Table IV.1l, the optimal Q’s representing the effective width
of smoothing, for the means and the variances have relatively small values
less than 1. However, a lot of smoothing is done for estimating the
monthly precipitations and the errors (see Figure IV.8).

This comparison study indicates that the kriging method is superior
which could be attributed to the fact that the kriging procedure considers
the spatial wvariability while the Gaussian smoothing and the inverse
distance methods do not.
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Figure 1.7

Mean & Error Contours from
Inverse Distance for January
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CHAPTER V
PRECIPITATION NETWORK REDUCTION AND DESIGN

Operation and maintenance of large number of gage station in a
remote area requires significant fiscal and manpower commitment.
Currently, the Wyoming Water Research Center 1is contemplating the
possibility of future budget reallocation. The task then is set out to
examine the possible reduction of network size without sacrificing too
much hydrologic information content in the Snowy Range Observatory.

In this Chapter, the formulation of the precipitation network design
model that takes into account the spatial characteristics of monthly total
precipitation in the study area was considered.

First, the subjective selection of the reduced precipitation network
was made based on the geographical locations of the existing stations and
other considerations such as the accessibility of the station and the
aesthetic aspect. Since precipitation catches are correlated spatially,
those stations having similar statistical characteristics for the monthly
total precipitation can be reduced without affecting the hydrologic
information contents in the study area. Consultations were made with the
WRRC researchers and two reduced precipitation networks in the Snowy Range
watershed were obtained. Of course, this reduced network so subjectively
determined does not guarantee to be the optimum result in statistical
information contents.

The model for optimal precipitation network configuration is also
considered. The objective of the model is to determine the optimal
precipitation network configuration in the Snowy Range watershed that
optimizes some types of statistical information measures. In particular,
the nonstationary kriging wvariance is wused to construct the object
function of the model. In hydrologic network design, there are,
generally, two criteria used in the model: (1) accuracy and (2) cost.
Some papers that treated this subject considered both (Bras et al., 1976;
Loaiciga, 1989) or only accuracy (Shamsi et al., 1988; Bardsley, 1985;
Sorman, 1983). This study shall only consider accuracy to find the
minimum kriging variance. Mixed integer programming (MIP) is applied to
this problem.
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V.1l Network Reduction

Two reduced network configurations were considered (see Figures V.1
and V.2). One consisted of 15 stations (101, 102, 103-1, 103-2, 106, 108-
2, 109, 115-2, 119, 120, 121, 122, 123, 124 and 127) and the other had 12
stations (101, 103-2, 106, 108-2, 109, 115-2, 119, 120, 121, 122, 123 and
124). The contour maps for the means and the variances of the monthly
total precipitation were constructed for each month. The resulting
contour maps based on the reduced networks with 15 and 12 stations were
compared with those of all 21 precipitation station.

Figure V.3 contains the error maps generated from the nonstationary
kriging model I based on 15 and 12 stations, respectively. As can be
seen, the errors increase as the number of retained stations decreases.
The contour maps of the percentage increment in error associated with the
reduced networks related to the full network of 21 stations are plotted in
Figure V.4 for January representing the months (from October to April)
during which the precipitation is most likely in the form of snow. Figure
V.5 is for July representing the months (from May to September) during
which the precipitation in general is in the form of rain. Contour maps
of error percentage increment for the remaining months are shown in
Appendix B. It was observed that, during June — September, the percentage
increase in error associated with the reduced network is rather small.
However, during the snow months (October—-April), the error increases up to
about 27% in the upper part of the watershed with a reduced network of 15
stations. Further reduce the network to 12 stations resulted in a
slightly higher percentage increment in error to about 30%. The error
increment associated with the reduced network in the lower part of the
watershed is insignificant all year around. This comparison is also made
using the nonstationary kriging model II (see Figures V.6 and V.7). The
results from model I1 are similar to those from model I.

The comparison is also performed for the mean monthly precipitation
(see Figure V.8). The results show that the differences in means between
15 and 21 or 12 and 21 stations are not distinctly different.

V.2 Optimal Network Design
V.2.1 Model

Consider that there are K estimation points and S existing preci-
pitation stations in the study area. The objective is to identify the
optimal subset of existing stations to be retained to minimize the
estimation error. Based on Eq.(IV.3la), the error, measured by the MSE, at
the k-th estimation point within the study area for the month m
is

6.2(m =wTC,we-2wTc,, +0,,° (V.1)
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where w, is a Sxl vector of weights for the k-th estimation point, ¢, is
a Sxl vector of the estimated covariance between the estimation point k
and the existing stations S, o, ,? represents the local variance at the
estimation point k for month m estimated by the contributing weights and
the corresponding variances at the retained stations. A representative
measure of the estimation error for a study area is the aerial averaged
error or, equivalently, the total aerial error

K K
Yo 2tm) =Y [w,TC,wy - 2w, T,y + 0p 4l (V.2)
k=1 k=1

In the network design context, the status of each existing station,
to be retained or removed, is unknown. Therefore, zero—-one integer
variables, z,, for s=1,2,..,S, are introduced to the model. If the station
s is to be retained, z, has the value of one, otherwise, z,=0.

The objective of this precipitation network design problem is to
minimize the total MSE over the specified area. The proposed mixed
integer programming (MIP) model to optimally select the existing
precipitation stations for month m is the following:

K X
Minimize Y, o,2(m) =Y [w,"Cow, 2w c,, + 0,,] (V.3)
=1 =1

The constraints in the model include the following:
(a) The sum of contributing weight from the retained stations to
individual estimation point is unity,

w2 1=1 ,k=1,2,...,K (V.4)

(b) The mean monthly total precipitation at the estimation point k is a
linear weighted average of the monthly mean precipitation measured
from the retained stations

WeTllp=Hpe - K=1,2,...,K (V.5)

(c) Because any existing station s, if retained, can possibly contribute
to compute monthly precipitation at all K estimation points, the
upper bound value for the sum of contributing weights from the
existing station s will be K. If not retained (z,=0), the contri-
bution from station s will be zero.

K

Y Wox- 2KS0 ,5=1,2,...,8 (V.6)
k=1
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(d) The number of stations to be retained cannot exceed the specified
number N determined by fiscal or geographical consideration.

S
Yz, <N, (V.7)
s=1

(e) The contributing weights are non-negative.

w20, k=1,2,...,K,

z,=0 or 1, s=1,2,...,8 (V.8)

The first and second constraints are the same as those of model I for
nonstationary kriging described in Chapter IV.

The proposed optimal network design model is nonlinear. For each
month, the MIP problem includes the zero—one integer variables, z,, and
non-negative real decision wvariables, w,, k=1,2,..,K. The number of
decision wvariables 1is S+SxK real-valued decision wvariables for the
weighing factors and S zero-one integer decision variables. The number of
constraints is 2K+S+1 (not including nonnegativity constraints).

V.2.2 Solution Algorithm

Since the optimal network design model is a nonlinear MIP problem,
there is no solution software immediately available. It is proposed to
linearize the objective function by retaining the first order Taylor
expansion term. The first-order Taylor expansion of the MSE for the given

estimation point k about w=w.? is
flw) =w,TC,w,-2wTc,, +0,,° (V.9)
= £(w?0) + VT £(w %) (w, - w,°) + ¢ (V.10)

(f(wS) -2wLC, w0+ o0, ,2(m]

V.11
+r2wITC,wl-2wTc, . ( )
= constant,® + 2 [w,TC_ w?o - w.Tc, ] (V.12)
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(V.13)

constant,® + 2 w, T [C, w,° - c, ;]

Substituting Eq.(V.13) into Eq.(V.3), the linearized objective function of

the network design model is

Minimize
K
T _ T 2
= E[Wk Chp Wi -2 W, Cpye ¥ °m,k]

K
Y flwy) =
k=1 k=1

K K
~Y constant,® + 2 Y w,T[C, w,° - cp ] (V.14)
k=1 k=1
The above objective function is equivalent to
minimize
X
Y w, T [Cw, - cp i (V.15)
k=1
subject to
w1=1 , k=1,2, K (V.1le6)
W, by = Bpe » k=1,2,...,K (V.17)
X
Y wy-zsK<0 , s=1,2, , S (v.18)
k=1
5
Y z,<nN , (V.19)
s=1
w20, k=1,2,...,K,
z,=0 or 1, s=1,2, .S (V.20)

The linearized network design model is then solved by the computer program
ZO0OM (Zero—One Optimization Methods) developed by Marsten (1988).
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Note that the linearized network design model requires initial guess
on the weighing factors, which may or may not be the optimal one. There-
fore, the linearized model must be solved iteratively each time the
weighing factors are revised and updated if the current solutions are
different from the previous solutions. The procedure then is repeated
until the solutions converge.

V.2.3 Numerical Results and Discussion

Knowing that station 121-A had already been removed from the Snowy
Range Observatory, the remaining twenty stations were then used in the
model to find the optimum subset of precipitation stations to be retained.
The network model was solved to select six stations (N=6) out of 20. Six
stations (103-1, 106, 108-2, 119, 121, 124) which were not too close to
each other were chosen as the initial sclution. After numerous itera-
tions, the best six stations did not converge; they varied from one
iteration to another even though the minimum error was smaller or stayed
the same. Different initial solutions for the weighing factors such as
those computed by inverse distance or from previous kriging results were
used and the algorithm still failed to converge.

One possible explanation for the algorithm failure was that the
solutions to the optimal network design model was very sensitive to the
initial stations chosen in linearization pypcedure. To select the best 6
out of 20 existing stations, there are (6 = 38760 possibilities. The
solution selected may be far away from the optimal one.
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CHAPTER VI
SUMMARY AND RECOMMENDATION

In Chapter II, several estimation methods were used to estimate
missing values and the accuracy of each method was compared with RMSE and
MAE. There was no single estimation method that is uniformly superior in
all circumstances. However, in the majority of the cases considered, the
linear inverse distance weighing method (IDLIN) was better than all other
methods through all 9 stations.

In Chapter II1I, detrending and deseasonalizing procedures were
employed to make the time series data stationary. It was found that there
was no discernable long-term trend in annual average precipitation. Both
monthly sample statistics and the fitted monthly sample mean by a Fourier
series were used to standardize the monthly precipitation for removing the
within-year seasonal pattern in monthly precipitation time series.

In Chapter IV, the inverse distance and Gaussian smoothing weighing
methods, which do not consider spatial correlation, were used to estimate
the monthly average precipitation over the space. The nonstationary
kriging, which considers spatial correlation, was also used to estimate
the monthly precipitation. Two models were formulated by the nonsta—
tionary kriging and they were compared with the contour maps for the means
and the errors. The models I and II yielded almost identical spatial
patterns of monthly precipitation, but the model I had large errors in
estimation. The kriging models, the inverse distance method, and Gaussian
smoothing technique were also compared with the contour maps for the means
and the errors. It was observed that the kriging method was superior to
other two methods.

In Chapter V, two reduced precipitation networks, each retains 15
and 12 gages, are subjectively selected on the basis of spatial locations
of gages, record length of gage, and aesthetic reason. The results
indicated that error increases as the number of retained stations
decreases. The maximum increase in error during May-September associated
with the reduced networks of 15 (28% reduction in network size) and 12
(43% reduction in network size) stations, from an original 21 stations,
are about 8% and 10%, respectively. However, during October—April when
precipitation is most likely to be in the form of snow, the percentage
error increases to a maximum of 28% for the 15-station network and 30% for
the 12-station network. The area within the watershed where larger error
occurs is above the Brooklyn Lake.

A model for optimal precipitation network configuration was deve-
loped. The resulting formulation was a nonlinear integer programming
model to which there is no commercial software available for use. A
procedure was attempted to linearize the nonlinear function and so that
the well developed linear integer progamming technique can be applied.
Unfortunately, the solutions from the linearization procedure were not
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stable. Two possible alternative methods can be applied to solve the
problem. One 1is to use dynamic programming approach which might be
applied to find improved solutions. By dynamic programming approach, the
optimization problem is divided into stages representing the number of
existing stations to be retained or removed. In each stage, the state can
be the list of all existing stations in the network to be retained or
removed. The problem can be solved backward or forward using appropriate
recursive procedure. Alternatively, recognizing the network design model
has a quadratic objective function, it is possible to solve the model by
embedding the quadratic programming algorithm into the branch and bound
algorithm.

From the study, the following conclusions can be made:

(L During the months of May-September the precipitation gage number can
be significantly reduced without loosing much precipitation
information content in the Snowy Range watershed.

(2) During months of snow (October—-April), larger error could occur in
the upper part of the watershed above Brooklyn Lake with reduced
network. The accuracy on the lower portion of the watershed is not
significantly affected by the reduced network.

(3) From the above observation, it places quite a dilemma in the present
operation of the precipitation network. The upper portion of the
watershed area where high error occurs is generally difficult to
access especially during the winter season. Currently, the gages
are maintained and checked by Water Center staff on the weekly
basis. To reduce labor intensiveness of maintaining the gages and
to retain the precipitation accuracy one or two gages that can
operate over longer period with high reliability can be installed in
the remote area.
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Appendix A : Contour Maps for Means and Errors

Model I, Mean

Figure 1.4-1 Comparison of Mean Contours
from Model I & II for February
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Mean -

Error

Figure 1v.s-1 Contours of Difference between
Model I & II for February
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Model I, Error

.---""1.36 -~

Figure 1v.s-1 Comparison of Error Contours
from Model I & II for February
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Model I, Mean
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Figure 1v.s-2 Comparison of Mean Contours
from Model I & II for March
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Error

Figure 1v.5-2 Contours of Difference between

Model I & II for March



Model I, Error
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Figure 1v.s-2 Comparison of Error Contours
from Model I & II for March
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Model I, Mean

Model II, Mean

Figure 1v.s-3 Comparison of Mean Contours

from Model I & II for April
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Model I, Error

Model II, Error
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Figure 1v.6-3 Comparison of Error Contours

from Model I & II for April
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Model I, Mean

Model II, Mean

Figure 1v.s-4+ Comparison of Mean Contours

from Model I & II for May
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Model I, Error

Model II, Error

Figure 1v.6-4 Comparison of Error Contours

from Model I & II for May



Model I, Mean

Figure 1v.s-5

Comparison of Mean Contours
from Model I & II for June
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Figure w.s-s Contours of Difference between
Model I & II for June
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Model I, Error
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Figure 1v.6-5

Comparison of Error Contours
from Model I & IT for June
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Model I, Mean

Model II, Mean

Comparison of Mean Contours

Figure 1v.4-6

from Model I & II for July



Mean

Figure 1v.5-5

Contours of Difference between
Model I & II for July
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Model I, Error

Figure 1v.6-s Comparison of Error Contours
from Model I & II for July



Model I, Mean
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Figure 1v.s-7

Comparison of Mean Contours
from Model I & II for August
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Model I, Error

Model II, Error

Comparison of Error Contours

Figure 1v.¢-7

from Model I & II for August



Model I, Mean
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Figure 1v.s-s Comparison of Mean Contours

from Model I & II for September
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Model I, Mean
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Figure 1v.4-9Comparison of Mean Contours
from Model I & II for October
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Figure 1v.s5-9 Contours of Difference between
Model I & II for October




Model I, Error

Figure 1v.s-9 Comparison of Error Contours
from Model I & II for October
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Model I, Mean

Figure 1v.s-10 Comparison of Mean Contours
from Model I & II for November




Figure 1v.s-10 Contours of Difference between
Model I & II for November



Model I, Error

Figure 1v.s-10 Comparison of Error Contours
from Model I & II for November

107



Mcdel I, Mean

)

o
o

~
CTT e

P S ¢ REE

-
”
d
4

Model II, Mean

)

\‘—l

CTT
(@]
(@

== 3.76 ~-.

rd

4
4

Figure 1v.4-11 Comparison of Mean Contours
from Model I & II for December

108



Mean

109

Figure 1v.s5-11 Contours of Difference between
Model I & II for December
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Appendix B : Computer Program for Kriging

PROGRAM KRIGING

THIS PROGRAM IS DOING AS (1) CALCULATES
DISTANCES BETWEEN STATIONS WITH THE ALTITUDE,
LATITUDE AND LONGITUDE (2)COMPUTES MEANS AND
VARIANCES OF INPUT VARIABLES (3) ESTIMATES THE
MEANS, VARIANCES AND STANDARD DEVIATIONS USING
GAUSSIAN SMOOTHING (4) STANDARDIZE THE VARIABLES
TO BE STATIONARY (5) COMPUTES THE COVARIANCES
BETWEEN VARIABLES (6) AT EACH ESTIMATION (GRID)
POINT, ESTIMATES THE MEANS AND THE STANDARD
DEVIATIONS USING INVERSE DISTANCE WEIGHTS AND

GAUSSIAN SMOOTHING WEIGHTS FOR CONTOUR MAPS (7)

AFTER FINDING THE COVARIANCE FUNCTION FROM THE
CORRELATION MATRIX, OBTAIN THE OPTIMUM WEIGHTS
FROM NON-STATIONARY KRIGING (GRG2 PROGRAM IS
APPLIED TO THE SOLUTION PROCEDURE). THEN MONTHLY
PRECIPITATION IS ESTIMATED WITH OPTIMUM WEIGHTS
AND THE MEANS AND THE STANDARD DEVIATIONS ARE
OBTAINED AGAIN.

INPUT DATA:
X(S,T) = PRECIPITATION VARIABLE AT STATION S AT
MONTH T WHERE S=1,2,..,21 AND T=1,2,..,169
RAT(S) = LATITUDE OF STATICN S
RONG(S) = LONGITUDE OF STATION S
ALT(S) = ALTITUDE OF STATION S

GRIDP(K,3) = CHOSEN K NUMBER OF ESTIMATION (GRID)
POINTS WITH X:Y:Z COORDINATES

OUTPUT DATA :

AVCONT(K) = MONTHLY AVERAGE ESTIMATED BY INVERSE
DISTANCE, GAUSSIAN SMCOTHING OR OPTIMUM
WEIGHTS AT ESTIMATION POINT k,
k=1,2,..,K

STDCONT(K) = STANDARD DEVIATION ESTIMATED AT
ESTIMATION POINT k

VARIABLE :

DIST(S,S") = DISTANCE BETWEEN STATION S AND S’
DISTN(S) = DISTANCE BETWEEN STATION S AND
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a0 0000000000000 O00O00O0000

[XN

AVERMON(S,M)

STDERR(S,M)
VARIANCE(S,M)
AVHAT(S,M)

STDHAT(S,M)
AC(M)

SC(M)
Ve
Ccov(s,s’)
SW(S)
GW(S)
GRID(3)

GRIDP(K,3)
VCONTOUR(K, T)
RHO1(S)

RHO2(S,S’)
C(s,s’")
COI(S)
AMU(S)
AMUO
TOTVAR
AVCONT (K)

STDCONT (K)
VARCONT (K)

implicit double

ESTIMATION POINT AT EACH ITERATION
MONTHLY AVERAGE OF VARIABLE AT
STATION S AND A GIVEN MONTH M
STD_DEV OF " "
VARIANCE OF " "
MONTHLY AVERAGE ESTIMATED BY
GAUSSIAN SMOOTHING AT STATION S AND
A GIVEN MONTH M
STD_DEV ESTIMATED " "
OPTIMAL C FOR THE MEAN COMPUTED BY
FIBONACCI SEARCH AT A GIVEN MONTH
OPTIMAL C FOR THE STD_DEV
OPTIMAL C FOR THE VARIANCE
CORRELATION BETWEEN STATION S AND §'
INVERSE DISTANCE WEIGHT
GAUSSIAN SMOOTHING WEIGHT
TEMPORARY VARIABLE OF ESTIMATIO
POINT
LOCATION VARIABLE OF " "
ESTIMATED DATA USING OPTIMUM WEIGHT
CORRELATION BETWEEN STATION S AND
EACH ESTIMATION POINT FITTED BY THE
VARTOGRAM
CORRELATION BETWEEN STATION S AND §'
FITTED BY THE VARIOGRAM
ESTIMATED LHS COVARIANCE ON KRIGING
SYSTEM

" RHS " "
MEAN VALUE ON NONSTATIONARY KRIGING
ESTIMATED MEAN OF ESTIMATION POINT
ESTIMATED VARIANCE OVER THE BASIN
MONTHLY AVERAGE COMTUTED BY THE DATA
ESTIMATED FROM EACH WEIGHTING METHOD
STD_DEV " "
VARTANCE " "

precision(a-h,0-z), integer(i-n)
PARAMETER (itime=169,MONTH=12,istat=21,igrid=32)

common /coma/DIST(istat,istat)
common /combl/c(istat,istat)
common /comb2/coi(istat)
common /comb3/amu(istat)

common /comb4/amul

common /comc/imon
common /comd/distn(istat)
common /comg/totvar

DIMENSION RAT(istat), RONG(istat), ALT(istat)
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DIMENSION X(istat,itime), Z(istat,itime)
DIMENSION AVERMON(istat,MONTH), STDERR(istat,MONTH),

& VARIANCE (istat,MONTH)

DIMENSION avhat(istat,month), stdhat(istat,month),

& varhat(istat,month)

1

1

DIMENSION ac(MONTH), sc(MONTH), vc(MONTH)

DIMENSION COV(istat,istat)

DIMENSION sw(istat), gw(istat)

DIMENSION GRID(3), GRIDP(igrid,3),
VCONTOUR(igrid,itime)

DIMENSION RHOl(istat), rho2(istat,istat)

DIMENSION avcont(igrid), stdcont(igrid),
varcont(igrid)

DIMENSION skip(igrid)

CHARACTER FIINAME*80, NAMES(istat)¥*4, NAMEM(MONTH)#*3

QPEN(UNIT=5,FILE='PREcLOC.DAT',STATUS='0LD")
OPEN(uNIT=50,FILE='GRIDPNT.DAT',STATUS='QLD’)
OPEN(uNIT=50,FILE='WGRIDPNT.DAT' ,STATUS='0OLD’)

OPEN(UNIT=51,FILE='PM0O101.DAT',STATUS='0LD’')
OPEN(UNIT=52,FILE='PM0102.DAT' ,STATUS='0LD')
OPEN (UNIT=53,FILE='PMO1031.DAT',STATUS='0LD’)
OPEN (UNIT=54,FILE='PM01032.DAT’ ,STATUS='OLD')
OPEN (UNIT=55,FILE='PMOL103A.DAT' ,STATUS='0LD’)
OPEN(UNIT=56 ,FILE='PM0106.DAT' , STATUS='0OLD")
OPEN(UNIT=57,FILE='PM01082.DAT',STATUS='0LD’)
OPEN(UNIT=58 ,FILE='PMO108A.DAT’ , STATUS='0LD"')
OPEN(UNIT=59,FILE='PM0109 .DAT' ,STATUS='OLD’)
OPEN(UNIT=60,FILE='PMO1152.DAT' ,STATUS="0LD’)
OPEN(UNIT=61,FILE='PMO1154.DAT' ,STATUS="0LD")
OPEN(UNIT=62,FILE='PM0O119.DAT',STATUS='0LD’)
OPEN(UNIT=63,FILE='PM0120.DAT',STATUS="'0LD’)
OPEN(UNIT=64,FILE='PM0121 .DAT’ ,STATUS='0LD’)
OPEN (UNIT=65,FILE='PMO121A.DAT' ,STATUS='0LD’)
OPEN (UNIT=66 , FILE='PM0122 .DAT' ,STATUS='OLD’)
OPEN (UNIT=67,FILE='PM0O123.DAT’ , STATUS='0LD’)
OPEN(UNIT=68,FILE='PM0124 .DAT’ ,STATUS='0OLD’)
OPEN (UNIT=69,FILE='PM0125.DAT' ,STATUS='0LD")
OPEN(UNIT=70,FILE='PM0O126.DAT',STATUS='0OLD’)
OPEN(UNIT=71,FILE='PM0127.DAT’,STATUS='0OLD")
OPEN(UNIT=6,FILE='krige.OUT’ , STATUS='UNKNOWN )

READ(5,*) ((Rong(ISTA) ,Rat(ISTA) ,ALT(ISTA)),
ISTA=1,istat)

READ(50,%*) ((GRIDP(I,J),J=1,3),I=1,igrid)

READ(51,#*) (X(1,K),K=1,itime)

READ(52,%*) (X(2,K) ,K=1,itime)

READ(53,%*) (X(3,K),K=1,itime)



aaoaon a0 a O

(o}

[oNoNeoNe]

READ(54,%) (X(4,K) ,K=1,itime)
READ(S5,%*) (X(5,K) ,K=1,itime)
READ(56,%*) (X(6,K) ,K=1,itime)
READ(57,%*) (X(7,K) ,K=1,itime)
READ(58,%) (X(8,K) ,K=1,itime)
READ(59,%*) (X(9,K) ,K=1,itime)
READ(60,%*) (X(10,K) ,K=1,itime)
READ(61,%*) (X(11,K),K=1,itime)
READ(62,%*) (X(12,K),K=1,itime)
READ(63,%*) (X(13,K),K=1,itime)
READ(64,%) (X(14,K) ,K=1,itime)
READ(65,%*) (X(15,K) ,K=1,itime)
READ(66,%) (X(16,K) ,K=1,itime)
READ(67,%*) (X(17,K) ,K=1,itime)
READ(68,*) (X(18,K) ,K=1,itime)
READ(69,%) (X(19,K) ,K=1,itime)
READ(70,%*) (X(20,K),K=1,itime)
READ(71,%*) (X(21,K),K=1,itime)

DATA NAMES/’101’,'102’,'1031’,'1032',"103A’,'10¢",
& *1082','1084’,7109’,'1152','115A",'119",
& *120’,121’,'121A",'122","123","'124",
& *125','126','127"/

DATA NAMEM /'JUN’,'JUL','AUG','SEP’,'OCT’,’'NOV’,'DEC’,
& *JAN' ,'FEB’,'MAR’','APR’,'MAY'/

FILNAME = 'KRIGEOQQ’
GET THE DISTANCE BETWEEN
STATIONS

CALL DISTANT (RAT,RONG,ALT)
GET THE MONTHLY AVERAGE,
THE STD_DEV AND THE
VARIANCE AT THE GIVEN
STATION

CALL AVERAGE (X,AVERMON, STDERR,VARIANCE)
ESTIMATE MEAN, STD_DEV AND
VARIANCE WITH GAUSSIAN
SMOOTHING AND OBTAIN
THE OPTIMUM C

call GAUSSSMO (avermon,ac,avhat)

call GAUSSSMO (stderr,sc,stdhat)

call GAUSSSMO (variance,vc,varhat)
STANDARDIZE THE VARIABLES

CALL STANDARD (x,avermon,stderr,Z)
GET THE COVARIANCE OF
STANDARDIZED VARIABLES
BETWEEN TWO DIFFERENT
STATIONS

CALL CORRCOV (z,cov,const)
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c ITERATION FOR EACH MONTH
DO 10 IMON = 1, MONTH
IF (IMON.LE.9) THEN
WRITE(FILNAME(7:7),’(I1)’) IMON
ELSEIF (IMON.LE.99) THEN
WRITE(FILNAME(6:7),'(I2)') IMON

ENDIF
CLOSE(UNIT=10)
OPEN(10,FILE=FILNAME, STATUS='NEW')
c Decide the grid points

DO 30 iter =1,igrid
DO31I=1,3
31 grid(i) = gridp(iter,i)

c Get the new distances
C between each grid point
C and station S
call DISTGRID (grid,rat,rong,alt)
c Choose the weighting
C method
method=3
if(method.eq.1l) then
c - Get the 'IVDIS’ weights
CALL IDWEIGHT (sw)
c Estimate the means and
Cc std_dev for contour line
c using the weights
call ESTIMATE
C (sw,iter,avermon, stderr,avcont, stdcont)
c
elseif(method.eq.2) then
c Get the weights from
C Gaussian Smoothing using
C the optimum C, then
c estimate the means
c and std_dev using the
o - weights
call GAWEIGHT (ac,gw)
call ESTIMATE
(gw,iter,avermon,stderr,avcont, skip)
call GAWEIGHT (sc,gw)
call ESTIMATE
(gw,iter,avermon,stderr,skip, stdcont)
c
elseif(method.eq.3) then
do 32 i=1,istat
32 amu(i) = avermon(i,imon)
c Get the initial weights
c for GRG2

CALL IDWEIGHT (const,sw)
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c Get the estimated RHS and C
1HS correlation matrices
call RLHSRHO(const,rhol,rho2)

c Get the estimated LHS and C
RHS Covariance matrices
C for Kriging

CALL RLHSCOV (sw,cov,stderr,avermon,rhol,rho2)

c Get the optimum weights
C from GRG2
call OPTWEIHT(sw)
c Get the estimated monthly
c PRECIPITATION using the
C optimum weights FOR given
c month
do 33 jj=imon,itime,12
VSUM = 0.
DO 34 II = 1,istat
if(x(ii,jj).ne.9999.) then
VSUM = VSUM + sw(II)*x(II,jj)
else
vsum=9999.
endif
34 continue
33 VCONTOUR(iter,jj) = VSUM
c Get the mean and variance C
of estimated monthly TOTAL
c precipitation from kriging
call contaver
C i (veontour,iter,avcont, stdcont,varcont)
endif
30 continue
c

do 40 i=1,igrid
40 write(10,110) gridp(i,l),gridp(i,2),
o & avcont(i),stdcont(i)
10 continue
110 format (32(4x,£5.3,3x,£5.3,3x,£f11.7,3%,£11.7))
STOP
END
C
B B R R
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C
C COMPUTE THE AVERAGE AND STANDARD DEVIATION OF DATA
c
SUBROUTINE AVERAGE (X,AVERMON, STDERR,VAR)
C
INPUT DATA :
X(s,T) = MONTHLY PRECIPITATION DATA AT STATION

(oo
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S AND AT MONTH T

OUTPUT DATA :
AVERMON(S,M) = MONTHLY MEAN OF DATA AT STATION S
AT A GIVEN M '
STDERR(S,M) = STD DEV OF DATA * "
VAR(S,M) - VARIANCE OF DATA " "

s NeNoRsNosNoNeNe!

implicit double precision(a-h,o0-z), integer(i-n)
PARAMETER (itime=169,istat=21 6 MONTH=12)

dimension X(istat,itime), AVERMON(istat,MONTH),
& STDERR(istat,MONTH), VAR(istat,MONTH)

DO 10 ISTA = 1, istat
DO 20 MON = 1, MONTH
SSUM = 0.
ACOUNT = 0.
DO 40 itim = MCN, itime, MONTH
IF (X(ISTA,itim).NE.9999.) THEN
SSUM = SSUM + X(ISTA,itim)
ACOUNT = ACOUNT + 1.
ELSE
ENDIF
40  CONTINUE
AVERMON(ISTA,MON) = SSUM / ACOUNT
SUM = 0.
DO 50 itim = MON, itime, MONTH
IF (X(ISTA,itim).NE.9999.) THEN
SUM = SUM + (X(ISTA,itim)-AVERMON(ISTA,MON))**2
ENDIF
50 CONTINUE
VAR (ISTA,MON)=SUM/(ACOUNT-1.)
STDERR(ISTA,MON) = DSQRT(VAR(ISTA,MON))
20 CONTINUE
10 CONTINUE
RETURN
END

************************************************************
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COMPUTE THE CORRELATION BETWEEN TWO STATIONS

[eNeoNoNeNoNs]

SUBROUTINE CORRCOV (SX,SCOV,const)

INPUT DATA :
SX(S,T) = THE STANDARDIZED MONTHLY PRECIPITATION
DATA AT STATION S AND IN MONTH T

C
c
c
c
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OUTPUT DATA :
SCOV(S,S') = CORRELATION BETWEEN STATION S AND S’
CONST = AVERAGE OF CORRELATIONS RELATED TO
STATION 108-2

implicit double precision(a-h,o0-z), integer(i-n)
PARAMETER (istat=21,itime=169)

dimension SX(istat,itime),SCORR(istat,istat),
& SCOV(istat,istat)

DO 10 ISTA = 1, istat
DO 20 JSTA = 1, istat
XSUM = 0.
YSUM = 0.
DF = 0.
DO 30 I = 1,itime
IF (SX(ISTA,I).NE.9999.) THEN
DF = DF + 1.
XSUM = XSUM + SX(ISTA,I)
YSUM = YSUM + SX(JSTA,I)
ENDIF
CONTINUE

XMEAN = XSUM / DF
YMEAN = YSUM / DF

RNUM = 0,
SSX = 0,
SSY = 0.
DO 40 I = 1,itime
IF (SX(ISTA,I).NE.9999.) THEN
RNUM = RNUM + (SX(ISTA,I)-XMEAN)*
1 (SX(JSTA,I)-YMEAN)
SSX = SSX + (SX(ISTA,I)-XMEAN)*%*2
SSY = SSY + (SX(JSTA,I)-YMEAN)**2
ENDIF
CONTINUE
DENUM = DSQRT(SSX*SSY)
SCORR(ISTA,JSTA) = RNUM / DENUM
SCOV(ISTA,JSTA) = SCORR(ISTA,JSTA)
CONTINUE
CONTINUE
sum0=0.
ccount=0,
do 80 i=1,istat
if(i.ne.7) then
ccount=ccount+l.
sumO=sumO+scov(i,7)
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endif
80 continue
const=sum0/ccount
do 81 i=1,istat
if(i.ne.7) then
scov(i,7)=const
scov(7,i)=const
endif
81 continue
RETURN
END

STANDARDIZE THE DATA

SUBROUTINE STANDARD (x,aver,stder,SZ)

INPUT DATA :
X(s,T) = MONTHLY PRECIPITATION DATA
AVER(S,M) = MONTHLY AVERAGE OF DATA AT STATION
S AND IN A GIVEN MONTH M
STDER(S,M) = STANDARD DEVIATION OF DATA AT STATION S

AND IN A GIVEN MONTH M

OUTPUT DATA :
SZ(s,T)

STANDARDIZED DATA AT STATION S AND IN
MONTH T

implicit double precision(a-h,o0-z),integer(i-n)
PARAMETER (istat=21,MONTH=12,itime=169) '
dimension x(istat,itime),SZ(istat,itime),

& aver(istat,MONTH),stder(istat,MONTH)

DO 10 ISTA = 1, istat
DO 20 MON = 1, MONTH
DO 30 I = MON, itime, 12
IF (x(ISTA,I).NE.9999.) THEN
sz(ista,i)=(x(ista,i)-aver(ista,mon))/
7 stder(ista,mon)
else
sz(ista,1)=9999.
ENDIF
30 CONTINUE
20 CONTINUE
10 CONTINUE
RETURN
END
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GET THE DISTANCE BETWEEN TWO STATIONS USING
THE LATITUDE(MILE),LONGITUDE(MILE) AND ALTITUDE(MILE)
OF EACH STATION.
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SUBROUTINE DISTANT(SLAT,SLONG,SALT)

INPUT DATA :
SLAT(S)
SLONG(S)
SALT(S)

LATITUDE OF STATION S
LOGITUDE OF STATION S
ALTITUDE OF STATION S

OUTPUT DATA .

DIST(S,S') DISTANCE BETWEEN STATION S AND S’

a0

implicit double precision(a-h,o0-z),integer(i-n)
PARAMETER (istat=21)

common /coma/disT(istat,istat)
dimension SILAT(istat), SLONG(istat), SALT(istat)

DO 44 I =1, istat
DO 33 J = 1, istat
RATIT = ABS(SLAT(I)-SLAT(J))
RONGIT = ABS(SLONG(I)-SLONG(J))
ALTIT = ABS(SALT(I)-SALT(J))/5280.
DIST(I,J) = DSQRT(RATIT**2+RONGIT**2+ALTIT**2)
33  CONTINUE
44  CONTINUE

RETURN
END

B R R R E ko R R T T e S e e e S S S e S s e e e S e e S e e e e
B B R R R 2 Ly e e e e e e o e e e e e e S e e

GET THE DISNCE BETWEEN EXISTING STATION AND THE
ESTIMATION POINT

aooaoaoan

subroutine distgrid (grid,rat,rong,alt)

INPUT DATA :
GRID(X,Y,Z) THE COORDINATES OF EACH ESTIMATION
POINT

LATITUDE OF STATICN S

LOGITUDE OF STATION S

RAT(S)
RONG(S)

c
C
C
c
C
C
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ALT(S) = ALTITUDE OF STATION S

OUTPUT DATA :
DISTN(S) = DISTANCE BETWEEN A GIVEN ESTIMATION
POINT AND STATION §

aoaoaooaan

implicit double precision(a-h,o0-z),integer(i-n)
parameter(istat=21)

common /comd/distn(istat)

dimension grid(3),rat(istat),rong(istat),alt(istat)

do 10 ista=l,istat
a=grid(l)-rong(ista)
b=grid(2)-rat(ista)
c=(grid(3)-alt(ista))/5280.
10 distn(ista)=dsqrt(a**2+b**2+c**2)
return
end
c
P T T
B R R
c
C CALCULATE THE INVERSE DISTANCE WEIGHT
o
subroutine idweight (w)

INPUT DATA : .
DISTN(S) = DISTANCE BETWEEN STATION S AND THE
ESTIMATION POINT

OUTPUT DATA :
W(s) = INVERSE DISTANCE WEIGHT OF STATION S

aoaooaoaaon

implicit double precision(a-h,o0-z),integer(i-n)
parameter(istat=21)

common /comd/distn(istat)

dimension w(istat)

dsum=0 .

do 11 ista=l,istat
11 dsum=dsum+l./distn(ista)

do 12 ista=l,istat

w(ista)=(l./distn(ista))/dsum

12 continue

return

end

c
BE e L e T

C*********************************************************
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COMPUTE THE CORRELATION USING THE CORRELATION FUNCTION

subroutine RLHSRHO(const,rhol,rho?2)

___-INPUT DATA :

DIST(S,S')
DISTN(S)

DISTANCE BETWEEN STATION S AND S’
DISTANCE BETIWEEN STATION S AND
ESTIMATION POINT

OUTPUT DATA :

RHO1(S) = ESTIMATED CORRELATION BETWEEN STATION
S AND ESTIMATION POINT
RHO2(S,S') = ESTIMATED CORRELATION BETWEEN STATION

S AND §’

implicit double precision(a-h,0-z),integer(i-n)
parameter (istat=21)

common /coma/dist(istat,istat)

common /comd/distn(istat)

dimension rhol(istat),rhoZ(istat,istat)

do 10 ista=1l,istat
if(distn(ista).eq.0.) then
rhol(ista)=1.
else
if(ista.ne.7) then

rhol(ista)=.927988-.026262*distn(ista)
else
FOR STATION 108-2
rhol(ista)=const
endif
endif

do 11 jsta=l,istat ,
if(dist(ista,jsta).eq.0.) then
rho2(ista,jsta)=1.
else
if(ista.ne.7.or.jsta.ne.7) then

rho2(ista,jsta)=.927988-.026262*dist(ista,jsta)
else
FOR STAITON 108-2
rho2(ista,jsta)=const
endif
endif
11 continue
10 continue
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return
end
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C COMPUTE THE ELEMENTS IN RIGHT HAND SIDE OF THE OBJECT
C  FUNCTION OF KRIGING
C

subroutine rlhscov(w,stder,aver,rhol,rho2)

INPUT DATA :

W(s) = INVERSE DISTANCE WEIGHT

STDER(S,M) = STANDARD ERROR OF DATA AT STATION S
AND IN A GIVEN MONTH M

AVER(S,M) = AVERAGE OF DATA AT STATION S AND IN
A GIVEN MONTH M

RHO1(S) = CORRELATICN BETWEEN STATION S AND
ESTIMATION POINT

RHO2(S,S’) = CORRELATION BETWEEN STATION S AND S’

IMON = A GIVEN MONTH

OUTPUT DATA :
C(s,S") = COVARIANCE BETWEEN STATION S AND S’

COI(s) = COVARIANCE BETWEEN STATION S AND
ESTIMATION POINT

AMUO = ESTIMATED MEAN OF ESTIMATION POINT

TOTVAR = ESTIMATED VARIANCE ESTIMATION POINT

implicit double precision(a-h,0-z),integer(i-n)

parameter(istat=21)

common /combl/c(istat,istat)

common /comb2/coi(istat)

common /combé/amul

common /comc/imon

common /comg/totvar

dimension w(istat),stder(istat,12),aver(istat,12),
rhol(istat),rho2(istat,istat)

suml=0.

sum2=0.

sum3=0.

do 10 ista=l,istat
suml=suml+w(ista)*aver(ista,imon)
sum3=sum3+w(ista)*stder(ista, imon)**2
sum2=sum2+w(ista)*stder(ista,imon)

do 11 ista=l,istat

do 12 jsta=1l,istat
c(ista,jsta)-stder(ista,imon)*stder(jsta,imon)*
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1 rho2(ista, jsta)
11 coi(ista)=stder(ista,imon)*sum2*rhol(ista)
amuO=suml
totvar=sum3
return
end
T S Bt E & et L e e e
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CALCULATE THE OPTIMUM WEIGHT BY KRIGING

subroutine optweiht(xx)

INPUT DATA :

XX(S) = INVERSE DISTANCE WEIGHT OF STATION S
QUPUT DATA :

XX(S) = OPTIMUM WEIGHT OF STATION S

SUBROUTINE 'GRGSUB’ IS DEVELOPED BY LASDEN (1979)
ALL VARIABLES USED FOR 'GRGSUB’' CAN BE REFERRED
FROM GRG2 USER’S GUIDE

implicit double precision(a-h,o0-z), integer(I-n)
parameter(istat=21)
integer¥4 ncore,nnvars,nfun,maxbas,maxhes
~common /combl/c(istat,istat)
' common /comb2/coi(istat)
common /comb3/amu(istat)
common /comb4/amuQ
common /comc/imon
common /comg/totvar
logical maxim, inprnt,otprnt
dimension defaul(19),z(15000),ramcon(3), ramvar(lstat),
nonbas(istat),redgr(istat),fens(3),
inbind(3),blvar(istat),buvar(istat),
blcon(3),bucon(3),rmults(3),
ttitle(1l9),xx(istat)
data ncore /15000/
data nnvars,nfun,maxbas,maxhes /21,3,3,21/
data ramcon /8hOBJFUNCN,8hUNBIASED,8hSUMOFWGT/
data ramvar /8hSTATO0101,8hSTAT0102,8hSTAT1031,
8hSTAT1032,8hSTAT103A, 8hSTATO0106,
8hSTAT1082,8hSTAT108A, 8hSTAT0109,
8hSTAT1152,8hSTAT115A, 8hSTATOL19,
8hSTAT0120,8hSTAT0121,8hSTAT121A,
8hSTAT0122,8hSTAT0123,8hSTAT0124,
8hSTAT0125,8hSTAT0126,8hSTAT0127/

el e

o o



data blvar/istat*0.0/,buvar/istat*1.0/
data blecon /0.0,0.0,0.0/, bucon /1.0E3,0.0,0.0/
data ttitle /19%4h /

inprnt=.true.
otprnt=.true.

do 10 i=1,19
defaul(i)=1.0
10 continue

nnobj=1

call GRGSUB(inprnt,otprnt,ncore,nnvars,nfun,maxbas,
maxhes,nnobj, ttitle,blvar,buvar,blcon,
bucon,defaul, fpnewt, fpinit, fpstop, £pspiv,
pphlep,nnstop,iitllm,llmser,iipr,iipné,
iipn5,iipné,iiper,iidump,iiquad,lderiv,
mmodcg, ramcon, ramvar,xx, fcns, inbind,
rmults,nonbas,redgr,nbind,nnonb, inform,z)

S el

write(10,200) (xx(j),j=l,nnvars)
write(10,210) (fens(i),i=1,nfun)
write(10,220) (nonbas(i),redgr(i),i=1,nnonb)
write(10,230) (inbind(i),rmults(i),i=1,nbind)
write(10,240) nnonb,nbind
write(10,250) inform
200 format(///1hl,1x,’'FINAL VALUES OF DECISION
1 VARIABLES:'/5(5(5X,E12.5)/))
210 format(/lx,’'FINAL VALUES OF CONSTRAINTS AND
1 OBJECTIVE:'/5(5X,E12.5))
220 format(/lx,'REDUCED GRADIENT:'/S(5(5X,I3,2X,E12.5)/))
230 format(/lx,'VALUES OF LAGRANGE MULTIPLIERS:'/

OO0 000600

1 5(5%,13,2X,E12.5))
240 format(/lx,'NUMBER OF STRUCTURAL NONBASIC VARIABLES:',
1 5X,1I5/1X, 'NUMBER OF BINDING CONSTRAINTS:’5X,I5)
250 format(/1x,’'REASON FOR TERMINATION:’,5X,I5)
return
end
c
B e R T L T B T R TSR
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c
C COMPUTE THE OBJECT AND CONSTRAINTS FUNCTION
C
subroutine GCOMP(g,x)
c
C INPUT DATA :
C G(3) = TOTAL FUNCTIONS USED IN THE PROBLEM
C X(S) = UPDATED INPUT SOLUTION
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OUTPUT DATA :
X(S) = UPDATED OUTPUT SOLUTION

SUBROUTINE GCOMP IS DEVELOPED BY LASDEN (1979)

implicit double precision(a-h,o0-z), integer(i-n)
parameter(istat=21)

common /combl/c(istat,istat)

common /comb2/coi(istat)

common /comb3/amu(istat)

common /comb4/amu0

common /comg/totvar

dimension g(3),x(istat)

f1=0.

£2=0.

£3=0.

f4=0,

do 10 i=1,istat

do 11 j=1,istat
Fl=Ffl+x (i)*x(j)*c(i,])
f3=£3+x(i)*amu(i)
fo=fl+x (1)
£f2=£2+x(i)*coi(i)

g(1)=£f1-2 .*f2+totvar

g(2)=£3-amul

g(3)=f4-1.

return

end
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ESTIMATE THE MEANS AND THE VARIANCE USING GAUSSIAN
SMOOTHING

SUBROUTINE GAUSSSMO (X,GC,GX)

INPUT DATA :
X(s,M) = THE MEAN OR THE VARIANCE OF DATA AT
STATION S AND IN MONTH M

OUTPUT DATA :
GC(M) = OPTIMAL SMOOTHING FACTOR IN MONTH M
GX(S,M) = ESTIMATED MEANS OR VARIANCE BY
GAUSSIAN SMOOTHING

implicit double precision(a-h,o-z),integer(i-n)
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PARAMETER (istat=21,MONTH=12)

common /coma/DIST(iSTAT,iSTAT)

common /comf/PX(iSTAT)

dimension X(iSTAT,MONTH),GX(iSTAT,MONTH),
& XHAT (iSTAT) ,GC(MONTH)

DO 10 MON = 1, MONTH
DO 20 ISTA = 1, iSTAT
20 PX(ISTA) = X(ISTA,MON)

CALL FIBON (PC)

CALL GAUSSHAT (PC,XHAT)
GC(MON) = PC

print¥*,pc

DO 30 ISTA = 1,iSTAT
30 GX(ISTA,MON) = XHAT(ISTA)
10 CONTINUE

RETURN

END

..........................................................

..........................................................

CALCULATE THE GAUSSIAN SMOOTHING WEIGHT
SUBROUTINE GAUSSHAT (CC,RESULT)

INPUT DATA :
cC = UPDATED OPTIMAL SMOOTHING FACTOR
DIST(S,S’) = DISTANCE BETWEEN STATION S AND S’

OUTPUT DATA :
RESULT(S) = UPDATED ESTIMATED DATA OF STATION §

implicit double precision(a-h,0-z),integer(i-n)
PARAMETER (istat=21)

common /coma/DIST(iSTAT,iSTAT)

common /comf/PX(iSTAT)

dimension RESULT(iSTAT),F(iSTAT),W(iSTAT)

DO 10 ISTA = 1, iSTAT
DO 11 J = 1, iSTAT
F(J) = DEXP((-DIST(ISTA,J)*%*2)/(2.*CC))
11 CONTINUE
FSUM = O.
DO 20 I = 1, iSTAT
20 FSUM = FSUM + F(I)
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DO 30 I = 1, iSTAT
, 30 W(I) = F(I) / FSUM
_ WSUM = 0.
DO 40 I = 1, iSTAT
40 WSUM = WSUM + W(I)*PX(I)
RESULT(ISTA) = WSUM
- 10 CONTINUE
RETURN

END
— C e dededededede e de e s s etk de ek sk ok e e ek ek
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C

c SEARCH THE OPTIMAL SMOOTHING FACTOR BY FIBONACCI

c SEARCH METHOD
C

SUBROUTINE FIBON (GC)

INPUT DATA :
PX(S) = UPDATED ESTIMATED DATA

OUTPUT DATA :
GC = UPDATED SMOOTHING FACTOR

l
cancaacao

implicit double precision(a-h,o0-z),integer(i-n)
common /comf/px(21)

DIMENSION F(500)

— DATA A,B,ALPHA/0.,10.,0.01/

BB=B
AA=A
UNCIV=B-A
FNPR=UNCIV/ALPHA
s F(1)=1.0
R F(2)=1.0
1 DO 5 I=3,500
° F(I)=F(I-1)+F(I-2)
L . IF(FNPR-F(I))6,6,5
. 5 CONTINUE
6 IFN=I
IFPRT=I
15 P1l=AA+(F(IFN-2)/F(IFN))*UNCIV
P2=AA+(F(IFN-1)/F(IFN))*UNCIV
CALL FUNC(P1,ERRL)
————— CALL FUNC(P2,ERR2)
. IF(ERR1-ERR2)10,11,12
12 AA=P1
GOTO 13
10 BB=P2
GOTO 13
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11 BB=P2
AA=P1
13 UNCIV=BB-AA
IFN=IFN-1
IF(IFN-3)20,15,15
20 GC=BB
RETURN
END
o
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CALCULATE THE ERROR CONCERNING TO FIND THE
OPTIMAL SMOOTHING FACTOR

OO0

SUBROUTINE FUNC (CC,ERR)

INPUT DATA :
cc
PX(S)
PXH(S)

UPDATED SMOOTHING FACTOR
OBSERVED DATA AT STATION S
ESTIMATED DATA AT STATION S

OUTPUT DATA :
ERR

THE ERROR CONCERNING THE ESTIMATES

aaooaoaooaoaa

implicit double precision(a-h,o0-z),integer(i-n)
PARAMETER (istat=21)

common /comf/PX(iSTAT)

dimension PXH(iSTAT)

CALL GAUSSHAT (CC,PXH)

ESUM = O.

DO 20 I = 1, iSTAT

ESUM = ESUM + (PX(I)-PXH(I))**2
20 CONTINUE

ERR = ESUM

RETURN

END
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CALCULATE THE MEAN AND THE ERROR OF THE ESTIMATED
DATA WITH OPTIMUM WEIGHT

aooao oo o0

SUBROUTINE CONTAVER (X,ITER,AVERMON,STDERR,VAR)

INPUT DATA :
X(K,T) = THE ESTIMATED DATA AT ESTIMATION

aaon
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POINT K AND IN MONTH T

ITER REPRESENTS ITER-TH ESTIMATION POINT

OUTPUT DATA :

AVERMON(K) = MEAN OF ESTIMATED DATA AT ESTIMATION
POINT K

STDERR(K) = STANDARD ERROR OF DATA AT ESTIMATION
POINT K

VAR(K) = VARIANCE OF DATA AT ESTIMATION POINT K

implicit double precision(a-h,o0-z), integer(i-n)
common /comc/imon
PARAMETER (itime=169,igrid=32)

dimension X(igrid,itime),AVERMON(igrid),
& STDERR(igrid),VAR(igrid)

SSUM = 0.
ACOUNT = 0.
DO 40 ITIM = IMON, ITIME, 12
IF (X(ITER,ITIM).NE.9999.) THEN
SSUM = SSUM + X(ITER,ITIM)
ACOUNT = ACOUNT + 1.
ELSE
ENDIF
40  CONTINUE
AVERMON(ITER) = SSUM / ACOUNT
SUM = 0.
DO S0 ITIM = IMON, ITIME, 12
IF (X(ITER,ITIM).NE.9999.) THEN
SUM = SUM + (X(ITER,ITIM)-AVERMON(ITER))**2
ENDIF
50 CONTINUE
VAR (ITER)=SUM/(ACOUNT-1.)
STDERR(ITER) = DSQRT(VAR(ITER))
RETURN
END
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CALCULATE THE GAUSSIAN SMOOTHING WEIGHT BY THE OPTIMAL
SMOOTHING FACTOR

subroutine GAWEIGHT (gc,gw)

INPUT DATA :
GC(M) = OPTIMAL SMOOTHING FACTOR IN MONTH M
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OUTPUT DATA :
GW(S) = GAUSSIAN SMOOTHING WEIGHT AT STATION §

implicit double precision(a-h,0-z),integer(i-n)
parameter(istat=21) .
common /comc/imon

common /comd/distn(istat)

dimension gw(istat),f(istat),gc(1l2)

cc=gc (imon)

do 10 ista=l,istat
f(ista)=dexp((-distn(ista)**2)/(2.%cc))

print*, f(ista),distn(ista),cc
fsum=0.

do 20 ista=l,istat
fsum=fsum+f(ista)

do 30 ista=l,istat
gw(ista)=f(ista)/fsum
return

end
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ESTIMATE THE MEANS AND STANDARD ERROR USING THE GIVEN
WEIGHT

subroutine ESTIMATE
(w,iter,avermon, stderr,avhat,stdhat)

INPUT DATA :
w(s) = THE WEIGHT AT STATION S
AVERMON(S,M) = THE OBSERVED MEAN AT STATION S AND
IN MONTH M
STDERR(s,M) THE OBSERVED STANDARD ERROR
OUTPUT DATA :
AVHAT (K) = ESTIMATED MEAN AT ESTIMATION POINT K

STDHAT (K) = ESTIMATED STANDARD ERROR AT
ESTIMATION POINT K

implicit double precision(a-h,0-z),integer(i-n)

paramecer(istat-Zl,igrid—32,month-l2)

common /comc/imon

dimension w(istat),avermon(istat,month),
stderr(istat,month), ’
avhat(igrid),stdhat(igrid)

avsum=0.
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stdsum=0.

do 10 ista=1,21
avsum=avsum+w(ista)*avermon(ista, imon)
stdsum=stdsumtw(ista)*stderr(ista, imon)

avhat(iter)=avsum
stdhat(iter)=stdsum
return

end

132



