ADAPTIVE GRIDDING TECHNIQUES FOR
GROUNDWATER CONTAMINANT
MODELING (COLLECTION OF

PUBLICATIONS)
Myron B. Allen
1990
Final Report WWRC-90-33
Final Report

Submitted to

Wyoming Water Research Center
University of Wyoming
Laramie, Wyoming

Submitted by

Myron B. Allen
Department of Mathematics
University of Wyoming
Laramie, Wyoming

Contents of this publication have been reviewed only for editorial and
grammatical correctness, not for technical accuracy. The material presented
herein resulted from research sponsored by the Wyoming Water Resources
Center, however views presented reflect neither a consensus of opinion nor the
views and policies of the Wyoming Water Resources Center, or the University of
Wyoming. Explicit findings and implicit interpretations of this document are the
sole responsibility of the author(s).

Table of Contents

TECHNICAL SYNOPSIS .vteteoeeieaaaanns 3

1.1 Objective ..ooueniiniiiiiiii i 3
1.2 Related applications e 3
1.3 Summary of accomplishments 3
1.4 Ongoing work ...t 4

PUBLICATIONS RESULTING FROM THE WORK 4

2.1 Refereed articlesooiiiiiiiiii 4
2.2 Papers in conference proceedings 5
2.3 M.S.and Ph.D. workcoooiiiiiiiii, 5
24 User'sguidecoovvniiiiiiiiiiiiiiiiiiie., 5
GRADUATE STUDENT TRAINING 5
APPENDIX: COPIES OF PUBLICATIONS........ 6

1. TECHNICAL SYNOPSIS

This section of the report is a brief synopsis of the project’s scientific aims and accom-
plishments. The discussion in this section is intended for a technical audience, but it does
not assume that readers are specialists in mathematical modeling. The Appendix to this
report, summarized in Section 2, consists of published scientific articles that describe the
results of the project for specialists.

1.1 Objective

The original objective of the project was to develop numerical techniques for modeling
groundwater contaminant flows in the presence of sharp fronts in contaminant concentration.
Such fronts occur and persist in contaminant flows in which the spreading attributable to
hydrodynamic dispersion is small compared with advective transport along the groundwater
velocity field. This “advection-dominated” transport regime is well documented in the water
resources literature.

Steep concentration fronts in advection-dominated flows pose severe problems for most
standard numerical models. Such models usually rely on approximation schemes in which
one treats the real continuous aquifer as a discrete network of cells or nodes, called a grid.
In each cell, the model assumes that concentrations, velocities, and other cell variables vary
in a simple fashion. For example, these quantities may be constant over each cell. When
a steep front is present, many small cells are needed in the vicinity of the front to produce
accurate approximations of the local variations in contaminant concentration. Since the cost
of running a model increases with the number of cells used, it is useful to be able to use small
cells-that is, to refine the grid—only in the small regions near the fronts, where improved
resolution is needed.

Installing this capability in acutal computer codes is a challenging task. Since contaminant
fronts move, the regions of refined grid must move adaptively as well. Mathematically,
moving a zone of locally refined grid changes the algebraic relationships among the cell
variables in a complicated manner that one cannot predict in advance of running the model.
In contrast with the case when a single, coarse grid is adequate, grids having moving zones of
local refinement require innovative algorithmic structures if they are to be computationally
efficient. The purpose of this work has been to develop such structures.

1.2 Related applications

Adpative local grid refinement has applications in a wide array of fluid-dynamic settings.
In the field of groundwater contamination, adaptive local grid refinement is useful in a variety
of problems beside the problem of passive solute transport. Of special interest are multiphase
flows, such as air-water flows in the vadose zone or flows involving nonaqueous-phase liquids
(NAPLs), where steep fronts or even shocks in phase saturations commonly arise.

1.3 Summary of accomplishments

Early in the project, considerable effort focused on adaptive gridding techniques for con-
taminant transport in one space dimension. We devised a finite-element collocation scheme

that is quite effective in that setting and that is readily amenable to implementation on
parallel-processing computers (Allen and Curran, 1989). However, that scheme does not
readily extend to problems in higher dimensions.

We also investigated a class of methods for two-dimensional problems using highly paral-
lelizable, alternating-direction collocation schemes (Curran and Allen, 1989 and 1990; Allen
and Khosravani, 1990; Khosravani, 1989; Li, 1990). As part of this effort, we collaborated
with researchers at the University of Vermont, sponsoring a week-long visit to Wyoming that
culminated in the development of a parallelizable alternating-direction scheme suitable for
tensor hydrodynamic dispersion (Guarnaccia and Pinder, 1989).

To implement grid refinement in these two-dimensional codes, we revisited the one-
dimensional case, devising a scheme that extends readily to the alternating-direction setting
(Curran Allen, in preparation). The actual implementation of this technique is the subject
of a Ph.D. dissertation in August, 1990 (Curran, 1990).

1.4 Ongoing work

The development of accurate and efficient contaminant transport codes leads naturally
to the study of the effects of aquifer heterogeneity, a topic of much current interest in the
water resources community. Accurate transport models enable one to study the numerical
problem of scaling up from small-scale heterogeneities in an aquifer to the scales comparable
to practical cell diameters in numerical models. During the course of this project, we began
to outline some of these considerations (Allen and Ewing, 1990) and initiated research into
numerical schemes for groundwater flow that will complement our transport codes (Allen et
al., submitted).

2. PUBLICATIONS RESULTING FROM THE WORK

The following is a list of publications that grew out of the work. This list serves as a
bibliography for Section 1. Copies appear in the Appendix, except for M.S. and Ph.D. work,
which are available through the University of Wyoming.

2.1 Refereed articles

e Allen, M. B., and Curran, M. C. (1989), “Adaptive local grid refinement algorithms for
finite-element collocation,” Numer. Math. P.D.E., 5, 121-132.

o Curran, M.C., and Allen, M.B. (1990), “Parallel computing for solute transport models
via alternating-direction collocation,” Adv. Water Resovr., 13:2, 70-75.

e Allen, M. B., Ewing, R. C., and Lu, P. (submitted), “Well conditioned iterative schemes
for mixed finite-element models of porous-media flows.”

e Curran, M. C., and Allen, M. B. (in preparation), “A domain-decomposition approach
to local grid refinement in finite-element collocation.”

2.2 Papers in conference proceedings

e Curran, M. C., and Allen, M. B. (1989; invited) “Parallel computing speedups for
alternating direction collocation,” in Finite Element Analysis Fluids: Proceedings of
the Seventh International Conference, Huntsville, Alabama, ed. by T. J. Chung and
G. R. Karr, Huntsville, AL: UAH Press, 947-952.

o Guarnaccia, J. F., and Pinder, G. F. (1989), “A parallel collocation based algorithm
for the generalized transport equation,” in Applications of Supercomputers in Engineer-
ing, Proceedings of the First International Conference, Southhampton, U.K., ed. by
C. A. Brebbia and A. Peters, Amsterdam: Elsevier.

e Allen, M. B., and Ewing, R. E. (1990), “How aquifer heterogeneities affect numerical
groundwater models,” in Proceedings, Groundwater Engineering and Management Con-
ference, organized by Colorado Water Resources Research Institute and Office of the
State Engineer, Denver, CO, February 28-March 1, 1990, 161-170.

e Allen, M. B., and Khosravani, A. (1990), “An Eulerian-Lagrangian method for finite-
element collocation using the modified method of characteristics,” in Proceedings, Eighth
Interantional Conference in Water Resources, Venice, Italy, ed. by G. Gambolati et al.,
Southhampton, U. K.: Computational Mechanics Publications, 375-379.

2.3 M.S. and Ph.D. work

e Khosravani, A. (1989), “Numerical Solutions of Solute Transport Equations,” M.S.
paper, Department of Mathematics, University of Wyoming, Laramie, WY, October,
1989.

e Li, X (1990), “Numerical Methods for the Advection-Diffusion Equation in Areally and
Vertically Averaged Domains,” M.S. paper, Department of Mathematics, University of
Wyoming, Laramie, WY, July, 1990.

e Curran, M. C. (1990), “Numerical Schemes for Highly Advective Flows Using Finite-
Element Collocation with Adaptive Local Grid Refinement”, Ph.D. dissertation, De-
partment of Mathematics, University of Wyoming, Laramie, WY, August, 1990.

2.4 User’s guide

o Khosravani, A., and Allen, M. B., “User’s Guide to ADMOC,” University of Wyoming
Department of Mathematics, Laramie, WY, August, 1990.

3. GRADUATE STUDENT TRAINING

Four graduate students in Mathematics received partial support from this project. Three
of these students completed degrees during the course of the project:

e Azar Khosravani, M.S., 1989
e Xingjing Li, M.S., 1990
e Mark C. Curran, Ph.D., 1990

The fourth student, Yun Li, began working on research for the M.S. in Mathematics in June,
1990, and anticipates completion of the degree during the 1990-91 academic year.

APPENDIX: COPIES OF PUBLICATIONS

Attached are copies of papers appearing in or submitted to refereed journals or presented
at conferences. Also attached is a user’s guide to a transport code. Not attached are Mark
Curran’s Ph.D. dissertation, which is available from the University of Wyoming Library,
and the M.S. papers written by Azar Khosravani and Xingjing Li, which are on file at the
Department of Mathematics, University of Wyoming.

[

Adaptive Local Grid Refinement
Algorithms for Finite-Element
Collocation

Myron B. Allen and Mark C. Curran
Department of Mathematics, University of Wyoming, Laramie,
Wyoming 82071

An adaptive grid refinement procedure allows accurate solutions to advection-dominated,
time-dependent flows using finite-element collocation. The technique relies on a data
structure that is readily amenable to parallel computing. The paper discusses computa-
tional aspects of the method.

I. INTRODUCTION

Adaptive gridding offers an important class of strategies for computing accu-
rate solutions to highly advective fluid flows. We present an adaptive local grid
refinement scheme for use in finite-element collocation models for such flows.
Of special interest here are the algorithmic aspects of the procedure, which is
readily amenable to implementation on parallel-architecture computers. We
focus on transient flows in one space dimension. The paper has the following
structure: Section II briefly reviews finite-element collocation on fixed grids;
Section III discusses the grid-refinement algorithm for the linear advection-
diffusion equation; Section IV extends the algorithm to nonlinear problems
using Burgers’ equation as an example; Section V concludes the paper with an
examination of the method’s performance on a parallel computer.

Il. REVIEW OF FINITE-ELEMENT COLLOCATION

The method of finite-element collocation has its roots in the engineering lit-
erature of the 1930s (see [1]), but we owe the modem version to de Boor and
Swartz [2] and Douglas and Dupont [3], among others. For purposes of illustra-
tion, consider the constant-coefficient advection-diffusion problem posed on the
spatial domain €} = (0,L):

du du u

—_— + — —_—
Sy =Do5 =0, () €QX (0., (1a)
u(x,0) = u,(x), x€Q, (1b)

d
w0,1) = vy, —(L)=uh t=0. (1)

ox

Numerical Methods for Partial Differential Equations, 5, 121-132 (1989)
© 1989 John Wiley & Sons, Inc. CCC 0749-159X/89/05121-12$04.00

1y

am

T

122 ALLEN AND CURRAN

Here, v >0 represents fluid velocity, D > 0 is a diffusion coefficient, and
= u(x, 1) stands for an unknown function, say, solute concentration. We shall
apply finite-element collocation to the Crank-Nicolson semidiscrete analog

dun+(|/2) : dzun+(l/2)
u"”—u"+k<v -D =0,

dx dx*

where the superscripts indicate time level, (-)**"® = [(-)"*' + (-)"], and k sig-
nifies the time step.

We begin by establishing a spatial grid A° = {0 = x,h = x,,- -+ ,Nh =

= L} and call [x;_,,x;] = ;. In later sections, A° will be the coarse grid,
and Q; will be the ith coarse-grid element. The space of Hermite piecewise cu-
bics for the grid A on O = [0, 1] is

MIA®) = {f € C'(V)| fIQ; is cubic}.

In other words, f is cubic on each subinterval {}; and, globally, is continuously
differentiable. This order of continuity is the lowest for which one can use col-
location on a second-order differential equation (Birkhoff and Lynch [4], p. 200).

The space M (A% has an interpolating basis {H, oo Hi \}'Lo in which the sup-
port of each function H; (x) is a small subset of Q=10,L) consisting of at
most two adjacent subintervals, {,_, U ; (Prenter [5], Chapter 3). In terms of
this basis, we can write any f, € M}(A°) as a linear combination involving val-
ues of f and f’ at the nodes of A:

fx) = Z [fx; H, :(x) + f'(x;)Hl (2],

In fact, for any g € C'(Q), we can define a projection onto M3 (A% as
N
(Trog) (x) = E[g(xi)HO.i(x) + gl(xi)Hl,i(-x.)]'
i=0

To solve the semidiscrete analog of the problem (1), we determine a se-
quence {i"},, by first imposing initial and boundary conditions:

’(x) = 7w, (x) Vx €0Q;

4"(0) = uy; =u, n=12-"-

These criteria specify #° completely and determine two of the 2N X 2 nodal
degrees of freedom for &', d?%, -+ -. To determine the remaining 2N degrees of
freedom at each time level n + 1, we first form the residual

dﬁn+(1/2) dZuAH'H!/Z))

n+l=nn+l_A'l+ _D
R i Ic(v i i

We then pick a collection {x,, " - -, X} C Q of collocation points and force
R™'(x) =0,k =1,-+,2N. Douglas and Dupont {3] show that one can ob-
tain optimal-order error estimates of the form [[d" — u(-, nk)l|, = O(h*) by choos-
ing the X, to be the two-point Gauss-quadrature abscissae in each element (. .

- -

-

ADAPTIVE LOCAL GRID REFINEMENT ALGORITHM 123

- Allen and Pinder [6] demonstrate an upstream-weighted technique assigning
precisely these collocation points to all terms in the residual except the advec-
tion terms kvdi"/dx, for which the “collocation” points have the form x; =
X — h{>0. :

Despite the smoothness required of the trial function 4", two features of colloca-
tion make it an attractive scheme for modeling transient, advection-dominated
flows. First, the matrix for the system of collocation equations at each time
level has bandwidth five in one space dimension and is therefore sparser than
the matrices arising from other fourth-order finite-element schemes. The price
paid for this sparseness is a loss of symmetry in the matrix equations approxi-
mating self-adjoint problems —a penalty that is irrelevant in advective prob-
lems, since they are generally nonself-adjoint. Second, in contrast with classical
Galerkin formulations, computing the collocation matrix requires neither the
calculation of integrals nor formal assembly of a global matrix from local ele-
ment matrices. This latter fact makes the method especially useful in transient,
nonlinear problems, which typically require the computation of a new matrix at
each iteration of each time step.

lil. THE ADVECTION-DIFFUSION EQUATION

Finite element collocation, like other discrete methods, tends to yield unac-
ceptable results for the advection-diffusion equation when the Peclet number
P = vL/D > 1. In its standard O(h*) version, collocation yields spuriously os-
cillatory solutions near sharp fronts unless 7 < V12/P (Jensen and Finlayson
[71). On the other hand, the upstream collocation scheme just cited smears
sharp fronts as a consequence of a numerical diffusion coefficient proportional
to Ph{ (Allen [8]). Figure 1 illustrates these types of error. When P > 1, using
a uniform grid A° fine enough to mitigate these errors can be expensive. One
way around this dilemma is to adjust k locally, so that the grid spacing is small
only in regions where the solution exhibits sharp fronts needing fine-scale spa-
tial resoluton. Since the sharp fronts move, it is necessary to refine the grid
adaptively, so that the refined zone follows the front.

Toward this end, we construct a sequence {A"},_, of grids, each associated
with a time level n. For computational convenience we demand that each A" D
A°, so that the variables associated with the original coarse grid A° are present at
every time level. Thus at each time level n we construct a mapping v": {1, - -,
N}— {0,1,2, - -} assigning »"({) new nodes, assumed evenly spaced, to each
coarse-grid element Q, = [x,_,,x;] formed by A°. To avoid unnecessary com-
putational effort, we want v"(i) = 0 except when Q, lies near a sharp front. In
these exceptional cases, we determine v"(i) according to a grid-refinement strat-
egy appropriate for the equation being solved. We denote by Z" = =Y, V() the
total number of new nodes added at time level n. Also, we associate with each
grid A" a trial space .M 2(A" and a corresponding projection 7": C'({}) —
M7(A") mapping continuously differentiable functions onto that trial space.
Since the polynomial degree of the finite-element approximation remains con-
stant while the grid spacing changes, this scheme is an example of h-refinement.

124 ALLEN AND CURRAN

—— ANALYTIC SOLUTION

o6}

o4

0.2 04 06 08 10

——— ANALYTIC SOLUTION

06}

o4t

02}

1

02 04 0o o8 0

FIG. 1. Spurious oscillations and numerical diffusion associated with (a) standard and
(b) upstream-weighted collocation solutions to the advection-diffusion equation. In all
cases, h = 1/40, k = 1/20, P = 1069.)

We now collocate as before to determine a sequence
{i € M3AY, 4" € M3AY, -},

using the 2(N + Z™*') Gauss abscissae for A™"' as collocation points to solve
for the unknown Hermite coordinates of &""'. One new wrinkle is that we must
project the old solution #" € M](A") forward to the new trial space M3(A™") to
form the residual, getting collocation equations that have the form

_ d"”l _ 2an+1 _

a"(x,) + %[V l;x () — D":?—(xk)]
2

— (ﬂ,n-rlﬁn) (Ek) — £ I:vdix (ﬂ,nflﬁn) (;k) _ D:—;(ﬂ’nﬂﬁn) ('?k):l .

2

ADAPTIVE LOCAL GRID REFINEMENT ALGORITHM 125

There is another new wrinkle. The addition of Z" new nodes, and hence 2Z"
new unknowns and equations, disrupts the matrix structure associated with col-
location on A°. If we have an efficient matrix solver for the structure associated
with A’, then it makes sense to decouple the equations associated with newly
added nodal parameters of #"*', leaving a system having the original structure
for the 2N coarse-grid unknowns along with a set of smaller systems for the 2Z"*'
new unknowns the construction of a p-refinement scheme for collocation, in
which they improve spatial resolution by increasing the local polynomial degree
of the aproximation.

We accomplish the decoupling in an elementwise fashion, using sparse row
reduction on each of the augmented equation sets associated with refined
coarse-grid elements £);. At a typical time level n + 1; the procedure, which
we call elementwise condensation, yields a system of the form

An+l 0 “n+| f'"ﬂ
I:Bi?+l A;+l] [ug+l = l—'g+l ’ (2)
n+l

where u*' € R¥ denotes the vector of coarse-grid unknowns; u"*' € RZ""'
denotes the vector of refinement unknowns; A%"' € RZ"">2™! is an upper bidi-
agonal matrix multiplying the refinement unknowns, and B™*' € R js
the matrix coupling new unknowns to the coarse-grid values. In practice, Aj"'
has the same size and zero structure as the matrix associated with collocation
on A’ and B™*' is sparse, having one 2v"*'(i) X 4 nonzero block for every re-
fined element (),. Figure 2 shows the block structure of Eq. (2) in more detail.

Given this structure, we can solve for the vector uj*' of coarse-grid variables
using our efficient coarse-grid solver, then solve for the refinement unknowns
essentially using back substitution via the coupling block B"*'. The time-stepping
procedure, starting with 4" known, is as follows:

1. Compute v"*'(i), i = 1,---,N, using an adaptive refinement strategy.

2. Form the projection 7"*'a”".

U B[A‘ uy - f'l
D B, A2| ug 3
E—

DBN Av ||l un] |Ew
L

P § S .

FIG. 2. Block structure of the matrix equation for the locally refined system after ele-
mentwise condensation.

!

126 ALLEN AND CURRAN

3. Compute the matrix entries associated with the refined problem.

4. Use elementwise condensation to construct the system (2).

5. Solve Ag"'ug™" = £3*! for coarse-grid values.

6. Solve Buj*' + AZ"'u""! = £2*' for variables introduced by the refinement.
Step 6 actually reduces to a set of decoupled problems, each of which has the
form .

n+1

Uiy

!

B:I+] u;—l + A7+lu?+l — f'?+l, (3)
i

u;

for a particular refined coarse-grid element ;. Here, B"*' € R*""'™®% mylyj-
plies the coarse-grid unknowns in ();, and the upper bidiagonal matrix A7*' €
R>™'®* %10 multiplies the refinement unknowns in {3;. Observe that the back
substitutions (3) associated with different refined elements (), are independent
and therefore are amenable to concurrent processing. Similarly, the element-
wise tasks called for in steps 1, 2, 3, and 4 are also parallelizable. We explore
this aspect of the method in Section V.

A sample computation demonstrates the effectiveness of this procedure in
yielding accurate simulations. Consider the problem (1) on) = (0, 1) with
square-wave data,

u(x) = 0, uy =1, uy=20,

when v = 0.369 and D = 0.001. If we use a coarse gird A° having h =
k = 0.05 and employ upstream weighting with { = 0.2, then the numerical
solution will exhibit significant smearing, as shown in Figure 3 for r = 1. We
can virtually eliminate this smearing by forcing 2 < 1/P globally, but as Fig-
ure 3 also shows, we can achieve comparable results by enforcing the same cri-
terion only in zones where sup,eg;,[did"/dx| >.(Sh)™', that is, where the solution
is steep. The latter strategy involves solving for at most 180 unknowns per time
step, while global refinement requires solving for about 400.

IV. BURGERS’ EQUATION

For nonlinear problems the time-stepping procedure is somewhat more com-
plicated. Here, the use of an implicit scheme for stability forces one to iterate
between time steps. Since frontal velocities may be functions of the unknown
solution, it is possible that zones needing refinement at a particular time level
will be identifiable only in the last few iterations of the time step, when the it-
erative scheme has nearly converged. We use this reasoning in developing a
grid-refinement algorithm for Burgers’ equation,

2B,) EQx (0.9,

S~——

e

ADAPTIVE LOCAL GRID REFINEMENT ALGORITHM 127

CONCENTRATION FRONT PROFILES AT T = 1

'.—1 1 T T d T 1 T 7 T T 1 Tr 7T
1.0 A .
i \A A No refinement .
9 i
I B Local refinement |
8} ' E
X A L ® Global refinement -
AN i
g | v = 0.369 ' O
: .6 N
£ L D = 0.001
¢ Sr h =0.05 |
3 |]
s | k= 0.05 ¥
L 0=0.5 A\ i
- ¢=0.2 W 1
2L J
_ t=1.0 \
A
1 \.: E
L I I 6 R e
X

FIG. 3. Upstream-weighted collocation solutions to the advection-diffusion equation
using a coarse grid, a globally refined grid, and a locally refined grid.

assuming initial and boundary data having the form
ux,0) = ux), x€Q=(0,1)),
u(0,1) = u,, ull,t) = uy.

In this equation, u stands for fluid velocity, while u represents a fluid viscosity.
When o < 1, the equation models nearly inviscid, self-advected flows and has
shock-like solutions needing local fine-scale spatial resolution.

In the refined problem on A° we compute a sequence {"}>, in M (A%, sat-
isfying the initial and boundary conditions, such that the residual vanishes at
each collocation point x, €). In this case, the residual for the semidiscrete
scheme is

Antl 2an+1
Rn+l — ﬁn+l _ [2" + k ﬁn+|dun _ id u
dx 2 dxt)’
which is a nonlinear function of the unknown Hermite coordinates

{Gag)™, @)™ iy -, ()™}

128 ALLEN AND CURRAN

for each fixed value of X,. To solve this nonlinear problem for 4"*! in terms of
2", we linearize it using Newton’s method. Thus we make an initial guess
4""% = 4" and, at each iterative level m > 0, solve for a new iterate

N
arthmt = 2{[(“i)n+l'm + 8,1]H,,; + [y~ + 8.’]Hn}

ﬁu+!

Clearly 8, = 8y = 0; the boundary values of are known. To compute the
vector & of remaining increments, we solve the linear system

Jn+l.m8 = __rn+l.m,

where the kth entry of """ is R™*""(x,), and J"*"™ is the Jacobian matrix of
r**"" with respect to the unknown Hermite coordinates. Given a tolerance 7 >
0, we iterate until [[r"*""*!||, < 7, then set u™"™*!,

In practice this scheme has several nice attributes. First, it is stable for very
large time steps, including “Courant” numbers [|i"*'|.k/h > 100 that far exceed
those required to keep the temporal truncation error reasonably small. Second,
it converges rapidly. Using N = 100, the scheme reaches [r"*"™*!|. < 1077 in
three or four interations, almost independent of the time step k.

To implement adaptive local grid refinement, we adopt a simple “predictor-
corrector” strategy in this Newton scheme. This strategy determines the refined
grid A" only after performing a few Newton iterations on the coarse grid A°.
The algorithm runs as follows: for the “predictor” stage, we iterate on A° to reach
a tolerance 7, > O:

1. ﬁn+l,0 (_Toﬁn.

2. Solve J**'"§ = —r""""™ on A® to get iterates u"*""*' € MI(AY). Stop

when [r"*"¥|., < 7,.
At this point we have a crude approximation to the new solution 4"*', which
we use to determine the refined grid:

3. Construct A™"' according to some refinement strategy.

Finally, we perform the “corrector” stage, iterating on A™"' to reach a tolerance
7, >0
4. un+l,M+0 <—7T"ﬂu"+"M.

5. Solve J**'"M*"§ = —p"* 1Mt on A" to get iterates u"T" M €
MJ(AM-I)
1 .
6. ﬁn+l (_’zn+l.M+m+l;n —n + 1.

In step 5 we use the elementwise condensation algorithm outlined in the previ-
ous section to solve the linear system involving J"*"**".

A sample calculation paralleling that described in Chong [10] illustrates this
procedure. Consider problem (3) with N-wave data on) = (0, 1):

X
ul(x) = =1\ uy =0, Uy = u/(l),
1 + exp(8)
I

and let u = 107", For the true solution, |di/dx| = CO(1) except in an interior
layer of thickness O(u), in which |9d/dx| = O(u™"). If h denotes the coarse-
grid mesh, then we insert O(x ') refinement nodes in each coarse-grid element

e 4

ADAPTIVE LOCAL GRID REFINEMENT ALGOhITHM 129

Q, where (u? — u!_,)/h > 2. Figure 4 shows the resulting numerical solutions
at different time levels, using h = k = 0.05, together with a plot of the exact
solution for comparison. o

V. IMPLEMENTATION ON A PARALLEL COMPUTER

We have implemented this refinement strategy on an Alliant FX/8 parallel
processing computer. The Alliant is a shared-memory machine with optimiza-
tion capability for both concurrent and vector programming. Five compu-
tational elements or processors are available on our machine as currently
configured.

The computations associated with each refined coarse-grid element (), are
contained in three subroutines. The first routine, called REGRID, constructs
the nonsquare system of equations involving variables associated with £3;. The
second, called CNDNS, performs the elementwise condensation and decompo-
sition. The third, BAKSUB, solves for the refinement variables after the solu-
tion on the coarse grid is known. These routines are implemented for each refined
coarse-grid element ();. In each routine, calculations for separate coarse-grid
elements are performed concurrently. All computation inside each routine must
be done sequentially since the processors are in use at this time. However, the
sequential calculations in each routine are optimized for vectorization.

a t=0.0

L — L m t=05]
.4; h=k=0.05 e t=1.0]

b o Exact solution

- att=1.0
3k /{\ :

- 0]

(@) L -;

- A :
2F :
JAF

- el

i ot o) S —A

00 5
z

FIG. 4. Solution profiles for Burgers’ equation with N-wave data, showing the exact
solution for comparison in the last time step. -

-

130 ALLEN AND CURRAN

R O T e e . i -

The machine allows users to control concurrency within a Fortran code
through the use of compiler directives.- The following is a description of the
“corrector” stage of the nonlinear algorithm described in Section IV. The com-
piler directives themselves begin with the flag CVDS$ starting in the first col-
umn of code.

Construct the refined grid A™"'
' Begm iteration on refined grid until |r
© .7 Determine right hand side vector for coarse-grid equations
CVDS$L CNCALL (Compiler directive to permit the concurrent execution of the
_ following loop containing a reference to an external procedure)
DO for each refined (), —
CALL REGRID (Constructs nonsquare systems.)
END DO-
. Check for convergence
- Determine matrix multiplying coarse-grid variables
CVDSL CNCALL
DO for each refined {};
CALL CNDNS (Performs condensation and decomposition.)
END DO
" . .. Solve for coarse-grid variables
CVDSL ~ CNCALL
DO for each refined 0;
CALL BAKSUB (Solves for refinement variables.)
END DO
End Iteration

n+l, M+m+|“ < T

CVDSR NOCONCUR (Directive to supress concurrency until the end of the routine.)

SUBROUTINE REGRID
CVD$R NOCONCUR

SUBROUTINE CNDNS
CVD$R NOCONCUR

SUBROUTINE BAKSUB

One measure of how well the algorithm makes use of the machine’s parallel
capabilities is the speedup. Speedup for n processors is the ratio of the time
needed by one processor to the time used by n processors to perform the com-
putation associated with' grid refinement. If there were no overhead required to
monitor and schedule the various processors, the speedup for n processors
would be n. Figure 5 shows four speedup curves. These plots represent the
speedups achieved by our algorithm for an average of two, four, six, and eight
elements refined per time step in the Burgers’ equation solver. As expected, for
an average of two elements refined per time step, the speedup does not improve
for more than two processors and even decreases slightly due to the increased
overhead. Similarly, for an average of four elements refined in each time step,
speedup does not improve when a fifth processor is used. Figure 6 shows the
speedup curve when five elements are refined per time step. Clearly, this
amounts to a special case for our machine configuration. The speedup for five
processors is 3.51. This result compares with a machine peak of 4.5, observed
by Puckett and Schmidt [11] while using a purely parallel algorithm with no

ADAPTIVE LOCAL GRID REFINEMENT ALGORITHM 131

4 7’
N
3 <4
o
3
® 2t
3 -
Q
¢ @
Average Number of
Refined Elements
1 ® 2
* 4
A 6
m 8
l ! 4, J
1 2 3 4 5

Number of Processors

FIG. 5. Speedup plots for the parallel computations in the local gridding algorithm im-
plemented on a five-processor machine with shared memory. Different curves represent
different average numbers of coarse-grid elements refined per time step.

Speedup

Number of Processors

FIG. 6. Speedup plot for the parallel computations in the local gridding algorithm
implementéd on a five-processor machine with an average of five coarse-grid elements

refined per time step.

132 ALLEN AND CURRAN

data sharing among processors and no accumulation of results. Those authors
found that peak performance occurs only when the number of iterations in
a concurrent loop is quite large: They achieved the speedup of 4.5 in a loop
having 3600 iterations.

There are several factors that prevent optimal speedup in our algorithm for
grid refinement. First, not every processor has the same computational burden,
since the amount of refinement in the coarse-grid elements can vary spatially.
Second, the number of iterations performed in each loop is typically small,
owing to the local nature of the refinement. A third barrier to the attainment of
peak performance is the necessity to accumulate the results of the parallel com-
putations in memory for use in subsequent calculations. These limitations seem
inherent in any adaptive gridding procedure for nonlinear, transient flows. With
this proviso, our algorithm appears to make good use of the shared-memory
parallel architecture.

The National Science Foundation supported this work through grants DMS-8504360 and
RII-8610680. The Wyoming Water Research Center also provided support through a
grant-in-aid to the authors.

References

[1} B.A. Finlayson, The Method of Weighted Residuals and Variational Principles,
Academic Press, New York, 1972,

[2] C. de Boor and B. Swartz, “Collocation at Gaussian points,” SIAM J. Numer.
Anal., 10, 582-606 (1973).

[3]1 J. Douglas and T. Dupont, “A finite element collocation method for quasi-linear
parabolic equations,” Math. Comp., 27, 17-28 (1973).

[4] G. Birkhoff and R. E. Lynch, Numerical Solution of Elliptic Problems, SIAM,
Philadelphia, 1984.

[5] P.M. Prenter, Splines and Variational Methods, Wiley, New York, 1975.

[6] M.B. Allen and G.F. Pinder, “Collocation simulation of multiphase porous-
medium flow,” Soc. Pet. Eng. J. 135-142 (1983).

[7] O.K. Jensen and B. A. Finlayson, “Oscillation Limits for Weighted Residual
Methods Applied to Convective Diffusion Equations,” Int. J. Numer. Meth. Eng.,
15, 1681-1689 (1980).

[8] M.B. Allen, “How upstream collocation works,” Int. J. Numer. Meth. Eng., 19,
1753-1763 (1983). -

[91 M.F. N. Mohsen and G. F. Pinder, “Collocation with ‘adaptive’ finite elements,”
Int. J. Numer. Meth. Eng., 20, 1901-1910 (1984).

[10] T.H. Chong, “A variable mesh finite difference method for solving a class of
parabolic differential equations in one space variable,” SIAM J. Numer. Anal. 15,
835-857 (1978).

[11] J. A. Puckett and R.J. Schmidt, “Finite strip method in a parallel computer envi-
ronment,” preprint, Department of Civil Engineering, University of Wyoming,
Laramie, Wyoming, 1988.

Parallel computing for solute transport models via
alternating direction collocation

M. C. .Curran and M. B. Allen III

Department of Mathematics, University of Wyoming, Laramie, WY 82070 U.S.A

We examine algorithmic aspects of M. Celia’s alternating-direction scheme for finite-element
collocation, especially as implemented for the two-dimensional advection-diffusion equation
governing solute transport in groundwater. Collocation offers savings over other finite-element
techniques by obviating the numerical quadrature and global matrix assembly procedures
ordinarily needed in Galerkin formulations. The alternating-direction approach offers further
saving in storage and serial runtime and, significantly, yields highly parallel algorithms
involving the solution of problems having only one-dimensional structure. We explore this

parallelism.

Key Words: Alternating-direction methods, collocation, parallel computing.

1. INTRODUCTION

Alternating-direction (AD) methods have been of in-
terest in the numerical solution of partial differential
equations since their introduction in 1955 by Peaceman
and Rachford'. In 1970 Douglas and Dupont?
developed an alternating-direction Galerkin method,
variants of which have attracted the attention of several
authors, including Dendy and Fairweather® and Hayes
and Krishnamachari®. Analogous alternating-direction
collocation (ADC) methods have also appeared in
several papers, including those by Bangia ef a/.°, Chang
and Finlayson®, Hayes’, Celia et al.?, Celia®, and Celia
and Pinder'®. Reference 9, in particular, demonstrates
the applicability of ADC to problems of practical im-
portance in water resources engineering.

We examine Celia’s ADC for the two-dimensional
advection-diffusion equation for solute transport in a
known velocity field. Of interest here are algorithmic
features of ADC that enhance its efficiency in com-
parison with standard two-dimensional collocation,
especially the amenability of ADC to implementation
on parallel-architecture computers. The paper has the
following structure: section 2 briefly reviews finite-
element collocation using bicubic Hermite bases; section
3 discusses the AD method applied to collocation; in
section 4 we discuss the method’s performance on a
parallel computer.

2. REVIEW OF FINITE-ELEMENT
COLLOCATION

We begin by reviewing finite-element collocation for
problems in two space dimensions. The primary aim
of this review is to establish notation and terminology
for the rest of the paper. Lapidus and Pinder'' give an

Accepted September 1989. Discussion closes December 1990.

= 1990 Computational Mechanics Publications

70 Adv. Water Resources, 1990, Vol. 13, No. 2

alternative, more detailed description of the
methodology that may be more appropriate for those
seeking an introduction.

Consider the following problem, posed on the rec-
tangular spatial domain Q = (a, b) x (¢, d):

@ o +v-Vu—-V-(DVu)=0,(x, y,t)€Qx (0, o),
(b) u(x, y,0)=ui(x, y), (x,y)eQ, N
(©) u(x,y,t)=up(x, y, 1), (x,y)€99,t = 0.

In equation (la), v=v(x, ¥) represents a known fluid
velocity, which in applications might be the Darcy
velocity computed using a groundwater flow model.
D=D(x,y) is a diffusion coefficient, which in
underground flows could serve as a simple model of
hydrodynamic dispersion. (For purposes of testing the
efficiency of collocation algorithms, we neglect the
possible tensorial nature of D and suppress explicit con-
sideration of any Jdependence on the fixed velocity field
v.) The unknown function u = u(x, y,t) represents a
solute concentration. Equation (1b) gives the initial con-
centration field, while equation (lc) imposes Dirichlet
boundary conditions. These boundary data are not
the only ones to which the ADC method applies; in
fact, one could just as well impose Neumann, Robin, or
mixed boundary conditions.

We use finite-element collocation to discretize the
spatial dimensions in the following class of semidiscrete
analogs:

Wt —u" ke vevu"t — v (DY) =0,
n=0,1,2,..., Q)

where integer superscripts indicate time level. The nota-
tion (+)"*? signifies a convex combination
0(-)"* '+ (1 —8)(-)" of the quantity (-) at successive
time levels, where 0 <6 <1, and & denotes the time
step. In particular, the choice 8 = 1/2 yields a Crank-
Nicolson scheme, for which we expect the local trunca-
tion error to be ¢ (k7).

We begin by establishing a rectangular grid on Q and
a corresponding space of finite-element interpolating
functions. Let A,={a=xo,...,xv,=b} and A, =
fc=yo,..., yn, = d} be grids on the x- and y-intervals
(a, b) and (c, d), respectively, and call A, = max;<ign,
{xi— xi—1} and A, = max)gjgN.{Vi— yi-1]. The Her-
mite piecewise cubics on these one-dimensional grids are
functions belonging to the spaces

A3 (D) =

{(feC'(Ia,b])| flixi-nx) is cubic, i=1,..., Ny},
M) =

{fe Cl([c’ d])‘f‘[)’i—h)’j] iS Cubic, j= l’ ey Ny}y

Here f|(x_.,x) denotes the restriction of the globally
defined function f to the subinterval [x;i-1, x;]. Thus
each function in either of these spaces agrees with some
cubic polynomial on any subinterval in the grid, and
these cubic ‘pieces’ connect in a manner that preserves
global continuous differentiability. As Prenter!? shows,
each of these spaces has an interpolating basis
{hoi, i} ¥o® ™, every element of which has support
confined to at most two adjacent subintervals [xi-1, xi]
or [yj-1,¥i]. Given any function fe€ J3(Ay), for
example, the representation of f with respect to this
basis takes the form

N,
f()= _Zo [f(xihoi(x) + f* (xidhui ()]

For the two-dimensional problem (1), we use these
interpolating spaces to form a tensor-product inter-
polating space #3(Ax) ® #3(A,). This space has a
basis in which each function is the product of a
piecewise cubic basis function in ./#3(A,) and one in
<i3}(A,). At each time level n, we compute an approx-
imate solution #"(x, y) belonging to the trial space

A= (ve A ® A (Ay) | v(x, p)
=up(x,y) v (x, y)€oQ}.

As the notation indicates, each function in .#
automatically obeys the boundary conditions (1¢) and
has the form

P4

v

2" (x, y) = Z

[&" (xiy yiYHooii (X, y)

+ a,ru (xi, yi)Hij(x, y)
+ " (xi, ¥i)Houij(x, ¥)
+ axyu‘"(xl, yJ)Hl llj(x7 .y)])

Where Hlmu(x y) = hh(x)hnu(y)

At =0 we form the initial approximate solution °
by using the nodal values of the initial function #; and
its x-, y-, and xy-derivatives to form the projection of
the true initial concentration onto .. These criteria
specify % completely. For subsequent time levels, the
fact that every function in the trial space . / satisfies the
boundary conditions fixes the nodal values and tangen-
tial derivatives of the approximate solute concentration
along the boundary d€2. A careful count will reveal that
the boundary conditions determine H(N, + N, + 1) of
the 4(N,+ 1)(N, +1) nodal coefficients for each
unknown function @', 42,

At each new time level n + 1, we use our knowledge
of the most recently computed approximate solution "

to determine the remaining 4 NN, degrees of freedom
for #"*!. We first form the residual

R™Y ="' — "+ k[v-va"*? —v-(DVia"*%)].

We then pick a collection { (%1, 7), (X1,72), ..., (¥an.,
yan,)) of 4NN, collocation points and force
R"*1(xp, 7,) =0 at each, thus enforcing precisely the
correct number of conditions to determine #"*!. In par-
ticular, we choose x, and y, to be the two-point Gauss-
quadrature abscissae on each subinterval [x;_1, xi] or
[¥i-1, yi]. Since the spatial problem to be solved at
each time level is elliptic we expect this choice of col-
location points to yield optimal global error estimates of
the form ||u" — #"||e = O (h{ + h}') (see Refs 13 and 14).

3. THE ALTERNATING-DIRECTION METHOD

The aim of ADC is to modify the ordinary two-
dimensional collocation procedure via an operator split-
ting. This splitting reduces the discrete problem to one
involving a sequence of matrix equations, each of which
has the same sparse structure as the one-dimensional
collocation system. The following description of this
splitting approach is essentially a review of the develop-
ment presented by Celia and Pinder in Ref. 10.

We first perturb equation (2) by a term that is ¢ (k?)
to get

Ul —u" + k(L + Ly)ut?

+ k02L& W™ —u")y=0, (3)

where

gx = vxax - ax(Dax); gy = Uyay - ay(Day).

(Reference 10 treats the advection-diffusion equation in
a slightly different fashion, splitting only the diffusive
part of the spatial operator.) Rearranging equation (3)
and factoring gives

A+ k02,)A + k0L)W —u™)y= —k(Zx + Ly)u".
Conceptually, we can solve (1 + k6%,)z = — k(% + L)u"
for the intermediate unknown z, then solve
(1 + k0Z)(u"*" = u") = z for the time increment in 4.

To see how this works algebraically, notice that
substituting Hermite bicubic trial functions for # and
collocating produces a matrix equation Ku”*!=r",
where u”*! is the vector of time increments for the
unknown nodal coefficients of #”*'. Consider a typical
entry of the matrix K:

(1 +kO(Le+ L)) + k0L L)) Himis} (%o, §q), (4)

where Hpnijis some basis function in the tensor-product
interpolation space. Each Huuii(x,) = A (xX)hmi(y), so
we can expand the expression (4) and factor it to get

[hli(f\;p) + ke(y’xhh)(ip)] ° [hmj()-’q) + kG(‘{l))'hmj)(yq)] .

This factoring of each matrix entry, together with
Celia’s scheme® for numbering and renumbering equa-
tions and unknowns, allows us to factor the entire
matrix equation at each time level in a computationally
attractive fashion. If we number the equations and
unknowns ‘vertically,” that is, consecutively along the
lines x=wx, as shown in Fig. ta, then the

Adv. Water Resources, 1990, Vol. 13, No. 2 71

5 2Ny+si4Ny+5 6N, + 5| 8N, +5
F
4 2N, +4|{4N,+4 6N, +4|8N, + 4

3 2N, +3|4N,+3 6N, +3|8N, +3
® —@—— @—
2 2N, +2[4N,+2 6N, +2|8N, +2

(a)

1 2N, +1|4N,+1 6N, +1|8N, +1
-~ ~— e

8N.+1 8N +2|8N,+3 8N,+418N,+5
“

6N:+1 6N, +2|6N,+3 6N, +4|6N.+5

4N: +1 4N, +2|4N.+3 4N, +4|4N,. +5 (b)

L 4 4
2N:+1 2N +2|2N.+3 2N +4({2N.+5

1 2 3 4 5

(c)

Fig. 1. (a) Vertical numbering scheme for the equa-
tions used in the y-sweep. Equation numbers occupy
the sites of corresponding collocation points; the sym-
bols ® indicate nodes in the grid. (b) Horizontal number-
ing scheme for the equations used in the x-sweep. (c)
Association scheme for numbering nodal unknowns
following a given numbering scheme for the collocation
points surrounding the node.

4NN, x 4NN, matrix K factors as follows:

Y X1t X128,

Xan, 20

Each 2N, X 2N, block Y, , has the five-band structure
of a one-dimensional collocation matrix, shown in Fig.
2. Moreover, The entries in Y, , depend only on the
y-coordinates of collocation points.

Now consider the matrix X. If we switch to the
‘horizontal’ numbering scheme for equations and
unknowns, illustrated in Fig. 1b, then X transforms to
a block-diagonal matrix that we denote as follows:

*
X1

Yonvon | [X

ES
x =
*
b SEVTRRY

(We use the superscript * to indicate the result of

72 Adv. Water Resources, 1990, Vol. 13, No. 2

% X x 1 A
X X X
X X X X
X X X X
X X XX
X X X X
X X X X
X X X X
2N
X XX X
X X X X
X X X X
X XX X
X X X
. xxx| I
- 2N ~J—

Fig. 2. Five-band zero structure associated with the
matrix for standard one-dimensional collocation

switching to the ‘horizontal’ numbering scheme.)
Again, each 2N, x 2N, block X7, has the five-band
structure shown in Fig. 2.

In light of these observations, we can solve the two-
dimensional matrix equation Ku"*' = r” by the follow-
ing procedure.

1. Adopt the ‘vertical’ numbering scheme, and solve
Yz =r” for the intermediate vector z by solving the
independent problems Yz, =1}, p=1,...,2N,.

2. Renumber according to the ‘horizontal’ scheme,
converting z to the reordered vector z*. This
renumbering transforms X to the block-diagonal
form X*.

3. Solve X*u"*' = z* for the desired time increments by
solving the independent systems Xjui*'=1z,
g=1,...,2N,.

Thus each time step involves the solution of matrix
equations that are at worst one-dimensional in
structure.

At this point we can make some comments regarding
the efficiency to be gained by the splitting scheme. For
simplicity, let us assume that Ny = N, = N. In the fully
two-dimensional matrix problem Ku"*!=r", there are
then 4 N2 unknowns, and the matrix K is asymmetric. If
we order equations and unknowns to allow for row
reduction without pivoting, K will have a bandwidth
B:=8N+16 (see Ref. 15). Assuming that row
reduction accounts for the bulk of the computational
work in the sparse matrix solver used, we can expect the
operation count for solving the fully two-dimensional
equations at each time step to be roughly
4N?B3 =256 N* for large N. By contrast, ADC calls for
the solution of 4N matrix equations ot bandwidth
By =35 and order 2N at each time level. Thus an upper
bound for the number of arithmetic operations required
in the row reductions for ADC is 4 N(2NB?1) = 200N°.

Furthermore, each of the ‘one-dimensional’ svstems
in steps 1 and 3 of ADC is independent of any other.

Therefore these steps can run concurrently, whereas
there appears to be no such obvious parallelism in the
standard solvers for the fully two-dimensional
formulation. We explore the inherent parallelism of
ADC in the next section.

4. IMPLEMENTATION ON A PARALLEL
COMPUTER

We have implemented ADC on an Alliant FX/8 parallel
processing computer. The Alliant has eight processors
in a shared-memory configuration in which each pro-
cessor is a vector-architecture machine. The Alliant
allows users to control concurrency within a standard
Fortran code through the use of compiler derectives.
Since we are mainly interested in the general advantages
to be gained through the shared-memory architecture
and the concurrency controls furnished by the compiler,
we shall not consider such other machine-specific
features as size of the cache (high-speed memory),
number of processors, or speed of the random-access
memory.

The following is a description of the code outlined in
Steps 1-3 of section 3. The compiler directives
themselves begin with the flag CVDS starting in the first
column of code.

Initialize #°, set n=0
Begin time level n+ 1
CNCALL (Compiler directive to permit the con-
current execution of the following loop
containing a reference to an external
procedure.)
DO for each p=1,...,2N;
CALL YSWEEP (Constructs the system
Yp.p2p =15, solves it, and
saves the results.)

CVDSL

END DO

CALL RENUM (Reorders z to get z*)
CNCALL

DO for each g=1,...,2N,

CALL XSWEEP (Constructs the system
Xsusltl =25, solves it and
updates the nodal coefficients
of 4 to time level n+1.)

CVDSL

END DO
End time step

CVDS$R NOCONCUR (Directive to supress concurrency
until the end of the subroutine.)
SUBROUTINE YSWEEP
CVDSR NOCONCUR
SUBROUTINE XSWEEP

The directive CNCALL forces the passes through a
DO loop to execute in parallel, within the limitations of
the machine’s configuration. Thus, for example, if the
algorithm calls for eight passes through the loop and
there are eight processors, then CNCALL forces the
operating system to map each pass onto a separate pro-
cessor, allowing concurrent execution of the passes. If,
on the same machine, the algortithm calls for nine
passes through the loop, then the last pass must wait un-
til one of the first eight terminates before the operating
system can map the ninth onto a free processor. This
logic implies that certain efficiencies accrue when the
number of independent processes is an integer multiple
of the number of processors in the machine being used.

The need for the directive NOCONCUR arises from
the structure of the Alliant’s optimizing compiler, which
often must choose among several levels of parallelism
in a code. By default, the compiler optimizes for
parallelism at the finest level. Thus, for example, it will
force independent processes within a subroutine to run
concurrently, in preference to forcing independent calls
to the subroutine itself to run concurrently. Inserting
the directive NOCONCUR before the SUBROUTINE
statement overrides the default level for optimization.
This device allows the compiler to treat each call to the
subroutine as an independent process, even if the poten-
tial for concurrency exists at a finer level inside the
subroutine. ' .

One measure of how well the algorithm makes use of
the machine’s parallel capabilities is the speedup.
Speedup for n processors is the ratio of the CPU time
needed by one processor to the time used by n pro-
cessors to perform a set of tasks in parallel. For a
perfectly parallel algorithm requiring no overhead to
monitor or schedule the various processes and no
storage of their results, the speedup for n processors
would be n. Figure 3 shows the speedup curve for the
ADC algorithm, implemented for the advection-
diffusion problem on a 40 x 40-clement spatial grid. The
CPU time used to compute these ratios is actual clock
time, excluding the processing required for initializing
the code but including computational overhead required
for scheduling and storage of intermediate results. The
speedup curve is quite close to the ideal curve of unit
slope, yielding a speedup of 7.27 for eight processors.
Clearly, ADC makes very good use of the Alliant’s
shared-memory parallel architecture.

We caution against extrapolating these speedup
results to much larger problems on the Alliant as con-
figured. The size of the cache memory in any particular

8
71
6._
5F
o
3
S
o 4
Q
Q.
]
3
2} 4
1
1 | - i 1 L 1
1 2 3 4 5 5 7 8

Number of Processors

Fig. 3. Speedup curve for ADC using the Alliant FX/8
shared-memory architecture

Adv. Water Resources, 1990, Vol. 13, No. 2 73

computer clearly constrains that machine’s ability to
compute efficiently. What is important here is not the
computational horsepower of the particular machine we
have used but rather the natural parallelism inherent in
the ADC algorithm. This parallelism can yield signifi-
cant speedups on essentially any shared-memory
parallel architecture.

To confirm that ADC gives useful approximations,
Figs 4 and 5 show solution plots for two different prob-
lems. Figure 4 shows the results of a rotating plume pro-
blem on @=(—-1,1)x(~1,1), with Ny= N, =40 and
k=0.004. Here, v=2xn(-y,x) is a circular velocity
field, D = 0, and the initial concentration plume u;(x,)
is a ‘Gauss hill’ with center at (0, —0.6) and standard
deviation ¢ = 0.066. This pure advection problem, while
physically unrealistic, poses a fairly severe test of
ADC’s ability to approximate solutions with steep
fronts in highly advective flow fields. In this case, the
global error at t = 1, when the exact solution is identical
to the initial condition, is less than 0.08 || ¥ ||«.

Figure 5 displays the results of an advection-diffusion

-1 1 I i i 1 1 1] 1

-1 1

Fig. 4. Concentration contours for the purely advec-
tive rotating plume problem at various time levels. Con-
tour interval is 0.1

Fig. 5. Plot of concentration distribution ar t = 0.3 for
an advection-diffusion problem with Darcy flow

74 Adv. Water Resources, 1990, Vol. 13, No. 2

problem on 2=(0,1)x(0,1), with Ny= N, =20 and
k = 0.004. The diffusion coefficient here is D = 0.00385.
The velocity field is v(x, y) =2e™(x, —y), which cor-
responds to the steady-state Darcy velocity — KV® on Q
when the hydraulic conductivity is K(x, y) = e® and the
head obeys the boundary conditions ®(x, y) = x* — y?
on 9. The inital concentration distribution u; for this
problem is another ‘Gauss hill,” with o = 0.05 and center
(0.75,0.25).

5. CONCLUSIONS

From operation counts alone, it has been clear for some
time that ADC offers distinct efficiencies over standard
methods for two-dimensional collocation in a serial
computing environment. With the advent of practical
parallel computers, ADC holds even more promise,
since the splitting scheme converts a fully two-
dimensional problem into a sequence of ‘one-
dimensional’ problems that are amenable to concurrent
processing. Similar observations should hold for other
alternating-direction methods, including techniques for

multidimensional finite-difference and Galerkin
aproximations.
ACKNOWLEDGMENTS

The Wyoming Water Research Center supported this
work. We also received support from NSF grant
RII-8610680, EPA cooperative agreement
CR813928-01-0, and ONR contract 0014-88-K-0370.

REFERENCES

1 Peaceman, D. W. and Rachford, H. H. The numerical sol-
ution of parabolic and elliptic equations, SIAM J. 1955, 3,
28-41 .

2 Douglas, Jr., J. and Dupont, T. Alternating-direction
Galerkin methods on rectangles, Numerical Solution of
Partial Differential Equations, Vol. 2, B. Hubbard, ed.,
Academic, New York, 1971, 133-214

3 Dendy, J. and Fairweather, G. Alternating-direction Galerkin
schemes for parabolic and hyperbolic problems on rectangular
polygons, SIAM J. Numer. Anal. 1975, 2, 144—163

4 Hayes, L. J. and Krishnamachari, S. V. Alternating direction
along flow lines in a fluid flow problem, Comp. Meth. App.
Mech. and Engg 1989, 47, 187-203

5 Bangia, V. K., Bennett, C. and Reynolds, A. Alternating
direction collocation for simulating reservoir performance,
53rd annual fall conference, Society of Petroleum Engineers,
Houston, 1978

6 Chang, P. W. and Finlayson, B. A. Orthogonal collocation on
finite elements for elliptic equations, Math. Comp. Simu-
lation, 1978, 83-92

7 Hayes, L. J. An alternating-direction collocation method for
finite element approximations on rectangles, Comput. Math.
Appl., 1980, 6, 45-50

8 Celia, M. A., Pinder G. F. and Hayes, L. J. Alternating direc-
tion collocation simulation of the transport equation, Pro-
ceedings Third Int. Conf. Finite Elements in Water Resources,
S. Y. Wang et al., eds., University of Mississippi, Oxford,
MS, 1980, 3.36—3.48

9 Celia, M. A., Collocation on deformed finite elements and
alternating direction collocation methods, Ph.D. Dissertation,
Princeton University, 1983

10 Celia, M. A. and Pinder, G. F. Analysis of alternating-
direction methods tor parabolic equations, Numer. Meth.
P.D.E. 1985, 1, 57-70

Lapidus, L. and Pinder, G. F. Numerical solution of partial
differential equations in science and engineering, New York,
1982
Prenter, P. M. Splines and variational methods, New York,
1975
Percell, P. and Wheeler, M. F., A C! finite element colloca-

tion method for elliptic problems, SIAM J. Numer. Anal. 17

1980, 605-622

14

15

Dyksen, W. R., Lynch, R. E., Rice, J. R. and Houstis, E. N.
The performance of the collocation and Galerkin methods
with hermit bicubics, SIAM J. Numer. Anal., 1984, 21,
675-715

Frind, E. O. and Pinder, G. F. A collocation finite element
method for potential problems in irregular domains, /nt. J.
Numer. Meth. Engg 1979, 14, 681-701

Adv. Water Resources, 1990, Vol. 13, No. 2 75

WELL CONDITIONED ITERATIVE SCHEMES
- FOR MIXED FINITE-ELEMENT MODELS
OF POROUS-MEDIA FLOWS

Myron B. Allen and Richard E. Ewing
University of Wyoming

Peng Lu

University of Georgia

Key Words: Mixed finite-elements, iterative solution schemes, heterogeneous porous
media. AMS (MOS) subject classification: 65, numerical analysis.

Abstract

Mixed finite-element methods are attractive in modeling flows in porous media, since
they can yield pressures and velocities having comparable accuracy. In solving the re-
sulting discrete equations, however, poor matrix conditioning can arise both from spatial
heterogeneity in the medium and from the fine grids needed to resolve that heterogeneity.
This paper presents iterative schemes that overcome these sources of poor conditioning by

using effective preconditioners in conjunction with a multigrid method for pressures.

1 Introduction

We consider methods for solving discrete approximations to the equations governing
single-fluid flow in a porous medium. If the flow is steady and two-dimensional with no
gravity drive, Darcy’s law and the mass balance take the following forms:

u=-—Kgradp in (Q,

(1.1)
— divu=f infl.

Here u,p, f represent the Darcy velocity, pressure, and source term, respectively. For
simplicity, we take the spatial domain to be a square, scaled so that Q = (0,1) x (0,1).
The coefficient K(z,y) is the mobility, defined as the ratio of the permeability of the porous
medium to the dynamic viscosity of the fluid. In applications to underground flows, the

structure of K may be quite complex, depending on the lithology of the porous medium

and the composition of the fluid. We assume, however, that this ratio is bounded and
integrable on 1 and satisfies K > K¢ > 0. We impose the boundary condition p = 0 on
911, so that p effectively represents the deviation in pressure from a reference value known

along o11.

Scientists modeling contaminant flows in groundwater or solvent flows in oil reservoirs
often need accurate finite-element approximations of u and p simultaneously. For this rea-
son, mixed finite-element methods for solving the system (11) are particularly attractive,
since they can yield approximations to u and p that have comparable accuracy ([1], [5]).
The key to achieving such approximations is the use of appropriate piecewise polynomial
trial spaées, such as those proposed by Raviart and Thomas [10]. As we review in Sec-
tion 2, if we use the lowest-degree Raviart-Thomas spaces, the mixed formulation yields
systems of discrete equations that have the form

AU+ NP = o,

(1.2)
NTU = F.

Here, U and P signify vectors containing nodal values of the trial functions for u and p,
defined on a grid over 2, and A and N are matrices. As we illustrate below, the matrix
A contains all information about the spatially varying material property K, while N and

NT are essentially finite-difference matrices.

Equations (1.2) can be quite difficult to solve efficiently, for the following reasons. When
K varies over short distances, accurate finite-element approximations require fine grids
on (). Fine grids, however, typically yield poorly conditioned matrix equations. For
classical stationary iterative schemes, this increase in the condition number of the system
leads to slow convergence, no matter how “nice” K may be ([2], Section 4.11). The
problem is compounded whenever ¥ cexhibits large: spatial variations, as can occur near
lithologic changes in the porous medium or sharp contacts between fluids of different
viscosity. In such problems, as we shall demohstrate, the poor conditioning associated with
spatial variability typically aggravates that associated with the fine grids needed to resolve
the physics of the problem. Thus, in problems with significant material heterogeneity,
methods that are relatively insensitive to these two sources of poor conditioning can have

considerable utility.

In this paper we discuss two types of iterative schemes for the mixed-method equations

(1.2). The first type possesses convergence rates that are independent of the fineness of the
grid. The second type, derived from the first, also overcomes the sensitivity to the spatial
structure of K, at the expense of somewhat more computation per iteration. Briefly, the
first scheme proceeds as follows: Let (U(®), P(9)) be initial guesses for the value of (U, P).
Then the k-th iterate for (U, P) is the solution of

wl N Uk 0 wli—A4 0 U1
(4) (58)- (%) (22 2) (52). on

where I stands for the identity matrix and w signifies a parameter, discussed below, that is
related to the spectral radius p(A) of A. For each iteration level k, the main computational
work in (1.3) is to solve a linear system of the form (w™!NTN)P*) = G(*-1), However, the
matrix w *NTN remains vulnerable to the poor conditioning associated with fine grids.
We overcome this difficulty by using a multigrid scheme to solve for P(¥), thereby greatly

reducing the computational work in each iteration.

An interesting feature of this approach is that NT N is essentially the matrix associated
with the five-point difference approximation to the Laplace operator with Dirichlet bound-
ary conditions. Hence, the multigrid portion of the scheme does not encounter the variable
coefficient, and the algorithm is particularly simple. The price paid for this simplicity, as

we shall see, is sensitivity to the poor conditioning associated with spatial variability.

To overcome this second source of trouble, we modify the first scheme to get new ones

(2) (50)- ()~ (24) (B). wo

where D denotes a diagonal matrix that we compute from A. This new class of schemes

of the form

requires us to invert N7 DN, which we again do using a multigrid method to preserve
h-independence of the convergence rate. While the multigrid method must now accom-
modate spatially varying coefficients, the overall scheme possesses the advantage that its

convergence rate is essentially independent of the spatial structure of K.

Our paper has the following format: In section 2 we review the mixed finite-element
method that we use. Section 3 describes the first iterative scheme in more detail and
analyzes its convergence. In section 4 we discuss the application of multigrid ideas to the

first scheme, and in section 5 we present some numerical results for this algorithm. Section

6 describes the modifications necessary to produce the second class of iterative schemes

and presents numerical results illustrating good convergence rates even in the presence of

heterogeneities.

2 A Mixed Finite-Element Method

We begin with a brief review of the mixed finite-element method, following the notation
of Ewing and Wheeler [8]. Let H(div,Q) = {v € L?(Q) x L*(Q) : div v € L*()}. The
variational form for (1.1) is as follows: Find a pair (u, p) € H(div,?) x L*(Q2) such that

/ 1—1—.l¢i:t:dy—1-/ pdivvdzdy =0, Vve H(div,Q),
a K 0
(2.1)
fn(div u+ flgdedy =0, Vg€ L(Q).

By our assumptions on K, there exist constants Kju¢, Kyyp such that 0 < Kinr < K < Kyup-

Implicit in these equations is also the assumption that K~! is integrable on Q.

To discretize the system (2.1), let A, = {0 = 2o < z; < -+ < z,» = 1} be a set of
points on the z-axis and Ay, = {0 = yo < y3 < - < yn = 1} a set of points on y-axis. Let
Ay = A, x A, be the rectangular grid on Q with nodes {(z;,y;)};25 ;-0- The mesh of this
grid is -

h = n}?x{-'c' — Ti-1, Yi — Yj-1}-

We assume throughout the paper that A, and A, are quasiuniform in the sense that
z; — iy > ah and y; — yj—1 > ah for some fixed @ € (0,1). With A, we associate
a finite-element subspace Qi x V, of H(div,Q) x L*(R2). The “velocity space” is Q, =
Q% X @}, where Q% and Q'Y are both tensor-product spaces of one-dimensional finite-
element spaces. In particular, we use the lowest-order Raviart-Thomas spaces, in which Q2
contains functions that are piecewise linear and continuous on A, and piecewise constant
on A',,‘. ‘Similarly, }','contains functions that are piecewise linear and continuous on Ay and
piecewise constant on A,. The “pressure space” V), consists of functions that are piecewise

constant on Ay.

Given these approximating spaces, the corresponding mixed finite-element method for

solving Equations (2.1) is as follows: Find a pair (us,ps) € Qu X V4 such that

j‘ up 'v"dzdy-i-/ pr div vydzdy = 0, YV vi € Qn,
a K 2 (2:2)

fn (div up + f)gndzdy =0, Y gn € Vi

This finite-element discretization yields approximations u, and p, whose global errors are
both O(k) in the norm || - ||z2(q). Ewing et al. [6] also prove superconvergence results that
guarantee smaller errors at special points in . This phenomenon appears in our numerical
examples in Section 5. In contrast, standard approaches solve for approximations to p
and then numerically differentiate to compute u = — K grad p, thereby losing an order of

accuracy in the velocity field [1].

To see the linear algebraic equations implied by (2.2), suppose u, and p, have the

expansions -
m n m n
uh(za y) = (Z Z U:j .'z,j(x’ y),z Z Ui‘:j :‘l,j(xs y)) ’
1=0 j=1 =1 7=0

pu(z,y) = f: i P, j;3(z, y)-

=1 j=1
Here, ¢7;, ¢¥;, and 1; ; signify elements in the standard nodal bases for QF, @Y, and V.
Define the column vectors U € R*™™*™*" P ¢ IR™ containing the nodal unknowns.as

follows:
UT = (UZyUfyy-ees Ut 1oy UgpsUspy o, U

Y m,1r m,n’

UY o, Ulsyeees Ul ey U, Ul gy, UR L), (2.3)

PT - (PI,I’P2,1a---’Pm,la--'Pl,naP2,n,~--aPm,n)-
Figure 1 shows how to associate these coefficients with nodes on a spatial grid A, with

m=4,n=3.

With these bases, the problem (2.2) has a matrix representation of the form

(#35)(5)-(%): ”

Here A is a symmetric, positive definite matrix having the block structure

A0
= (5 %)

in which A% € R{m+nx(m+1)n onq Av € R™n+1)xm(n+1) pave entries of the form
¢f, i,t / 45?,,'45‘1’:,1
-/;1 e dzdy, K dzdy,

respectively. Note that these entries contain information about the spatially varying coef-

ficient K. The matrix N has the block structure

Nz
v=(m)
where Nz € R(™+1mxmn and N ve R™(n+1)xmn }ave entries given, respectively, by

a¢lzc,t a¢¥,_¢
/:'I¢"J dz dzdy) /(;¢’€,, ay dzdy.

By calculating these integrals, one readily confirms that N* and NV reduce to the usual

difference approximations to 8/8z and 8/8y. The vector F' € IR™" has entries given by

the integrals [, f1:dz. The Appendix to this paper gives more detail on the construction
of A and N.

The matrix multiplying the nodal unknowns for (us, ps) in (2.4) is not positive definite,

but if we rewrite the system (2.4) as

AU = —NP,
~NTA"'NP = —F,

then A and its Schur complement —NT A~!N are positive definite. In this sense, the system

(2.4) is equivalent to two coupled, positive definite problems.

3 An h-Independent Iterative Method

Our first iterative scheme for solving the discrete system (2.4) is as follows:

o T
Algorithm 1. Beginning with tnitial guess (U(O),P(O)) for (U, P), the k-th sterate
(U("),P("))T ts the solution of

wl N Uk 0 wlI—A O Uk-1)
(NT 0) (P(k) = -F + 0 0 P(k—l)) (3°1)

where I € REmntmin)x(@mntm+n) s the identity matriz and w ts a parameter chosen to

satisfy w > p(A).

Here, p(A) denotes the spectral radius of the matrix A. Later in this section we discuss a

practical way to pick w that does not require detailed knowledge of the spectrum of A.

Computationally, Algorithm 1 has the following compact form: Given an initial guess
T
(U(°), P(O)) , compute (U (), P("))T by executing three steps:

() GOV« F 4w INT(wl - AUt (3-2)
(#¥) Solve w INTNPK) = gt-1), (3.3)
(115) WU®) — (wI — A)UE — NP, (3.4)

In each iteration, the main computational work is to solve for P*¥) = w(NTN)-*G(*-1). An
easy calculation shows that the matrix w™!(NTN) is positive definite, being proportional
to the standard five-point, finite-difference Laplace operator applied to P(*). Therefore we
expect the numerical solution for P(*) using stationary iterative methods to be plagued by
poor conditioning when the grid mesh A is small. This observation leads us to use a multi-
grid scheme to get approximations to P(¥). Such a device will preserve the h-independence
of the overall scheme’s convergence rate. We discuss this facet of the algorithm in more
detail in the next section. For now let us analyze the convergence properties of the overall

iterative scheme, assuming a “black-box” solver for P,

We begin by writing Equation (3.1) as a stationary iterative scheme:

U k) U(k-1)
< Pk) = L+M(Ppl-1)) ’ (3.5)

e (3 0) (F):

-1
wl N wlI—A O
M = (NT 0) (0 o)'

The convergence of Algorithm 1 depends on the spectral radius of the matrix M, for which

where

the following proposition gives a bound.

Proposition 1. Let
0< Amin <---< Amax (3'6)

-)

be the esgenvalues of the matriz A, and let w > Amax- Then the spectral radius of M obeys

the esttmate

p(M) <1- ’\:)““. (3.7)

Proof: Let A # 0 be an eigenvalue of M with eigenvector (Ux, PA)T. Thus
-1
UA _ ”wI N wlI—-—A 0 UA _ UA
w(B)=(3 §) (Mo 8) (B)=2(R) e

(wI - A)UA = A(wUA + NPA), (3.90,)

so

0= ANTU,. (3.9b)
Since (Uy, Pa)T # 0, Equation (3.9a) shows that Uy # 0; however, U may be complex.
Let U denote its Hermitian conjugate. If we multiply (3.9a) by U # observe that N is a

real matrix, and apply (3.9b), we obtain
UB(wI - AUy = MUHU, + A(NTU,)E P,

= AwUf UA.
From this equation we conclude that
UAH(I - w—lA)Ux

= < p(I —w™tA),
which implies
p(M) < p(I — wL4). (3.10)
Also, by (3.6) and the fact that w > Amax, we have
Amin

p(I-wA)<1-

These last two inequalities imply the desired bound (3.7). O

If we choose w = Amax = p(A), then the estimate (3.7) for the spectral radius of the
iteration matrix M becomes \
p(M) <1— T

max

To estimate Amin/Amax, the following proposition is helpful.

Proposition 2. For the matriz A appearing in Equation (2.4), there exist constants ko

and ky, independent of h, such that

koh*UTU < UT AU < k,R?UTU. (3.11)

Proof: The representation of u; given in Equation (2.3) leads to the identity
UTAU =/ i[u;,}zdzdy = ii/ —l-luhlzda:dy
n K oo/ K ’
where Q;; = (z;_1,z;) x (¥i-1,9;). Since K is bounded and integrable on (2, ;, the mean

value theorem for integrals ([9], pp. 184-185) guarantees the existence of a number K; ;,
satisfying infn,.d. K<K;; < supg, . K, such that

1 2 _ 1 2
/;M Kluhl dzdy = 7o /{;M [un]*dzdy.

(If K~! is continuous on 05, then K~! actually assumes the value K somewhere on

;,;.) Calculating the last integral usihg our basis for Q, we get

m n T z
TAU = %5 | U, 2 1) (U
vi4 ggﬁffﬁ[(Us;) (1 2 Uz;

T
+ []"':J'-l 21 ij—l
Ui 12 Ui /1’

where a;; signifies the area of {2 ;. To simplify notation, we notice that the 2 x 2 matrix

appearing in each term of this sum s positive definite. This observation allows us to define
a new norm on IR? as follows:

(EL-(5)(33)(%):

If || - |2 denotes the usual Euclidean norm on IR?, then it is easy to check that -2 <
14 <3 - |2. In terms of the new norm,
m n z 2
T . Q45 Us’—l,j Ug’{j_l
The quantity UTU is easier to calculate:

1=1j5=1
m n m n
UU =3 S UEE+ 303 (o, (3.12)

=0 =1 =1 5=0

2

+
A

-2

Now we use the bounds on K and the quasiuniformity of A, to observe that

athr » o [Il/ U= 2
Ut 2 6K..,p,z_;,EIL (b:J') A+
> 2 S5 (%)]+
- 6Ksup i=15=1 | Ui 2
a’h? |2 2 0 P
2 6 K,up [Z(:,,:Zl (Ui'".j) 2 i=1j=0
= eo}inTU.

(%)

(%)
7

(=

0
y

]

)

)

2'!

2]

i]

This observation establishes the first inequality in (3.11), since we can take ko = a?/6Kyyp.

To prove the second inequality in (3.11), we rewrite Equation (3.12) as follows:

r 133 o \|’
vtu= 23 2 I p= J| *
l=0_1—'0 8. 2

m+1n+1

NIH
iMi
M

(%),

i=1 j=1 |

()
(%)

i]

I

where we agree that U7 = 0 if either j =0 or j = n + 1, and Ui‘;- = 0 if either 1 = 0 or

1 = m + 1. Hence,

UuTu >

[2
Usz—l
(i) ,+|
2
Uszlj)
+
K;

of rrT
> —hz—U AU.

[
NE

-
Il
-

-,
1l
-

v
o
NE

-
i
-
.
Il
-

We conclude that UTAU < klthTU, where k1 = 1/Kine. O

If we apply Proposition 2 to the case when U is an eigenvector of A associated with the

eigenvalue Amin OF Amax, respectively, we find that Apin > @®h?/6 K,yup and Apax < A%/ King.

Therefore, provided we choose w > Anax in Algorithm 1, the spectral radius of our iteration

matrix M obeys the bound
o King

M)<1- .
p(M) < 6K,

10

(3.13)

Notice that the right side of this inequality is a constant independent of k. This is the

sense in which the convergence rate of Algorithm 1 is independent of A.

Two remarks about the practical implications of the estimate (3.13) are in order. First,
bound on p(M) depends strongly on the nature of the coefficient K (z,y). In particular, if
Kint/ Kuup is very small, reflecting a high degree of heterogeneity in the physical problem,
then we can expect the actual convergence of the algorithm to be slow, albeit independent
of grid mesh. Several examples in Section 5 confirm this expectation. Second, even though
choosing w = Ap.x minimizes p(M) and hence optimizes the convergence rate, this choice
is impractical owing to the expense of calculating Am.x. In practice, we typically pick
w = ||Alloe = Amax- This choice is easily computable as the maximum row sum of A,

and it preserves h-independence of convergence rate even though it may be theoretically

nonoptimal.

4 Application of a Multigrid Solver

As we have mentioned, the computation of the pressure iterate P*) in step (i) of
Algorithm 1 is inefficient if we use direct schemes or classical stationary iterative methods
on fine grids. However, the fact that w"!NT N is essentially the finite-difference Laplacian
operator motivates us to reduce the computational work for each iteration by calculating
an approximation to the k-th pressure iterate by using several cycles of multigrid method
on the system (3.3). We refer the reader to [3] for a discussion of the multigrid approach
and for a Fortran code applicable in the context of our problem. The modified scheme is

as follows:

' T
Algorithm 2. Begin with an tnitial guess (U ©, P(O)) , and suppose that we have computed
T
(U("‘l),P("‘l))T. Compute a new approzimation (U("),P(")) using the following steps:

1. Compute the residual,

G = F + NT(I —wl4) U1, (4.1)

2. Let P(*) denote the ezact solution of the problem

wINTNP® = gl-1), (4.2)

11

Calculate an approzimation P*¥) of P by applying r cycles of the multigrid algorithm
[8] to the equation (4.2), using P*=Y) as initial guess. (We discuss the choice of r
below.)

3. Compute U as in Algorithm 1:

wU(k) — ((.UI _ A)U(lc——l) - NP(k)- (4.3)

Multigrid methods for solving elliptic problems have an advantage that is quite relevant
to the conditioning' ﬁréblems associated with fine grids: Each cycle has a convergence rate
that is independent of & ([4], Chapter 4). Therefore, we need only show that we can choose
a fized number r of multigrid cycles such that each iteration of Algorithm 2 reduces the
error norm by an appropriate factor close to p(M). We do this in Proposition 3. Since the

factor is independent of A, Algorithm 2 has convergence rate independent of h.

We begin by defining norms on the “pressure” and “velocity” spaces that will make the

proof easier. Any p, € V), has a representation

pa(z,y) = D Piitsi(z,v).

5
Taking advantage of the fact that NTN is positive definite, we compute a norm of the

vector
P = (PI,I,PZ,I’ coe ,Pm,h .o .,Pl,n, P2,n, co e ,Pm,n)T

by setting || P||2 = PT(w"!NTN)P. On the other hand, any u, € Q) has a representation

'llh(xyy) = (Z Ui’,:j iz,j(x’y)’ZU:j ?,j(x’y)) .

We compute a norm of the vector

— z z z z z z
U= (Uo,n Ul,la sy Um,l’ et Uo,m Ul,m R U

m,n?
Ul Uls,... UL UY U v)
10O YLy ¥Inys sy Ym0y ~mlse -

Y'Y mn

by setting ||U||?> = wUTU.

The norm || - ||, is just a scalar multiple of the Euclidean distance function || - ||2, and

since w is a constant related to p(A4), || - |l is actually a discrete analog of the Euclidean

12

norm || - ||z3(a)xz2(n) on the velocity space by Proposition 2. This norm is appropriate for
measuring the convergence of velocity iterates U(¥) to the true discrete approximation U.
Also, since NT N is just the positive definite matrix associated with the five-point difference

approximation to the Laplace operator, the norm

» is appropriate for measuring the
rapidity with which the pressure iterates satisfy the discrete pressure equation (3.3) as the
iterations progress. Ultimately, we want to relate our results to more familiar norms such as
|-|l2 and ||+ ||co; for this step we shall rely on the equivalence of norms for finite-dimensional

Euclidean spaces.

In the following proposition, we assume v = p(I — w™'A) < 1. Thus v is an upper
bound on p(M). Suppose the multigrid iteration used to approximate P¥) in step 2 of
Algorithm 1 has convergence rate u € (0,1). This implies that, after r multigrid cycles for

P using P(*-1) a5 initial guess,

- P, <

POy _ p-n)| (4.4)

Proposition 3. For any V' € (v,1), there exists a number r of multigrid cycles such that
R e e)

where (P,U) is the solution of the problem (2.4) and (P("),U (")) ts the approztmation to
(P,U) produced by the k-th iteration of Algorithm 3.

Proof: Suppose we compute o) according to (3.4) with the exact (nonmultigrid) pressure
iterate P*¥). Thus,

wO® = (I — A)U*Y) - NPX) (4.5)
where P(*) satisfies Equation (4.2). Then from Equations (2.4), (4.1), (4.2) and (4.5), we
have

w(U—-0W) + N (P - PW) = (I - 4) (U-UtD), (4.6)
NT(U-0®) =o. (4.7)

Multiplying Equation (4.6) by (U - 0(k))T and using the identity (4.7), we get
HU - 0“"“: = (U - fJ(k))T (wI — A) (U - U(k—l))
< HU — ﬁ(k)Hw H([—wta) (U - U(k-—l))Hu

< oty -0 [l - oo

w

13

Therefore, the velcity iterates obey the estimate
[- %], < v o -veI|,.
Similarly, multiplying Equation (4.6) by [w’lN (P - f’(k))]T, we get
“P — P(k)“i = (P- P(*))T NTw(wI — A) (U - U*-D)
< foriw (2= PO, [l -t (0 - 09),

< ”P - P(k)Hh p(I — w1A) HU - U("“l)”w :

Hence, the pressure iterates obey the bound
[P~ PW|, < v fjo - v,

Now we derive bounds on HP — P(")“h and HU - U(")“w in terms of their values at the
previous iterative level. For “P - P(")“h, we use the triangle equality and the multigrid

estimate (4.4) to get

- P, < [lo— 2, + 0 - 2o

< ||p—PWY|, +w

O p(k—l)“h (4.8)

Bk r
< P — P h+p.(

p— b+ [- P9,
But the original iterative scheme (3.5) implies
_ — ylk-1)
(523w) (b))
So, in light of the inequality (3.1) bounding p(M) by v, we have
1B = PO, < o3 [P — PED]|, < wf|P - PEL

This inequality allows us to simplify (4.8), getting

P = POl < @+ w+ vw) [P = PV

Turning to HU — U(")Hw, we use Equation (4.3), multiplied by w™!, to write

(U-UW) = (I-w4) (U-U*D) + 0N (P - PW).

14

This identity implies
lo—v®l], < [z -wa) (0 - vED) || + [ty (P~ PW)|

w

< vllg-ven] + -,

| (4.10)
< u”U - U(""l)”w + (v + p" + o)

P- P(k_l)”h

Y [R Y
Combining the inequalities (4.9) and (4.10), we get
1P =], +[|o - v,

< e (o= POl 4o o)),
Since u < 1, p" +vu"™ — 0 as r — co. We can therefore choose r large enough so that

v+pu"+vp” +v <V < 1. In this way,

R O e e [o S

In view of the norm equivalence mentioned earlier, Proposition 3 leads us to expect that,

if we choose w as prescribed in Section 3, then the computed convergence rate
|2~ PWloy + U = Ul]7*

1P — PO|o + |U — UO|

should be a constant independent of h as h — 0. In fact, for “generic” initial guesses, the

i= lim
k—o00

(4.11)

contribution from the eigenvector associated with the largest-magnitude eigenvalue of M
will eventually dominate the error. We therefore expect f to give good approximations to

p(M) in computational practice ([2], p. 129).

5 Numerical Examples of h-Independence

To test our results, we apply Algorithm 2 to several versions of the following boundary-

value problem:

~div (K (z,y)grad p(z,y)] = f(z,v), (z,y) € Q, 6.
5.1
p(z,y) =0, (z,y) € 40.

We use the lowest-order mixed finite-element method on grids with h = 27¢ where £ =

4,5,6,7,8. Each iteration of the solution scheme includes r = 2 V-cycles of the multigrid

15

«

algorithm described in [3]|, where the coarsest grid in each cycle has mesh 271, and the

finest has mesh 27‘. We use the following realizations of the coefficient K(z,y):
KI(I’ y) = 1;

KII (.’B, y) = e-—z—y;

1 ifz<
Km(z,y) = {0’1, if z > ZT
* —_ b

K (z,y) = Ku(z,y)- Ku(z,y);

_ f1, ifz <y,
Kv(zy) = {0.01, if z > y.

To confirm the convergence properties of the mixed finite-element method as A — 0, we
examine the exact and numerical solutions to (5.1) using K = Ky and taking f(z,y) to be
the function that results when the solution is p(z,y) = z(1 — z) sin(ry) + y(1 — y) sin(rz).
We compute the nodal error indicators ||Uexact — Ulloo @nd || Pexact — Plloo, Where Uexact and
P....: stand for the vectors of nodal values of the exact solutions u and p, and U and P
are vectors containing nodal values of the finite-element approximations on a uniform grid
of mesh h. Figure 2 shows plots of log ||Uexact — Ul|loo and 10g || Pexact — Plleo versus logh
having least-squares slopes of 1.899 and 2.000, respectively. These results suggest that the
nodal values of U and P are accurate to O(h?), corroborating the equal-order accuracy
available in the Raviart-Thomas subspaces and indicating superconvergent nodal values in

accordance with the work of Ewing et al. [6].

To check the convergence properties of the iterative scheme, we examine the behavior
of the ratio &, defined in Equation (4.11), for each of the choices of K. Our results, shown
in Figure 3, support the expectation that, as A — 0, the convergence rate of the scheme
tends to a constant independent of k. Notice however that, as K exhibits more spatial
variation, the convergence of the algorithm becomes slower. Any effects of variability-in
K on the conditioning of the discrete equations still influence this first algorithm; the only
effects of poor conditioning that we have eliminated so far are those associated with grid

refinement.

16

6 Modified Schemes for Heterogeneous Media

To mitigate the difficulties associated with spatial variability, we modify the first

iterative scheme (3.1) to get a class of new schemes having the following form:

Algorithm 3. Beginning with initial guess (U (0),P(°))T, the k-th iterate (U ("),P("))T ts

the solution of

(2 5)(E)-(5)+ (%52) () s

Here, the “preconditioning” matriz D € RE™r+m+m)x(@mntmin) 1o 4 dingonal matriz whose

chosce we discuss below.
When we construct D properly, the iteration matrix

m=(% 8) (P54 0) 62

has spectral radius that is independent of both k and the structure of K. The price we

pay for this benefit is apparent in the computational form of the new algorithm:

(?) G&*V — F+ NTD YD - AU, (6.3)

Y @,_ - Ve aa "
(it) Solve NTDINPW® = g(-1), (6.4)
(177) U® «— D-Y(D — AUG-) — p-1NpH), (6.5)

In contrast to Equation (3.3), solving for P(*) in the new scheme calls for the inversion
of NTD™!N instead of NTN. Therefore, we must modify the multigrid segment of the
algorithm to accommodate variable coefficients. As we discuss, this modification is fairly
easy to make. This section establishes criteria for the construction of D, gives two exam-
ples that satisfy these criteria, comments on the the multigrid solver used, and presents

computational results.

As with the original scheme presented in Section 3, the key to the convergence of the
new scheme is the spectral radius of the iteration matrix M defined in Equation (6.2). The

following proposition gives sufficient conditions under which p(M) < 1.

17

Proposition 4. Suppose D is a diagonal matriz with positive entries on the diagonal, and
suppose there ezist constants bj,bz € (0,1) such that

UR AU
UHDU —
for all vectors U € Qm+1mtmntl) - Thep the iteration matriz M defined in Equation (6.2)

satisfies

b < <2-b
0 < p(M) < max{1—b;,1—b,} <1. (6.6)

Proof: Let A # O be an eigenvalue of M with associated eigenvector (Uy,)T, as in

Proposition 1. Then steps similar to those yielding Equations (3.9) show that

(D— AU, = A\DU,+ NP,
0 = ANTU)..
Thus UZ(D — A)U, = AU DU,, which is nonzero since D is positive definite. Therefore,
UH AU,
W%“aﬁa'

Hence, using the hypothesized bounds on Uff AU, /U¥ DU,, we have the desired inequalities
(6.6). O

To use this proposition, we need estimates on U¥ AU. Given the structure of A as
shown in the Appendix, one can calculate a useful expression for U¥ AU, assuming U &

gm+lntmintl) has the form (U=, UY)T indicated in Equation (2.3). In particular,
: 1 1
UH AU = 35W) + sE(0),
where, in the notation of the Appendix,

S(U) zz(Uz * + THUE + T UYL 2 + T Uy

i=1;=1
R(U) =i§"j[T“(BUE;+ U5, ,U%) + T (08,08, + T, 5]
i=1j=1

Here, z denotes the complex conjugate of z. The coefficients T‘I’j, ,T‘VJI appearing in
these expressions are values depending on K(z,y) and arising from applications of the
mean value theorem for integrals over each cell £); ; in the finite-element grid A,. By using
the inequalities

w2 + |2]2 > wz+wz=|w]®+ 2| - |w—z?
> |wl + 2 = (vl = |2)* = —2|w||2],

18

we can estimate R(U) as follows:

-ZQZI(T" UZ 4l + THIUL1IUY) < R(D)
1=1j=
(6.7)
< 230 (THIUE 1P + THUE P + THUY) + TH U .
=1 j=1

In general, the estimates 0 < Ky < K < K,,p may be too coarse to provide enough
control on the coefficients T};,...,T;T for constructing a reasonable preconditioner D.
Strictly speaking, the necessary level of control will be available only if we have information

about the local variation of K on each cell {1; ;.

In practice, however, we rarely have such fine-scale knowledge of K, and even if we did we
would not try use it in calculating the Galerkin integrals f;; K~'u-vdzdy exactly. Instead,
most practical codes use approximate quadrature schemes that effectively treat K~! as
piecewise polynomial. In fact, it is quite common to treat K~! as piecewise constant. In
such applications, we can use the second inequality in (6.7), together with the identities
T = T\; = T}, to show that

UTAU = = (U) 4 —R(U) %S(U)

Similarly, the first inequality in (6.7), together with the identities T,IJ = T,Iil = T,IY =
TY! = T;;, shows that

URAU = %S(U) + %[S(U) + R(U)]

> $5(0) + 53 T [(10201 - 10 + (1085l - 1025)7]

3—1] 1

6
In summary, 35(U) < URAU < 1S(U) whenever K is piecewise constant on the grid Aj.

Now consider the choice D = §1ump(A), where

o, if1 # 7,
(lump(A)];; = ZA,,, if i = 7.

This is the matrix that results when we add entries along each row of A and assign

the sum to the diagonal entry in that row. This choice of D is a simple instance of a

19

preconditioner developed in [7] for other iterative schemes. It is a straightforward matter
to show that, when K is piecewise constant, U¥lump(A)U = }S(U), so U¥ DU = 15(U).

As a consequence,

1 _ UHAU 3
bhh=-< < =-=2-b,.
'T 2 UHDU ~ 2 2
Therefore, by Proposition 4, p(M) < %, and the iterative scheme converges with a rate

independent of » and K. According to our remarks at the end of Section 4, we expect
the ratio of error norms between sucessive iterates to approach % as the iteration counter

k — oo.

As an even simpler example, consider the choice D = diag(A), where
: _ [0, ii#],
ains(s = {4, ir:l7;
is the matrix A stripped of its off-diagonal entries. This choice has the attractive feature
that it is trivial to compute from A. With D defined in this way, we once again find that
UHDU = 1S(U) when K is piecewise constant on Aj. Therefore, p(M) < 7> and this

iterative scheme also converges with a rate independent of & and K.

Either choice of D requires us to solve a matrix equation of the form NTD-'NP®* =
G(*-1) at each iteration. To do this, we use two cycles of a multigrid scheme in which the
Jacobi iteration is the smoother, the coarse-to-fine interpolation is bilinear, and the fine-to-
coarse restriction is accomplished using half-injection ([4], p. 65). This scheme preserves
the h-independence of the overall algorithm’s convergence rate and appears to handle
variable the variable coefficient K effectively. Alternative multigrid implementations are

certainly possible here.

To test the convergence rate of Algorithm 3, we apply it to the boundary-value problems
described in Section 5, using the preconditioner D = §1ump(A). Table 1 shows values of
the convergence rate i computed for each choice of coefficient K, for each of five different
values of the grid mesh h. All of the tabulated values are very close to the spectral radius
estimate p(M) < % We conclude that this scheme converges at a rate independent of both

grid mesh h and the heterogeneity reflected in the mobility coefficient K.

7 Acknowledgments

The authors wish to acknowledge the following sources of support: NSF grant RII-
8610680, ONR grant 0014-88-K-0370, and the Wyoming Water Research Center.

8 References

(1]. Allen, M.B., Ewing, R.E., and Koebbe, J.V., “Mixed finite-element methods for
computing groundwater velocities,” Numer. Meth. P.D.E. 3 (1985), 195-207.

[2]. Birkhoff, G., and Lynch, R.E., Numerical Solution of Elliptic Problems, Philadelphia:
SIAM, 1984.

[3]. Brandt, A., “Multi-level adaptive solutions to boundary-value problems,” Math.
Comp. 81:188 (1977), 333-390.

[4]. Briggs, W.L., A Multigrid Tutorial, Philadelphia: SIAM, 1987.

[5]. Douglas, J., Ewing, R.E., and Wheeler, M.F., “The approximation of the pressure by a
mixed method in the simulation of miscible displacement,” R.A.I.R.O. Analyse Numerique
17 (1983), 17-33.

[6]. Ewing, R.E., Lazarov, R.D., and Wang, J., “Superconvergence of the velocities along
the Gaussian lines in the mixed finite element method,” to appear in SIAM-J. Numer.
Anal.

[7]. Ewing, R.E., Lazarov, R.D., Lu, P., and Vassilevski, P.S., “Preconditioning indefinite
systems arising from mixed finite-element discretizations of second-order elliptic systems,”
in Proceedings, Conference on Preconditioned Conjugate Gradient Methods, Nijmegen, The
Netherlands, June 15-17, 1989 (to appear).

[8]. Ewing, R.E. and Wheeler, M.F., “Computational aspects of mixed finite element meth-
ods,” in Numerical Methods for Scientific Computing, ed. by R.S. Stepelman, Amsterdam:
North-Holland, 1983, 163-172.

[9]. Munroe, M.E., Introduction to Measure and Integration, Cambridge, MA: Addison-
Wesley, 1953.

(10]. Raviart, P.A. and Thomas, J.M., “A mixed finite element method for 2nd order
elliptic problems,” in Mathematical Aspects of Finite Element Methods (Lecture Notes in

21

Mathematics vol. 606), ed. by 1. Galligani and E. Magenes, Berlin: Springer-Verlag, 1977,
292-315.

22

TABLE 1. CONVERGENCE RATES FOR VARIOUS
COEFFICIENTS AND GRIDS.

GRID MESH h
COEFFICIENT | 274 2-° 276 27 2-8
K 0.4933 | 0.4988 | 0.4993 | 0.4995 | 0.4999
Ku 0.4966 | 0.4995 | 0.4988 | 0.4997 | 0.4999
K 0.4948 | 0.4982 | 0.4991 | 0.4998 | 0.4999
Kiv 0.4947 | 0.4980 | 0.4992 | 0.4998 | 0.4999
Ky 0.4939 | 0.4978 | 0.4989 | 0.4999 | 0.5000

23

y 4713 4723 4733 4743
3 i | | I
—— X () -1> X (] -1T> X L) —— x [-1T> X
U03 F“1 3 u 13 P23 U23 P33 U33 P43 U43
y y y y
y +U1 2 4U22 4U32 1}U42
2 | | | 1
-1 X [-1T> X L] 1> X . 1> X . -T> X
U02 P1 2 U1 2 P22 U22 P32 U32 P42 U42
y Y Y y
y ¢U1 1 4\U21 4~U31 @UM
1 | | | |
1> ., X ° -T™=,x ° -1 X ° -T> X ° 1> %
UOI P11 U11 P21 U21 P31 U31 P41 U41
y Y y y
y o Y20 Yo Y40
0] 1]

Figure 1. Sample 4 x 3 rectangular grid on 2 = (0,1) x (0, 1), showing locations of the

nodal unknowns in the velocity and pressure trial functions.

K- g

log (h)

A ” Uexact' U”oo
o ”Pexact' P”m

slope = 1.899

\

slope = 2.000

1.4
3
1l —
S
o
e
e
@
13 o
e
1-10
1.12

Figure 2. Convergence plot for the mixed finite-element scheme for Poisson’s equation,

using lowest-order Raviart-Thomas trial spaces. The plots demonstrate the rate of decrease

in the nodal errors as h — 0.

<& N

A
— 0 =" 110
= = » n—N
{08
13
[0}
®
Oo——o0 O % O 406
Q
(&]
S
KEY o))
p =
0 K, 7% o
A Ky g
W Ky O
A K
IV 4
O Ky 0.2
-6 -5 -4 3 -2 1 -
log (h)

Figure 3. Rate of convergence i versus grid mesh h for Algorithm 2, using the various

choices of coefficient K(z,y).

&y ™

Appendix: Matrix Structure of the Finite-Element Equations

The mixed finite-element equations (2.2) give rise to integral equations having the

following forms: For the z-velocity equation,

1.z 42 0¢:5
L(K luf ¢:% + pa 6:1:1

)dzdyzo, t1=0,...,m;3=1,...,n.

For the y-velocity equation,

ad:Y% . .
L(K"‘ﬂ,q&ﬁ- + ph—gf) dzdy=0, i=1,...,m; 3=0,...,n.

For the mass balance,

oui ou!
/ _u_’i + _12‘. + f ¢ijdxdy=0, z‘=1,...,m;j=1,...,n.
a\ dz dy ’

The following integrals appearing in these expressions involve no spatially varying coeffi-

cients and hence are easy to compute using the bases for Qx and Vj:

0% / o¢;¥ /‘ ouf [du}
TYig I ard dzdy, | =2 d .
/n Dh e dz dy, ; Ph 3y z dy, 0 zz/J,, z dy 0 ayl,b., zdy

0

However, the remaining integrals involve the spatially varying functions K ~1(z,y) and
f(z,y). We compute these integrals using the mean value theorem for integrals ([9], pp.
184-185) as follows: Since K -1 js bounded and integrable on each cell {;;, there exist

numbers T}, TH, TF such that

Jr 4,50
T,I§/6, t=7g,s=1—1;
[K gassdzdy =1 (Tt TH,)/3 t=ds =5
TH, ;/6, t=jJ,s=1+1.

Here, T} /[(zi — z;-1)(y; — yj-1)] is a number lying between the upper and lower bounds

of K~! on the cell ; ;, and similarly for T and T/}. Analogous calculations show that

T/, t=j5—1,s=1
[K ospidndy=1 (T + Tha)/3 t=ds =i
7‘;“,{1‘-1-1/6, t=7+1,s=1.

The calculations of [y fi,; dz dy can proceed similarly.

27

ot F
¥/

.'-#:‘?',‘,."44-1' RIS

Now let us adopt the following orderings for the vectors of unknown nodal coefficients:
{ Ui | [U] [Py]
mfl U I?n P m,1
U= : , UV = : , P= :
Uohn U P,
L Umﬁu L Um?n_ L Pm,n A

Then the entire algebraic system arising from Equations (2.2) has the structure

A® 0 Nz][U= 0
0 AY N l|lUY|=]0
(N=)T (N¥)T o P F

Here,
Af
AT = =]R(m+l)nx(m+1)n ,
Ag

where each block A7 € R{m+1)x(m+1) has the tridiagonal structure

[2T T4,]
o1 T AT+ T) T
I
I Tri 2Tmy |
Similarly,
Al
AV = e IRm(n-i-l)xm(n+1) ,

A
where each block 4! € R{"+*V*("*1) has the tridiagonal form
[2TiY T
Th 2ATY + T3) T

[« X

T 277 |

Finally, the two “difference” matrices N* and NV have the following structures:

NY
NZ = c IRn(m+1)xnm

b

28

e

where

while

where

]VJ? = (y_; —_ y_,-_l) .. . €]R(m+l)xm ,

1
-1

Nl?]_ “os Nl?n
NY=|: =]R(n+1)m><mn.

’
Nm?l e Nm’yn

Nj=(zi—me) | 77 1 | TOWS

(n+1)xm
_1 “ee — rowj+ 1 e]R. .

29

FINITE ELEMENT ANALYSIS
IN FLUIDS

Proceedings of the Seventh International
Conference on Finite Element Mcthods in
Flow Problems

APRIL 3 -7, 1989

The University of Alabama in Huntsville
Huntsville, Alabama

T. J. Chung, and Gerald . Karr, Editors

UAH PRESS
DEPARTMENT OF MECHANICAL ENGINEERING
THE UNIVERSITY OF ALABAMA IN HUNTSVILLE
HUNTSVILLE, AL 35899

946

MATHEMATICS OF FINITE ELEMENTS

947

PARALLEL COMPUTING SPEEDUPS FOR
ALTERNATING DIRECTION COLLOCATION

Mark C. Curran and Myron B. Allen III
Department of Mathematics, University of Wyoming
Laramie, WY 82070 U.S.A.

ABSTRACT

We apply finite-element collocation to the two-dimensional advection-diffusion equa-
tion. Collocation olfers savings over other finite-element techniques in that matrix ele-
ments are found by point evaluations rather than integrations. Additional computer time
and storage is saved by application of an alternating direction process, which allows a
multidimensional problem to be solved as a sequence of one-dimensional problems. Since
these one-dimensional problems are independent, the speed of the method is enhanced
further through use of a parallel computing architecture.

1. INTRODUCTION

Alternating direction (AD) methods have been formulated for the numerical solution
of partial differential equations since their introduction in 1955 by Peaceman and Rach-
ford [1]. In 1970 Douglas and Dupont [2] developed the alternating direction Galerkin
method. More recently, the alternating direction collocation (ADC) method has appeared
in several formulations by Bangia et al. [3], Chang and Finlayson [4], Hayes (5], Celia et
al. [6], Celia [7], and Celia and Pinder (8].

We examine Celia’s ADC for the two-dimensional advection-diffusion equation. Of
special interest here is the amenability of the procedure to implementation on parallel-
architecture computers. The paper has the following structure: Section 2 briefly re-
views finite-element collocation using a bicubic Hermite basis; Section 3 discusses the
AD method applied to collocation; Section 4 concludes the paper with an examination
of the mecthod’s performance on a parallel computer,

2. REVIEW OF FINITE-ELEMENT COLLOCATION

Consider the following problem posed on the spatial domain {1 = (a,b) x (¢, d):

(¢) Ou+v-Vu—-V.(DVu)=0, (z,y,t) €12 x (0,00},
(b) u(z,y,O) = ul(zvy)v (Ivy) € n| (1)

(¢) u(z,y,t) = up(z,y,t), (z,y) €90, t>0.

948

Here v = v(z,y) represents fluid velocity; D = D(z,y) is a diffusion cocﬂic'icnt, and
u = u(z,y,t) represents solute concentration. We apply finite-element collocation to the
following semidiscrete analog:

"yt kv Vu™ — V- (DVe")] =0, (2)

where integer superscripts indicate time level, (-)*** = 0(-)"*' 4 (1 - 0)(")*, 0 £ 0 < 1,
and k signifies the time step. o

We begin by establishing a grid on 0. Let A; = {z; = a + ih,,i = 0,..., N;} ind
A, = {y; = ¢+ jh,, 7 = 0,...,N,}, where h, = (b — a)/N; and h, = (c = d}/N,. The

Hermite piecewise cubics on these grids are
M(AL) = {J € CHN) | flizieyaq is cubic, § = 1,...,N,},

and similarly for MJ(A,). As Prenter [9] shows, each of these spaces has an interpolat-
ing basis {hai, by ,{';',,"N', every element of which has support confined to at most two
adjacent subintervals [z;_1, z:] or [y;-1,¥;] o]

At each time level n we compute an approximate solution #"(z,y) belonging to the

tensor-product trial space
M= {ve M(A,)® M)(4,) | v(z,y) = vp(z,y) for (z,y) € 30}

Each function in M obeys the boundary conditions (1c) and has the form

N Nyr aan
a"(z,y) = ZZ[u“(z.'.!li)ffooaj(z,y)+-5;(1-wyi)"w-'f(x'!l)

i=0j=0

a‘a"

an i ,
+*a—;(za.yj)”oui(x,y) + 5;5;(%!/:')"'1-:'("”)] '

= : = i° jecting the initial function
where Hmij(2,y) = hei(z)hm;(y). At ¢ =0 we form &° by projec
u; onto)'v(".’ T‘hese criteria specify 6% completely and determine 4(N, -+ N, + 1) of the
4(Ne + 1)(N, + 1) nodal coeflicients for &',4%,... . .
To determine the remaining 4N, N, degrees of freedom at each time level n + 1, we
first form the residual

Rn+l —_ ﬁn+l - ﬁ" + k [V . van%’ _v. (Dvﬁvwl)] .
We then pick a collection {(h,y‘,),(i,,gz),...,(Im,,gm,)} of collocation points and

force R™*1(24,5) = O at each. To obtain optimal O((h: + hy)*) error cstim:\.t.ns, we
choose %, and § to be the two-point Gauss-quadrature abscissae on each subinterval

[zi-1, 2i] of [y;-1,95]-

3. THE ALTERNATING DIRECTION METHOD

To obtain a matrix that can be factored into AD form, we first perturb Equation (2)
by a term that is O(k?) to get

un+l —u" 4 k(ﬁ. + cv)un-n + k201(£z£v)(un+l _ u") — 0‘ (3)

949

where
L. =v,0, — 3,(D3,) and L, = v,8, — 3,(DJ,).

Rearranging Equation (3) and factoring gives
(L4 k0L)(L+ KOL Y (u" —u) = —K(L, + L)n™.
Now we can solve (1 4+ k0L,)z = —k(L, + £,)u", followed by (1 } kOL) (um*t —un) = 2

When we substitute Hermite bicubic trial functions for &, we get a matrix equatior

Ku™t! =", where u™*! is the vector of time increments for the unknown nodal coolli
cients of &. Consider a typical entry of J(:

{{t+ko(e. + 2,) + K202 (2.0)] 11} (50,50, (1

where H, is shorthand for some basis function Hymiz. Bach H,(z,y) = h,(z)ke(y), with
a = (i,r) and § = (3,), so we can expand the expression (1) and factor it to get

[ha(Z) + kO(Loha)(2e)] - [Ra(Fe) + KO(Lyha)(5e)] -

If we number the nodes along the lines = %, we can use this observation to factor the
4NNy x AN, N, matrix K as follows:

Vi1 X1 o Xyaw,
K=Y . X= : :

d -
Yan, an, Xan,a o0 Xaw,aw,

Each 2N, x 2N, block ¥j; has the five-band structure of a one-dimensional collocation
matrix, and its entries depend only on the y-coordinates of collocation points.
We can solve the matrix equation Ku™*! = r" by the following procedure,

1. Order the nodes vertically and solve ¥z = r” by solving the independent problem-
Y,‘JZ,‘ = r}‘, J = l,.. .,ZN,.

2. Reorder the nodes horizontally to convert z to z*. This operation transforins X fn
a block-diagonal form X* whose blocks X;: have one-dimensional structure.

3. Solve X*u"*! = 2* by solving the independent systems X,",u"»‘” =z, = 1,20,

Each of the “one-dimensional” systems in steps 1 and 3 is independent of any other.
Thercfore these steps can be done concurrently.

4. IMPLEMENTATION ON A PARALLEL COMPUTER

We have implemented ADC on an Alliant FX/8 parallel processing computer, The Al-
liant is an eight-processor, shared-memory machine with optimization capability for both
concurrent and vector prograrnming. The machine allows users to control concurrency
within a Fortran code through the use of compiler directives. The following is a descrip-
tion of the code outlined in Steps 1-3 of Section 3. The compiler directives themselves
begin with the flag CVD$ starting in the first column of code.

950

Tnitialize 8°, set n =0
Begin time level n + 1
CVDSL CNCALL (Compiler directive to permit the concurrent execution of the following loop
containing a reference to an external procedure.)

DO for each j =1,...,2N,
CALL YSWEEP (Constructs the system Y;,3; = r], solves it and saves the results.)
END DO '
CALL RENUM (Reorders x to get 3°)
CVDSIL CNCALL
DO for exch i =1,...,2N,
CALL XSWEEP (constructs the system X7 uf*' = 27, solves it and updates the
appropriate coefficients of @ to time level n + 1.)

END DO
End time step

CVD$R NOCONCUR (Directive to supress concurrency until the end of the routine.)
SUBROUTINE YSWEEP

CVD$R NOCONCUR
SUBROUTINE XSWEEP

One measure of how well the algorithm makes use of the machine’s parallel capabilitics
is the speedup. Speedup for n processors is the ratio of the time needed by one processor
to the time used by n processors to perform a sct of tasks in parallel. For a perfectly
parallel algorithm requiring no overhead to monitor and schedule the various processors,
the speedup for n processors would be n. Figure 1 shows the speedup curve for this
algorithm, excluding initialization. The speedup for eight processors is 7.27. Clearly,
ADC makes very good use of the shared-memory parallel architecture,

To confirm that ADC gives useful approximations, Figures 2 and 3 show solution plots
for two different problems. Figure 2 shows the results of a rotating plutne problemn on
Q= (-1,1) x (-1,1), with N; = N, = 40 and k = 0.004. Here, v = 2n(—y,z) is a
circular velocity field, D = 0, and the initial concentration plume u;(z,y) is a “Gauss
hill” with center at (0, -0.6) and standard deviation o = 0.066. Figure 3 displays the
results of an advection-diffusion problem on 0 = (0,1) x (0,1), with N, = N, = 20 and
k = 0.004. The diffusion coeflicient is D = 0.00385, and v(z,y) = 2eV(~y,z). Here, us
is a “Gauss hill” with o = 0.05 centered at (0.75,0.25). In both problems the global error
is less than .02]]ut|co-

ACKNOWLEDGMENTS

The Wyoming Water Research Center supporled this work. We also received support
from NSF grant R11-8610680 and ONR contract 0014-88-K-0370.

REFERENCES

1. Peaceman, D.W. and ILIL Rachford, “The Numerical Solution of Parabolic and
Elliptic Equations,” SIAM J., 3, 28-41 (1955).

951

2. Dongh;s,.J., Jr. anfi T. Dllp?nt, “Alternating-Direction Galerkin Methods on R
angles,” in Numerical Solution of Partial Differential Equations, Vol. 2 Synspa
1970, B. Hubbard, Ed., Academic, New York, 1971, pp. 133-214. ' ‘

3. g.angia,.V.K.. C. Bt.:nnett, and A. Reynolds, “Alternating Direction Collocation f
lm.ulatlng Reservoir Performance,” presented at the 53rd Annual Fall Conferenc
Society of Petroleum Engineers, Houston, 1978.

4, Ch.ang, P.W. i'md B.A. Finlayson, “Orthogonal Collocation on Finite Flements f
Elliptic Equations,” Math. Comp. Simulation, 83-92, (1978).

5. Haye.s, L._J. “An Alternating-Direction Collocation Method for Finite Element A
proximations on Rectangles,” Comput. Math. Appl., 6, 45-50, (1980).

6. Cch.a, M.A,, G.F. Pinder, and L.J. Hayes, “Alternating Direction Collocation Si:
ulation of the Transport Equation,” Proceedings Third Int. Conf. Finite Elemer

'1’;8:)‘,0[5;’, ig’s"—‘;';s’: S.Y. Wang et al., Eds., University of Mississippi, Oxford, M

7. Celia, M.A., Collocation on Deformed Finite Elements and Alternating Directi.
Collocation Methods, Ph.D. Dissertation, Princeton University, 1983.

8. M.A. Ce!ia. a.nd'G.F. Pir.ldcr, “Generalized Alternating-Direction Collocation Met
ods for Parabolic Equations: 1. Spatially Varying Coeflicients,” (1984).

9. Prenter, P.M., Splines and Variational Methods, New York: Wiley, 1975, Chapter

Speedup

1 1 1 1 1 L i

1 2 3 4 s 6 7 8
Number of Processors

Figure 1. Spcedup curve for ADC using the Alliant FX/8 shared-memory architecture.

Figure 2. Concentration contours for the purely advective rotating plume problem at
various time levels. Contour interval is 0.1.

Figure 3. Plot of concentration distribution at ¢ = 0.3 for an advection-diflusion problem
with potential flow.

APPLICATIONS OF
e | SUPERCOMPUTERS IN
Acknowledgement s made to Y. Lecointe and 1. Piquet for the use of Figure 5
o page 25, which appears on the front cover of this book. ENGINEERING .

[]

FLUID FLOW AND STRESS
ANALYSIS APPLICATIONS

Proceedings of the first International Conference,
Southampton, UK, September 1989

Edited by

C.A. Brebbia
A. Peters

ELSEVIER
Amsterdain - Oxford - New York - Tokyo 1989

Co-published with

COMPUTATIONAL MECHANICS PUBLICATIONS
Southampton - Boston 1989

Y

A Parallel Collocation Based Algorithm for the Generalized Transport Equation

J.F. Guarnaccia and G.F. Pinder
Department of Civil Engineering, University of Vermont
Burlington, VT 05405-0156, USA

INTRODUCTION

The solution of the generalized transport equation in porous media can be a
computationally intensive task requiring large amounts of computer time. A
worst case scenario involves multiphase problems which require the simul-
taneous solution of coupled nonlinear equations, as well as fine time and space
discretizations to match stability and accuracy constraints. The turnaround time
for a given simulation on serial computers can be on the order of hours or days
depending on model size. For the practicing engineer, long turnaround times
during the calibration phase of model development can limit its application. Asa
result, a new numerical algorithm has been developed to speed up transport
simulations by implementing parallel processing computer technology.

Conceptually we want a method which exhibits high accuracy in time and
space, is amenable to a parallel processing environment, and is easy to
implement. To this end, the proposed method employs a combination of several
numerical techniques. To transform the governing equation into a set of
algebraic equations we employ an implicit backward difference approximation
for the time derivatve and the collocation finite element method to approximate
the space derivatives. Even though an implicit finite differencing in time is only
first order accurate, it results in a highly stable solution scheme.

We choose to use the collocation finite element method for several reasons.
First, the method has been successfully applied to a wide range of engineering
problems including problems in porous media physics (Finlayson, 1972, Frind
and Pinder, 1979, among others). Second, as a method of weighted residuals,
collocation employs the displaced Dirac Delta function as its trial function. This
results in driving the error to zero at specified points in the domain (called
collocation points), and as a result, unlike the finite-element method, no formal
integrations need be performed. Thus, system matrix assembly is analogous to
the finite difference method. Third, because of contnuity requirements, the

approximating function of interest is cast in the C! continuous hermite cubic
basis. Given this, if we choose as the collocation points the Gauss points, the
method exhibits fourth order spatial accuracy. Fourth, boundary conditions are
easily incorporated into the formulation.

While the above formulation provides a method which emphasizes accuracy
and ease of implementation, to cast this into a parallel algorithm framework we
will employ an idea based on alternation direction (AD) techniques. AD methods
are characterized by the solution of multi-dimensional problems by a series of
effectively one-dimensional solutions. The motivation for the development of
AD methods for use on serial computers has been the reduced matrix storage
requirements and reduced execution time (Celia, et. al., 1980, Hayes, et. al.,
1981, Celia and Pinder, 1985). AD schemes which allow for independent
processing of each resulting one-dimensional problem have been implemented
on parallel processing computers of various architectures with good results
(Johnsson, et. al., 1985, Hockney and Jesshope, 1988).

Classically, AD methods achieve the spatial split by factoring the space
operator of the partial differential equation into its spatial components (Douglas
and Gunn, 1964). Asaresult, a problem inherent in all AD methods is their
inability to directly accommodate cross derivative terms in the space operator
(Mckee and Mitchell, 1970). Cross derivative terms arise in contaminant
transport problems in the form of permeability and dispersion tensor
coefficients, and are prominent when flow is not coincident with one of the axes
of the coordinate system used to discretize the problem domain. Because cross
derivative terms require milti-directional information, operator splitting schemes
can accommodate them explicitly only by lagging their influence by a time step
or iteration cycle. Therefore, the accuracy of these methods is dependent, to
some degree, on the component of flow and transport crossing coordinate lines.
Because of this dependency on the orientation of the grid with respect to the flow
path, some AD schemes are susceptible to grid orientation effects (Glimm, et.
al., 1981). In other words, the solution of the problem is a function of the
relative orientation of the grid to the flow path.

The AD algorithm to be presented herein, called Parallel Alternating
Direction Collocation (PADC), does not require the space operator to be
factored. Instead, the spatal split is achieved by modifying the system marmix.

METHOD DEVELOPMENT
Consider a general linear transport equation with constant coefficients:

Lo Lu=0, (x,y,1)e Q x (0,T) (0

ot

intersection of element boundaries) at which we define an undetermined

coefficient vector (u) and a basis function vector (¢p). Note that the superscript
denotes a transpose.

The vector of space dependent basis functions, @;(x,y) = [%, @19,

0%, ¢!l] -lT, are piecewise Hermite cubic polynomials (Lapidus and Pinder,
1982). Both the functions and their first derivatives are continuous across
element boundaries (C! continuity). The time dependent undetermined

coefficients in equation (2), u;T(t) = [u, Uy, u U,xy]i’ are the nodal

'y s
values of u and its x, y, and cross derivatives respectively.

The task is to solve equation (1) numerically given that it is subject to
prescribed initial and boundary conditions. The procedure we will employ
requires that we first derive a fully 2-D Collocation approximation and then
rewrite it in an AD form.

Let us first approximate the time derivative by using an implicit backward
difference approximation:

urtlout oyl = Q 3)
At

where At is the time discretization and the superscript, n, denotes the ime level
of solution (ie. t=nAt). This approximation results in a scheme which is locally
first order accurate.

The approximate function u (x,y,t) (equation 2) is now substituted for
u(x,y,t) in equation (3) and, since it is an approximation, it will not satisfy the

equation exactly leaving a residual, R (x,y,t) :
An+1

-t | gl = rotl S (4)
At

This residual is driven to zero in a weighted average sense by taking the inner
product of R with the displaced Dirac Delta function. This is equivalent to
driving the error to zero at specified points in the domain which are denoted as
collocation points. Thus no formal integrations are required, and the system
matrix generation is computationally analogous to the finite difference method in
that we write equations at points in the domain. If we substitute equaton (2)
into (4) and evaluate it at a select set of collocation points, we obtain a system of
linear simultaneous equations which can be written as:

N un+1 nT
ST U e v+ T L@ ey = 0 5)
i=1

k=1,2,..., 4 x M;

where 'L' is the space operator defined as:

SO N0 X0) O] %)
LO = vage * Vvgy T Pe 57 2Py Dwayz
and, u(x,y, t) = concentration (mass per unit volume),

Vx, Vy (x,y, t) = velocity vector compponents,
D> Dyys Dyy (X,y, 1) = symmetric dispersion tensor components.

with prescribed initial and boundary conditions defined on a rectangular domain
Q).

Dispersion is a symmetric tensor that combines the coefficient of molecular
diffusion with mechanical dispersion. Bear (1979) writes the mechanical
dispersion tensor as:

D, = o Vs + a‘V§ + D
“TMROT
avy | 2 Vy
D = —_= —_ D
IR

VXV}’
nyszx= (a;-2,) _[Tr

where: D, = coefficient of molecular diffusion,
a; = longitudinal dispersivity of the porous medium (in the direction of
mean flow),
a, = transverse dispersivity of the porous medium (in the direction
perpendicular to mean flow),

|v|= mean velocity magnitude.

It can be easily seen that if one of the coordinate axes of the domain is not
coincident with the mean flow path, then ny = (. Itis when these terms
represent a major transport mechanism that classical AD methods have difficulty
capturing the wansport physics.

Approximating the function of interest, u(x .y, t), by u(x, y, t), alinear
combination of weighted basis functions ¢;(x,y), one obtains:

ul () @(x, ¥) ©

ux,y,t)=tdvyt)=

Mz

_.
1}
—

where N is the number of nodes and (i) is the nodal index (identfied with the

where M is the number of elements, and (xy, y}) is the location of a collocation
point. Because, in this analysis, we have chosen the location of the collocation
points to be the zeros of the Legendre polynomials (Gauss points) there are four
collocation points per element. When these points are chosen, the method is
called "Orthogonal Collocation”, and Prenter (1976) has shown it to yield fourth
order spatial accuracy.

The matrix form of equation (5) is given in Figure (1a), where b contains
information regarding boundary conditions, and

g =@, yi) +L @4, yi)
byj = @, ¥i)
where i represents the collocation point and j the nodal degree of freedom.
Because we have the function and its derivatives defined at the nodes, boundary
conditions are easily incorporated by direct specification of the undetermined
coefficient at the boundary nodes.

If we view the finite element grid as a series of discrete rows or columns as
in Figure 1b, and number our equations (collocation points) and unknowns
(nodal degrees of freedom) accordingly, the system matrix A takes on a regular
block structure. An example of a hroizontal sweep numbering scheme and
resulting matrix structure is shown in Figure 2. This structure is equivalent to a
system of tri-diagonal sub-matricies, shown in figure (1c) as Cj;, By;. The
subscripts of the sub-matricies are given as follows:

i - denotes the row or column along which the collocation equations are
written,
j - denotes the row or column of nodal unknowns associated with those
equations.
For example, given a row-wise numbering, the sub-matrix B, represents
those equations written at collocation points along row 1, involving the nodal
unknowns along row 2.

The AD spadal split is achieved by moving the off-diagonal sub-matricies
(Bij, i#j) to the right hand side by projecting the unknowns associated with
them to the new time level. This projection is defined as:

un+ ! = g+ = yum + (1-7)u!

where: ¥ = projection parameter, 1 < vy <2

It should be noted that if v =2 the projection is second order accurate in time,
otherwise it is first order accurate. Figure (1d) shows the system matrix
structure after the projection has been made. Note that the system matrix is
block diagonal. Each block represents the coefficients in a row or a column of
nodal unknowns. The system has been spadally decoupled and all the sub-
matricies can be solved concurrently, thereby, reducing a two-dimensional

where 'L' is the space operator defined as:

LA L) 10! %) 3%+
L() = Vx—a—x— + Vy-a—'y— - Dm—a—x'; - 2nyaxay - Dyyay2

and, u(x,y, t) = concentration (mass per unit volume),
Vx, Vy (X,y, t) = velocity vector compponents,
D> Dyy, Dyy (%, t) = symmetric dispersion tensor components.

with prescribed initial and boundary conditions defined on a rectangular domain

Q).

Dispersion is a symmetric tensor that combines the coefficient of molecular
diffusion with mechanical dispersion. Bear (1979) writes the mechanical
dispersion tensor as:

2 2
a;Vy 2 Vy

D,,6,= —— - D
TR
a v aV2
D..=—2Y 42X, D
IR TR

VeV
Dyy=Dyx= (a1-2;) T

where: D, = coefficient of molecular diffusion,
a; = longitudinal dispersivity of the porous medium (in the direction of
mean flow),
a, = transverse dispersivity of the porous medium (in the direction
perpendicular to mean flow),

|v|= mean velocity magnitude.

It can be easily seen that if one of the coordinate axes of the domain is not
coincident with the mean flow path, then ny = (. Itis when these terms
represent a major transport mechanism that classical AD methods have difficulty

capturing the transport physics.
Approximating the function of interest, u(x,y, t), by u(x, y, t), a linear

combination of weighted basis functions @;(x,y), one obtains:

N
u(x,y,t)=tdyt)= ZU?(O Pu(x, y) &

i=1

where N is the number of nodes and (i) is the nodal index (idenafied with the

a) [A] {u}™*!=Rn + b

b.) horizontal sweep vertical sweep
i o S s
0 0.0 0.0 O .0 olo olo ol
2 O o0 0 O O O {o olo ofo of
O 0.0 0.0 O o o|o o]o O]
3 ¥ 5 o fo oro o ‘<o 01\0 OAO o,:
4 o 0.0 0,0 O o ojo olo o
1 2 3 4
c.) Cnh Bz O 0
‘ . u; o+l
By Cz Bn O uz “R" +b
0 Bx Cs3 By (|
w
0 0 Bs Cau
d)f¢cy o 0 0 0 Bz 0 O .
ui n +1 uy (n+l)
0 C2 0 O u2 R +b - Bx 0 Bx O uz
0 0 Cs 0 ||™ 0 Bz 0 By ||™
u4 ua
0 0 0 Cu 0 0 Bss O

Figure 1 - A diagrammatic representation of the PADC method for linear
systems. (a.) the fully 2-D system where the vector of unknowns u at the new
time level (n+1) is solved for by using old time level (n) and boundary (b) info-
rmation. (b.) treat the grid as discrete columns or rows where the x's are
nodal locations and the o's are collocation point locations, (c.) given a
numbering scheme reflecting (b), the system matrix A is resolved into a tri-
diagonal set of sub-matrices C;j and Bjj. The subscript i denotes the row or
column along which the equations are written (collocation points), and sub-
script j the row or column of unknowns (degrees of freedom). The structure of
sub-matrices Cj; and Bj; are respectively the same. (d.) the spatial split is
achieved by moving the off diagonal sub-matrices Bj; to the right hand side by

projecting the unknowns associated with them to the new tme level (n+1).
Because each sweep biases the boundary conditions differently, a solution to
the system is achieved only after an x and a y sweep (complete solution at ime
level n+2).

problem into a series of one-dimensional problems. This scheme is analogous to
the block Jacobi iterative method used to solve simultaneous equations.

a.[s 32[3 34[35 36 b. [k REERE.
-_lil 3'2_'%3 3!1——:!5 3[6— “Sox |58 wnyn
. 33 338383
20 22 124 2628 30 RRRASRIRD XAXKKX
29 222 26/28 30 X & XXX
15 71123 25(27] oo | SaEEIEER e
19 27 | 23 25 | 27 29 xxx """"3&%;& XKXXXX
XX $$888% XXXXXX
8 10 {12 14|16 18
3] 10{12] 14[16 fig] oo gﬁmx o
_7__; 9 i 1L I oooooooe | SRRERRER | woxx
9 11 13 15 17 RRRXKK xxxxgaggﬁ xxixxx
1 2 3 4 5 6 XXKXXX 3882§i§§§§§§§ ﬁﬁxxx
) ry
115 [EPF] [F] sy | xe
:3:3:3:3:34 $3%

Figure 2 - Part (a), horizontal numbering scheme where the boxed numbers
represent the unknowns and the non-boxed numbers represent the collocation
points. Part (b), the resulting system matrix structure (36x36) where the rows
are the equations associated with each collocation point and the columns are the
coefficients (x's) multiplying each unknown. Only non-zero entries are
depicted.

Because each grid orientation biases the boundary conditions differently, as
well as for stability reasons, one must alternate between horizontal and vertical
sweeps as the solution marches through time. Therefore, a complete solution to
the system is obtained after two time steps, a horizontal sweep to go from time
level 'n' to 'n+1', and a vertical sweep from level 'n+1' to 'n+2'. -

The scheme has been shown to to exhibit first order convergence in ime and
fourth order in space (both at theoretical limits). In addition the method has been
shown to have conditional stability properties that assure its utility over the
practical range of applications of general transport problems.

PARALLEL IMPLEMENTATION

The Parallel Alternating Directon Collocaton (PADC) algorithm set up to
solve the two-dimensional linear transport equation was run on an Alliant FX/8
parallel processing computer. This computer is characterized by eight tightly-
coupled, identical, processing elements (PE's) which are capable of executng
any task and which share a common memory for easy data and instruction

exchange. This parallel architecture is classified as being multiple instruction
multiple data (MIMD). In developing an efficient algorithm on a MIMD
computer, one must address the computational costs associated with distributing
the tasks. These computational costs include (after Hockney and Jesshope
1988):

1.) Scheduling: How efficiently are the processors being utilized?
One wants to minimize the time a processor has to wait for
another processor to finish a task.The efficiency of scheduling
(Ep) is defined as:

Ep= (one processor execution time) / [(n processor execution time) X n]

where Ep <1. Ep decreases with wait time, and typically decreases as
' increases. Perfect scheduling is approached when a task is divided
into equal work segments distributed to an even multiple of the
Processors.

2.) Synchronization: How long can a process run before it needs data
from another process such that operations are performed in the correct
sequence? One attempts to set algorithm granularity (size of the work
segments) such that the ratio of data transfer time to process run time is
small. The concept of having large work segments or coarse
granulariry is well suited for MIMD architectures. The overhead is
associated with the time it takes to transfer data.

3.) Communication: How long can a process run before it needs data from
another process such that operatons are performed on the correct data?
One wants to minimize the ratio of memory access to arithmetic
operations. Synchronization costs are a functon of communication
costs.

The Alliant FX/8 hardware design is aimed at minimizing the communicaton
costs associated with parallel algorithms. Each PE has a concurrency control
unit which distributes the work among the other PE's and synchronizes the
calculation. For example, if the iteratons of a DO loop are to be run in parallel,
the programmer simply includes a directive just before the DO loop instucting
the machine to execute the iterations in parallel while the hardware maintains
local data dependencies (each processor may be working on the same vector).
Of course, the programmer must still keep a sharp eye on such things as
recursive data dependencies (the case where the data generated in one loop
iteradon is required as input in the next loop).

In order to aid the programmer in algorithm development, the Alliant
includes an optimizing compiler which examines loops in the code for parallel
potential. The output from this compiler lists those loops which can be
parallelized. The programmer is then free to either choose which loops are to be
run in parallel based on estimated overhead costs described above or alter the
code to highlight additional parallelism. An internal timing routine gives the
programmer an idea of where most of the work is being done in the code, and
he or she can adjust accordingly. Thus, the programmer interacts with the
machine until the desired result is obtained. The parameter that is used to
quantify algorithm performance is the speed-up (Sp), defined as (Kuck, 1978):

Sp= (one processor execution time) / (n processor execution time)

where Sp <n (Sp decreases with increased overhead). Optimal speed-up for an
n-processor system would be n.

The PADC algorithm was developed to be highly parallelizable. A high
percentage of the computational work involved in obtaining a solution is done in
concurrent mode. This is an important point in that significant speedups can
only be achieved when at least 90 percent of the computations are done in
parallel (Monkhoff, 1984). In addition, there is a theoretical limit on speedup,
known as Amdahl's law (Amdahl, 1967), given that the parallel parts of the
code take zero time, speed-up is determined by the time required to execute the
serial portion of the code. A simple flow chart is presented in Figure 3. Each
box represents a set of computations. The computations in heavily lined boxes
are done in parallel. For large problems (1000 nodes) these computations
represent approximately 99% of the total work. This algorithm exhibits coarse
granularity which acts to minimize communication costs by employing long
work segments.

To obtain a measure of performance a series of model problems were run
each being timed on one to eight processors, yielding a speed-up curve (Figure
4). The problem domains were rectangular, and the problems differed only in
their aspect rado. In additon the space discretization was an even muldple of
eight. Table 1 presents an average of the Sp and Ep, values for the different
runs. These results show excellent speedup performance. One aspect of these
results is worth detailing. In general Ep decreases with the number of
processors utilized; however, in this case Ep for the eight processor run (0.84)
is higher than Ep for both the six and seven processor runs (0.83 and 0.81
respectvely). This is due to the fact that the grid discretization was an even
multple of eight and thus, scheduling should be better for the eight processor
run.

exchange. This parallel architecture is classified as being multiple instruction
multiple data (MIMD). In developing an efficient algorithm on a MIMD
computer, one must address the computational costs associated with distributing
the tasks. These computational costs include (after Hockney and Jesshope
1988):

1.) Scheduling: How efficiently are the processors being utilized?
One wants to minimize the time a processor has to wait for
another processor to finish a task.The efficiency of scheduling
(Ep) 1s defined as:

Ep= (one processor execution time) / [(n processor execution time) X n]

where Ep < 1. Ep decreases with wait time, and typically decreases as
'n' increases. Perfect scheduling is approached when a task is divided
into equal work segments distributed to an even multiple of the
Processors.

2.) Synchronization: How long can a process run before it needs data
from another process such that operations are performed in the correct
sequence? One attempts to set algorithm granularity (size of the work
segments) such that the ratio of data transfer time to process run time is
small. The concept of having large work segments or coarse
granularity is well suited for MIMD architectures. The overhead is
associated with the time it takes to transfer data.

3.) Communication: How long can a process run before it needs data from
another process such that operadons are performed on the correct data?
One wants to minimize the ratio of memory access to arithmetic
operatdons. Synchronization costs are a function of communication
costs.

The Alliant FX/8 hardware design is aimed at minimizing the communicaton
costs associated with parallel algorithms. Each PE has a concurrency control
unit which distributes the work among the other PE's and synchronizes the
calculation. For example, if the iterations of a DO loop are to be run in parallel,
the programmer simply includes a directive just before the DO loop instructing
the machine to execute the iteratons in parallel while the hardware maintains
local data dependencies (each processor may be working on the same vector).
Of course, the programmer must sdll keep a sharp eye on such things as
recursive data dependencies (the case where the data generated in one loop
iteration is required as input in the next loop).

DATA I/O:
problem definition:
ICc's, BC's, At
grid- NODES(X), NODES(Y)
parameters

A
increment time B —————
£

VERTICAL-SWEEPS
DO 1 K=1,NODES (X)
SWEEPS (Y)
1 CONTINUE

UPDATE SOLUTION VECTOR AND RENUMBER
¥

increment time

x
HORIZONTAL-SWEEPS
DO 1 K=1,NODES(Y)
SWEEPS (X)
1 CONTINUE
I

UPDATE SOLUTICN VECTOR AND RENUMBER

[DATA I1/0 I

Figure 3 : A simplified flow chart of the PADC linear solution algorithm. Each
box represents a set of computations. The heavy lined boxes
represent computations done in parallel. For large problems (greater
than 1000 nodes) approximately 99% of the computations are done in

parallel.
10 9
4
8 ..
- "‘
S 64
© -
L
9 e
a
w 4 -
4
- -==-8-~ opltimal speedup
2 j 9 calculated speedun
0 — Y v T T T T 1
0 2 4 6 8 10

processors

Figure 4 : Speed-up curve for the model problem.

TABLE 1
r sor, Sp_ EH

1 1.0 1.0

2 1.98 0.98
3 2.9 0.97
4 3.7 0.93
5 4.5 0.90
6 5.0 0.83
7 5.7 0.81
8 6.7 0.84

ACKNOWLEDGMENT

The authors wish to acknowledg the financial support of the Department of Energy (Grant No.
DE-FG02-86ER60453), IBM Corporation, U.S. Environmental Protection Agency assistance
LD. No. CR-814946-01-1, and the Wyoming Water Resources Center. We also wish to
acknowledg the use of the computer at the Wyoming Institute for Scientific Computation.

REFERENCES

Amdahl G.M. (1967), "The Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities," AFIPS Conf. Proc.
Spring Joint Comput. Conf., 30, pp 483-483.

Bear, J. (1979), Hydraulics of Groundwater, Mcgraw-Hill, NY, pp 231-
239.

Celia, M.A., G.F. Pinder and L. J. Hayes (1980), "Alternating-Direction
Collocation Solution to the Transport Equation," Proc. Third Int. Conf.
Finite Elements in Water Resources, Wang, et. al. (eds.), Univ of Miss.,

p 3.36-3.48.

Celia, M.A. and G.F. Pinder (1985), "An Analysis of Alternating-Direction
Methods for Parabolic Equations,” Numerical Solutions for Partial
Differential Equations, 1, pp 57-70.

Douglas, J., Jr. and J. E. Gunn (1964), "A General Formulation of Alternation
Direction Methods, Part 1, Parabolic and Hyperbolic Problems,"

Numer. Math., 6, pp 428-453.

Finlayson, B.A. (1972), The Method of Weighted Residuals and Variational
Principles, Academic Press, New York.

Frind, E.O. and G.F. Pinder (1979), "A collocation Finite Element Method for
Potential Problems in Irregular Domains," Int. J. Num. Meth. Engrg.,

119 pp 681‘701.

Glimm, J., D. Marchesin and O. McBryan (1981), "Unstable Fingers in Two
Phase Flow," Comm. on Pure and Appl. Math, 34, pp 53-75.

Hayes, L., G. Pinder and M. Celia (1981), "Alternating-Direction Collocadon
for Rectangular Regions,” Comp. Meth. Appl. Mech. Engrg., 27, pp

265-277.

Hockney, R.W. and C.R. Jesshope (1988), Parallel Computers 2, Adam
Hilger, Philadelphia, pp 524-550.

Johnsson, S.L., Y. Saad and M.H. Schultz (1985), "Alternating Direction
Methods on Multiprocessors,” Research Report YALEU/DCS/RR-382,
October.

Kuck D. J, (1978), The Structure of Computers and Computations. Wiley,
New York, p33.

Lapidus, L. and G.F. Pinder (1982), Numerical Solution of Partial
Differential Equations in Science and Engineering, John Wiley, New
York, pp 66-73.

McKee, S. and A.R. Mitchell (1970), "Alternating Direction Methods for
Parbolic Equations in Two Space Dimensions with a Mixed Derivative,"
The Computer Journal. 13, No.1, Feb., pp 81-86. _

Monkhoff, N. (1984), "Future Computers: Architecture - Parallelism Makes a
Strong Bid for Next Generation Computers,” Computer Design. 23,
No.10, September, pp 303-310.

Prenter, P. M. and R. D. Russell (1976), "Orthogonal Collocation for Elliptic
Partial Differential Equations,” SI.A.M.J. Num. Anal., 13, No. 6,
pp 923-939.

Proceedings, Groundwater Engineering and Management Conference,
Organized by Colorado Water Resources Research Institute and Office
of the State rngineer, Denver, CO, February 28-March 1, 1990, pp.
161-170. ‘

HOW AQUIFER HETEROGENEITIES AFFECT
NUMERICAL GROUNDWATER MODELS -

by Myron B. Allen * and Richard E. Ewing **

1. INTRODUCTION.

One can argue that the nature of heterogeneities in an underground
formation is the most influential factor limiting the success of mathematical
models of flow or transport in the aquifer. Lack of adequate knowledge of
aquifer heterogeneity and the attendant difficulty in assessing the realism of
a model’s predictions make the modeler’s job a frustrating one.

The importance of heterogeneity elicits discomfort among many of us
whose research concerns new numerical techniques for groundwater model- -
ing. Part of the uneasiness over heterogeneity arises from a widely shared
view of its importance. The valid premise of this view is that difficulties
in accurately quantifying underground heterogeneity impose constraints on
the accuracy of mathematical models, owing to limitations in the quality
of the input data.” The argument then proceeds as follows: Since poorly
quantified heterogeneity is the dominant source of prediction error in most
groundwater models, there is little point in focusing research on improved
numerical techniques. After all, even if we use more accurate numerics, the
deleterious effects of inadequate input data will still be present, swamping
any improvements to be gained through mathematical refinements. The nat-
ural conclusion is that research into methods for detecting and characterizing
underground heterogeneity have much more potential for improving mathe-
matical models than does research into the numerical techniques themselves.

We offer a different perspective. No one would deny that improved
methods for quantifying heterogeneity are crucial to advances in the realism
and utility of groundwater models, in accordance with the pooular maxim,
“garbage in, garbage out.” However, we contend that the most commonly

‘used mathematical methods are inadequate to model heterogeneous aquifers.
As we review in Section 3, even in the ideal case when the heterogeneities
are “perfectly” known, standard methods can perform poorly, suggesting a
new adage: “heterogeneity in, garbage out.”

* Department of Mathematics, University of Wyoming, Laramie, WY
82071.

** Departments of Mathematics, Petroleumn Engineering, and Chemical
Engineering, University of Wyoming, Laramie, WY 82071.

In a more realistic scenario, where one relies on detailed statistical char-
acterizations of heterogeneous aquifers, existing mathematical techniques are
largely inadequate at answering the hydrologist’s questions. Here, quantifi-
able control over the uncertainties in aquifer parameters can fail to yield
reasonable control over the reliability of the numerical solution. We illus-
trate this problem in Section 4. This observation suggests the even more
distressing adage: “statistics in, garbage out.”

In what follows, we examine these notions and briefly indicate promising
avenues for overcoming the difficulties. We hope to affirm the importance of
continued research into mathematical techniques used in numerical models
of groundwater flow and transport, thereby rebutting the conclusions of the
conventional wisdom.

2. GOVERNING EQUATIONS.

To clarify what we mean by aquifer heterogeneity, it is useful to review
the governing equations used in groundwater models. We begin with the
equations describing groundwater flow. Groundwater obeys a mass balance,

0H
Saa—t+V-v=Q, (1)
where S, is the specific storage, H is the hydraulic head, v denotes the
superficial velocity, and Q accounts for sources and sinks (Huyakorn and
Pinder, 1983, Section 4.2). According to Darcy’s law, v is related to the
hydraulic head by the equation

v= -%IEVH = —KVH. 2)

Here, p is the density of water; g is the gravitational acceleration; k is the
permeability of the rock matrix, and g is the water’s dynamic viscosity.
Hydrologists typically use the lumped parameter K, called the hydraulic
conductivity. In many contexts, Equation (2) is too restrictive, and ¥ (and
hence K) must be a tensor to accommodate anisotropies in the aquifer’s
flow characteristics. This consideration can have practical importance, but
it imposes complications that are not essential to our thesis.

Heterogeneity, in this context, refers to spatial variations in the aquifer
parameters S,(z,y,2) and K(z,y,2). For simplicity, we focus on variations
in K. A wide array of phenomena associated with the rock’s deposition
and diagenesis contribute to these variations, which may occur smoothly or

discontinuously. One point that is all too easy to neglect in this connection
is that Darcy’s law describes the macroscopic velocity of fluids, which in
some sense represents an average of the velocity in the tortuous, microscopic
interstices of the rock that are essentially inaccessible to observation. Thus
spatial variations in K reflect what we might call macroscopic heterogeneity,
as opposed to the microscopic variability in pore geometry that Equations
(1) and (2) cannot explicitly model, even in principle.

In formulating numerical models of groundwater flow, people commonly
substitute Equation (2) into Equation (1) to get the groundwater flow equa-
tion,
oH
—at——V-(KVH)=Q. (3)
As we discuss in Section 3, discretizing Equations (1) and (2) separately
can yield significant advantages over the usual approaches to discretizing
Equation (3).

Se

When the modeler is interested in how a dissolved contaminant moves in
a flowing aquifer, it is necessary to solve a transport equation. In the absence
of chemical reactions and interphase mass transfer, the equation governing
the concentration ¢(z,y, 2,t) of solute has the form

6_((%5_)_ + V- (ve) =V :(¢4DVc) = q. (4)
Here, ¢ stands for the porosity of the rock matrix, ¢ accounts for sources and
sinks of contaminant, and v is the velocity computed using a flow model. D
denotes the hydrodynamic dispersion tensor, which is a crude attempt to ac-
count for a variety of microscopic phenomena that cause the macroscopically
observed concentration to diffuse with respect to the advective field v.

We shall not delve into the controversial physics of D (see Fried, 1975,
Chapter 2, for the standard model). We note, though, that techniques for
evaluating D in actual fieldwork are quite poor and are possibly sensitive to
what length scales the measurer identifies as microscopic. Notwithstanding,
D can exhibit macroscopic spatial variations attributable, in the standard
model, both to variations in the rock matrix and to variations in v. Thus
heterogeneity affects the transport equation (4) through the variability in
v inherited from flow models, through spatial variations in porosity ¢, and
through the intrinsic variability in D.

These equations suffice to illustrate our views on heterogeneity; however,
more complicated underground flows have attracted considerable recent at-
tention among hydrologists. Noteworthy are flows involving several fluid

phases with interphase mass transfer, as commonly occurs when nonaqueous
liquid contaminants percolate through partially saturated soils. Heterogene-
ity plays no less important a role in these flows. In fact, heterogeneity can
exacerbate several types of instability that arise from the nonlinearity of the
equations that govern these more complicated flows. The physics here are
by no means well understood; we refer to Schwille (1984) for an overview.

3. HETEROGENEITY IN, GARBAGE OUT.

Having established how heterogeneity enters into groundwater models,
we now examine how it leads to poor performance in standard numerical
models of groundwater flow. For the remainder of this section we assume,
for the sake of argument, that the modeler has “perfect” knowledge of an
aquifer’s heterogeneities. By this, we mean that the modeler knows the
values of K(z,y,2) and S,(z,y,2) at every point (z,y,z) in the aquifer.
Notice that such knowledge does not imply any detailed knowledge about
the microscopte heterogeneities associated with the tortuous interstices of
the rock. We consider the case when significant spatial variations in K occur
on a scale that is small compared with the size of the domain to be modeled,
and for simplicity we neglect spatial variations in S,.

The small-scale structure of K forces the modeler to use a fine dis-
cretization of the spatial domain. For example, if one uses finite differences
to approximate the flow equations, then the maximum dimension A of the
grid cells must be small enough to resolve the significant fluctuations in hy-
draulic conductivity. Finite-difference and finite-element schemes for solving
the flow equation (3) yield large matrix equations to be solved for nodal
values of head H at each time level in the model. Thus, smaller values of
the grid mesh A lead to larger numbers of nodal heads and hence to larger
and computationally more expensive matrix equations.

What. is worse, smaller values of h yield more poorly conditioned matri-
ces. For typical discretizations having spatial error O (h?), for example, the
condition number of the matrix at each time level is O(h~2) (see Johnson,
1987, Section 7.7). If one uses direct solution techniques such as the Cholesky
decomposition, this large condition number can lead to enormous roundoff
errors in the matrix solution, yielding unacceptably inaccurate values of head
H. Numerically differentiating these heads to compute transport velocities
via Equation (2) compounds the inaccuracies, and the result can be a useless
velocity field v computed from a “perfectly” known hydraulic conductivity.

One can ameliorate the accumulation of roundoff by using iterative tech-
niques, such as variants of relaxation schemes or conjugate gradients. Here

again, large condition numbers lead to difficulties, this time in the form of
slow iterative convergence. One attractive property of conjugate-gradient
techniques is that they are readily amenable to preconditioning, which can
reduce this effect. Research into preconditioners that eliminate the slow con-
vergence associated with fine discretizations is an active field of research; see
Golub and O’Leary (1989) for a review.

Still, fine grids do not tell the entire story. When K varies spatially, there
is a contribution to poor conditioning attributable simply to the discrepancy
between the largest and smallest values, say Kmax and Kmin, occurring in
the model’s domain. In fact, when one uses an iterative scheme {o scive
the matrix equations, the factor by which each iteration reduces the error
in the approximate solution typically has the form 1 — O(Kmin/Kmax) (see,
for example, Allen et al., in preparation). Thus the convergence rate can be
close to 1, and therefore prohibitively slow, when Ky, differs from Kpax by
several orders of magnitude, independent of the grid mesh h.

Research by many investigators indicates that there is hope for this
problem. Our own work, for example, suggests that a profitable first step
is to isolate the two sources of poor conditioning by solving Equations (1)
and (2) as a coupled system, using mixed finite-element methods (see, for
example, Allen et al., 1985). The effects of highly variable conductivity
X then influence only the discrete analog of Zquzticn 2}, which one can
attack using any of several preconditioning schemes that effectively adapt to
the heterogeneity. One can then address the effects of small grid mesh h by
developing appropriate preconditioners for the conjugate-gradient method,
as in Ewing et al. (to appear), or by exploiting multigrid techniques, as in
Allen et al. (in preparation).

As an illustration of the potential for success in this area, we present
iterative convergence rates for two schemes applied to steady-state flows in a
set of fictitious aquifers (Allen et al., in preparation). The functional forms
used for K in these experiments, listed in Table 1, are clearly contrived,
yet in their spatial variability they can be just as troublesome as many oc-
curring in nature. Figure 1 shows plots of iterative convergence rate ver-
sus grid mesh for each realization of K, using a scheme whose convergence
rate is theoretically independent of 2 owing to a peculiar splitting of the
mixed-method equations. This scheme overcomes sensitivity to small 2 but
remains sensitive to spatial variations in K, as the slow convergence rates for
the realization Kv attest. Table 2 displays iterative convergence rates for a
modified version of the splitting scheme. Here, we precondition the discrete
Darcy equations arising from the mixed method to mitigate sensitivity to

heterogeneity. Theory estimates a convergence rate of 0.5, independent of h
and K, an estimate that the computed rates confirm. The methods used to
generate these results by no means offer a final solution to the poor condi-
tioning arising from heterogeneity, but they demonstrate that heterogeneity
actually heightens the need for advances in numerical analysis.

The proper use of mixed finite-element methods offers the further ad-
~ vantage of avoiding the deterioration in accuracy that occurs when one nu-
merically differentiates heads to compute Darcy velocities. As Ewing and
Wheeler (1983) explain, mixed methods can generate approximate heads
and velocities that have equal-order accuracy, a property that is especially
attractive in the context of contaminant transport modeling.

Still, problems remain. We have not considered the effects of spatial
variability in specific storage. Moreover, considerable work remains to be
done to make mixed finite-element models truly efficient and flexible. Issues
such as adaptive local grid refinement, exploitation of parallel computing
architectures, and the treatment of nonlinearities associated with multiphase
flows are prime examples of ongoing work along these lines.

4. STATISTICS IN, GARBAGE OUT.

In reality, heterogenities will never be “perfectly” known. The best
we are likely to achieve are fairly detailed statistical descriptions of hetero-
geneities below some scale, which is likely to be large in practice. Thus it
may suffice to use models to generate suites of scenarios yielding statistical
predictions of aquifer behavior. For this strategy to be successful, ensem-
bles of “statistically equivalent” realizations of a given heterogeneous aquifer
must yield predictions that are “statistically similar.” In other words, the
model’s predictions should be “stable,” in some sense, against changes in
heterogeneous structure that preserve the detailed statistics of the aquifer.
Otherwise, a given statistical description of an aquifer might be consistent
with a large and wildly varying class of model predictions. The notions of
statistical equivalence, statistical similarity, and stability lack rigorous def-
inition at this point, but we contend that there is considerable work to be
done to make this strategy practical.

As evidence for our contention, we consider a set of numerical experi-
ments involving coupled underground flow and solute transport. The cou-
pling consists of the usual dependence of the solute transport coefficients
on the output of a flow model, together with a dependence of the dynamic
viscosity u on the concentration ¢ predicted by the transport model. This

model has its origin in oilfield applications, where injection of miscible fluids
less viscous than oil is a common form of enhanced oil recovery. Neverthe-
less, there are clear analogies to be drawn with the physics of groundwater
contamination and remediation. The experiments suggest that statistically
similar heterogeneous porous media can yield flow fields that are qualitatively
- dissimilar in significant respects.

In the cases modeled, u is a decreasing function of ¢, so the injected
fluid is more mobile than the displaced fluid. This adverse mobility ratio
makes the displacement unstable: Small perturbations in the geometry of
the displacement front can lead to large differences in the fraction of the
pore space contacted by the injectant. One manifestation of the instabil-
ity is the occurrence of viscous fingers in the displacement front. It is not
clear physically how small the perturbations can be and still trigger these
fingers, but it is conceivable that they could arise from heterogeneities at the
microscopic scale as well as the macroscopic scale. In this case, no model
based on Equations (1) through (4) can possibly resolve all of the instabilities
occurring in macroscopic flows. With this caveat in mind, we examine the
effects of fine-scale but macroscopically resolvable heterogeneities on miscible
displacement.

Figure 2 shows concentration isopleths for simulated displacements in
two random porous media, with fluid being injected in the lower left corner
and produced at the upper right (Ewing et al., 1989). The two media are
independent realizations of the same lognormal spatial permeability distribu-
tion, and they have the same correlation length. The predicted displacement
patterns show that the flows in the two model media yield qualitatively dif-
ferent concentration fields. In fact, the flows differ significantly even with
respect to relatively coarse measures, such as the pore volumes of resident
fluid produced after one pore volume of injection. The result for Figure 2a
is 0.6921, while that for Figure 2b is 0.4968 — a decrease of over 28 percent.
Clearly, these statistically similar media have dissimilar flow characteristics,
at least for the physics modeled here.

Overcoming the difficulties associated with statistical characterizations
of heterogeneity will require new modeling techniques and perhaps to wholly
new ways of using models. Among the promising avenues for the near term
are methods for scaling up fine-scale information to produce realistic models
using coarse, computationally affordable grid cells. Homogenization theory
(Bourgeat, 1984), flux-based averaging (White and Horne, 1987), and ef-
fective macroscopic dispersion tensors (Ewing et al., 1989) are three such
approaches.

In the long run, the issue of uncertainty arising from aquifer heterogene-
ity has a direct bearing on the uses of deterministic models, since some uncer-
tainty will doubtless remain as numerical analysis progresses. The inherently
statistical nature of the problem reflects, in part, the discrepancy between
the scales at which Equations (1) through (4) apply and the scales at which
aquifers are accessible to measurement. This discrepancy implies a need for
broader research into the relationships between fundamental physics, model
formulation, numerical analysis, and parameter identification in groundwater
modeling.

5. CONCLUSIONS.

The adages, “heterogeneity in, garbage out,” and “statistics in, garbage
out,” are probably too pessimistic. We really intend the first adage as a
caution: Modelers should not assume that all is settled on the numerical
front, and that all we need are better measurements to feed into existing
models. Numerical methods that are standard engineering practice today
will become increasingly inadequate as better measurements of heterogeneous
aquifer parameters become available. The second adage is a caution of a
different sort. It suggests that the problems associated with uncertainty in
heterogeneous aquifers may not be amenable to solution via straighforward
discretization of the standard governing equations. Instead, these problems
may require new approaches, in which rigorous numerical work contributes
to the development of model formulations appropriate to the scales at which
the models will actually be run.

6. ACKNOWLEDGMENTS.

The Wyoming Water Research Center supported this work. We also
received support from NSF grant RII-8610680 and ONR contract NO0O14-
88-K-0370.

7. REFERENCELS.

Allen, M.B., Ewing, R.E., and Koebbe, J.V., “Mixed finite-element methods
for computing groundwater velocities,” Numer. Meth. P.D.E. 3 (1985),
195-207.

Allen, M.B., Ewing, R.E,, and Lu, P., “Well conditicned iterziive schemes
for mixed finite-element models of porous-media flows,” (in preparation).
Bourgeat, A., “Homogenized behavior of two-phase flows in naturally frac-

tured reservoirs with uniform fractures distribution,” Comp. Meth. Appl.
Math. Engrg. 47 (1984), 205-216.

Ewing, R.E., Lazarov, R.D., Lu, P., and Vassilevski, P.S., “Preconditioning
indefinite systems arising from mixed finite-element discretizations of second-
order elliptic systems,” Proceedings, Conference on Preconditioned Conjugate
Gradient Methods, Nijmegen, Netherlands (1989), (to appear).

Ewing, R.E., Russell, T.F., and Young, L.C., “An anisotropic coarse-grid
dispersion model of viscous fingering in five-spot miscible displacement that
matches experiments and fine-grid simulations,” Proceedings, Eleventh SPE
Symposium on Reservoir Simulation, Houston, TX (1989), 447-465.

Ewing, R.E., and Wheeler, M.F., “Computational aspects of mixed finite
element methods,” in Numerical Methods for Scientific Computing, ed. by
R.S. Stepleman, Amsterdam: North Holland (1983), 163-172.

Fried, J.J., Groundwater Pollution: Theory, Methodology, Modelling and
Practical Rules, Amsterdam: Elsevier, 1975.

Golub, G.H., and O’Leary, D., “Some history of the conjugate gradient and
Lanczos methods,” SIAM Review 31:1 (1989), 50-102.

Huyakorn, P.S., and Pinder, G.F., Computational Methods in Subsurface
Flow, New York: Academic Press, 1983.

Johnson, C., Numerical Solutions of Partial Differential Equations by the Fi-
nite Element Method, Cambridge, U.K.: Cambridge University Press, 1987.

Schwille, F. “Migration of organic fluids immiscible with water in the unsat-
urated zone,” in Pollutants in Porous Media, ed. by B. Yaron et al., Berlin:
Springer-Verlag, 1984.

White, C.D., and Horne, R.N., “Computing absolute transmissibility in the
presence of fine-scale heterogeneity,” Proceedings, Ninth SPE Conference on
Reservoir Stmulation, Dallas, TX (1987), 265-278.

TABLE 1. CONDUCTIVITY FIELDS USED IN NUMERICAL EXPERIMENTS
FOR ITERATIVE SOLUTIONS OF MIXED FINITE-ELEMENT MODELS FOR
STEADY-STATE GROUNDWATER FLOW.

Ki(z,y) = L

Ku(z,y) = 7Y

1, ifI<y1
Kuw(z,y) = {0_1, ifz 2>y

Kw(z,y) = Kulz,y) - Ku(z,v);

_ 1, ifz <y,
Kv(z,y) = {0.01, ifz>y.

TABLE 2. CONVERGENCE RATES FOR A UNIFORMLY CONDITIONED
ITERATIVE SCHEME APPLIED TO PROBLEMS IDENTIFIED IN TABLE 1.

GRID MESH h
COEFFICIENT || 24 2-° 2-° 27 28
K 0.4933 | 0.4988 | 0.4993 | 0.4995 | 0.4999
Ky 0.4966 | 0.4995 | 0.4988 | 0.4997 | 0.4999
Kin 0.4948 | 0.4982 | 0.4991 | 0.4998 | 0.4999
Ky 0.4947 | 0.4980 | 0.4992 | 0.4998 | 0.4999
Ky 0.4939 | 0.4978 | 0.4989 | 0.4999 | 0.5000
a0 [0
——a—a—"
b_d;_'——b"b'—'—'a
Los
EY
o0—O0——O0——0———0 los :‘g
ig
KEY >
ox, 404 §
a Ky, c
L K"I 8
axy 02
|°!; (h)

Figure 1. Convergence rates for an h-independent iterative scheme applied
to problems identified in Table 1.

Vi

N

Figure 2. Concentration isopleths after 'injection of one pore volume for
model miscible displacements in two random media having similar statistics.

Computational
Methods in Surface
Hydrology

Proceedings of the Eighth International
Conference on Computational Methods in

Water Resources, held in Venice, Italy, June

11-15 1990.

Editors: G. Gambolati
A. Rinaldo
C.A. Brebbia
W.G. Gray
G.F. Pinder

Computational Mechanics Publications,
Southampton Boston

Co-published with

Springer-Verlag, Berlin Heidelberg New York
London Paris Tokyo

An Eulerian-Lagrangian Method for

Finite-Element Collocation using the
Modified Method of Characteristics

M.B. Allen, A. Khosravani

Department of Mathematics, University of
Wyoming, Laramie, Wyoming 82071, USA

ADBSTRACT

We present a collocation method for the two-dimensional advection-diffu-
sion equation when advection is dominant. The method uses a modified
method of characteristics in conjunction with an alternating-direction
algorithm to yield accurate, efficient numerical solutions.

INTRODUCTION

We discuss a collocation-based scheme for the advection-diffusion equa-
tion in two space dimensions. The scheme employs two devices to en-
hance its effectiveness. The first device is an alternating-direction proce-
dure (Celia [1]) that yields highly parallelizable time-stepping algorithms.
The second device is a modified method of characteristics (see Russell [2])
that improves the time-stepping error in advection-dominated flows.

The advection-diffusion equation for a steady, incompressible velocity
field v(x) in two space dimensions is

oiv + v-Vu — V. (DVu) = 0. (1)

Here, u(x,t) is the unknown solute concentration. In porous-media appli-
cations, D accounts for the effects of hydrodynamic dispersion, which has
a tensor form whose components depend on v. In this paper, however,
we take D > 0 to be a scalar constant for simplicity. We also assume that
advection dominates the solute transport, in the sense that, if L is the
diameter of the spatial domain, then the Peclet number ||v]jooL/D > 1.
In this regime, it is useful to rewrite Equation (1) as follows:

D — V- (DVu) = 0, (2)

Here, Dy = 8¢ -+ v + V denotes the material derivative of the fluid-solute
mixture.

376 Computational Mcthods in Surface Hydrology

- We consider the following initial-boundary-value problem on the spa-
tial domain 1 = (—1,1) x (-1,1):

Dy — V.(DVu) = 0, (x,t) € Qx(0,00),

u(x,0) = ur(x), x € 11,

u(x,t) = 0, (x,t) € a1 x (0, 00).

This problem is a simple model of the movement of an initial contaminant
plume, so long as the plume does not approach 9fl.

NUMERICAL METHODS

To discretize this problem in space, we use finite-element collocation on
Iermite bicubics. We merely summarize this method here, referring read-
ers to Curran and Allen [3] for more details. Let A be a rectangular grid
on 01, partitioning 11 into a collection of rectangular elements {2; bounded
" by adjacent grid lines £ = z; and y = y;. Call the mesh of this grid h.
Denote by M the trial space of all Hermite piecewise bicubics that vanish
on 30. (The Hermite piecewise bicubics are functions in C*(Q1) whose
restrictions to any {); are products of cubics in z with cubics in y.) Any
function & € M has the form

a=) (u.','Hoo;,' + u.(;)ﬂm.'j + u.(}')Hou,' + u.(;'")lfu.'j))
(5}

where the functions H,gj(z,y) form a nodal basis for M (Prenter [4]).

To determine the nodal unknown coellicients in this expansion, we
substitute @ into the left side of Equation (2) and force the residual to
vanish at a set of collocation points X,,, which for optimal-order accuracy
we choose to be the 2 x 2 Gauss quadrature abscissae in each element 11;.
This procedure yields precisely enough ordinary diflerential equations in
time, each having the form

Diii(Rmyt) — V- [DVi(Rm,t)] = 0, (3)

to determine the evolution of the unknown coefficents of @, assuming we
can project the initial function u; onto M to get reasonable initial data
i‘t()'cm,Ol. .

We discretize Equation (3) in two steps. First, following Russell [2],
we rewrite D;# using the modified method of characteristics (MMOC).
In the context of collocation, MMOC leads to a difference expression of

the form
Dii(%m) = k71 4% (%) = 8"(x30)]

where @"(x) denotes an approximate value of &(x,nk), k being the time
step. Here, x, is a “backtrack” point, computed according to the method
of characteristics for the purely advective version of Equation (2). Specifi-
eallv i falf) 1) is a narametrization of the characteristic curve dx/dt = v

Computational Methods in Surface Hydvology 377
passing through %,,,

tn :
Xy, =R + z v{s(t),t)dt. (4)
ntil
In practice we compute x;, approximately, as discussed below.

The second step in discretizing Equation (3) is to use an alternating-
direction collocation (ADC) approach similar to that of Celia [1]. We
perturb the discrete operator equations to effect the following factoring
along the z- and y-coordinate directions:

(14 kL)1 +kL)a" (%) = 4"(x5) + O(K?) . (5)

Here, £L; = —8.(D3;) and L, = -3,(DJ,). By properly numbering
the collocation equations and unknowns, one can reduce the equations

_{5) to an algebraic system that involves highly parallel sets of matrix

equations, each of which has an inexpensive, one-dimensional structure.
Curran and Allen [3] discuss efficient algorithms for solving such systems
on parallel-architecture computers with shared memory. As that paper
demonstrates, speedup curves of slope greater than 0.8 are attainable on
an Alliant FX/8 eight-processor machine.

COMPUTATIONAL RESULTS

To illustrate the eflectiveness of the scheme, we show results of a rotating
plume problem in which v(z,y) = 2n(~y,z) and D = 0. The initial
condition is a “Gauss hill” with center (0, —0.6), unit height, and standard
deviation ¢ = 0.066. We cut off the initial condition spatially, setting
4(x,0) = 0 near 9N for consistency with boundary conditions.

In this purely advective problem, u(x,1) = u(x,0). We examine how
well the numerical solution matches this property as we vary the time
step k and the scheme used to compute the backtrack points x;,. We use
two backtracking schemes. The first uses an approximation —kv(x,.) to
the integral in Equation (4). The second uses the approximation that is
quadratic in k, namely, —kv (%) — k?Vv (%) - V(%) /2.

Figure 1 displays the ## = 0.2 contour for numerical solutions at ¢t = 1,
together with the true center (z,y) = (0,-0.6) of the plume at t = 1.
Shown are the contours for “linecar” backtracking with & = 0.01 and
k = 0.004 and for “quadratic” backtracking with k = 0.01. The plot
suggests that, given the overall O (k) accuracy of MMOC timestepping,
there is only a slight gain in accuracy with the higher-order backtracking.

DISCUSSION

Several features of the ADC-MMOC approach make it an attractive one.
First, the method inherits the high-order spatial accuracy associated with
the finite element collocation. Percell and Wheeler (5] show that the
scheme has O(h?') spatial accuracy for elliptic spatial operators. ADC

attainag thin nceuracey with Yana. Aimpeneinnal® snateirne havineg handwidih

-

378 Computational Methods in Surface Hydrology

five. A related Galerkin-based scheme using piccewise bilincar elements,
described in Krishnamachari et al. [6], yields O(h?) accuracy with one-
dimensional matrices having bandwidth three.

Second, the use of MMOC has additional advantages in reducing the
temporal truncation error and in reducing the number of degrees of free-
dom needed to resolve sharp fronts. Russell |2] discusscs these advantages.
Another aspect of MMOC is that it effectively removes the dominant ad-
vective term from the spatial operator, leaving only the diffusive operator
to be discretized via collocation. This fact is intuitively appealing, since
we expect collocation on Hermite cubics to yield O(h*) accuracy for Equa-
tion (1) when v = 0 but only O(h®) accuracy when D = 0 (sce Dupont
[7]). MMOC thus allows the collocation procedure to discretize just the
spatial operator —V -.(DV) for which it is best suited, even when the
other spatial operator v - V is physically dominant.

Third, the ADC algorithm renders the scheme amenable to parallel
processing. An interesting facet of the application of MMOC here is
that it may help reduce the temporal error introduced by the spatial
splitting when advection dominates. Observe that, with MMOC, the
splitting in Equation (5) requires a perturbation of the form k%£.L,1,
where £, = —9,(D9;) and £, = —8,(D3,) are operators whose effects on
it are “small”. By contrast, without MMOC the ADC splitting involves
the operators £, = v,8, — 3.(D3.) and L, = v,8, — 9,(D3,), in which
the dominant advective terms appear. Thus we expect the splitting error
to be smaller in magnitude in the MMOC version than in the original
version of ADC,

These observations suggest that the ADC-MMOQC approach can be a
highly eflicient and accurate technique for advection-dominated transport
problems. There remain several avenues for further work on the method.
Among these are the treatment of tensor dispersion and the incorporation
of variations in the third spatial dimension.

ACKNOWLEDGMENTS

The Wyoming Water Research Center provided support for this project.
We also received support from NSF grant RII-8610680 and ONR grant
0014-88-K-0370.

REFERENCES v

1. Celia, M.A. Collocation on Deformed Finite Elements and Alternating
-Direction Collocation Methods, Ph.D. dissertation, Princeton University,
1983.

2. Russell, T.FF. An Incompletely Iterated Characteristic Finite Element
Method for a Miscible Displacement Problem, Ph.D. dissertation, Uni-
versity of Chicago, 1980,

3. Curran, M.C., and Allen, M.B., Parallel Computing for Solute Trans-
port Models via Alternating-Direction Collocation, Advances in Water
Resources, to appear.

Computational Methods in Surface Hydrology 379

4. Prenter, P.M. Splines and Variational Methods, Wiley, New York,
1975. ,

5. Percell, P., and Wheeler, M.F., A. C! Finite Element Collocation
Method for Elliptic Equations, SIAM J. Numer. Anal. Vol. 17, No. 5,
pp. 605-622, 1980, .

6. Krishnamachari, §.V., Hayes, L.J., and Russell, T.F., A Finite Ele-
ment Alternating-Direction Method Combined With a Modified Method
of Characteristics for Convection-Diffusion Problems, SIAM J. Numer.
Anal,, to appear. .

7. Dupont, T., Galerkin Methods for First-Order Ilyperbolics: An Ex-
ample, SIAM J. Numer. Anal. Vol. 10, pp. 890-899, 1973.

y
A LINEAR BACKTRACKING WITIl k = 0.01.
W QUADRATIC BACKTRACKING WITIl k = 0.01.
® LINEAR BACKTRACKING WITI k = 0.004.
-04 7T
-05 T
-06 T
x
A A .
} ; '
—0.1 0 0.1

Figure 1. Comparison of #i(x,1) = 0.2 contours for the ADC-MMOC
method applied to an advective rotating plume problem. Shown are
contours for timestep k = 0.01 with linear and quadratic backtracking
and for timestep k = 0.004 with linear backtracking. The symbol # marks
the center of the plume in the exact solution u(x,1).

/

USER’S GUIDE TO ADMOC: A CONTAMINANT TRANSPORT
CODE BASED ON ALTERNATING-DIRECTION COLLOCATION

AND A MODIFIED METHOD OF CHARACTERISTICS

by
Azar Khosravani
Myron Allen
Department of Mathematics
University of Wyoming
Laramie, WY 82071

August, 1990

Note: ADMOC is a research code developed at the University of
Wyoming. It is not intended as a ready-to-use groundwater transport
model, nor is it suitable as public-use software. The authors make no
claims for applicability of the code to problems more general than the
sample problems discussed in this document. In particular there is no
agreement, explicit or implied, that the authors will provide assistance
to users wishing to install, debug, or use the code.

INTRODUCTION
ADMOC is a Fortran code that employes a modified method of char-
acteristics combined with an alternating-direction algorithm to solve a
two-dimensional advection-diffusion equation. For more detail on the

mathematical formulation of the code, refer to Allen and Khosravani

[1].

The purpose of this document is to show first-time users how to
use the code. We assume the user works on a local area network like
that available in the University of Wyoming Mathematics Department.
The main computing machines are Unix-based: an Alliant FX/8 for
numerical processing and a Silicon Graphics Iris for graphic processing.
We use an ATT workstation running MS/DOS for transferring codes
and data from floppy disk.

The document starts by explaining how to transfer the files from
the enclosed floppy disk into your Alliant account. Then it gives and
explains all the commands that need to be employed to run the code.
The paper also demonstrates in detail how to view the output files by
using the graphic software available on the Iris. Fianlly, it explains how

to get printouts of the files.

TRANSFERRING FILES TO THE ALLIANT
First you need to find a machine with a 53 inch floppy disk drive and
hard drive, with capability to transfer data to the Alliant using the util-
ity FTP. The Math Department’s ATT workstation, Ahab, with floppy
drive B and hard disk C, can be used for this file transfer. Throughout
this paper 5 is used to denote the machine prompt. IExplanations of
commands appear in parentheses. User responses appear in boldlace.
While logged in to Ahab, with the floppy disk in drive B, proceed as

follows:

e

$ftp mercury

(‘mercury’ is the network name for Alliant.)
$username:myname

$password:mypass

user logged in on mercury.

$lcd B:

(local directory change on ATT to B drive, which is the floppy
disk drive.)

$mputB:*.*

(In response to this command, the machine will ask you, file by
file, whether you want the file copied to the Alliant. Answer ‘y’,
followed by a RETURN, to each question. In all, 18 files should
be transferred from the floppy disk by this command.)

$put makefile

Sput 1fig

$put 5fig

sled C:

(lécal directory change to C drive)
Sbye

(takes you out of the I'TP utility and back to Ahab’s operating

system, MS/DOS.)

Now you have copies of all the files on the floppy disk in your Alliant

account, but these liles reside in the top directory. To keep vour Alliant

X4
0

account manageable, make a directory, say ‘adccode’, and transfer all
these files to that directory. The following commands will accomplish
this task from Ahab or most other terminals linked to the University

of Wyoming campus network.

$telnet junior

(establishes a connection to the Iris. You cannot log into the
Alliant directly from Ahab.)

$username:myname
$password:mypass

$telnet mercury

(establishes a connection to the Alliant.)
$username:myname
$passoword:mypass

(If your .login file on the Alliant doesn’t automatically set your

terminal type to vt100, type
$set term=vt100

in response to the next prompt. If vou’re not sure what a .login
file is or don’t know if you have one, type the above command

anyway.)
$mkdir adccode

(makes a subdirectory named “adccode’)

*

Scp*.” adccode

Scp makefile adccode

$cp 1fig adccode
$cp 5fig adccode

(copies every file to the directory adccode. Now, you want to go

up to the top directory and erase those files from it.)
Scd. .

(takes you to the directory above where you are sitting.)
$rm *.f

(removes all your fortran files in the top directory.)

$rm *.in

(removes all your .in files in the top directory.)

$rm makefile

$rm 1fig

$rm 5fig

This procedure assumes that you have a fresh account on the Alliant.
Otherwise, you should have first made the subdirectory ‘adccode’ and

then transferred files from the {loppy disk to that subdirectory.

RUNNING THE CODE
To make a successful run of the ADMOC, the user needs to go through

the following steps:

a) Getting your program ready for a run. That is, adjusting the data
file, the parameters. and the velocity ficld to the problem vou want
to solve.

b) Running the code and thus gencrating the graphic output files.

¢) Viewing the graphic files to examine the correctness of the results.

Now we discuss these steps. Refer to the flowchart at the end of this

user’s guide for information about the subroutine structure of the code.

a) Getting your program ready for a run.
The input data are read in the main program, adc.f, from the data file
adc.in. The program currently assumes that the initial contaminant
plume is a ‘Gauss hill’ (i.e., binormal distribution in space) with spec-

ified center of mass and standard deviation. The input data include:
DT - size of time-steps

THETA - timestepping parameter (0 gives an explicit scheme, and

1 gives an implicit scheme.)

XDIM and YDIM - length of the domain in the z- and y-directions,

respectively.

X1 and Y1 - the starting point in z- and y-directions, respectively,

for the spatial domain.
SIGMA - standard deviation of the initial plume.
X0 and YO - the origin of the concentration plume.

XNODE and YNODE - numer of nodes in z- and y-directions.

You should check and possibly adjust the parameters MNON,
MNOCP, NROW are used in the subroutines adc.f, cchar.f, init.f,
kindex.f, print.f, reformz.f, and update.f. NNON respresents the maxi-
mum number of nodes and is obtained by multiplying XNODI by Y'N-
ODE. MNOCP is the maximum number of collocation points; its value
" is 4 times the number of elements in the domain. To be more precise,
MNOCP = 4(XNODE-1)x(YNODE-1). NROW is the number of collo-
cation points in one row in the 2-direction, that is, NROW=2(XNODIL-

1). If the parameter values in the Fortran code are not consistent with

the data in adc.in, you must edit the Fortran code to change the pa-

rameter statements.

Suppose we want to make three different runs using the three differ-
ent sample data files provided in this directory. In our first run we use
the file adcl.in, which gives the rotating velocity field v = 27 (—y, z).
The spatial domain for this run is (—1,1) x (=1,1), and 101 nodes are
used in each coordinate direction. The initial plume is centered at the
point (z,y)=(0,-0.5), and it has standard deviation 0.16; it completes

one rotation in 100 time steps. Every tenth time step is printed since
NPRINT=10.

The velocity field is defined in the subroutine cchar.f. The velocity
fields ‘rotating plume’ and ‘shear’ are made available to the user in the
subroutine. To activate the desired velocity field, just ‘comment out’
all the other velocity fields that are provided (by placing a ‘c’ in column
1 of each line of the source code) and uncomment the wanted velocity
field. You may also define a new velocity field by writing appropriate

Fortran code in the subroutine cchar.f.

Normally, we would need to go through steps b) and c), described
below, to see the results of this run. Before describing these steps,

though. we describe the remaining two sample runs.

In our second run, we use the same spatial domain as the first run.
We center the initial plume at a different location and use the shear-
flow velocity field va = (1 +y) and vy = 0. To make these changes,
we use the input file ade2.in. Now we need to edit the liles ade.f and
madefile, changing every occurrence of adcl.in to ade2.in. \We also
need to comment out the rotating velocity field and uncomment the

shear-flow velocity field in echar.f

Our third run is quite different from the first two runs. Here we use
a rectangular domain and leave it up to the user to choose the velocity
field. It can be the rotating field, the shear field, or a new velocity field
defined by the user in cchar.in. Here we use the data file ade3.f and
so we need to change adc.f and makefile just as we did when we used
adc2.in. Notice that we need to use a different graphic file here, one

that accomodates the rectangular domain.

b) Compiling and executing
To compile the program on the Alliant just type make. Minor mod-
ifications of the makefile routine might be necessary to compile the
program on another machine. The command make causes the Alliant
to produce an executable file called adc.z. To run the program just
type the name of the executable file, adc.z. Since this program takes
up to an hour to run, it is advisable to run it in background, that is, to
assign it a low priority on the machine’s scheduler to avoid interfering

with other users. This is what you need to do:
$cd adccode
(changes directory to adccode)
$make
(compiles program adc)
Sadc.x &

(The command ‘adc.x’ causes the program ade to run. and the

modifier ‘&’ puts this job in background.)

Running the adec.z produces data files such as «dc00000,. .., adc00100
to be read by the graphic file visions. One way to check whether the

run is completed is to list the files in your directory. [f «dc00100, which

7

1s the last output file that the program generates, is in your directory,

then the run is over. To get a list of files in the directory, type

Sls

If the run is not over and you want to know how much time the machine

allocated to running your program, type:
Sps -aux

(This command lists all the jobs presently running on the ma-
chine along with some information about them, such as how much

computer time has been allocated to them.)

c) Viewing the graphics
At the present we are running our program on the Alliant FX/8 and
using the Iris to view the output files. This means that we need to take
our output files from the Alliant to the Iris. To do so, we use the utility
FTP. For example, suppose we are in the directory ‘adccode’ on the
Alliant that contains our output files, namely, adc00000,. . ., adc00100.
We want first to create directory ‘mygraphics’ on the Iris and then to
transfer our output files from ‘adccode’ on the Alliant to ‘mygraphics’

on the Iris. While you are logged into the Alliant, proceed as follows:
$rlogin junior
(‘junior’ is the network name for the Iris.)
Susername:myname
Spassword:mypass
(user logged in)

smkdir mygraphics

(makes a subdirectory named ‘mygraphics’)

$lo

(log out command; now you are back on the Alliant.)
$ftp junior

Susername:myname

$password:mypass

$cd mygraphics

(changés directory to ‘mygraphics’ on the Iris.)
$mput adc00*

(copy all the Alliant files starting with ‘adc00’in the subdirectory
‘mygraphics’ on the Iris. The utility will ask you, file by file,
whether you want the file to be transferred. Respond with ‘y’,
followed by a return, for each file. If ‘mput’ does not work, then

simply transfer the files one by one using the FTP command ‘put’.)
Sput 1fig

Sput 5fig

(1fig and 5fig give data to the graphic software on the Iris.)

Sbye

(Now you are back to your Alliant account.)

Now log out of the Alliant, go to the Iris workstation, and log into

your account on that machine. The Iris workstation is an [ris-ansi

terminal, and you have to set it accordingly as follows:

Sset term=iris-ansi

10

If you are working with a square grid, for instance, using adcl.in or

adc2.in, all you have to do on the Iris is type:

$visions 1fig

While you are in the subdirectory ‘mygraphics’.

A small red square will appear on the screen; this is a window that you
need to open up. Using the mouse, move the arrow on the monitor to
the upper left corner of the screen and, while holding the right button,
move the arrow to the lower right corner of the screen. Now let go
of the right button. The viewing window is now open and you are
looking at a graph of the data stored in the first output file, adc00000,
which records the initial time step. Moving the mouse arrow inside the
blue domain and holding the right button down initiates the animation
option, which can be activated by letting go of the right button when
the arrow points to the words ‘animation on’. You now are looking at

animated perspective plots of the data stored in the output files.

To close the graphics window, place the arrow on the bar at the top
of the screen and hold down the right mouse button. A window with
different command options appears on the screen. While holding the
right mouse button down, place the arrow on the ‘Quit ISC Visions’
option. Now let go of the right mouse button to close the graphics

window.

GETTING HARD COPY OF SOURCE FILES
The Alliant directory into which you dumped the contents ol the floppy

disk contains the following files:

ade.f, adcl.in, adc2.in, adc3.in, cchar.f, herm.f, hermbe.f, init.f,
interpolation.f, kindex.f, loadz.f, makefe.f, matrix.f. plotter.f, print.f,

veformz.f. rhse.f, solee f. update.f.

The flowchart at the end of this document shows how these files work
together. To get a hard copy of one or more of these files in Ross
Hall, one needs to copy these files to the Sun workstation, indentified

as ‘sunrise’ on the network. For a printout on the line printer, type

$print filename

While you are logged onto the Sun, to get a laser printout, type

$imprint -Psunset filename

More than one file can be sent to the printers simply by listing more

than one filename. For instance, type

Simprint -Psunset adc.f cchar.f herm.f

to get laser printouts of adc.f, cchar.f and herm.f
REFERENCE

1. Allen, M. B. and Khosravani, A., An Eulerian-Lagrangian method
for finite-element collocation using the modified method of charac-
teristics, in Computational Methods in Surface Hydrology, ed. by
G. Gambolati et al., Berlin: Springer-Verlag, 1990, pp. 375-370.

init
(defines initial data)

kindex
(sets up indices)

hermbec
(sets up hermite

bicubics)

herm
(computes hermite

cubics and derivatives)

adc.in
(input data)

print
(prints out solution)

cchar
(backtracks along

characteristics)

plotter
(prepares output
to be plotted by
graphic software)

adc.f
(calls other

subroutines)

matrix
(loads matrix)

solve
(asymmetric band

matrix solver)

loadz
(loads intermediate

solution)

reformz
(reorders z)

rhsx
(sets up right
hand side for x)

update
(updates solution
vectors)

Flowchart of the transport code ADMOC

adc00000
(Initial time step)

adc00001
(solution after

1 time step)

adc00100

(solution at

time=1)

