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1. TECHNICAL SYNOPSIS 

This section of the report is a brief synopsis of the project’s scientific aims and accom- 
plishments. The discussion in this section is intended for a technical audience, but it does 
not assume that readers are specialists in mathematical modeling. The Appendix to this 
report, summarized in Section 2, consists of published scientific articles that describe the 
results of the project for specialists. 

1.1 Objective 

The original objective of the project was to develop numerical techniques for modeling 
groundwater contaminant flows in the presence of sharp fronts in contaminant concentration. 
Such fronts occur and persist in contaminant flows in which the spreading attributable to 
hydrodynamic dispersion is small compared with advective transport along the groundwater 
velocity field. This “advection-dominated” transport regime is well documented in the water 
resources literature. 

Steep concentration fronts in advection-dominated flows pose severe problems for most 
standard numerical models. Such models usually rely on approximation schemes in which 
one treats the real continuous aquifer as a discrete network of cells or nodes, called a grid. 
In each cell, the model assumes that concentrations, velocities, and other cell variables vary 
in a simple fashion. For example, these quantities may be constant over each cell. When 
a steep front is present, many small cells are needed in the vicinity of the front to produce 
accurate approximations of the local variations in contaminant concentration. Since the cost 
of running a model increases with the number of cells used, it is useful to be able to use small 
cells-that is, to refine the grid-only in the small regions near the fronts, where improved 
resolution is needed. 

Installing this capability in acutal computer codes is a challenging task. Since contaminant 
fronts move, the regions of refined grid must move adaptively as well. Mathematically, 
moving a zone of locally refined grid changes the algebraic relationships among the cell 
variables in a complicated manner that one cannot predict in advance of running the model. 
In contrast with the case when a single, coarse grid is adequate, grids having moving zones of 
local refinement require innovative algorithmic structures if they are to be computationally 
efficient. The purpose of this work has been to develop such structures. 

1.2 Related applications 

Adpative local grid refinement has applications in a wide array of fluid-dynamic settings. 
In the field of groundwater contamination, adaptive local grid refinement is useful in a variety 
of problems beside the problem of passive solute transport. Of special interest are multiphase 
flows, such as air-water flows in the vadose zone or flows involving nonaqueous-phase liquids 
(NAPLs), where steep fronts or even shocks in phase saturations commonly arise. 

1.3 Summary of accoiiiplisliiiients 

Early in the project, considerable effort focused on adaptive gridding 
taminant transport in one space dimension. We devised a finite-element J 

techniques for con- 
collocation scheme 
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that is quite effective in that setting and that is readily amenable to implementation on 
parallel-processing computers (Allen and Curran, 1989). However, that scheme does not 
readily extend to problems in higher dimensions. 

We also investigated a class of methods for two-dimensional problems using highly paral- 
lelizable, alternating-direction collocation schemes (Curran and Allen, 1989 and 1990; Allen 
and Khosravani, 1990; Khosravani, 19S9; Li, 1990). As part of this effort, we collaborated 
with researchers at the University of Vermont, sponsoring a week-long visit to Wyoming that 
culminated in the development of a parallelizable alternating-direction scheme suitable for 
tensor hydrodynamic dispersion (Guarnaccia and Pinder, 1989). 

To implement grid refinement in these two-dimensional codes, we revisited the one- 
dimensional case, devising a scheme that extends readily to the alternating-direction setting 
(Curran Allen, in preparation). The actual implementation of this technique is the subject 
of a Ph.D. dissertation in August, 1990 (Curran, 1990). 

1.4 Ongoiiig work 

The development of accurate and efficient contaminant transport codes leads naturally 
to the study of the effects of aquifer heterogeneity, a topic of much current interest in the 
water resources community. Accurate transport models enable one to study the numerical 
problem of scaling up from small-scale heterogeneities in an aquifer to the scales comparable 
to practical cell diameters in numerical models. During the course of this project, we began 
to outline some of these considerations (Allen and Ewing, 1990) and initiated research into 
numerical schemes for groundwater flow that will complement our transport codes (Allen et 
a1 . , sub mitt ed ) . 

2. PUBLICATIONS RESULTING FROM THE WORK 

The following is a list of publications that grew out of the work. This list serves as a 
bibliography for Section 1. Copies appear in the Appendix, except for M.S. and Ph.D. work, 
which are available through the University of Wyoming. 

2.1 Refereed articles 

0 Allen, M. B., and Curran, M. C. (19S9), “Adaptive local grid refinement algorithms for 
finite-element collocation,” Numer. Math. P. D. E., 5 ,  121-132. 

0 Curran, M.C., and Allen, h4.B. (1990), “Parallel computing for solute transport models 
via alternating-direction collocation,” Adw. Water  Resow.,  13:2, 70-75. 

0 Allen, h4. B., Ewing, R. C., and Lu, P. (submitted), “Well conditioned iterative schemes 
for mixed finite-element models of porous-media ~ ~ o w s . ”  

0 Curran, h4. C., and Allen, h4. B. (in preparation), “A domain-decomposition approach 
to local grid refinement in fini te-element collocation.” 
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2.2 Papers in conference proceedings 

0 Curran, M. C., and Allen, M. B. (1989; invited) “Parallel computing speedups for 
alternating direction collocation,” in Finite Element Analysis Fluids: Proceedings of 
the Seventh International Conference, Huntsville, Alabama, ed. by T. J. Chung and 
G. R. Karr, Huntsville, AL: UAH Press, 947-952. 

0 Guarnaccia, J. F., and Pinder, G. F. (1989)) “A parallel collocation based algorithm 
for the generalized transport equation,” in Applications of Supercomputers in Engineer- 
ing, Proceedings of the First International Conference, Southhampton, U.K., ed. by 
C. A. Brebbia and A. Peters, Amsterdam: Elsevier. 

0 Allen, M. B., and Ewing, R. E. (1990)) “How aquifer heterogeneities affect numerical 
groundwater models,” in Proceedings, Groundwater Engineering and Management Con- 
ference, organized by Colorado Water Resources Research Institute and Office of the 
State Engineer, Denver, CO, February 28-March 1, 1990, 161-170. 

0 Allen, M. B., and Khosravani, A. (1990)) “An Eulerian-Lagrangian method for finite- 
element collocation using the modified met hod of characteristics,” in Proceedings, Eighth 
Interantional Conference in Water Resources, Venice, Italy, ed. by G. Gambolati et al., 
Southhampton, U. I<.: Computational Mechanics Publications, 375-379. 

2.3 M.S. and P1i.D. work 

0 Khosravani, A. (1989), “Numerical Solutions of Solute Transport Equations,” M.S. 
paper, Department of Mathematics, University of Wyoming, Laramie, WY, October, 
1989. 

0 Li, X (1990)) “Numerical Methods for the Advection-Diffusion Equation in Areally and 
Vertically Averaged Domains,” M.S. paper, Department of Mathematics, University of 
Wyoming, Laramie, WY, July, 1990. 

0 Curran, M. C. (1990)) “Numerical Schemes for Highly Advective Flows Using Finite- 
Element Collocation with Adaptive Local Grid Refinement”, Ph.D. dissertation, De- 
partment of Mathematics, University of Wyoming, Laramie, WY, August, 1990. 

2.4 User’s guide 

0 I<hosravani, A., and Allen, M. B., “User’s Guide to ADllOC,” University of Wyoming 
Department of Mathematics, Laramie, WY, August, 1990. 

3. GRADUATE STUDENT TRAINING 

Four graduate students in Mathematics received partial support from this project. T h e e  
of these students completed degrees during the course of the project: 
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0 Azar Khosravani, M.S., 1989 

Xingjing Li, M.S., 1990 

0 Mark C. Curran, Ph.D., 1990 

The fourth student, Yun Li, began working on research for the M.S. in Mathematics in June, 
1990, and anticipates completion of the degree during the 1990-91 academic year. 

APPENDIX: COPIES OF PUBLICATIONS 

Attached are copies of papers appearing in or submitted to refereed journals or presented 
at conferences. Also attached is a user’s guide to a transport code. Not attached are Mark 
Curran’s Ph.D. dissertation, which is available from the University of Wyoming Library, 
and the M.S. papers written by Azar Khosravani and Xingjing Li, which are on file at the 
Department of Mathematics, University of Wyoming. 
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Adaptive Local Grid Refinement 
Algorithms for Finite-Element 
Collocation 
Myron B. Allen and Mark C. Curran 
Department of Mathematics, University of Wyoming, Laramie, 
Wyoming 82071 

An adaptive grid refinement procedure allows accurate solutions to advection-dominated, 
time-dependent flows using finite-element collocation. The technique- relies on a data 
structure that is readily amenable to parallel computing. The paper discusses computa- 
tional aspects of the method. 

1. INTRODUCTION 

Adaptive gridding offers an important class of strategies for computing accu- 
rate solutions to highly advective fluid flows. We present an adaptive local grid 
refinement scheme for use in fmite-element collocation models for such flows. 
Of special interest here are the algorithmic aspects of the procedure, which is 
readily amenable to implementation on parallel-architecture computers. We 
focus on transient flows in one space dimension. The paper has the following 
structure: Section 11 briefly reviews finite-element collocation on fixed grids; 
Section I11 discusses the grid-refinement algorithm for the linear advection- 
diffusion equation; Section IV extends the algorithm to nonlinear problems 
using Burgers’ equation as an example; Section V concludes the paper with an 
examination of the method’s performance on a parallel computer. 

II. REVIEW OF FINITE-ELEMENT COLLOCATION 

The method of finite-element collocation has its roots in the engineering lit- 
erature of the 1930s (see [l]), but we owe the modem version to de Boor and 
Swartz [2] and Douglas and Dupont [3], among others. For purposes of illustra- 
tion, consider the constant-coefficient advection-diffusion problem posed on the 
spatial domain rll = ( 0 , L ) :  

au au a2u 
at ax ax 
- + V- - D? = 0, (x, t) E fl X (0, w) ,  

Numerical Methods for Partial Differential Equations, 5 ,  121-132 (1989) 
8 1989 John Wiley & Sons, Inc. CCC 0749- 159W89!05 12 1 - 12$04 .oO 
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Here, v > 0 represents fluid velocity, D > 0 is a diffusion coefficient, and 
u = u(x, t)  stands for an unknown function, say, solute concentration. We shall 
apply finite-element collocation to the Crank-Nicolson semidiscrete analog 

where the superscripts indicate time level, ( * )n+("2)  = f[(.)"" + (a)"], and k sig- 
nifies the time step. 

We begin by establishing a spatial grid A' = (0 = xo, h = xI, - - ,Nh  = 
XN =-L}, and call [ X ~ - ~ , X ~ ]  = Q. In later sections, Ao will be the coarse grid, 
and Qi will be the ith course-grid element. The space of Hermite piecewise cu- 
bics for the grid A' on 0 = [0,1] is 

- 

In other words, f is cubic on each subinterval ai and, globally, is continuously 
differentiable. This order of continuity is the lowest for which one can use col- 
location on a second-order differential equation (Birkhoff and Lynch [4], p. 200). 

The space &:(A(') has an interpolating basis {Hi,', Hi, ,}Lo in which the sup- 
port .of each function Hi,,.x) is a small subset of = [O,L]  consisting of at 
most two adjacent subintervals, ai-I U ni (Prenter [5] ,  Chapter 3). In terms of 
this basis, we can write any6  E &.:(A(') as a linear combination involving val- 
ues off and f' at the nodes of A': 

N 

./Ix) = ]c V(xi M ,  i (x)  + f' (xi W 1, i (x)I * 
i=O 

In fact, for any g E C'(n), we can define a projection onto &.:(A(') as 
N 

(Tog> (x) = C. [ g(xiM0, i (x)  + g' (xJH 1 .  i (x>J * 

i = O  

To solve the semidiscrete analog of the problem ( l ) ,  we determine a se- 
quence {i in)~=:=o by first imposing initial and boundary conditions: 

iiO(x) = TOU, (x)  v x E n ; 
dii 

C"(0) = u,; (L) = u,& n = 1 , 2 , . - - .  

These criteria specify Co completely and determine two of the 2N X 2 nodal 
degrees of freedom for 4 I ,  i i 2 ,  - - . To determine the remaining 2hJ degrees of 
freedom at each time level n + 1, we first form the residual 

dfin+(l/2) d2'";'";?) 
R n + I  = c n + l  - f i n  + k v- - L 

We then pick a collection {Zl, * * - ,xLv}  C fl of collocation points and force 
R ( x k )  = 0,  k = 1 ,  - - , 2 N .  Douglas and Dupont (31 show that one can ob- 
tain optimal-order error estimates of the form - u( -, nk)ll, = O(h4) by choos- 
ing the Xk to be the two-point Gauss-quadrature abscissae in each element 0,. 

n + l  - 
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- Allen and Pinder [6] demonstrate an upstream-weighted technique assigning 
precisely these collocation points to all terms in the residual except the advec- 
tion terms kvdfi"/dx, for which the "collocation" points have the form Xt = 
Tk - {h,c > 0. 

Despite the smoothness required of the trial function ii", two features of colloca- 
tion make it an attractive scheme for modeling transient, advection-dominated 
flows. First, the matrix for the system of collocation equations at each time 
level has bandwidth five in one space dimension and is therefore sparser than 
the matrices arising from other fourth-order finite-element schemes. The price 
paid for this sparseness is a loss of symmetry in the matrix equations approxi- 
mating self-adjoint problems - a penalty that is irrelevant in advective prob- 
lems, since they are generally nonself-adjoint. Second, in contrast with classical 
Galerkin formulations, computing the collocation matrix requires neither the 
calculation of integrals nor formal assembly of a global matrix from local ele- 
ment matrices. This latter fact makes the method especially useful in transient, 
nonlinear problems, which typically require the computation of a new matrix at 
each iteration of each time step. 

111. THE ADVECTION-DIFFUSION EQUATION 

Finite element collocation, like other discrete methods, tends to yield unac- 
ceptable results for the advection-diffusion equation when the Peclet number 
P = vL/D * 1. In its standard O(h4) version, collocation yields spuriously 0s- 
cillatory solutions near sharp fronts unless h < m / P  (Jensen and Finlayson 
[7]). On the other hand, the upstream collocation scheme just cited smears 
sharp fronts as a consequence of a numerical diffusion coefficient proportional 
to P h i  (Allen [S]). Figure 1 illustrates these types of error. When P + 1 ,  using 
a uniform grid A' fine enough to mitigate these errors can be expensive. One 
way around this dilemma is to adjust h locally, so that the grid spacing is small 
only in regions where the solution exhibits sharp fronts needing fine-scale spa- 
tial resoluton. Since the sharp fronts move, it is necessary to refine the grid 
adaptively, so that the refined zone follows the front. 

Toward this end, we construct a sequence {A"}Z=o of grids, each associated 
with a time level n. For computational convenience we demand that each A" 3 
A', so that the variables associated with the original coarse grid A' are present at 
every time level. Thus at each time level n we construct a mapping Y": { 1 , - - - , 
N }  + (0, 1,2, - - -} assigning ~ " ( i )  new nodes, assumed evenly spaced, to each 
coarse-grid element aj = [ X ~ - ~ , X , ]  formed by A'. To avoid unnecessary com- 
putational effort, we want ~ " ( i )  = 0 except when a! lies near a sharp front. In 
these exceptional cases, we determine v"(i) according to a grid-refinement strat- 
egy appropriate for the equation being solved. We denote by 2" = c;'=, v"(i) the 
total number of new nodes added at time level n .  Also, we associate with each 
grid A" a trial space A ; ( A " )  and a corresponding projection T" :  C ' ( a )  - 
A ;(A") mapping continuously differentiable functions onto that trial space. 
Since the polynomial degree of the finite-element approximation remains con- 
stant while the grid spacing changes, this scheme is an example of h-rejnemenr. 

- 
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Spurious oscillations and numerical diffusion associated with (a) standard and 
(b) upstre&-weighted collocation solutions to the advection-diffusion equation. In all 
cases, h = 1/40, k = 1/20, P = 1069. 

We now collocate as before to determine a sequence 

{i E &:(Ao), i' E Mf(A1), - - * }  , 

using the 2(N + Z"+I) Gauss abscissae for A"" as collocation points to solve 
for the unknown Hermite coordinates of f i n + ' .  One new wrinkle is that we must 
project the old solution li" E A:(A") forward to the new trial space &:(An+')  to 
form the residual, getting collocation equations that have the form 

d21in+' dx 1 - D T ( Y k )  

= (nn+'p)(Fk) - v- (nn+'ljn) (Tk)  - D--+'+'LY) d 2  (.r,) 
dr 

I 
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There is another new wrinkle. The addition of 2" new nodes, and hence 22" 
new unknowns and equations, disrupts the matrix structure associated with col- 
location on A'. If we have an efficient matrix solver for the structure associated 
with A', then it makes sense to decouple the equations associated with newly 
added nodal parameters of f i n + ' ,  leaving a system having the original structure 
for the 2N coarse-grid unknowns along with a set of smaller systems for the 22"+I 
new unknowns the construction of a p-refinement scheme for collocation, in 
which they improve spatial resolution by increasing the local polynomial degree 
of the aproximation. 

We accomplish the decoupling in an elementwise fashion, using sparse row 
reduction on each of the augmented equation sets associated with refined 
coarse-grid elements a,.. At a typical time level n + 1; the procedure, which 
we call elementwise condensation, yields a system of the form 

J 

. 

where u;+l E Rim denotes the vector of coarse-grid unknowns; u;+l E [Wz"+' 
denotes the vector of refinement unknowns; A T '  E Rzn+'xzn+' is an upper bidi- 
agonal matrix multiplying the refinement unknowns, and B"" E Rzn+'xur is 
the matrix coupling new unknowns to the coarse-grid values. In practice, A:" 
has the same size and zero structure as the matrix associated with collocation 
on A', and B"" is sparse, having one 2v"+'(i) X 4 nonzero block for every re- 
fined element ai. Figure 2 shows the block structure of Eq. (2) in more detail. 

Given this structure, we can solve for the vector u:" of coarse-grid variables 
using our efficient coarse-grid solver, then solve for the refinement unknowns 
essentially using back substitution via the coupling block B"". The time-stepping 
procedure, starting with ci" known, is as follows: 

1. Compute v"+'(i), i = 1 , , N, using an adaptive refinement strategy. 
2. Form the projection ~ " " c i " .  

FIG. 2. 
mentwise condensation. 

Block structure of the matrix equation for the locally refined system after ele- 
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3. Compute the matrix entries associated with the refined problem. 
4. Use elementwise condensation to construct the system (2). 
5.  Solve A;I+'u;+' = ?;I+' for coarse-grid values. 
6.  Solve Bu;" + A;+*u:+' = f;" for variables introduced by the refinement. 

Step 6 actually reduces to a set of decoupled problems, each of which has the 
form 

(3) 

for a particular refined coarse-grid element ni. Here, BY+' E R2""+'(f3x4 multi- 
plies the coarse-grid unknowns in ni, and the upper bidiagonal matrix A:" E 
(ww+'( i )x2vn+~(o multiplies the refinement unknowns in nj. Observe that the back 
substitutions (3) associated with different refined elements n, are independent 
and therefore are amenable to concurrent processing. Similarly, the element- 
wise tasks called for in steps 1, 2, 3, and 4 are also parallelizable. We explore 
this aspect of the method in Section V. 

A sample computation demonstrates the effectiveness of this procedure in 
yielding accurate simulations. Consider the problem (1) on R = (0, 1) with 
square-wave data, 

u,(x) = 0, u(J = 1 ,  u; = 0 ,  

when v = 0.369 and D = 0.001. If we use a coarse gird A' having h = 
k = 0.05 and employ upstream weighting with 5 = 0.2, then the numerical 
solution will exhibit significant smearing, as shown in Figure 3 for t = 1. We 
can virtually eliminate this smearing by forcing h < 1/P globally, but as Fig- 
ure 3 also shows, we can achieve comparable results by enforcing the same cri- 
terion only in zones where supXE$flin//d.I > (5h)-', that is, where the solution 
is steep. The latter strategy involves solving for at most 180 unknowns per time 
step, while global refinement requires solving for about 400. 

IV. BURGERS' EQUATION 

For nonlinear problems the time-stepping procedure is somewhat more com- 
plicated. Here, the use of an implicit scheme for stability forces one to iterate 
between time steps. Since frontal velocities may be functions of the unknown 
solution, it is possible that zones needing refinement at a particular time level 
will be identifiable only in the last few iterations of the time step, when the it- 
erative scheme has nearly converged. We use this reasoning in developing a 
grid-refinement algorithm for Burgers' equation, 
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CONCENTRATION FRONT PROFILES A T  T = 1 
1;1 .  , I , I , , , 

1 ' 1 ' 1 ' 1 ~  I I 

- 
A No refinement 

- 
Local refinement - 

Global refinement - 
- 

7 t  
v = 0.369 

D = 0.001 

z h = 0.05 

k = 0.05 
0 
V I 

X 

FIG. 3. 
using a coarse grid, a globally refined grid, and a locally refined grid. 

Upstream-weighted collocation solutions to the advection-diffusion equation 

assuming initial and boundary data having the form 

u(x, 0) = u,(x), 

u ( 0 , t )  = uo, 

x E n = (0, 1)  , 

u(L, t )  = U N .  

In this equation, u stands for fluid velocity, while p represents a fluid viscosity. 
When p G 1, the equation models nearly inviscid, self-advected flows and has 
shock-like solutions needing local fine-scale spatial resolution. 

In the refined problem on A', we compute a sequence {ii"}~=o in &:(Ao), sat- 
isfying the initial and boundary conditions, such that the residual vanishes at 
each collocation point xk E 0. In this case, the residual for the semidiscrete 
scheme is 

5 

I 
t 

which is a nonlinear function 

{(u6)"+ 9 

of the unknown Herrnite coordinates 

(u,)"+l, (u l )"+l ,  * , (u;)n+l)  
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for each fixed value of Xk . To solve this nonlinear problem for 6"" in terms of 
li", we linearize it using Newton's method. Thus we make an initial guess 

= 6" and, at each iterative level rn > 0, solve for a new iterate 
N 

= ~ ( [ ( ~ ~ ) n + ' ~ " '  + Si]H0, ,  + [(u;)""~"' + S f l H , , , } .  
i-0 

Clearly a,, = SN = 0; the boundary values of fin+' are known. To compute the 
vector 6 of remaining increments, we solve the linear system 

j n + I . m S  = - r n + l . m ,  

where the kth entry of I-"+'*'" is RR+IYm ck), and J"+'*"' is the Jacobian matrix of 
r"+'*"' with respect to the unknown Hermite coordinates. Given a tolerance r > 
0, we iterate until Jlrn+'*m+'llP < r, then set u"+'*~+' .  

In practice this scheme has several nice attributes. First, it is stable for very 
large time steps, including "Courant" numbers (Iri"+'ll&/h > 100 that far exceed 
those required to keep the temporal truncation error reasonably small. Second, 
it converges rapidly. Using N = 100, the scheme reaches Ilr"+'."'+'ll=, < lo-' in 
three or four interations, almost independent of the time step k. 

To implement adaptive local grid refinement, we adopt a simple "predictor- 
corrector" strategy in this Newton scheme. This strategy determines the refined 
grid A"+' only after performing a few Newton iterations on the coarse grid A'. 
The algorithm runs as follows: for the "predictor" stage, we iterate on A' to reach 
a tolerance ro > 0: 

f- Tori". 1. f in+I ,O 

2. Solve J"+'."'S = -yn+'," '  on A' to get iterates un+'*"'+l E .U:(A0). Stop 

At this point we have a crude approximation to the new solution ; " + I ,  which 
we use to determine the refined grid: 

Finally, we perform the "corrector" stage, iterating on An+' to reach a tolerance 

when Ilrn+17MllP < ro. 

3. Construct A"+' according to some refinement strategy. 

4. U n + ' l M + o  + 7Tn+' u .  " + I n M  

71 > 0: 

on A"+'  to get iterates ~ ~ + l ~ ~ ~ + ~ + l  E 5 .  solve j n + l . M + m G  = - r n + l . M + m  

&:(A"+'). 
6. i n + l  i n + l , M + m + l .  , n  + n  + 1. 

In step 5 we use the elementwise condensation algorithm outlined in the previ- 
ous section to solve the linear system involving J n + 1 9 M + m .  

A sample calculation paralleling that described in Chong [ 101 illustrates this 
procedure. Consider problem (3) with N-wave data on i2 = (0, 1): 

UAX)  = 4) = 0, Llv = u , ( l ) ,  4x'- 
1 + exp - 

and let p = For the true solution, l d i / d x l  = O(1) except in an interior 
layer of thickness Q), in which ldi/dxl = O(p-'). If h denotes the coarse- 
grid mesh, then we insert O ( p - ' )  refinement nodes in each coarse-grid element 
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a,. where (ul - uy-,)/h > 2. Figure 4 shows the resulting numerical solutions 
at different time levels, using h = k = 0.05, together with a plot of the exact 
solution for comparison. -- - 

V. IMPLEMENTATION ON A PARALLEL COMPUTER 

We have implemented this refinement strategy on an Alliant FX/8 parallel 
processing computer. The Alliant is a shared-memory machine with optimiza- 
tion capability for both concurrent and vector programming. Five compu- 
tational elements or processors are available on our machine as currently 
configured. 

are 
contained in three subroutines. The first routine, called REGRID, constructs 
the nonsquare system of equations involving variables associated with a,.. The 
second, called CNDNS, performs the elementwise condensation and decompo- 
sition. The third, BAKSUB, solves for the refinement variables after the solu- 
tion on the coarse grid is known. These routines are implemented for each refined 
coarse-grid element n,.. In each routine, calculations for separate coarse-grid 
elements are performed concurrently. All computation inside each routine must 
be done sequentially since the processors are in use at this time. However, the 
sequential calculations in each routine are optimized for vectorization. 

3 

* * 

The computations associated with each refined coarse-grid element 

a t = 0.5 
0 t = 1.0 .4 1 h = k = 0.05 

cn (2) 

2 

FIG. 4. 
solution for comparison in the last time step. 

Solution profiles for Burgers' equation with N-wave data, showing the exact 
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The machine allows users to control concurrency within a Fortran code 
through the use of compiler directives. The following is a description of the 
"corrector" stage of the nonlinear algorithm described in Section IV. The com- 
piler directives themselves begin with the flag CVD$ starting in the first col- 
umn of code. 

i. r - -  ~. -. - 
Construct the refined grid An+' 
Begin iteration on refined grid until Ilrn+'*M+'"+' 11 < 71 

Determine right hand side vector for coarse-grid equations 
CNCALL (Compiler directive to permit the concurrent execution of the 
following loop containing a reference to an external procedure.) 
DO for each refined nl 
END D o  

.._ Check for convergence 
Determine matrix multiplying coarse-grid variables 

CVD$L CNCALL 
DO for each refined 32, 

.. * 

CVD$L 

/ 

CALL REGRID (Constructs nonsquare systems.) 

CALL CNDNS (Performs condensation and decomposition.) 
- ENDDO 

CVD$L CNCALL 
. Solve for coarse-grid variables 

DO for each refined al 
END DO 

End Iteration 

CALL BAKSUB (Solves for refinement variables.) 

- - .- - - - _- -. - - . '- * . - r  

CVD$R 

CVD$R NOCONCUR 

CVD$R NOCONCUR 

NOCONCUR (Directive to supress concurrency until the end of the routine.) 
SUBROUTINE REGRID 

SUBROUTINE CNDNS 

SUBROUTINE BAKSUB 

One measure of how well the algorithm makes use of the machine's parallel 
capabilities is the speedup. Speedup for n processors is the ratio of the time 
needed by one processor to the time used by n processors to perform the com- 
putation associated with-grid refinement. If there were no overhead required to 
monitor and schedule the various processors, the speedup for n processors 
would be n. Figure 5 shows four speedup curves. These plots represent the 
speedups achieved by our algorithm for an average of two, four, six, and eight 
elements refined per time step in the Burgers' equation solver. As expected, for 
an average of two elements refined per time step, the speedup does not improve 
for more than two processors and even decreases slightly due to the increased 
overhead. Similarly, for an average of four elements refined in each time step, 
speedup does not improve when a fifth processor is used. Figure 6 shows the 
speedup curve when five elements are refined per time step. Clearly, this 
amounts to a special case for our machine configuration. The speedup for five 
processors is 3.51. This result compares with a machine peak of 4.5, observed 
by Puckett and Schmidt [ 111 while using a purely parallel algorithm with no 
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FIG. 5 .  Speedup plots for the parallel computations in the local gridding algorithm im- 
plemented on a five-processor machine with shared memory. Different curves represent 
different average numbers of coarse-grid elements refined per time step. 
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FIG. 6. Speedup plot for the parallel computations in the local gridding algorithm 
implemented on a five-processor machine with an average of five coarse-grid elements 
refined per time step. 
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data sharing among processors and no accumulation of results. Those authors 
found that peak performance occurs only when the number of iterations in 
a concurrent loop is quite large: They achieved the speedup of 4.5 in a loop 
having 3600 iterations. 

There are several factors that prevent optimal speedup in our algorithm for 
grid refinement. First, not every processor has the same computational burden, 
since the amount of refinement in the coarse-grid elements can vary spatially. 
Second, the number of iterations performed in each loop is typically small, 
owing to the local nature of the refinement. A third barrier to the attainment of 
peak performance is the necessity to accumulate the results of the parallel com- 
putations in memory for use in subsequent calculations. These limitations seem 
inherent in any adaptive gridding procedure for nonlinear, transient flows. With 
this proviso, our algorithm appears to make good use of the shared-memory 
parallel architecture. 

The National Science Foundation supported this work through grants DMS-8504360 and 
RII-8610680. The Wyoming Water Research Center also provided support through a 
grant-in-aid to the authors. 
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Parallel computing for -solute transport models via 
alternating direction collocation 

M. C. Curran and M. B. Allen I11 

Department of Mathematics, University of Wyoming, Laramie, WY 82070 U. S. A 

We examine algorithmic aspects of M. Celia's alternating-direction scheme for finite-element 
collocation, especially as implemented for the two-dimensional advection-diffusion equation 
governing solute transport in groundwater. Collocation offers savings over other finite-element 
techniques by obviating the numerical quadrature and global matrix assembly procedures 
ordinarily needed in Galerkin formulations. The alternating-direction approach offers further 
saving in storage and serial runtime and, significantly, yields highly parallel algorithms 
involving the solution of problems having only one-dimensional structure. We explore this 
parallelism. 

Key Words: Alternating-direction methods, collocation, parallel computing. 

1. INTRODUCTION 
Alternating-direction (AD) methods have been of in- 
terest in the numerical solution of partial differential 
equations since their introduction in 1955 by Peaceman 
and Rachford'. In 1970 Douglas and Dupont' 
developed an alternating-direction Galerkin met hod, 
variants of which have attracted the attention of several 
authors, including Dendy and Fairweather and Hayes 
and Krishnamachari 4. Analogous alternating-direction 
collocation (ADC) methods have also appeared in 
several papers, including those by Bangia et al. ', Chang 
and Finlayson6, Hayes', Celia et al. ', Celia', and Celia 
and Pinder lo. Reference 9, in particular, demonstrates 
the applicability of ADC to problems of practical im- 
portance in water resources engineering. 

We examine Celia's ADC for the two-dimensional 
advection-diffusion equation for solute transport in a 
known velocity field. Of interest here are algorithmic 
features of ADC that enhance its efficiency in com- 
parison with standard two-dimensional collocation, 
especially the amenability of ADC to implementation 
on parallel-architecture computers. The paper has the 
following structure: section 2 briefly reviews finite- 
element collocation using bicubic Hermite bases; section 
3 discusses the AD method applied to collocation; in 
section 4 we discuss the method's performance on a 
parallel computer. 

2. REVIEW OF FINITE-ELEMENT 
COLLOCATION 
We begin by reviewing finite-element collocation for 
problems in two space dimensions. The primary aim 
of this review is to establish notation and terminology 
for the rest of the paper. Lapidus and Pinder give an 
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alternative, more detailed description of the 
methodology that may be more appropriate for those 
seeking an introduction. 

Consider the following problem, posed on the rec- 
tangular spatial domain Q = (a ,  b )  x (c, d ) :  

(a) d,u + v - Vu - V -  (DVu) = O,(x, y,  t )  E IR x (0, a), 

(b) u ( x ,  Y ,  0) = w ( x ,  Y ) ,  ( x ,  Y )  E Q ,  

(c) w, Y ,  0 = U B ( X ,  Y ,  0, ( X , Y )  c an, t 3 0. 
(1) 

In equation (la), v = v ( x ,  y )  represents a known fluid 
velocity, which in applications might be the Darcy 
velocity computed using a groundwater flow model. 
D =  D ( x ,  y )  is a diffusion coefficient, which in 
underground flows could serve as a simple model of 
hydrodynamic dispersion. (For purposes of testing the 
efficiency of collocation algorithms, we neglect the 
possible tensorial nature of D and suppress explicit con- 
sideration of any dependence on the fixed velocity field 
v.)  The unknown function u = u ( x ,  y ,  t )  represents a 
solute concentration. Equation (1  b) gives the initial con- 
centration field, while equation (lc) imposes Dirichlet 
boundary conditions. These boundary data are not 
the only ones to which the ADC method applies; in 
fact, one could just as well impose Neumann, Robin, or  
mixed boundary conditions. 

We use finite-element collocation to discretize the 
spatial dimensions in the following class of semidiscrete 
analogs: 

. 

U I I +  1 - u " +  k [ v . V l / " + ' - V *  ( D V L / " + ~ ) ]  =0 ,  
n = 0 , 1 , 2  y . . . ,  (2) 

where integer superscripts indicate time level. The nota- 
tion ( a ) " + @  signifies a convex combination 
8( . ) " + I  + ( 1  - 8)( a ) ' '  of the quantity ( a )  at successive 
time levels, where 0 6 8 < 1,  and k denotes the time 
step. In particular, the choice 19= 1/2 yields a Crank- 
Nicolson scheme, for which \ve espect the locrtl trunca- 
tion error to be ( ~ ( k ? ) .  
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We begin by establishing a rectangular grid on Q and 
a corresponding space of finite-element interpolating 
functions. Let A x  = ( a  = XO,  ..., X,V, = 6 )  and A, = 
[ c = yo, ..., y ~ ,  = d )  be grids on the x- and y-intervals 
(a ,  b )  and (c, d ) ,  respectively, and call h, = maxl G I G  N, 
{ Xi - Xi-  1 ) and hy = j < N , . (  JJ, - yj- 1 1. The Her- 
mite piecewise cubics on these one-dimensional grids are 
functions belonging to the spaces 

Jf : ( A x )  = 
(fc C ' ( [ a , b l )  I f l [ s l - l , x l l  is cubic, i =  1 ,  ... , Nx], 

f f ~ c ' ( [ c , d ~ ) l f l r , - , , ~ , ~  is cubic, j =  ~ , . . . , N , L  
,It: (A,) = 

Here f l  denotes the restriction of the globally 
defined function f to the subinterval [ X i -  I ,  x;]  . Thus 
each function in either of these spaces agrees with some 
cubic polynomial on  any subinterval in the grid, and 
these cubic 'pieces' connect in a manner that preserves 
global continuous differentiability. As Prenter l2  shows, 
each of these spaces has an interpolating basis 
( h i ,  hl;)goor Nv ,  every element of which has support 
confined to  at most two adjacent subintervals [ X i -  1, x;] 
or  [ yj- I ,  yj]  . Given any function f E  .-,it: ( A x ) ,  for 
example, the representation of f with respect to this 
basis takes the form 

N, 
f ( x )  = c [f(Xi)hoi(X) + f' ( ~ M I / ( X ) l -  

i = O  

For the two-dimensional problem ( l ) ,  we use these 
interpolating spaces to form a tensor-product inter- 
polating space , f l ; ( A X )  @ "if;(A,,) .  This space has a 
basis in which each function is the product of a 
piecewise cubic basis function in , , /I:(Ax) and one in 
A:(A, ) .  At each time level n, we compute an approx- 
imate solution G " ( x , y )  belonging to  the trial space 

*,/I = { u E (A ,-) @ dt? (Av)  I V ( X ,  u )  
- = uB(X, U) tl (x ,  Y )  E asti .  

As the notation indicates, each function in ,N 
automatically obeys the boundary conditions (lc) and 
has the form 

N, y 

P Y X ,  u )  = c c [G"(X/, Y,)HOO/,(X, y )  
/ = O  J = o  
+ arfi"(xt, ~ j ) H l o / j ( x ,  Y )  

+ & y f i " ( X l ,  Y,)Hll,(X, r)I 9 

+ a , i n ( X , ,  Y , ) H ~ ~ , ( x ,  V )  

where H/mrj(x, U) = hi(x)httt,(y)- 
At t = 0 we form the initial approximate solution io 

by using the nodal values of the initial function UI and 
its x-, y- ,  and xy-derivatives to form the projection of  
the true initial concentration onto * N. These criteria 
specify t io completely. For subsequent time levels, the 
fact that every function in the trial space, N satisfies the 
boundary conditions fixes the nodal values and tangen- 
tial derivatives of the approximate solute concentration 
along the boundary dR. A careful count will reveal that 
the boundary conditions determine 4(Nt + N,. + 1 )  of  
the 4 ( N c  + l)(iVr + 1 )  nodal coefficients for each 
unknown function G I ,  ii', ... . 

At each new time level n + 1 ,  we use o u r  knowledge 
of the most recently computed appro\imate solution ii" 

to determine the remaining 4N.,N, degrees of freedom 
for ti"+'. We first form the residual 

We then pick a collection [ ( X I , ~ I ) ,  (21 ,Y2) ,  ..., (X~N,, 
J z N , . ) )  of 4NxNy collocation points and force 
R"+1 ( X p , j q )  = 0 at each, thus enforcing precisely the 
correct number of conditions to determine l i"+ I .  In par- 
ticular, we choose X, and j q  to be the two-point Gauss- 
quadrature abscissae on  each subinterval [ X i -  I ,  x ; ]  or 
[ y,- 1, uj] . Since the spatial problem to be solved at 
each time level is elliptic we expect this choice of col- 
location points to yield optimal global error estimates of 
the form I(un - li"ll.. = O ( h j  + h;) (see Refs 13 and 14). 

3. THE ALTERNATING-DIRECTION METHOD 
The aim of ADC is to modify the ordinary two- 
dimensional collocation procedure via an operator split- 
ting. This splitting reduces the discrete problem to one 
involving a sequence of matrix equations, each of which 
has the same sparse structure as the one-dimensional 
collocation system. The following description of this 
splitting approach is essentially a review of the develop- 
ment presented by Celia and Pinder in Ref. 10. 

We first perturb equation (2) by a term that is 0 ( k 2 )  
to get 

(Reference 10 treats the advection-diffusion equation in 
a slightly different fashion, splitting only the diffusive 
part of the spatial operator.) Rearranging equation (3) 
and factoring gives 

(1 + kegy)(i + k o ~ , ) ( u " + l  - u") = - k ( 9 x  + 9 y ) u " .  

Conceptually, we can solve ( 1  + k09,)t = - k ( g X  + gV)u" 
for the intermediate unknown t, then solve 
(1 + kOde,)(u"+' - u " )  = z for the time increment in ti. 

To see how this works algebraically, notice that 
substituting Hermite bicubic trial functions for ti and 
collocating produces a matrix equation Ku"+' = r", 
where un+ '  is the vector of time increments for the 
unknown nodal coefficients of ti"". Consider a typical 
entry of the matrix K: 

where H/,,i/j is some basis function in the tensor-product 
interpolation space. Each HI,,,~,(X, y )  = h/t(x)h, t l , (y) ,  so 
we can expand the expression (4) and factor it to get 

[ h i ( & )  + k W ' t h / ; ) ( i p ) I  * [h, , , , ( jq) + M ( Y y h , n , ) ( j j q ) l  * 

This factoring of each matrix entry, together with 
Celia's scheme9 for numbering and renumbering equa- 
tions and unknowns, allows us to factor the entire 
matrix equation at each time level in a computationally 
attractive fashion. I f  we number the equations and 
unknowns 'vertically,' that is, consecutively along the 
lines x=SI,, as shown in Fig. la, then the 
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1 5  2 N u + 5  4 N u + 5  G N v + 5  8 N V + 5  I 1 
4 2 N , + 4  41Nv+4 6 N v + 4  I -  8 N v + 4  

( 3  2 N v + 3  4 N w + 3  6 N v + 3  8 N v + 3  I I 
( 1  2 N v + 1  4N,,+1 6 N , , + l  8 N w + 1  I I 

4 5 
A 6 

1 

Fig. I .  (a) Vertical numbering scheme for the equa- 
tions used in the y-sweep. Equation numbers occupy 
the sites of corresponding collocation points; the sym- 
bols indicate nodes in the grid. (b) Horizontal number- 
ing scheme for  the equations used in the x-sweep. (c) 
Association scheme for  numbering nodal unknowns 
following a given numbering scheme for  the collocation 
points surrounding the node. 

4N,Ny x 4 N , 4  matrix’K factors as follows: 

K = Y X = [  YI.1 .-. ] [  x1.1 i X l , Z . V ,  i 1. 
Y2N,,2.V, X2N,,I - a ’  x2.v, .2,vv 

Each 2Nv x 2flV block Yp,p has the five-band structure 
of a one-dimensional collocation matrix, shown in Fig. 
2. .Moreover, The entries in Yp,p depend only on the 
y-coordinates of collocation points. 

Now consider the matrix X. I f  we switch to the 
‘horizontal’ numbering scheme for equations and 
unknowns, illustrated in Fig. Ib, then X transforms to 
a block-diagonal matrix that we denote as follows: 

p:,, 1 
1 

(We use the superscript * to indicate the result of 

- 
x x x  
x x x  

x x x  x 
x x x  x 

x x x x  0 
x x x x  

x x x x  
x x x x  

x x x  x 
x x x x  0 x x x x  

x x x x  
x x >  
X X )  

Fig. 2. 
matrix for  standard one-dimensional collocation 

Five-band Zero structure associated with the 

switching to the ‘horizontal’ numbering scheme.) 
Again, each 2N,x  2N,  block X:,, has the five-band 
structure shown in Fig. 2. 

In light of these observations, we can solve the two- 
dimensional matrix equation Ku”+’  = r n  by the follow- 
ing procedure. 

1. Adopt the ‘vertical’ numbering scheme, and solve 
Yz = rn for the intermediate vector z by solving the 
independent problems Y,,,z, = r:, p = 1, ..., 2N,. 

2. Renumber according to the ‘horizontal’ scheme, 
converting z to the reordered vector z*. This 
renumbering transforms X to the block-diagonal 
form x*. 

3. Solve X*u”+’  = z* for the desired time increments by 
solving the independent systems X,*,,u;+’ = z:, 
q = 1, ..., 2N,b 

Thus each time step involves the solution of matrix 
equations that are at worst one-dimensional in 
structure. 

At this point we can make some comments regarding 
the efficiency to be gained by the splitting scheme. For 
simplicity, let us assume that N., = A!,. = N. In the fully 
two-dimensional matrix problem K u ” + l  = r”,  there are 
then -INZ unknowns, and the matrix K is asymmetric. I f  
we order equations and unknowns to allow for row 
reduction uithout pivoting, K will have a bandwidth 
Bz = 8 N +  16 (see Ref. 15). Assuming that row 
reduction accounts for the bulk of  the computational 
work in the sparse matrix solver used, we can expect the 
operation count for solving the fully two-dimensional 
equations at each time step to be roughly 
4 N 2 B $  = 256N‘ for large N. By contrast, ADC calls for 
the solution of 4 N  matrix equations of bandijjdth 
B ,  = 5 and order 2 N  at each time level. Thus an upper 
bound for the number of arithmetic operations required 
in the row reductions for ADC is 4:V(?,VBf) = 200,V”. 

Furthermore, each of  the ’one-dirnensional’ systems 
i n  jteps 1 and 3 ot‘ ADC is independent of any orher. 

. 
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Therefore these steps can run concurrently, whereas 
there appears to be no such obvious parallelism in the 
standard solvers for the fully two-dimensional 
formulation. We explore the inherent parallelism of 
ADC in the next section. 

4. IMPLEMENTATION ON A PARALLEL 
COMPUTER 
We have implemented ADC on an Alliant FX/8 parallel 
processing computer. The Alliant has eight processors 
in a shared-memory configuration in which each pro- 
cessor is a vector-architecture machine. The Alliant 
allows users to  control concurrency within a standard 
Fortran code through the use of compiler derectives. 
Since we are mainly interested in the general advantages 
to  be gained through the shared-memory architecture 
and the concurrency controls furnished by the compiler, 
we shall not consider such other machine-specific 
features as size of the cache (high-speed memory), 
number of processors, or  speed of the random-access 
memory. 

The following is a description of the code outlined in 
Steps 1-3 of section 3. The compiler directives 
themselves begin with the flag CVD$ starting in the first 
column of code. 

Initialize io, set n = o 
Begin time level n + 1 

CVD$L CNCALL (Compiler directive to permit the con- 
current execution of the following loop 
containing a reference to an external 
procedure.) 

DO for each p =  1, ..., 2Nr 
CALL YSWEEP (Constructs the system 

Y,,pzp= r;, solves it, and 
saves the results.) 

END DO 
CALL RENUM (Reorders z to get z*) 

CVD$L CNCALL 
DO for each q =  1, ..., 2y, 

CALL XSWEEP (Constructs the system 
X,*,,u,"+' = zq*, solves it and 
updates the nodal coefficients 
of li to time level n + 1.) 

END DO 
End time step 

CVD$R NOCONCUR (Directive to supress concurrency 
until the end of the subroutine.) 

SUBROUTINE YSWEEP 

SUBROUTINE XSWEEP 
CVD$R NOCONCUR 

The directive CNCALL forces the passes through a 
DO loop to execute in parallel, within the limitations of 
the machine's configuration. Thus, for example, if the 
algorithm calls for eight passes through the loop and 
there are eight processors, then CNCALL forces the 
operating system to map each pass onto a separate pro- 
cessor, allowing concurrent execution of the passes. If, 
on the same machine, the algortithm calls for nine 
passes through the loop, then the last pass must wait un- 
t i l  one of the first eight terminates before the operating 
system can map the ninth onto a free processor. This 
logic implies that certain efficiencies accrue when the 
number of independent processes is an integer multiple 
of the number of processors in the machine being used. 

The need for the directive NOCONCUR arises from 
the structure of the Alliant's optimizing compiler, which 
often must choose among several levels of parallelism 
in a code. By default, the compiler optimizes for 
parallelism at the finest level. Thus, for example, it will 
force independent processes within a subroutine to run 
concurrently, in preference to forcing independent calls 
to the subroutine itself to run concurrently. Inserting 
the directive NOCONCUR before the SUBROUTINE 
statement overrides the default level for optimization. 
This device allows the compiler to treat each call to the 
subroutine as an independent process, even if the poten- 
tial for concurrency exists at a finer level inside the 
subroutine. 

One measure of how well the algorithm make: use of 
the machine's parallel capabilities is the speedup. 
Speedup for n processors is the ratio of the CPU time 
needed by one processor to  the time used by n pro- 
cessors to perform a set of tasks in parallel. For a 
perfectly parallel algorithm requiring no overhead to 
monitor or  schedule the various processes and no 
storage of their results, the speedup for n processors 
would be n. Figure 3 shows the speedup curve for the 
ADC algorithm, implemented for the advection- 
diffusion problem on a 40 x 40-element spatial grid. The 
CPU time used to compute these ratios is actual clock 
time, excluding the processing required for initializing 
the code but including computational overhead required 
for scheduling and storage of intermediate results. The 
speedup curve is quite close to the ideal curve of unit 
slope, yielding a speedup of 7.27 for eight processors. 
Clearly, ADC makes very good use of the Alliant's 
shared-memory parallel architecture. 

We caution against extrapolating these speedup 
results to much larger problems on the Alliant as con- 
figured. The size of the cache memory in any particular 

1 u 2 3  5 6  8 

Number of Processors 
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computer clearly constrains that machine’s ability to 
compute efficiently. What is important here is not the 
computational horsepower of the particular machine we 
have used but rather the natural parallelism inherent in 
the ADC algorithm. This parallelism can yield signifi- 
cant speedups on essentially any shared-memory 
parallel architecture. 

To confirm that ADC gives useful approximations, 
Figs 4 and 5 show solution plots for two different prob- 
lems. Figure 4 shows the results of a rotating plume pro- 
blem on Q = (-  1, l )  x (-  1 ,  I), with N,= N, = 40 and 
k = 0.004. Here, v = 2n( - y ,  x )  is a circular velocity 
field, D = 0, and the initial concentration plume U I ( X ,  y )  
is a ‘Gauss hill’ with center at (0, -0.6) and standard 
deviation a = 0.066. This pure advection problem, while 
physically unrealistic, poses a fairly severe test of 
ADC’s ability to approximate solutions with steep 
fronts in highly advective flow fields. In this case, the 
global error at t = 1, when the exact solution is identical 
to  the initial condition, is less than 0.08 11 u 11 ... 

Figure 5 displays the results of an advection-diffusion 

I I I I I I i 

t 1 

1 
-1 I 1 1 i I 1 I I 1 I J 

-1 1 

Fig. 4. Concentration contours for the purely advec- 
tive rotating plume problem at various time levels. Con- 
tour interval is 0.1 

problem o n  9 = (0, 1) x (0, l ) ,  with N, = Ny = 20 and 
k = 0.004. The diffusion coefficient here is D = 0.00385. 
The velocity field is v(x, y )  = 2eV(x, - y ) ,  which cor- 
responds to the steady-state Darcy velocity - m+ on Q 
when the hydraulic conductivity is K ( x ,  y )  = exy and the 
head obeys the boundary conditions @ ( x ,  y )  = x 2  - y 2  
on ail. The inital concentration distribution U I  for this 
problem is another ‘Gauss hill,’ with 0 = 0.05 and center 
(0.75,0.25). 

5. CONCLUSIONS 
From operation counts alone, it has been clear for some 
time that ADC offers distinct efficiencies over standard 
met hods for two-dimensional collocation in a serial 
computing environment. With the advent of practical 
parallel computers, ADC holds even more promise, 
since the splitting scheme converts a fully two- 
dimensional problem into a sequence of ‘one- 
dimensional’ problems that are amenable to concurrent 
processing. Similar observations should hold for other 
alternating-direction methods, including techniques for 
multidimensional finite-difference and Galerkin 
aproximations. 
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Abstract 

Mixed finite-element methods are attractive in modeling flows in porous media, since 

they can yield pressures and velocities having comparable accuracy. In solving the re- 
sulting discrete equations, however, poor matrix conditioning can arise both from spatial 

heterogeneity in the medium and from the fine grids needed to resolve that heterogeneity. 

This paper presents iterative schemes that overcome these sources of poor conditioning by 

using effective preconditioners in conjunction with a multigrid method for pressures. 

I Introduction 

We consider methods for solving discrete approximations to the equations governing 

single-fluid flow in a porous medium. If the flow is steady and two-dimensional with no 

gravity drive, Darcy’s law and the mass balance take the following forms: 

u = -Kgradp in 0, 

- div u = f in n. 
Here U, p, f represent the Darcy velocity, pressure, and source term, respectively. For 

simplicity, we take the spatial domain to be a square, scaled so that R = (0 , l )  x (0,l) .  

The coefficient K ( z ,  y) is the mobility, defined as the ratio of the permeability of the porous 

medium to the dynamic viscosity of the fluid. In applications to underground flows, the 

structure of K may be quite complex, depending on the lithology of the porous medium 
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and the composition of the fluid. We assume, however, that this ratio is bounded and 

integrable on fi and satisfies K 2 Kinf > 0. _ _  We impose the boundary condition p = O on 
- 

d n ,  so that p effectively represents - - _  the deviation in pressure from a reference value known 

along dR. 

Scientists modeling contaminant flows in groundwater or solvent flows in oil reservoirs 

often need accurate finite-element approximations of u and p simultaneously. For this rea- 

son, mixed finiteelement methods for solving the system (1.1) are particularly attractive, 

since they can yield approximations to u and p that have comparable -accuracy ([I], [5] ) .  

The key to achieving such approximations is the use of appropriate piecewise polynomial 

trial spaces, such as those proposed by Raviart and Thomas [lo]. As we review in Sec- 

tion 2, if we use the lowest-degree Raviart-Thomas spaces, the mixed formulation yields 

systems of discrete equations that have the form 

A U + N P  = 0, 

NTU = F. 
- .  (1-2) 

Here, U and P signify vectors containing nodal values of the trial functions for u and p, 

defined on a grid over n, and A and N are matrices. As we illustrate below, the matrix 

A contains all information about the spatially varying material property K, while N and 

NT are essentially finitedifference matrices. 

Equations (1.2) can be quite difficult to solve efficiently, for the following reasons. When 

K varies over short distances, accurate finite-element approximations require fine grids 

on R. For 

classical stationary iterative schemes, this increase in the condition number of the system 

leads to slow convergence, no matter how %ice'' K may be ([Z], Section 4.11). The 

problem is compounded whenever :&dibi ts  large: spatial- variations, as can occur near 

lithologic changes in the porous medium or . -  sharp contacts between fluids of different 

Fine grids, however, typically yield poorly conditioned matrix equations. 

viscosity. In such problems, as we shall demonstrate, the poor conditioning associated with 

spatial variability typically aggravates that associated with the fine grids needed to resolve 

the physics of the problem. Thus, in problems with significant material heterogeneity, 

methods that are relatively insensitive to these two sources of poor conditioning can have 

considerable utility. 

In this paper we discuss two types of iterative schemes for the mixed-method equations 
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(1.2). The first type possesses convergence rates that are independent of the fineness of the 

grid. The second type, derived from the first, also overcomes the sensitivity to the spatial 

structure of K, at the expense of somewhat more computation per iteration. Briefly, the 

first scheme proceeds as follows: Let (U(*),P(O)) be initial guesses for the value of (U, P). 
Then the k-th iterate for (U,P) is the solution of 

( $ p ) ( ;::; ) = ( "-.> + ( ;'-A : ) ( $1;; ) 9 (1.3) 

where I stands for the identity matrix and w signifies a parameter, discussed below, that is 

related to the spectral radius p(A) of A. For each iteration level I c ,  the main computational 

work in (1.3) is to solve a linear system of the form ( w - ' N ~ N ) P ( ~ )  = G(k-l). However, the 

matrix W-~WN remains vulnerable to the poor conditioning associated with fine grids. 

We overcome this difficulty by using a multigrid scheme to solve for P(k) ,  thereby greatly 

reducing the computational work in each iteration. 

An interesting feature of this approach is that NTN is essentially the matrix associated 

with the five-point difference approximation to the Laplace operator with Dirichlet bound- 

ary conditions. Hence, the multigrid portion of the scheme does not encounter the variable 

coefficient, and the algorithm is particularly simple. The price paid for this simplicity, as 

we shall see, is sensitivity to the poor conditioning associated with spatial variability. 

To overcome this second source of trouble, we modify the first scheme to get new ones 

of the form 

where D denotes a diagonal matrix that we compute from A. This new class of schemes 

requires us to invert N T D N ,  which we again do using a multigrid method to preserve 

h-independence of the convergence rate. While the multigrid method must now accom- 

modate spatially varying coefficients, the overall scheme possesses the advantage that its 

convergence rate is essentially independent of the spatial structure of K. 

Our paper has the following format: In section 2 we review the mixed finite-element 

method that we use. Section 3 describes the first iterative scheme in more detail and 

analyzes its convergence. In section 4 we discuss the application of multigrid ideas to the 

first scheme, and in section 5 we present some numerical results for this algorithm. Section 
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6 describes the modifications necessary to produce the second class of iterative schemes 

and presents numerical results illustrating good convergence rates even in the presence of 

heterogeneities. 

2 A Mixed Finite-Element Method 

We begin with a brief review of the mixed finite-element method, following the notation 

of Ewing and Wheeler [S]. Let H(div$) = {V E L 2 @ )  x A2(hl) : div v E L2(n)} .  The 

variational form for (1.1) is as follows: Find a pair ( u , p )  E H(div, a) x L2((n) such that 

y d x d y  + p div v dxdy = 0, V v E H(div, n>, L 
/ (div u + f)qdzdy = 0, V g E L2(R). 
n 

By our assumptions on K, there exist constants Kinf,.Kaup such that 0 < Kinf 5 K 5 Ksup. 
Implicit in these equations is also the assumption that K-’ is integrable on n. 

To discretize the system (2.1), let Az = {0 = xo < 5 1  < - 0 .  < zm = 1) be a set of 

points on the z-axis and A, = (0 = yo < y1 < 0 . .  < yn = 1) a set of points on y-axis. Let 

grid is - 

Ah = A, x A, be the rectangular grid on fl with nodes {(xj,yj))j~o,i=o. rnn The mesh of this 

h = max(si - Xi -1 ,  yj - Yj-1). ’ ,f 
We assume throughout the paper that Az and Av are quasiuniform in the sense that 

zi - zi-l 2 ah and yj - yj-1 ,> ah for some fixed QI E ( O J ) .  With Ah we associate 

a finite-element subspace Q h  x v h  of H(div,R) x L2(n). The “velocity space” is Qh = 

Qi x Qi, where Qi and Qf: are both tensor-product spaces of one-dimensional finite- 

element spaces. In particular, we use the lowest-order Raviart-Thomas spaces, in which Q; 

contains functions that are piecewise linear and continuous on Az and piecewise constant 

on A&Similarly, Q’, contains functions that are piecewise h e a r  and continuous on Av and 

piecewise constant on A%. The “pressure space” v h  consists of functions that are piecewise 

constant on Ah. 

Given these approximating spaces, the corresponding mixed finite-element method for 

4 



solving Equations (2.1) is as follows: Find a pair ( U h , P h )  E Qh X v h  such that 

This finite-element discretization yields approximations u h  and ph whose global errors are 

both O(h) in the norm 11 lI~a(n). Ewing et al. [6] also prove superconvergence results that 

guarantee smaller errors at special points in n. This phenomenon appears in our numerical 

examples in Section 5. In contrast, standard approaches solve for approximations to p 

and then numerically differentiate to compute u = -Kgradp,  thereby losing an order of 

accuracy in the velocity field [l]. 

To see the h e a r  algebraic equations implied by (2.2), suppose u h  and p h  have the 

pT = (Pi,i, P2,1, 9 9 Pm, i ,  Pl,n, P2,n, 9 Pm,n>- 

Figure 1 shows how to associate these coefficients with nodes on a spatial grid Ah with 

m = 4, n = 3. 

With these bases, the problem (2.2) has a matrix representation of the form 

A N  
( N r  0 )  (!)=(_OF). 

Here A is a symmetric, positive definite matrix having the biock structure 
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respectively. Note that these entries contain information about the spatially varying coef- 

ficient K. The matrix N has the block structure 

By calculating these integrals, one readily confirms that N" and NY reduce to the usual 

difference approximations to a/dz and a/dy. The vector F E EL"" has entries given by 

the integrals Jn f$i , jdx.  The Appendix to this paper gives more detail on the construction 

of A and N. 

The matrix multiplying the nodal unknowns for (uh ,ph)  in (2.4) is not positive definite, 

but if we rewrite the system (2.4) as 

-NTA-'NP = -F, 

then A and its Schur complement -NTA-'N are positive definite. In this sense, the system 

(2.4) is equivalent to two coupled, positive definite problems. 

3 An h-Independent Iterative Method 

Our first iterative scheme for solving the discrete system (2.4) is as follows: 

Algorithm 1. Beginning with initial guess (U(O), P(o))T for  (U, P ) ,  the k-th iterate 

(U(k ) ,  P (k ) )T  is the solution of 

where I E R(2mn+m+n)x(2mn+m+n) is the identity matrix and w is a parameter chosen to 
satisfy w 2 p ( A ) .  
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Here, p(A) denotes the spectral radius of the matrix A. Later in this section we discuss a 

practical way to pick w that does not require detailed knowledge of the spectrum of A. 

Computationally, Algorithm 1 has the following compact form: Given an initial guess 

(U(*), P(o))T,  compute (U(k) ,  P(k))T by executing three steps: 

In each iteration, the main computational work is to solve for P(k)  = w ( N ~ N ) - ' G ( ~ - ~ ) .  An 

easy calculation shows that the matrix w- l  (NT N) is positive definite, being proportional 

to the standard fivepoint, finite-difference Laplace operator applied to P @ ) .  Therefore we 

expect the numerical solution for P(k)  using stationary iterative methods to be plagued by 

poor conditioning when the grid mesh h is small. This observation leads us to use a multi- 

grid scheme to get approximations to P@).  Such a device will preserve the h-independence 

of the overall scheme's convergence rate. We discuss this facet of the algorithm in more 

detail in the next section. For now let us analyze the convergence properties of the overall 

iterative scheme, assuming a "black-box" solver for P(k) .  

We begin by writing Equation (3.1) as a stationary iterative scheme: 

where 

M =  ( N T  w I  N ) - l (  y A  : ) *  
The convergence of Algorithm 1 depends on the spectral radius of the matrix M ,  for which 

the following proposition gives a bound. 
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be the eigenvalues of the matriz A ,  and let w 2 Am-. Then the spectral radius of M obeys 

the estimate 

Proof= Let X # 0 be an eigenvalue of M with eigenvector (UA,  PA)^. Thus 

so 

(wI - A)UA = X(WUA + NPx), (3.9a) 

0 = ANTU’. (3.9b) 

Since (UA,PA)~ # 0, Equation (3.9a) shows that UA # 0; however, UA may be complex. 

Let U f  denote its Hermitian conjugate. If we multiply (3.9a) by UF, observe that N is a 

real matrix, and apply (3.9b), we obtain 

U ~ ( W I  - A)Ux = AwUFUA + X(N’UA)~PA 

From this equation we conclude 

0 < 1x1 = 

which implies 

= AwV,Hv,. 

;hat 

(3.10) p(M)  5 p ( I  - w - ~ A ) .  

Also, by (3.6) and the fact that w 2 A,,, we have 
Xmin p(I - w-’A) 5 1 - -. 

W 

These last two inequalities imply the desired bound (3.7). 

E w e  choose w = A,, = p(A) ,  then the estimate (3.7) for the spectral radius of the 

iteration matrix Ad becomes 
Xmin 

p(M) 5 1 - - 0  

Amax 

TO estimate X m i n / X m a ,  the following proposition is helpful. 

Proposition 2 .  For the matrix A appearing in Equation (2.4), there exist constants ko 
and k l ,  independent of h ,  such that 

koh2UTU 5 UTAU 5 klh2UTU.  (3.11) 



I 

Y 

Proof: The representation of u h  given in Equation (2.3) leads to the identity 

where ni,j = (z i -1 ,xi)  x (gj-1,yj)m Since K is bounded and integrable on ni,j, the mean 

value theorem for integrals ([g], pp. 184-185) guarantees the existence of a number Kilj, 

satisfying hfni j  K 5 Kij ,< SupniJ K, such that 

(If K'l is continuous on fii,i, then K'l actually assumes the value K'' somewhere on 

flid.) Calculating the last integral using our basis for Q h ,  we get 

where Gj signifies the area of nilj. To simplify notation, we notice that the 2 x 2 matrix 

appearing in each term of this sum is positive definite. This observation allows us to define 

a new norm on I R ~  as follows: 

The quantity V U  is easier to calculate: 

m n  m n  

+ lu;.12. (3.12) 
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Now we use the bounds on K and the quasiuniformity of Ah to observe that 

This observation establishes the first inequality in (3.11), since we can take ko = a2/6Ks,,. 

To prove the second inequality in (3.11), we rewrite Equation (3.12) as follows: 

where we agree that UG = 0 if either j = 0 or j = n + 1, and U: = 0 if either i = 0 or 

i = m + 1. Hence, 

Kinf 2 -UTAU. h2 
We conclude that UTAU 5 klh2UTU, where kl = 1JKinf. ~1 

If we apply Proposition 2 to the case when U is an eigenvector of A associated with the 

eigenvalue Afin  or A,,, respectively, we find that Amin 2 a2h2/6K,,, and A,, 5 h2/Kinf .  

Therefore, provided we choose w 2 Amax in Algorithm 1, the spectral radius of our iteration 

matrix obeys the bound 

(3.13) 
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Notice that the right side of this inequality is a constant independent of h. This is the 

sense in which the convergence rate of Algorithm 1 is independent of h. 

Two remarks about the practical implications of the estimate (3.13) are in order. First, 

bound on p(M) depends strongly on the nature of the coefficient K ( z , y ) .  In particular, if 

K&/Kaup is very small, reflecting a high degree of heterogeneity in the physical problem, 

then we can expect the actual convergence of the algorithm to be slow, albeit independent 

of grid mesh. Several examples in Section 5 confirm this expectation. Second, even though 

choosing w = A,, minimizes p(M) and hence optimizes the convergence rate, this choice 

is impractical owing to the expense of calculating Am=. In practice, we typically pick 

w = llAlloo 2 Amax. This choice is easily computable as the maximum row sum of A, 
and it preserves h-independence of convergence rate even though it may be theoretically 

nonoptimal. 

4 Application of a Multigrid Solver 

As we have mentioned, the computation of the pressure iterate P(') in step ( i t )  of 

Algorithm 1 is inefficient if we use direct schemes or classical stationary iterative methods 

on fine grids. However, the fact that w-'NTN is essentially the finitedifference Laplacian 

operator motivates us to reduce the computational work for each iteration by calculating 

an approximation to the k-th pressure iterate by using several cycles of multigrid method 

on the system (3.3). We refer the reader to [3] for a discussion of the multigrid approach 

and for a Fortran code applicable in the context of our problem. The modified scheme is 

as follows: 

T 
Algorithm 2. Begin with an initial guess (U(O), P(O)) , and suppose that we have computed 

(U(k-l), p(k-l))T. Compute a new approximation ( U ( k ) ,  P (k ) )T  using the following steps: 

1. Compute the residual, 

2 .  Let k(k)  denote the exact solution of the problem 
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Calculate an approzimation P(k)  of p(k)  by applying r cycles of the multigrid algorithm 

[3] to the equation (4.2), using P(k- l )  as initial guess. (We discuss the choice of r 

below.) 

3 .  Compute U(k)  us in Algorithm 1: 

Multigrid methods for solving elliptic problems have an advantage that is quite relevant 

to the conditioning problems associated with fine grids: Each cycle has a convergence rate 

that is independent of h ([4], Chapter 4). Therefore, we need only show that we can choose 

a $zed number t of multigrid cycles such that each iteration of Algorithm 2 reduces the 

error norm by an appropriate factor close to p(M) .  We do this in Proposition 3. Since the 

factor is independent of h, Algorithm 2 has convergence rate independent of h. 

We begin by defining norms on the “pressure” and “velocity” spaces that will make the 

proof easier. Any ph E v h  has a representation 

i,i 

Taking advantage of the fact that N T N  is positive definite, we compute a norm of the 

vector 

p = (Pl,l, PZ,l, , Pm,l, 3 Pl,n, ~ 2 , n Y  7 Pm,nlT 

by setting IIPIli = PT(w-”TN)P. On the other hand, any uh € $h has a representation 

We compute a norm of the vector 

by setting llUllE = wUTU.  

The norm ]I . I l w  is just a scalar multiple of the Euclidean distance function 11 - i I 2 ,  and 

since w is a constant related to p ( A ) ,  1 1  I I w  is actually a discrete analog of the Euclidean 
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norm 11 I ( ~ p ( n ) ~ L l ( n )  on the velocity space by Proposition 2. This norm is appropriate for 

measuring the convergence of velocity iterates U(k)  to the true discrete approximation U. 
Also, since N T N  is just the positive definite matrix associated with the fivepoint difference 

approximation to the Laplace operator, the norm 11 llh is appropriate for measuring the 

rapidity with which the pressure iterates satisfy the discrete pressure equation (3.3) as the 

iterations progress. Ultimately, we want to relate our results to more familiar norms such as 

11 112 and 11 Ilm; for this step we shall rely on the equivalence of norms for finitedimensional 

Euclidean spaces. 

In the following proposition, we assume Y = p(I - &A) < 1. Thus u is an upper 

bound on p(M) .  Suppose the multigrid iteration used to approximate i>(k) in step 2 of 

Algorithm 1 has convergence rate p E (0,1). This implies that, after t multigrid cycles for 

P ( ~ )  using ~ ( k - 1 )  as initial guess, 

Proposition 3. For any u' E (u, I), there ezists a number t of multigrid cycles such that 

where (P,  U) is the solution of the problem (2.4) and (P(k ) ,  U ( k ) )  i s  the approximation to 

(P, U) produced b y  the k-th iteration of Algorithm 3. 

Proof: Suppose we compute fi@) according to (3.4) with the exact (nonmultigrid) pressure 

iterate 8k). Thus, 

(4-5) W O ( k )  = ( ~ 1 -  A)U(k-l)  - N F ( k )  

where p(k )  satisfies Equation (4.2). Then from Equations (2.4), (4.1), (4.2) and (4.5), we 

have 

w (U - fi(')) + N (P - Fk))  = ( w 1 -  A)  (U - U ( k - l ) ) ,  

NT (U - f i ( k ) )  = 0. 

(4.6) 

(4.7) 
T 

Multiplying Equation (4.6) by (U - c@)) and using the identity (4.7), we get 
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Therefore, the velcity iterates obey the estimate 

_ -  IlU - W)(l 5 v J(u - U(k- ' ) (J  . 
W W 

SimiIarIy, multiplying Equation (4.6) by [w-'N (P - @ ( k ) ) ] T ,  we get 

IIP - p(k)Ilz = (P - @(k)) NTw-l(wI - A)  (U - U(k-')) 

W 
I1 w-lN ( P - f'(k)) l I w  lI(I - w-'A) (U - U("-')) 1 )  

5 IIP - $(k)( lhp(I  - w-lA) IIU - U(k-') I Iw . 
Hence, the pressure iterates obey the bound 

Now we derive bounds on IIP - P(')llh and IIU - U(k)ll in terms of their values at the 

previous iterative level. For IIP - P(k)(lh,  we use the triangle equality and the multigrid 

estimate (4.4) to get 

W 

< IIP - qh + p' (p - Wllh + IIP - Hk-l )  . 
- 11,) 

But the original iterative scheme (3.5) implies 

u - U ( k - 1 )  

So, in light of the inequality (3.1) bounding p ( M )  by v ,  we have 

This inequality allows us to simplify (4.8), getting 

JIP - P(k)(lh 5 (v + p' + up') lIP - + - l )  llh 

Turning to IIU - U(k)ll  , we use Equation (4.3), multiplied by d ,  to write 
W 

(4.9) 
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This identity implies 

(4.10) 

P - P(k-l)  + IlU - U ( k - 1 )  l l w )  . I Ih 
- < (v + CC' + VCC') ( 1 1  

Combining the inequalities (4.9) and (4.10), we get 

W 
p - P ( q ,  + IIU - U ( q  

5 (u + p' + vp') (IIP - P ( y h  + IlU - U(k-l)  I I,> 0 

Since p < 1, p' + upr + 0 as t + 00. We can therefore choose r large enough so that 

v + p' + vp' + v 5 v' < 1. In this way, 

In view of the norm equivalence mentioned earlier, Proposition 3 leads us to expect that, 

if we choose w as prescribed in Section 3, then the computed convergence rate 

(4.11) 

should be a constant independent of h as h + 0. In fact, for L(generic" initial guesses, the 

contribution from the eigenvector associated with the largest-magnitude eigenvalue of 1M 
will eventually dominate the error. We therefore expect p to give good approximations to 

p ( ~ )  in computational practice ([Z], p. 129). 

5 Numerical Examples of h-Independence 

To test our results, we apply Algorithm 2 to several versions of the following boundary- 

value problem: 

-div [ K ( w ) g r a d p ( s ,  Y)] = f(s,  31, (ZlY) E a, 
(5.1) 

P(GY) = 0, (w) E dC-2- 

We use the lowest-order mixed finite-element method on grids with h = 2-', where t = 

4 , 5 , 6 , 7 , 8 .  Each iteration of the solution scheme includes r = 2 V-cycles of the multigrid 
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*! 
algorithm described 

finest has mesh 2-'. 

in [3], where the coarsest grid in each cycle has mesh 2-', and the 

We use the following realizations of the coefficient K(z ,  y): 

Kr(Z,Y) = 1; 

KII(2,Y) = p - y .  9 

To confirm the convergence properties of the mixed finite-element method as h + 0, we 

examine the exact and numerical solutions to (5.1) using K = KII and taking f(z, y) to be 

the function that results when the solution is p ( z ,  y) = x(1- z) sin(lry) + y(1-  y) sin(nz). 

We compute the nodal error indicators llUexact - Ullm and llPexact - where Uexac- and 

Paact stand for the vectors of nodal values of the exact solutions u and p ,  and U and P 
are vectors containing nodal values of the finite-element approximations on a uniform grid 

of mesh h. Figure 2 shows plots of log IIUexact - Ullm and log IIPexact - Pllm versus log h 

having least-squares slopes of 1.899 and 2.000, respectively. -. - These results suggest that the 

nodal values of U and P are accurate to O(h*),  corroborating the equal-order accuracy 

available in the Raviart-Thomas subspaces and indicating superconvergent nodal values in 

accordance with the work of Ewing et al. [6]. 

To check the convergence properties of the iterative scheme, we examine the behavior 

of the ratio p, defined in Equation (4.11), for each of the choices of K .  Our results, shown 

in Figure 3, support the expectation that, as h + 0, the convergence rate of the scheme 

tends to a constant independent of h. Notice however that, as K exhibits more spatial 

variation, the convergence of the algorithm becomes slower. Any effects of variability. in 

K on the conditioning of the discrete equations still influence this first algorithm; the only 

effects of poor conditioning that we have eliminated so far are those associated with grid 

refinement. 

-. ~ . 
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6 Modified Schemes for Heterogeneous Media 

To mitigate the difficulties associated with spatial variability, we modify the first 

iterative scheme (3.1) to get a class of new schemes having the following form: 

Algorithm 3. Beginning with initial guess (U('), P(o))T,  the k-th iterate (U('), P('))= is 
the solution of 

Here, the upreconditioningb matriz D E IR(2mn+m+n)x(2mn+m+n) is a diagonal mat& whose 
choice we discuss below. 

When we construct D properly, the iteration matrix 

M =  ( N T  D N  0 ) - l (  ;) 
has spectral radius that is independent of both h and the structure of K. The price we 

pay for this benefit is apparent in the computational form of the new algorithm: 

In contrast to Equation (3.3), solving for Plk) in the new scheme calls for the inversion 

of NTD-'N instead of N T N .  Therefore, we must modify the multigrid segment of the 

algorithm to accommodate variable coefficients. As we discuss, this modification is fairly 

easy to make. This section establishes criteria for the construction of D,  gives two exam- 

ples that satisfy these criteria, comments on the the multigrid solver used, and presents 

computational results. 

As with the original scheme presented in Section 3, the key to the convergence of the 

new scheme is the spectral radius of the iteration matrix M defined in Equation (6.2). The 

following proposition gives sufficient conditions under which p ( M )  < 1. 

17 



Proposition 4. Suppose D is a diagonal matriz with positive entries on the diagonal, and 

suppose there esist constants bl, b2 E (0,l) such that 

for all vectors U E C(m+l)n+m(n+l). Then the iteration rnatriz M defined in Equation (6.2) 

satisfies 

0 < p(M) 5 max{l- b1 ,1 -  b2) < 1. (6.6) 

Proof= Let X # 0 be an eigenvalue of M with associated eigenvector (UA,PA)T, as in 

Proposition 1. Then steps similar to those yielding Equations (3.9) show that 

(D - A)UA = X(DUA + NPx), 
0 = XNTUx. 

Thus U f ( D  - A)Ux = X U ~ D V A ,  which is nonzero since D is positive definite. Therefore, 

Hence, using the hypothesized bounds on V,"AUA/U~DUA,  we have the desired inequalities 

(6.6). 

To use this proposition, we need estimates on UHAU.  Given the structure of A as 
shown in the Appendix, one can calculate a useful expression for UHAU,  assuming U E 

C(m+r)n+m(n+l) has the form (U", UV)= indicated in Equation (2.3). In particular, 

UHAU = ;S(U) 1 + g R ( U ) ,  1 

where, in the notation of the Appendix, 
m n  

Here, z denotes the complex conjugate of X .  The coefficients qtj,. . . , TG1 appearing in 

these expressions are values depending on K(s,y) and arising from applications of the 

mean value theorem for integrals over each cell Q i , j  in the finite-element grid Ah. By using 

the inequaIities 
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we can estimate R(U)  as follows: 
m n  

m n  

In general, the estimates 0 < Kint 5 K 5 Ksup may be too coarse to provide enough 

control on the coefficients qtj, . . , qy for constructing a reasonable preconditioner D. 
Strictly speaking, the necessary level of control will be available only if we have information 

about the local variation of K on each cell &,j. 

In practice, however, we rarely have such he-scale knowledge of K, and even if we did we 

would not try use it in calculating the Galerkin integrals Jn K-'u ~ v d z d y  exactly. Instead, 

most practical codes use approximate quadrature schemes that effectively treat K-' as 

piecewise polynomial. In fact, it is quite common to treat K-l as piecewise constant. In 
such applications, we can use the second inequality in (6.7), together with the identities 

q!: = Tir;. = z,j, to show that 

Similarly, the first inequality in (6.7), together with the identities qtj = Tlfy = T1v = 
' i f  

qvl = z,j, shows that 
rf 

1 1 
6 

U"AU = -S(U) + :[S(U) + R ( U ) ]  

1 
2 gS(U). 

In summary, iS(U) 5 UHAU 5 :S(U) whenever K is piecewise constant on the grid Ah. 

Now consider the choice D = $lump(A), where 

0, if i # j ,  
[l~mp(A)];,j = { C Ai,j, if i = j .  

i 
This is the matrix that results when we add entries along each row of A and assign 

the sum to the diagonal entry in that row. This choice of D is a simple instance of ;t 
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preconditioner developed in [7] for other iterative schemes. It is a straightforward matter 

to show that, when K-is piecewise constant, UHlump(A)U = $(U), so UHDU = $(U). 
As a consequence, 

Therefore, by Proposition 4, p ( M )  5 f ,  and the iterative scheme converges with a rate 

independent of h and K. According to our remarks at the end of Section 4, we expect 

the ratio of error norms between sucessive iterates to approach f as the iteration counter 

k - o o .  

As an even simpler example, consider the choice D = diag(A), where 

if i # j, 
Ai,i, if i = j, [diag(A)]i,~ = { OY 

is the matrix A stripped of its off-diagonal entries. This choice has the attractive feature 

that it is trivial to compute from A. With D defined in this way, we once again find that 

UHDU = $S(U) when K is piecewise constant on Ah. Therefore, p ( M )  5 f ,  and this 

iterative scheme also converges with a rate independent of h and K. 

Either choice of D requires us to solve a matrix equation of the form NTD-'NP(k)  = 

G(k-l) at each iteration. To do this, we use two cycles of a multigrid scheme in which the 

Jacobi iteration is the smoother, the coarse-to-fine interpolation is bilinear, and the fine-to- 

coarse restriction is accomplished using half-injection (141, p. 65) .  This scheme preserves 

the h-independence of the overall algorithm's convergence rate and appears to handle 

variable the variable coefficient K effectively. Alternative multigrid implementations are 

certainly possible here. 

To test the convergence rate of Algorithm 3, we apply it to the boundary-value problems 

described in Section 5 ,  using the preconditioner D = $lump(A). Table 1 shows values of 

the convergence rate p computed for each choice of coefficient K ,  for each of five different 

values of the grid mesh h. All of the tabulated values are very close to the spectral radius 

estimate p(M) 5 i. We conclude that this scheme converges at a rate independent of both 

grid mesh h and the heterogeneity reflected in the mobility coefficient K .  
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Figure 1. Sample 4 x 3 rectangular grid on fl = (0,1> x (0 ,  I ) ,  showing locations of the 

nodal unknowns in the velocity and pressure trial functions. 
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Figure 2. Convergence plot for the mixed finite-element scheme for Poisson’s equation, 

using lowest-order Raviart-Thomas trial spaces. The plots demonstrate the rate of decrease 

in the nodal errors as h -+ 0. 
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Appendix: Matrix Structure of the Finite-Element Equations 

The mixed finiteelement equations (2.2) give rise to integral equations having the 

following forms: For the z-velocity equation, 

d z d y  = 0, i = 0,. . . ,m; j = 1,. . . ,n. -1 2 
u h  #is + Ph - dZ 

For the y-velocity equation, 

For the mass balance, 

i=l, . . . ,m; j=l , . . . ,n .  

The following integrals appearing in these expressions involve no spatially varying coeffi- 

cients and hence are easy to compute using the bases for Qh and Vh: 

However, the remaining integrals involve the spatially varying functions K-' (5, y) and 

f(z, y). We compute these integrals using the mean value theorem for integrals (191, pp. 

184-185) as follows: Since K-' is bounded and integrable on each cell nj,j, there exist 

numbers q!j, q!!, q!? such that 
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t _ -  Q 2  
4; 
*f Now let us adopt the following orderings for the vectors of unknown nodal coefficients: 

_ _  

1 A: = - 
6 

9 P =  

- 2 q y  q; 7 

m y  + q x ,  T; 

c 

Then the entire algebraic system arising from Equations (2.2) has the structure 

Here, 

1 Aj" = - 
6 I .  

TZ,j 2Tt5 I 
Similarly, 

1 
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h 

where - 

1 
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while 

where 
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... I 1 
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... * * - I  
t 

column i 
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PARALLEL COMPUTING SI’EEIIUPS FOIZ. 
ALTERNATING DIRECTION COLLOCATION 

Mark C. Curran and Myron I3. Allen I11 
Department of Mathematics, University of Wyoming 

Laramie, WY 82070 U.S.A. 

ADSTRACT 

W e  apply finitc-elcmcnt collocation to the two-dimensional advection-diffusion eqiia- 
tion. Collocation olfcrs savings over other finite-element techniques in that matrix elc- 
mcnts arc found by point evaluations rather than integrations. Additional computcr tirnc 
arid storage is saved by application of an alternating direction process, which allows a 
mu1 titlirncrisional problcrn to be solved as a scqucnce of one-dirncnsional problems. Sincc 
t h e  onc-dimensional problems are indcpcndent, the speed of the method is enhanced 
flirttier through usc of a parallel computing architccture. 

1. INTRODUCTION 

Alternating direction (AD)  methods have been formulated for the numerical solution 
of partial dilfercntial equations since their introduction in 1955 by Peaceman arid Itscli- 
ford 11). In  1070 Dooglas and Dupont 121 developed thc altcrnatirig dircction Galerkin 
method. Morc rcccntly, the alternating direction collocation (AIIC) mcthod has a p p e x r d  
i n  several formulations by Uangia ct  at. 131, Chang and Finlayson 141, IIayes 151, Celia et 
al. 161, Cclia 171, and Celia and Pindcr (81. 

11’~ cxarriiric Cclia’s ADC for thc two-dimensional advection-diffusion equation. Of 
special iritcrcst here is the amenability of the procedure to iniplcrncntation on parallel- 
architccturc computers. The  paper h a s  the following structure: Section 2 briefly rc- 
vicws finite-clcmcnt collocation using a bicubic llcrmitc basis; Section 3 discusses t l ic 
A l l  method applied to collocation; Section 4 concludes the papcr wi th  an examination 
of tlic incthod’s performance on a parallel computer. 

2. REVIEW OF FINITE-ELEMENT COLLOCATION 

Corisidcr tlic following problem poscd on the spatial domain I1 = (a, 6) x ( c ,  d ) :  

(a) a,u + v v u  - v * (UVU) = 0, ( q y ,  1 )  E 11 x (o,co), 
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Here v = v ( z , y )  rcpresents fluid velocity; D = D(z,y) is a diffusion cocficicnt, and 
u = u(z, y, t )  represents solute concentration. We apply finitc-elcmcnt collocation to the 
following semidiscrete analog: 

u"+1 - u" + &[v * VU"+' - v * (DVU"'"] = 0, (2) 

where integer siiperscripts indicate time level, (a ) ""  
O(-)"+l -1- (1 - O ) ( . ) " ,  0 5 0 <_ 1,  

and k signifies the time step. 
We begin by cstablishing a grid on n. Lct A, = {Zi  = a -t ihz, i = 0 , .  . . , IV,} and 

A,, = {yj = c + jh,, j = 0, .  .. , N v } ,  where h, = (6 - .)/PI, and h, = ( c  - d ) / N , .  Tlic 
IIcrmite piecewise cubics on these grids are 

Jti(A%) = { I  E C'(fi) 1 Ill*,. -,,, is cubic, i = 1 ,... ,A',}, 

and similarly for Jti(A,). As Prenter 191 shows, cach of thcse spaccs has an intcrpolnt- 
N. or N, ing basis {hni,hli}i,o , every element of which has support  confined to  a t  most two 

adjacent subintervals [Zi-l, ~ i ]  or [Yj-l, yjl. 
At each time level n we compute an approxiinate solution i i"(z,y) belonging to the 

tensor-product trial space 

M = (U E Ni(A,) @ Mi(A,) I U(Z,Y)  = ~ o ( z , Y )  for (z,!/) E an). 
Each function in Jt obeys the boundary conditions ( lc)  and IIM tlic form 

where lIcmij(z,y) = hri(x)hmj(y). A t  1 = 0 we forin Go by projccting thc initial function 
u1 onto M. These criteria spccify Go complctcly and detcrminc! 4(N, -1- N, + 1) of thc 
4(N, + l)(Nv + 1) nodal coeficients for G',O',  . . . . 

To determine the remaining 4N2Ny degrees of freedom a t  cadi tirric lcvcl n i- 1, wc 
first form the residual 

R"" = fin+' - 6" + & [. . VG"+@ - v . (DV&"+")I . 
We then pick a collcction ((31, Jil), ( 2 1 , ~ 2 ) ,  . . . , ( ~ Z N ,  , g 2 ~ , ) )  of collocation poitrts and 
force Rntl(fk,fjt) = 0 a t  each. To obtain optimal O ( ( h ,  -1- h,)') crror cstirrntcs, wc 
choose zk and yC to be the two-point Gauss-qnadraturc abscissae on cncli subititcrvd 
( z i - ~ , z i ]  or [ ~ j - l t ~ j ] .  

3. TIIE ALTERNATING DIRECTION hlETIIOI1 

To obtain a matrix that can be factored into A D  form, wc first pcrt\irb Equation (2) 
by a term that is O ( k ' )  to get 

U"+l - U" + k ( C ,  + C,)U"+' + &'82(C,C,)(U"+' - u") = 0, (3) 

whcrc 
f r  = v,a, - a,(Da,) and f, = uvav - (?v(D<3v) .  

Rcarranging Equation (3) and factoring givcs 

(1 + k Q L v ) ( l  + kOf,)(u"" - 11") = - k ( t z  t L,)u". 

Now wc can solvc (1 + k O L , ) z  = - k ( f z  -t Ll,)u", followcd h y  ( I  t k O f , ) ( t l n t 1  - u") - 2 

When wc substitute Hcrrnitc bicubic trial functions for f, w c  gct a rnatrix rqiiatior 
N u n t 1  = r", wlicrc 11"'~ is thc vcctor of time incrcrrlents for the \inknown nodal  coc~fli 
cicnts of G .  Considcr a typical entry of I { :  

wlicrc 11, is shorthand for some bmis function Ht,,,;,. Each l f o ( x , g )  = h , , ( ~ ) h ~ ( y ) ,  wittl 
a = ( i , ~ )  and 0 = ( j ,s) ,  so we can expand the expression ( 4 )  arid factor i t  t o  grt 

[h&) + k q f , h , ) ( z k ) ]  * [h&t) + k q f , h , l ) ( P c ) l *  

If we nurnbcr the nodcs along the lines 2 = ~ t ,  we can use this ohscrvation to falct-or t h t ,  

41VzN, x 4lV,lV, matrix K as follows: 

i C = Y . X =  

Each 2N, x 2N, block y t , j  has the fivc-band striicttire of a onr-dirrirnsional collornt io i i  

rnatrix, and i t s  cntrics dcpcnd only on the y-coordinates o f  rot location points. 
W c  can solvc thc matrix equation Kiin+l  = rn by the foIIowirig proccdiirc.  

1. Ortlcr tlic nodcs vcrtically and solve Yz = rn by solvirig the iriclr!p~~ri~lrrit prol)lf,rit, 

2. Ilcordcr the nodes horizontally to convert c to z*. This operation trarisforrriq ,Y t r j  

a block-diagonal form X' whose blocks X:i have onc-dirncnsiorial striictiirc. 

3. Solvc X*unti = Z' by solving t l ~ c  iridcpcntlrnt systems X;, ,II~" = I.:, i - 1 , .  . . , 

y. . I .  r" ' 

J , )  ' J  = j f = 1, * .  9 2 N z .  

Each of thc "onc-dirricnsional" systcma in stcps 1 and 3 is irirlc*p~rirlcrit o f  arty o t . I \ c * r .  
'I'hcrcforc tlicse steps can be done concnrrcntly. 

4. IMPLEMENTATION ON A I'ARALLEJ, COhll'LJ'I'Eit 

\Vc Iiave irnplcmcntcd ADC on an Alliant FX/8 parallcl processing rorripii t c r .  'f'lic A I -  
liarit is an ciglit-processor, sharcd-rncmory macliiric with optirriization c-apaIiiIity for hot11 
coriciirrcnt ant1 vcctor prograrnniing. ?'tic machinc allows iisrrs to roritrol coririirrrriry 
within a Fortran codc throrigli the iise of cornpilcr dircctivcs. 'l'hc folfowirig is a clcscril,- 
tion of tlic codc outlined in Steps 1-3 of Section 3. The corripilcr dirrctives tIirrrisr1r.c.s 
bcgin with tlic flag CVD$ starting in the first column of code. 
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Initialize a", rr t  n = o 
Begin time level n + 1 

CVDJL CNCALL (Compiler directive to permit the concurrent execution of thr I c  )wing loop 

DO for cxch j = 1 ,  ..., 2 N .  

END DO 
CALL RENLP.1 (Reorders s to get s') 

CVDSL CNCALL 
DO for each i =  1 , . . . , 2 N ,  

containing a rcfcrence to an external proccdurc.) 

CALL YSWEEP (Constructs the nystem Yj, ,sj  = r;, solvea it and navre the rcsulte.) 

CALL XSWEEP (constructs the system X,:,,u;+' = z:, solves i t  and updates the 
appropriate cocllicients of a to time level n + 1 .) 

END DO 
End time rtrp 

CVDSR NOCONCUR (Dlrective to rupress concurrency until the end of the routine.) 

CVDJR NOCONCUR 
SUBROUTINE YS W EEP 

SUBROUTINE XSWEEP 

One measure of how well the algorithm makes iisc of the rnacliirrc's parallrl cnpalhilitics 
is the spcedirp. Speedup for ti processors is the ratio of the time ntwlctl by orre procrrssor 
to the time uscd by n processors to perform a set of tasks in  parallrl. For a prrfrctly 
parallel algorithm requiring no overhead to monitor and schcdulc thr various proccssors, 
the speedup for n processors would be n. Figitre 1 shows the spcctlup curve for this 
algorithm, excluding initialization. The speedup for eight processors is 7.27. Clcarly, 
ADC makes very good use of the shared-memory parallel architecture. 

To confirm that ADC gives useful approximations, Figures 2 and 3 show solution plots 
for two different problems. Figure 2 shows the rcsults of B rotating plrttnc prohlcrn on 
!I = (-1,l) x ( - l , l ) ,  with N, = IV, = 40 and k = 0.004. Ilrrc, v = 2n(- -y ,r )  is a 
circular velocity field, D = 0, and the initial conccntration plurnc n , ( z , y )  is a "Gauss 
hill" with center a t  (0,-0.6) and standard deviation u = O.OGG. Figure 3 displays the 
results of an  ,Itl\.crtion-difTrlsion problem on R = (0,1) x (0, I ) ,  with A', = N ,  = 20 arid 
k = 0.004. The  diffusion coeficient is D = 0.00385, and v(z,y)  = 2e'Y(-y,z). Ilcrc, 111 

is a "Gauss hill" with u = 0.05 centered a t  (0.75,0.25). In  both prohlcms the g l o h l  crror 
is less than .O2llullc0. 

ACK N 0 W LE D C: hl EN T S 

The \\'yoining \Vater Ilcscarcli Center siipporl.ctl this work. \Ye also rcwivcd srrpport 
frorn NS F grant RII-86 10680 and 0 N R cnntrac t 00 14-88- I(-0370. 

lt El? E I t  EN C ES 

1. I'eacemnn, D.\V. and 11.11. Rachford, "Tlrc Niiincrical Soluliori of I'arabolic ant1 
Elliptic Equations," SIAhf J . ,  3, 28-41 (1955). 

95 1 

2. D ~ i i g l , ~ ,  J., Jr. and T. Dupont, "Altcrnat.irig-I)irtlstiorl Cal~~rkirr hlcthnfl.; or1 1(# , ,  
a n g h , "  in Numerical Solufion 01 f'artinl fliflcrcntial Egualiom, L ' d .  2, Syrl.;f);l 
1970, D. IIubbard, Ed., Academic, New York, 1971, pp. 133-214. 

3. Dangia, V.K., C. Bennett, and A. Reynolds, "hltcrnating Direction Collocnt i o r i  f 
Simulating Reservoir Performance," prcsmted at the 53rd Annual Fall Confcrrnc 
Society of Petroleum Engineers, Houston, 1978. 

4. Chang, P.W. and B.A. Finlayson, uOrthogonal Collocation on Finite Elrmcnts f 
Elliptic Equations," Math. Comp. Simulation, 83-92,  (1978). 

5 .  Hayes, L.J. "An Alternating-Direction Collocation hlt thod for Finite Elcmcnt A 
proximations on Rectangles," Comput. M a f h .  Appl., 6,  45-50, (1980). 

6. Celia, M A . ,  G.F. Pinder, and L.J. Iiayes, "Alternating Dirrction Collocation Sir 
ulation of the Transport Equation," Proceedings l h i r d  I n t .  Con/. F i n i t e  E l e m r t  
in H'ater f?e80urceb, S.Y. Wang e l  al., Eds., Univcrsity of hlississippi, Oxford, hl 
1980, pp. 3.36-3.48. 

7. Celia, M.A., Collocation on Deformed Finite Elements and A l l  ernnt ing  Dtrcrfi, 
Collocation M c l h d a ,  Ph.D. Dissertation, Princeton University, 1953. 

8. M.A. Celia and G.F. Pinder, "Generalized Alternating-Dircction ( h l l o c n  i o n  hlc! 
ods for Parabolic Equations: 1. Spatially Varying Corfficicnts," (198,l). 

9. I'rentcr, P.M., Spline8 and Variational h f e t h d ~ ,  New York: \Vilry, 1975, ;tiaptrr 

a 

/ 

7 -  

6 -  

5 -  

a 

v) 

I I I 1 2 3 4 5 6 7 8  I I 1 I 

Number of Processors 

Figure 1. Speedup curve for ADC using the Alliant FX/8 shared-memory archi tcclr i r r .  



952 

s . 1  1 " " "  

1 

J 

- 1 1 .  * , , , , , , 1 1  

-1 1 

F i g u r e  2. Concentration contours for the purely advectivc rotating plrimc problem at 
various time levels. Contour interval is 0.1. 

U 

Figure 3. Plot, of concentration distribution at 1 -- 0.3 for an advcction-clifrusion problem 
with potential flow. 



APPLICATIONS OF 
SUPERCOMPUTERS IN 
ENGINEERING: 
FLUID FLOW AND STRESS 
ANALYSIS APPLICATIONS 

Proceedings of the first International Conference, 
Southampton, UK, September 1989 

Et2itc.d by 

C.A. Brebbia 
A. Peters 

ELSEVIER 
Ainsterdam - Oxford - New York - Tokyo 1989 

Co - p 11 1 l i vh  etl with 

CO h IP UTATION A L hl E CI1A NTCS PUBLIC AT10 NS 
Soutlimnpton - Boston 1989 



I 
i 

A Parallel Collocation Based Alirorithm for the Generalized Transport Equation 
J.F. Guarnaccia and G.F. Pinder 
Department of Civil Engineering, University of Vermont 
Burlington, VT 05405-0156, USA 

INTRODUCTION 

The solution of the generalized transport equation in porous media can be a 
computationally intensive task requiring large amounts of computer time. A 
worst case scenario involves multiphase problems which require the simul- 
taneous solution of coupled nonlinear equations, as well as fme time and space 
discretizations to match stability and accuracy constraints. The turnaround time 
for a given simulation on serial computers can be on the order of hours or days 
depending on model size. For the practicing e n - ~ e e r ,  long turnaround times 
during the calibration phase of model development can limit its application. As a 
result, a new numerical algorithm has been developed to speed up t~ansport 
simulations by implementing parallel processing computer technology. 

Conceptually we want a method which elxhibits high accuracy in time and 
space, is amenable to a parallel processing environment, and is easy to 
implement. To this end, the proposed method employs a combination of several 

. numerical techniques. To transform the governing equation into a set of 
algebraic equations we employ an implicit backward difference approximation 
for the time derivative and the collocation f ~ t e  element method to appro’ximate 
the space derivatives. Even though an implicit finite differencing in time is only 
first order accurate, it results in a highly stable solution scheme. 

We choose to use the collocation finite element method for several reasons. 
First, the method has been successfully applied to a wide range of engineering 
problems including problems in porous media physics (Finlayson, 1972, Frind 
and Pinder, 1979, among others). Second, as a method of weighted residuals, 
collocation employs the displaced Dirac Delta function as its trial function. This 
results in driving the error to zero at specified points in the domain (called 
co1loc;ttion points), and as a result, unlike the finite-element method, no formal 
integrations need be performed. Thus, system matris assembly is analogous to 
the finite difference method. Third, because of conanui ty  requirements, the 



approximating function. of interest is cast in the C1 continuous hermite cubic 
basis. Given this, if we choose as the collocation points the Gauss points, the 
method exhibits fourth order spatial accuracy. Fourth, boundary conditions are 
easily incorporated into the formulation. 

While the above formulation provides a method which emphasizes accuracy 
and ease of implementation, to cast this into a pardel algorithm framework we 
will employ an idea based on alternation direction (AD) techniques. AD methods 
are characterized by the solution of multi-dimensional problems by a series of 
effectively one-dimensional solutions. The motivation for the development of 
AD methods for use on serial computers has been the reduced matrix storage 
requirements and reduced execution time (Celia, et. al., 1980, Hayes, et. al;, 
1981, Celia and Pinder, 1985). AD schemes which allow for independent 
processing of each resulting one-dimensional problem have been implemented 
on parallel processing computers of various architectures with good results 
(Johnsson, et. al., 1985, Hockney and Jesshope, 1988). 

Classicdly, AD methods achieve the spatial split by factoring the space 
operator of the partial differential equation into its spatial components (Douglas 
and Gunn, 1964). As a result, a problem inherent in all AD methods is their 
inability to directly accommodate cross derivative terms in the space operator 
(Mckee and Mitchell, 1970). Cross derivative terms arise in contaminant 
transport problems in the form of permeability and dispersion tensor 
coefficients, and are prominent when flow is not coincident with one of the axes 
of the coordinate system used to discretize the problem domain. Because cross 
derivative terms require milti-directional information, operator splitting schemes 
can accommodate them explicitly only by Iagpoing their influence by a time step 
or iteration cycle. Therefore, the accuracy of these methods is dependent, to 
some degree, on the component of flow and transport crossing coordinate lines. 
Because of this dependency on the orientation of the g id  with respect to the flow 
path, some AD schemes are susceptible to grid orientation effects (Glimm, et. 
d., 1981). In other words, the solution of the problem is a function of the 
relative orientation of the g i d  to the flow path. 

The AD algorithm to be presented herein, called Parallel Alternating 
Direction Collocation (PADC), does not require the space opentor to be 
factored. Instead, the spatial split is achieved by modifying the system mams. 

,LETHOD DEVELOPlEhT 
Consider a generd h e a r  transport equation with constant coefficients: 

a 11 - -  L U  = 0, ( x , y , t ) ~  Iz x ( 0 , T )  
U t  



intersection of element boundaries) at which we define an undetennined 
coefficient vector (u) and a basis function vector (cp). Note that the superscript 
denotes a transpose. 

The vector of space dependent basis functions, q+(x, y) = [ qo0, Q'O, 

<Po', <Pl1 ] T, are piecewise Hermite cubic polynomials (Lapidus and Pinder, 
1982). Both the functions and their first derivatives are continuous across 
element boundaries (Cl continuity). The time dependent undetemined - 

coefficients in equation (2), uiT(t) = [ u , u,, , u , ~ ,  u,,,, I,, are the nodal 

values of and its x, y, and cross derivatives respectivelv. * d 

The task is to solve equation (1) numerically given that it is subject to 
prescribed initial and boundary conditions. The procedure we will employ 
requires that we fmt derive a fully 2-D Collocation approximation and then 
rewrite it in an AD foxm. 

Let us first approximate the time derivative by using an implicit backward 
difference approximation: 

p + 1 -  Un + Lu"+' = 0 
At 

(3) 

where At is the time discretization and the superscript, n, denotes the time level 
of solution (ie. t=nAt). This approximation results in a scheme which is locally 
fmt order accurate. 

The approximate function I; (x,y,t) (equation 2 )  is now substituted for 
u(x,y,t) in equation (3) and, since it is an approximation, it \Nil1 not satisfy the 
equation exactly leaving a residual, R (x,y,t) : 

This residual is driven to zero in a weighted average sense by taking the inner 
product of R with the displaced Dirac Delta function. This is equivalent to 
driving the emor to zero at specified points in the domain which are denoted as 
collocation points. Thus n o  formal integrations are required, and the system 
manix generation is computationally analogous to the finite difference method in 
that we write equations at points in the domain. If we substitute equation (2) 
into (4) and evaluate it at a select set of collocation points, we obtain a system of 
linear simultaneous equations which can be witten as: 

k= 1, 2, ..., 4 x M; 



where 'L' is the space operator defined as: 

and, u(x,y, t) = concentration (mass per unit volume), 
vx, vy (x,y, t) = velocity vector compponents, 
D,, Dxy, D, (x,y, t) = symmetric dispersion tensor components. 

with prescribed initial and boundaq conditions defined on a rectangular domain 

Dispersion is a symmetric tensor that combines the coefficient of molecular 
(Q> 9 

diffusion with mechanical dispersion. Bear (1979) writes the mechanical 
dispersion tensor as: 

2 2 
alvx atvy 

+ D* D,, = - + -  Id IYI 

where: D, = coefficient of molecular diffusion, 
a1 = longitudinal dispersivity of the porous medium (in the direction of 

a, = transverse dispersivity of the porous medium (in the direction 

Ivl= mean velocity magnitude. 

mean flow), 

perpendicular to mean flow), 

It can be easily seen that if one of the coordinate axes of the domain is not 
coincident with the mean flow path, then D,, f 0 . It is when these terms 
represent a major transport mechanism that classical AD methods have difficulty 
capturing the transport physics. 

Approximating the function of interest, zd(x ,y, t), by A u(s, y, t), a linear 

combination of weighted basis functions cpi(x,y), one obtains: 
N 

i = l  

where N is [he ncmber of nodes 3nd (i) is the mdal index (identified wi1h t?e 



. 

where M is the number of elements, and (xk, yk) is the location of a collocation 
point. Because, in this analysis, we have chosen the location of the collocation 
points to be the zeros of the Legendre polynomials (Gauss points) there are four 
collocation points per element. When these points are chosen, the method is 
called "Orthogonal Collocation", and Renter (1976) has shown it to yield fourth 
order spatial accuracy. 

The matrix form of equation (5) is given in Figure (la), where b contains 
information regarding boundary conditions, and 

qj = q(xi, Yi> +L q(xi, Yi> 
bij =q(xi, Yi)  

where i represents the collocation point and j the nodal degree of freedom. 
Because we have the function and its derivatives defined at the nodes, boundary 
conditions are easily incorporated by direct specification of the undetermined 
coefficient at the boundary nodes. 

in Figure 1 b, and number our equations (collocation points) and unknowns 
(nodal degrees of freedom) accordingly, the system matrix A takes on a regular 
block structure. An example of a hroizontal sweep numbering scheme and 
resulting matrix smcture is shown in Fi,aure 2. This structure is equivalent to a 
system of tri-diagonal sub-matricies, shown in fiewe (Ic) as Cij, Bij. The 
subscripts of the sub-matricies are given as follows: 

If we view the finite element grid as a series of discrete rows or columns as 

i - denotes the row or column along which the collocation equations are 

j - denotes the row or column of nodal unknowns associated with those 
written, 

equations. 
For example, given a row-wise numbering, the sub-mamx B 12 represents 
those equations written at collocation points dong row 1, involving the nodal 
unknowns along row 2. 

The AD spatial split is achieved by moving the off-diagonal sub-matricies 
(Bij, i#j) to the right hand side by projecting the unknowns associated with 
them to the new time level. This projection is defined as: 

where: y ,= projection paramerer, 1 ,< y 5 2 

It should be noted that if y =2 the projection is second order accurate in time, 
otherwise it  is frrst order accur;lte. Figure (Id) shows the system m a r k  
structure after the projection has been made. Note that the system matrix is 
block diagonal. Each block represents the coefficients in ;i row or a column of 
nodal unknowns. The system has been spatially decoupled and all the sub- 
rnatricies can be solved concurrently, thereby, reducing a two-dimensional 



where 'L' is the space operator defined as: 

and, u(x,y, t) = concentration (mass per unit volume), 
vx, vy  (x,y, t) = velocity vector compponents, 
D,, D,,, D, (x,y, t) = symmetric dispersion tensor components. 

with prescribed initial and boundary conditions defrned on a rectangular domain 

Dispersion is a symmetric tensor that combines the coefficient of molecular 
(a) 
diffusion with mechanical dispersion. Bear (1979) writes the mechanical 
dispersion tensor as: 

n 

where: D, = coefficient of molecular diffusion, 
a1 = longitudinal dispersivity of the porous medium (in the direction of 

a, = transverse dispersivity of the porous medium (in the direction 

171 = mean velocity magnitude. 

mean flow), 

perpendicular to mean flow), 

It can be easily seen that if one of the coordinate axes of the domain is not 
coincident with the mean flow path, then D,, + 0 . It is when these terms 
represent a major m s p o n  mechanism that classical AD methods have difficulty 
capturing the transport physics. 

A 

Approximating the function of interest, u(x ,y, t), by u(s, y, t), a linear 

combination of weighted basis functions cpi(x,y), one obtains: 

n 

u (x, y, t ) = u (x, y, t ) = c u;r(t) (PI(& y) 
i = l  

where N is the number of nodes and (i) is rhe nodal index (identified wi th  t?e 
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Fi,oure 1 - A diagrammatic representation of the PADC method for linear 
systems. ( a.) the fully 2-D system where the vector of unknowns u at the new 
time level (n+l) is solved for by using old time level (n) and boundary (b) info- 
rmation. ( b.) treat the grid as discrete columns or rows where the x's are 
nodal locations and the 0's are collocation point locations, (c.) given a 
numbering scheme reflecting (b), the system matrix A is resolved into a tri- 
diagonal set of sub-matrices Cij and Bij . The subscript i denotes the row or 
column along which the equations are written (collocation points), and sub- 
script j the row or column of unknowns (degrees of freedom). The structure of 
sub-matrices Cij and Bij are respectively the same. ( d.) the spatial split is 
achieved by moving the off diagonal sub-marices Bij to the right hand side by 
projecting the unknowns associated with them to the new time level (n+l*).  
Because each sweep biases the boundary conditions differently, a solution to 
the system is achieved only after an x and a y sweep (complete solution at time 
level n+2). 



problem into a series of one-dimensional problems. This scheme is analogous to 
the block Jacobi iterative method used to solve simultaneous equations. 

a. 

1 2 3  6 q 12 31  4 15 

b. 

xxxxxx 
xxxxxxxx 
xxxxxxxx 

xxxxx 
xxxxx 

I 
X x X X X X  
X x X X X X  

xxxxxxxx 
xxxxxxxx 

xxxxxx 

Figure 2 - Part (a), horizontal numbering scheme where the boxed numbers 
represent the unknowns and the non-boxed numbers represent the collocation 
points. Part (b), the resulting. system matrix structure (36x36) where the rows 
are the equations associated wth each collocation point and the columns are the 
coefficients (XIS) multiplying each unknown. Only non-zero entries are 
depicted. 

Because each ,orid orientation biases the boundary conditions differently, as 
well as for stability reasons, one must alternate beween horizontal and vertical 
sweeps as the solution marches through time. Therefore, a complete solution to 
the system is obtained after two time steps, a horizontal sweep to go from h e  
level In' to 'n+l', and a vertical sweep from level 'n+l' to 'n+2'. 

The scheme has been shown to to exhibit frrst order convergence in time and 
fourth order in space (both at theoretical limits). In addition the method has been 
shown to have conditional stability properties that assure its utility over the 
practical range of applications of general  ans sport problems. 

P W L E L  WLE?vEhTATION 

The Parallel Alternating Direction Collocation (PADC) algorirhrn set up to 
solve the two-dimensional linear transport equation was run on an Alliant FX/3 
paralleI processing computer. This computer is characterized by eight tightly- 
coupled, identical, processing elements (PE's) which are capable of executing 
any task and which share a common memory for easy data and insmction 



exchange. This parallel architecture is classified as being multiple instruction 
multiple data (MIMD). In developing an efficient algorithm on a Mlh/LD 
computer, one must address the computational costs associated with distributing 
the tasks. These computational costs include (after Hockney and Jesshope 
1988): 

1 .) Scheduling: How efficiently are the processors being utilized? 
One wants to minimize the time a processor has to wait for 
another processor to finish a task.The eficiency of scheduling 
(Ep) is defined as: 

Ep= (one processor execution time) / [(n processor execution time) x n] 

where Ep 1. Ep decreases with wait time, and typically decreases as 
'n' increases. Perfect scheduling is approached when a task is divided 
into equal work segments distributed to an even multiple of the 
processors . 

2.) Synchronization: How long can a process run before it needs data 
from another process such that operations are performed in the correct 
sequence? One attempts to set algorithm granularity (size of the work 
se,oments) such that the ratio of data Cansfer time to process run time is 
small. The concept of having large work segments or cuarse 
granularity is well suited for MIMD architectures. The overhead is 
associated with the time it takes to transfer data. 

3.) Communication: How long can a process mn before it needs data from 
another process such that operations are pedormed on the correct data? 
One wants to minimize the ratio of memory access to arithmetic 
operations. Synchronization costs are a function of commiirticariun 
costs. 

The Alliant FXj8 hardware design is aimed at minimizing the communication 
costs associated with parallel algorithms. Each PE has a concurrency control 
unit which distributes the work amon: the other PE's and synchronizes the 
calculation. For exLmp1e, if the iterations of a DO loop are to be run in parallel, 
the pro,orammer simply includes 3 directive just before the DO loop insmcting 
the machine to execute the iterations in parallel while the hardware maintains 
local data dependencies (e3ch processor may be working on the same vector). 
Of course, the programmer must still keep a sharp eye on such things as 
recursive d3t3 dependencies (the case where the d m  generated in one imp 
iteration is required as inpu t  in the next loop). 



In order to aid the pro,orammer in algorithm development, the Alliant 
includes an optimizing compiler which examines loops in the code for parallel 
potential. The output from this compiler lists those loops which can be 
parallelited. The programmer is then free to either choose which loops are to be 
run in parallel based on estimated overhead costs described above or alter the 
code to highlight additional parallelism. An internal timing routine gives the 
programmer an idea of where most of the work is being done in the code, and 
he or she can adjust accordingly. Thus, the programmer interacts with the 
machine until the desired result is obtained. The parameter that is used to 
quantify algorithm performance is the speed-up (Sp), defined as (Kuck, 1978): 

Sp= (one processor execution time) / (n processor execution time) 

where Sp 5 n (Sp decreases with increased overhead). Optimal speed-up for an 
n-processor system would be n. 

The PADC algorithm was developed to be highly parallelizable. A hish 
percentage of the computational work involved in obtaining a solution is done in 
concurrent mode. This is an important point in that significant speedups can 
only be achieved when at least 90 percent of the computations are done in 
parallel (Monkhoff, 1984). In addition, there is a theoretical limit on speedup, 
known as Amdahl's law (Amdahl, 1967), given that the parallel parts of the 
code take zero time, speed-up is determined by the time required to execute the 
serial portion of the code. A simple flow chart is presented in Fi,aure 3. Each 
box represents a set of computations. The computations in heavily lined boxes 
are done in parallel. For large problems (1000 nodes) these computations 
represent approximately 99% of the total work. This algorithm exhibits coarse 
granularity which acts to minimize communic;ition costs by employing long 
work segments. 

To obtain a measure of pexformance a series of model problems were run 
each being timed on one to eight processors, yielding a speed-rip czwe (Figure 
4). The problem domains were rectangular, and the problems differed only in 
their aspect ratio. In addition the space dijcretization was an even multiple of 
eight. Table 1 presents an average of the Sp and Ep values for the different 
runs. These results show excellent speedup performance. One aspect of these 
results is worth detailing. In general Ep decreases with the number of 
processors utilized; however, in this case Ep for the eight processor run (0.84) 
is higher than Ep for both the six 3nd seven processor runs (0.83 and 0.8 1 
respectively). This is due to the fact that the "grid discretization was an even 
multiple of eight and thus, scheduling should be better for the eight processor 
run. 
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Figure 3 : A simplified flow chart of the PADC linear solution algorithm. Each 

box represents a set of computations. The heavy lined boxes 
represent computations done in parallel. For h i e  problems (greater 
than 1000 nodes) approximately 99% of the computations are done in 
parallel. 
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Figure 4 : Speed-up cm'e  for the model problem. 



processors 
1 
2 
3 
4 
5 
6 
7 
8 

TABLE I 

1 .o 
1.98 
2.9 
3.7 
4.5 
5.0 
5.7 
6.7 

42 % 
1 .o 
0.98 
0.97 
0.93 
0.90 
0.83 
0.8 1 
0.84 
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HOW AQUIFER HETEROGENEITIES AFFECT 
NUMERICAL GROUNDWATER MODELS - 
by Myron B. Allen * and Richard E. Ewing ** 

1. INTRODUCTION. 

One can argue that the nature of heterogeneities in an underground 
formation is the most influential factor limiting the success of mathematical 
models of flow or transport in the aquifer. Lack of adequate knowledge of 
aquifer heterogeneity and the attendant difficulty in assessing the realism of 
a model’s predictions make the modeler’s job a frustrating one. 

The importance of heterogeneity elicits discomfort among many of us 
whose research concerns new numerical techniques for groundwater model- 
ing. Part of the uneasiness over heterogeneity arises from a widely shared 
view of its importance. The valid premise of this view is that difficulties 
in accurately quantifying underground heterogeneity impose constraints on 
the accuracy of mathematical models, owing to limitations in the quality 
of the input data.’ The argument then proceeds as follows: Since poorly 
quantified heterogeneity is the dominant source of prediction error in most 
groundwater models, there is little point in focusing research on improved 
numerical techniques. After all, even if we use more accurate numerics, the 
deleterious effects of inadequate input data will still be present, swamping 
any improvements to be gained through mathematical refinements. The nat- 
ural conclusion is that research into methods for detecting and characterizing 
underground heterogeneity have much more potential for improving mathe- 
matical models than does research into the numerical techniques themselves. 

We offer a different perspective. No one would deny that improved 
methods for quantifying heterogeneity are crucial to advances in the realism 
and utility of groundwater models, in accordance with the popular maxim, 
“garbage in, garbage out.” However, we contend that the most commonly 
used mathematical methods are inadequate to model heterogeneous aquifers. 
As we review in Section 3, even in the ideal case when the heterogeneities 
are “perfectly” known, standard methods can perform poorly, suggesting a 
new adage: “heterogeneity in, garbage out.” 
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In a more realistic scenario, where one relies on detailed statistical char- 
acterizations of heterogeneous aquifers, existing mathematical techniques are 
laxgely inadequate at answering the hydrologist’s questions. Here, quantifi- 
able control over the uncertainties in aquifer parameters can fail to yield 
reasonable control over the reliability of the numerical solution. We illus- 
trate this problem in Section 4. This observation suggests the even more 
distressing adage: %tatistics in, garbage out.” 

In what follows, we examine these notions and briefly indicate promising 
avenues for overcoming the difficulties. We hope to affirm the importance of 
continued research into mathematical techniques used in numerical models 
of groundwater flow and transport, thereby rebutting the conclusions of the 
conventional wisdom. 

2. GOmRNING EQUATIONS. 

To clarify what we mean by aquifer heterogeneity, it is useful to review 
the governing equations used in groundwater models. We begin with the 
equations describing groundwater flow. Groundwater obeys a mass balance, 

d H  
at 

S, - + V v = Q, 

where S8 is the specific storage, H is the hydraulic head, v denotes the 
superficial velocity, and Q accounts for sources and sinks (Huyakorn and 
Pinder, 1983, Section 4.2). According to Darcy’s law, v is related to the 
hydraulic head by the equation 

(2) v =  -- P g k V H  = -KVH. 
P 

Here, p is the density of water; g is the gravitational acceleration; k is the 
permeability of the rock matrix, and p is the water’s dynamic viscosity. 
Hydrologists typically use the lumped parameter K, called the hydraulic 
conductivity. In many contexts, Equation (2) is too restrictive, and k (and 
hence K) must be a tensor to accommodate anisotropies in the aquifer’s 
flow characteristics. This consideration can have practical importance, but 
it imposes complications that are not essential to our thesis. 

Heterogeneity, in this context, refers to spatial variations in the aquifer 
parameters S&, y,z) and K(z , y ,  2). For simplicity, we focus on variations 
in K .  A wide array of phenomena associated with the rock’s deposition 
and &genesis contribute to these variations, which may occur smoothly or 
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discontinuously. One point that is all too easy to neglect in this connection 
is that Darcy’s law describes the macroscopic velocity of fluids, which in 
some sense represents an average of the velocity in the tortuous, microscopic 
interstices of the rock that are essentially inaccessible to observation. Thus 
spatial variations in K reflect what we might call macroscopic heterogeneity, 
as opposed to the microscopic variability in pore geometry that Equations 
(1) and (2) cannot explicitly model, even in principle. 

In formulating numerical models of groundwater flow, people commonly 
substitute Equation (2) into Equation (1) to get the groundwater flow equa- 
tion, 

d H  
at 

Sa- - V (KVH) = Q. (3) 

As we discuss in Section 3, discretizing Equations (1) and (2) separately 
can yield significant advantages over the usual approaches to discretizing 
Equation (3). 

When the mqdeler is interested in how a dissolved contaminant moves in 
a flowing aquifer, it is necessary to solve a transport equation. In the absence 
of chemical reactions and interphase mass transfer, the equation governing 
the concentration c(z, y, z, t )  of solute has the form 

a(4c) + v . (VC) - V (4DVc) = q. 
at (4) 

Here, q5 stands for the porosity of the rock matrix, q accounts for sources and 
sinks of contaminant, and v is the velocity computed using a flow model. D 
denotes the hydrodynamic dispersion tensor, which is a crude attempt to ac- 
count for a variety of microscopic phenomena that cause the macroscopically 
observed concentration to diffuse with respect to the advective field v. 

We shall not delve into the controversial physics of D (see Fried, 1975, 
Chapter 2, for the standard model). We note, though, that techniques for 
evaluating D in actual fieldwork are quite poor and are possibly sensitive to 
what length scales the measurer identifies microscopic. Xotwithstanding, 
D can exhibit macroscopic spatial variations attributable, in the standard 
model, both to variations in the rock matrix and to variations in v. Thus 
heterogeneity affects the transport equation (4) through the variability in 
v inherited from flow models, through spatial variations in porosity 4,  and 
through the intrinsic variability in D. 

These equations suffice to illustrate our views on heterogeneity; however, 
more complicated underground flows have attracted considerable recent at- 
tention among hydrologists. Noteworthy are flows involving several fluid 



phases with interphase mass transfer, as commonly occurs when nonaqueous 
liquid contaminants percolate through partially saturated soils. Heterogene- 
ity plays no less important a role in these flows. In fact, heterogeneity can 
exacerbate several types of instability that arise from the nonlinearity of the 
equations that govern these more complicated flows. The physics here are 
by no means well understood; we refer to Schwille (1984) for an overview. 

3. HETEROGENEITY IN, GARBAGE OUT. 
Having established how heterogeneity enters into groundwater models, 

we now examine how it leads to poor performance in standard numericai 
models of groundwater flow. For the remainder of this section we assume, 
for the sake of argument, that the modeler has “perfect” knowledge of an 
aquifer’s heterogeneities. By this, we mean that the modeler knows the 
values of K(z,y, z)  and S,(z, y,z) at every point (z, y,z) in the aquifer. 
Notice that such knowledge does not imply any detailed knowledge about 
the microscopic heterogeneities associated with the tortuous interstices of 
the rock. We consider the case when significant spatial variations in K occur 
on a scale that is small compared with the size of the domain to be modeled, 
and for simplicity we neglect spatial variations in Sd. 

The small-scale structure of K forces the modeler to use a fine 6 s -  
cretization of the spatial domain. For example, if one uses finite differences 
to approximate the flow equations, then the maximum dimension h of the 
grid cells must be small enough to resolve the significant fluctuations in hy- 
draulic conductivity. Finite-difference and finiteelement schemes for solving 
the flow equation (3) yield large matrix equations to be solved for nodal 
values of head H at each time level in the model. Thus, smaller values of 
the grid mesh h lead to larger numbers of nodal heatis ana hence to larger 
and computationally more expensive matrix equations. 

What is worse, smaller values of h yield more poorly conditioned matri- 
ces. For typical discretizations having spatial error 0 (h2), for example, the 
condition number of the matrix at each time level is O(h-*) (see Johnson, 
1987, Section 7.7). If one uses direct solution techniques such as the Cholesky 
decomposition, this large condition number can lead to enormous roundoff 
errors in the matrix solution, yielding unacceptably inaccurate values of head 
H .  Numerically differentiating these heads to compute transport velocities 
via Equation (2) compounds the inaccuracies, and the result can be a useless 
velocity field v computed from a “perfectly” known hydraulic conductivity. 

One can ameliorate the accumulation of roundoff by using iterative tech- 
niques, such as variants of relaxation schemes or conjugate gradients. Here 
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again, large condition numbers lead to difficulties, this time in the form of 
slow iterative convergence. One attractive property of conjugate-gradient 
techniques is that they are readily amenable to preconditioning, which can 
reduce this effect. Research into preconditioners that eliminate the slow con- 
vergence associated with fine discretizations is an active field of research; see 
Golub and O'Leary (1989) for a review. 

Still, fine grids do not tell the entire story. When K varies spatially, there 
is a contribution to poor conditioning attributable simply to the discrepancy 
between the largest and smallest values, say KmaX and Kmin, occurring in 
the model's domain. In fact, when one uses an iterative SiileEe io S O ~ V ~  

the matrix equations, the factor by which each iteration reduces the error 
in the approximate solution typically has the form 1 - 0 (Kmin/Kmax) (see, 
for example, Allen et al., in preparation). Thus the convergence rate can be 
close to 1, and therefore prohibitively slow, when Kmin differs from Kmax by 
several orders of magnitude, independent of the grid mesh h. 

Research by many investigators indicates that there is hope for this 
problem. Our own work, for example, suggests that a profitable first step 
is to isolate the two sources of poor conditioning by solving Equations (1) 
and (2) a a coupled system, using mixed finite-elexcenc ;==t?c.i?ocis (see, ;"or 
example, Allen et al., 1985). The effects of highly variable conductivity 
3: then inauencz only the discrete anaiog cf Zqu~tTon (21, *,vhkh ant3 czx 
attack using any of severa-1 preconditioning schemes that effectively adapt to 
the heterogeneity. One can then address the effects of small grid mesh h by 
developing appropriate preconditioners for the conjugate-gradient method, 
as in Ewing et al. (to appear), or by exploiting multigrid techniques, as in 
Allen et al. (in preparation). 

As an ihstration of the potential for success in this area, we present 
iterative convergence rates for two schemes applied to steady-state flows in a 
set of fictitious aquifers (Allen et al., in preparation). The functional forms 
used for K in these experiments, listed in Table 1, are clearly contrived, 
yet in their spatial variability they can be just as troublesome as many oc- 
curring in nature. Figure 1 shows plots of iterative convergence rate ver- 
sus grid mesh for each realization of K ,  using a scheme whose convergence 
rate is theoretically independent of h owing to a peculiar splitting of the 
mixed-method equations. This scheme Overcomes sensitivity to small h but 
remains sensitive to spatial variations in K ,  as the slow convergence rates for 
the realization Kv attest. Table 2 displays iterative convergence rates for a 
modified version of the splitting ~ h m ~  Here, we precondition the discrete 
Darcy equations arising from the mixed method to mitigate sensitivity to 
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heterogeneity. Theory estimates a convergence rate of 0.5, independent of h 
and K, an estimate that the computed rates confirm. The methods used to 
generate these results by no means offer a final solution to the poor condi- 
tioning arising from heterogeneity, but they demonstrate that heterogeneity 
actually heightens the need for advances in numerical analysis. 

The proper use of mixed finite-element methods offers the further ad- 
- vantage of avoiding the deterioration in accuracy that occurs when one nu- 
merically differentiates heads to compute Darcy velocities. As Ewing and 
Wheeler (1983) explain, mixed methods can generate approximate heads 
and velocities that have equal-order accuracy, a property that is especially 
attractive in the context of contaminant transport modeling. 

Still, problems remain. We have not considered the effects of spatial 
variability in specific storage. Moreover, considerable work remains to be 
done to make mixed finite-element models truly efficient and flexible. fssces 
such as adaptive local grid refinement, exploitation of parallel computing 
architectures, and the treatment of nonlinearities associated with multiphase 
flows are prime examples of ongoing work along these lines. 

4. STATISTICS IN, GARBAGE OUT. 

In reality, heterogenities will never be “perfectly” known. The best 
we are likely to achieve are fairly detailed statistical descriptions of hetero- 
geneities below some scale, which is likely to be large in practice. Thus it 
may suffice to use models to generate suites of scenarios yielding statistical 
predictions of aquifer behavior. For this strategy to be successful, ensern- 
bles of “statistically equivalent” realizations of a given heterogeneous aquifer 
must yield predictions that are “statistically similar.” In other words, the 
model’s predictions should be “stable,” in some sense, against changes in 
heterogeneous structure that preserve the detailed statistics of the aquifer. 
Otherwise, a given statistical description of an aquifer might be consistent 
with a large and wildly varying class of model predictions. The notions of 
statistical equivalence, statistical similarity, and stability lack rigorous def- 
inition at this point, but we contend that there is considerable work to be 
done to make this strategy practical. 

As evidence for our contention, we consider a set of numerical experi- 
ments involving coupled underground flow and solute transport. The cou- 
pling consists of the usual dependence of the solute transport coefficients 
on the output of a flow model, together with a dependence of the dynamic 
viscosity p on the concentration c predicted by the transport model. This 



model has its origin in oilfield applications, where injection of miscible fluids 
less viscous than oil is a common form of enhanced oil recovery. Neverthe- 
less, there are clear analogies to be drawn with the physics of groundwater 
contamination and remediation. The experiments suggest that statistically 
similar heterogeneous porous media can yield flow fields that are qualitatively 

- dissimilar in significant respects. 

In the cases modeled, p is a decreasing function of c, so the injected 
fluid is more mobile than the displaced fluid. This adverse mobility ratio 
makes the displacement unstable: Small perturbations in the geometry of 
the displacement front can lead to large differences in the fraction of the 
pore space contacted by the injectant. One manifestation of the instabil- 
ity is the occurrence of viscous fingers in the displacement front. It is not 
clear physically how small the perturbations can be and still trigger these 
fingers, but it is conceivable that they could arise from heterogeneities at the 
microscopic scale as well as the macroscopic scale. In this case, no model 
based on Equations (1) through (4) can possibly resolve all of the instabilities 
occurring in macroscopic flows. With this caveat in mind, we examine the 
effects of finescale but macroscopically resolvable heterogeneities on miscible 
displacement. 

Figure 2 shows concentration isopleths for simulated displacements in 
two random porous media, with fluid being injected in the lower left corner 
and produced at the upper right (Ewing et al., 1989). The two media are 
independent realizations of the same lognormal spatial permeability distribu- 
tion, and they have the same correlation length. The predicted displacement 
patterns show that the flows in the two model media yield qualitatively dif- 
ferent concentration fields. In fact, the flows differ significantly even with 
respect to relatively coarse measures, such as the pore volumes of resident 
fluid produced after one pore volume of injection. The result for Figure 2a 
is 0.6921, while that for Figure 2b is 0.4968 - a decrease of over 28 percent. 
Clearly, these statistically similar media have dissimilar flow characteristics, 
at least for the physics modeled here. 

Overcoming the difficulties associated with statistical characterizations 
of heterogeneity will require new modeling techniques and perhaps to wholly 
new ways of using models. Among the promising avenues for the near term 
are methods for scaling up fine-scale information to produce realistic models 
using coarse, computationally affordable grid cells. Homogenization theory 
(Bourgeat, 1984), flux-based averaging (White and Horne, 1987), and ef- 
fective macroscopic dispersion tensors (Ewing et al., 1989) are three such 
approaches. 



In the long run, the issue of uncertainty arising from aquifer heterogene- 
ity has a direct bearing on the uses of deterministic models, since some uncer- 
tainty will doubtless remain as numerical analysis progresses. The inherently 
statistical nature of the problem reflects, in part, the discrepancy between 
the scales at which Equations (1) through (4) apply and the scales at which 
aquifers are accessible to measurement. This discrepancy implies a need for 
broader research into the relationships between fundamental physics, model 
formulation, numerical analysis, and parameter identification in groundwater 
modeling. 

5. CONCLUSIONS. 

The adages, “heterogeneity in, garbage out,” and %tatistics in, garbage 
out,” are probably too pessimistic. We really intend the first adage as a 
caution: Modelers should not assume that all is settled on the numerical 
front, and that all we need are better measurements to feed into existing 
models. Numerical methods that are standard engineering practice today 
will become increasingly inadequate as better measurements of heterogeneous 
aquifer parameters become available. The second adage is a caution of a 
different sort. It suggests that the problems associated with uncertainty in 
heterogeneous aquifers may not be amenable to solution via straighforward 
discretization of the standard governing equations. Instead, these problems 
may require new approaches, in which rigorous numerical work contributes 
to the development of model formulations appropriate to the scales at which 
the models will actually be run. 
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TABLE 1 .  CONDUCTIVITY FIELDS USED IN NUMERICAL EXPERIMENTS 
FOR ITERATIVE SOLUTIONS OF MIXED FINITE-ELEMENT MODELS FOR 
STEADY-STATE GROUNDWATER FLOW. 

K+,y) = c--; 



TABLE 2. CONVERGENCE RATES FOR A UNIFORMLY CONDITIONED 
ITERATIVE SCHEME APPLIED TO PROBLEMS IDENTIFIED IN TABLE 1. 
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Figure 1. Convergence rates for an h-independent iterative scheme applied 
to problems identified in Table 1. 
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Figure 2. Concentration isopleths after injection of one pore volume for 
model miscible displacements in two random media having similar statistics. 
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ABSTRACT 
We present a collocation method for the two-dimcnsional advcction-difTu- 
sion equation when advcction is dominant. Thc mctliod uses a modified 
method of characteristics in conjunction with an alternating-direction 
algorithm to yield accurate, eficient numerical solutions. 

INTRODUCTION 

We discuss a collocation-based scheme for the advcction-diffusion equa- 
tion in two space dimensions. The  scheme employs two dcviccs to en- 
hance its effcctiveness. The  first device is an alternating-direction procc- 
dure (Celia [ 11) that yields highly parallclizable time-stepping algorithms. 
T h e  second device is a modified method of characteristics (see Russcll[2~) 
that improves the time-stepping error in advcction-dominatcd flows. 

The advcction-diffusion equation for a s tcady, incomprcssiblc velocity 
field v(x) in two space dimcnsions is 

(1) a*u + v v u  - v ( m u )  = 0. 

IIcre, U ( X ,  t )  is the unknown solute concentration. In porous-mcdia appli- 
cations, D accounts for the efTects of hydrodynamic dispersion, which has 
a tensor form whose components depend 011 v. In  this papcr, howcvcr, 
wc take D 2 O to be a scalar constant for simplicity. Wc also assurric that 
advcction dominates the solutc transport, in  thc sense that, i f  I, is thcl 

diamctcr of the spatial domain, thcn thc I'cclct iiuiribcr IlvllmL/ll 1 .  
In this regime, it is useful to rcwritc Equation (1) as folloivs: 

IIcrc, IIt = 8, -t v V clcnotcs thc rnatcrial dcrivativc or tlic Ilnitl-solutc 
rnixt urc. 
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* We consider the following initial-boundary-value problem on tlic spa- 
tial domain fl = (-1,I) x (-1,I): 

Dgu - v (DVU) = 0, ( x , f )  E n x (o,oo), 

= Uf(X), x E n, 

u(x,t) = 0, ( x , f )  E an x (0,oo). 

This problem is a simple model of the movement of an initial contaminant 
plume, so long as the plumc docs not approach XI. 

NUMERICAL METIIODS 
To discretize this problem in space, we use finite-element collocation on 
IIermitc bicubics. We mercly summarize this method here, referring read- 
ers to  Curran and Allen 131 for more details. Let A be a rectangular grid 
on n, partitioning fl into a collection of rectangular elements f2i bounded 

' by adjacent grid lines x = xi and y = yi. Call the mesh of this grid h. 
Denote by M the trial space of all Hermite piecewise bicubics that vanish 
on an. (The Hermite piecewise bicubics are functions in C'(fl) whose 
restrictions to  any Ili are products of cubics in 2 with cubics in y.) Any 
function ii E M has the form 

where the functions Ifpqij(x,y) form a nodal basis for M (Prcnter 14)). 
To determine the nodal unknown coeflicients in this expansion, we 

substitute ii into the left side of Equation (2) and force the residual to 
vanish a t  a set of collocation points 8,, which for optimal-order accuracy 
we choose to  be the 2 x 2 Gauss quadrature abscissae in each element Ri.  

This procedure yields precisely enough ordinary differential equations in 
time, cach having the form 

D*C1(xm,t) - v (DVii(x, , t)]  = 0, (3) 

to determine the evolution of tlic unknown cocificents of ir, assuming we 
can project the initial function UI onto M to get reasonable initial data 

'('GtJiScretize Equation'(3) in two steps. First, following Russell 121, 
we rewrite DIG using the modified method of characteristics (MMOC). 
In thc context of collocation, MMOC lcads to a differcnce expression of 
the form 

DIG(%,) N k-' [V+1(",) - G"(x:,)] , 
where fi"(x) denotes an approximate valuc of ir (x ,nk) ,  k being the time 
stcp. IIere, xk is a "backtrack" point, computed according to the method 
of characteristics for the purely advcctive version of Equation (2). Spccifi- 
c7IIY. ;r (R(O t \  i s  R n3rnmctrizntion nf'thc! chnractcrist,ic ciirvo dxlr i t  = v 

passing through ji,, 

In practice we compute xk approximately, u discussed bclow. 
The second step in discretizing Equation (3) is to use an  alternating- 

direction collocation (ADC) approach similar to that of Cclia 111. \Vc 
perturb the discrete operator equations to cffcct the following fnctorirlg 
along the x- and y-coordinate directions: 

Here, lz = -a,(Da,) and Lf, = -d,(Da,,). By propcrly niinibcring 
the collocation equations and unknowns, one can reduce thc cqu t' a ions 
( 5 )  to an algebraic system that involves highly parallcl sets or matrix 
equations, each of which has an incxpensive, one-dimensional structure. 
Curran and Allen [3] discuss eficient algorithms for solving such systcrns 
on parallel-architecture computers with shared memory. As that paper 
demonstrates, speedup curves of slope greater than 0.8 are attainable on 
an Alliant FX/8 eight-processor machine. 

COMPUTATIONAL RESULTS 
To illustrate the eirectivencss of the scheme, we show rcsults of a rotating 
plume problem in which v ( z , y )  = 2n(--y,z) and D = 0. The initial 
condition is a %suss hill" with center (0 ,  -0.6), u n i t  height, and standard 
deviation u = 0.066. We cut off the initial condition spatially, setting 
u(x,O) = 0 near an for consistency with boundary conditions. 

In this purely advective problem, u(x, 1) = u(x,O). We examine how 
well the numerical solution matches this property as we vary the time 
step k and the scheme used to compute the backtrack points x;. We use 
two backtrackirig schcmcs. The first uscs an approximation --kv(Z,,,) to 
thc integral in Equation (4). The second uscs thc approxiniatiori tlint is 
quadratic in k, namcly, -kv(xm) - k'Vv(jl,) - v(x , , ) /~ .  

Figure 1 displays the ii = 0.2 contour for nurncrical solutions at t = 1, 
together with the true center ( z , y )  = (0 , -0 .6)  of the plume at t = 1. 
Shown arc the contours for "lincar" backtracking with k = 0.01 and 
k = 0.004 and for Uqi~adratic" backtracking with k = 0.01. Tlic plot 
suggests that, given the overall 0 (k) accuracy of M M O C  timcstcppirig, 
there is only a slight gain in accuracy with the highcr-ordcr backtracking. 

DISCUSSION 

Several features of the ADC-MMOC approach make it ari attractive one. 
First, the method inhcrits the high-ordcr spatial accuracy zsociatcd with 
the finite element collocation. Pcrcell and Wheclcr 15) show that the 
schcmc has 0 (h') spatial accuracy for clliptic spatial opcratms. ATIC 
r r t t  T i n i  t l t i ?  3 ~ r i i r - r v  w ; t ! j  uc.)n~ ~ ; ~ ~ > C I ~ P ; O T I - ~ "  rn-+r;rcr- I l T * * : v j v  I t 7 n , l ~ * * i ~ l t l ~  



fivc. A rclatcd Galcrkin-based schcme using piccewise bilinear elements, 
dcscribed in Krishnamachari et al. (61, yields O(Ir*) accuracy with one- 
dimensional matrices having bandwidth three. 

Sccoiid, the use of MMOC has additional advantages in reducing the 
temporal truncation error and in reducing the number of degrees of free- 
dorn necrlcd to resolve sharp fronts. Russell 12) discusscs thcse advantages. 
Another aspcct of MMOC is that it effectively removes the dominant ad- 
vcctive tcrm from the spatial opcrator, lcaving only the dilfusive operator 
to be discrctized via collocation. This fact is intuitively appealing, since 
we expect collocation on IIermite cubics to yield O(h') accuracy for Equa- 
tion (1) whcn Y = 0 but only 0(h3) accuracy whcn D = 0 (see Dupont 
[7)). MMOC thus allows the collocation procedure to discretize just the 
spatial operator -V (DV) for which it is best suited, even when the 
other spatial operator Y V is physically dominant. 

Third, the ADC algorithm renders the scheme amenable to parallel 
processing. An interesting facet of the application of MMOC here is 
that it may help reduce the temporal error introduced by the spatial 
splitting when advection dominates. Observe that, with MMOC, the 
splitting in Equation ( 5 )  requires a perturbation of the form k 2 1 Z l u Q ,  
where L3, = -a,(Da,) and f!,, = -a,(Da,) are operators whose effects on 
ii are "small". By contrast, without MMOC the ADC splitting involves 
the operators tz = uzaz - a,(Da,) and lu = u,,i3,, - aU(Dav) ,  in which 
the dominant advective terms appear. Thus we expect the splitting error 
to be smaller in magnitude in the MMOC version than in the original 
version of ADC. 

These obscrvations suggest that the ADC-MMOC approach can be a 
highly eficient and accurate tecliriique for advection-dominated transport 
problems. There remain several avenues for further work on the method. 
Among these are the treatment of tensor dispersion and the incorporation 
of variations in the third spatial dimension. 
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Figure 1. Comparison of il(x,l) = 0.2 contours for the ADC-MMOC 
method applied to an advective rotating plume problcrn. Shown are 
contours for timestep k = 0.01 with linear and quadratic backtracking 
and for timestep k = 0.004 with linear backtracking. The symbol * marks 
tlic center of the plume in the cxnct solution u(x, I ) .  
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INTRODUCTION 
ADMOC is a Fortran code that employes a modified method of char- 
acteristics combined with an alternating-direction algorithm to solve a 
two-dimensional advection-diffusion equation. For more detail on the 

mathematical formulation of the code, refer to Allen and Khosravani 

PI - 
The purpose of this document is to show first-time users how to 

use the code. We assume the user works on a local area network like 
that available in the University of Wyoming Mathematics Department. 
The main computing machines are Unix-based: an Alliant FX/S for 
numerical processing and a Silicon Graphics Iris for graphic processing. 
We use an ATT workstation running MS/DOS for transferring codes 
and data from floppy disk. 

The document starts by explaining how to transfer the files from 
the enclosed floppy disk into your Alliant account. Then it gives and 
explains all the commands that need to be employed to run the code. 
The paper also demonstrates in detail how to view the output files by 
using the graphic software available on the Iris. Fianlly, it explains how 

to get printouts of the files. 

TRANSFERRING FILES TO THE ALLIANT 
First you need to find a machine with a 5: inch floppy disk drive and 
hard drive, with capability to transfer data to the Alliant using tlie util- 

ity FTP. The ;\lath Department’s ATT workstation, Alial). with floppy 
drive 13 and hard disk C. can be used for this file transfer. Tlirougliout 

this paper S is used to denote tlie machine prompt. Explanations of 

comiiiaiids appear il l  paientheses. User respoiiscs a p p e ; ~  in  lioldfacc. 

IVliile logged in to Aliah, w i th  the floppy disk in  drive B, proceed a s  

fo 11 0 \Y s : 



$ftp niercury 

(‘mercury’ is the network name for Alliant .) 

$username: iiiyiiaiiie 

$password : my p ass 

user logged in on mercury. 

$lcd B: 

(local directory change on ATT to B drive, which is the floppy 
disk drive.) 

$111 pu t  B : * . * 
(In response to this command, the machine will ask you, file by 
file, whether you want the file copied to the Alliant. Answer ‘y’, 
followed by a RETURN, to each question. In all, 1s files should 
be transferred from the floppy disk by this command.) 

$put 111 ake fi 1 e 

$put Ifig 

$put  5fig 

$lcd C: 

(local directory change to C drive) 

Sbye 

(takes you out of the FTP ut i l i ty  and hack to .-\l~aL’s opcratiiig 

system, kl S / D 0 S . ) 



account manageable, make a directory, say ‘adccode’, and transfer all 
these files to that directory. The following commands will accomplish 

this task from Ahab or most other terminals linked to the University 

of Wyoming campus network. 

$telnet junior 

(establishes a connection to the Iris. 
Alliant directly from Ahab.) 

You cannot log into the 

$username: iiiynanie 

$password : iiiyp as s 

$ t el ii e t iii e rc u ry 

(establishes a connection to the Alliant .) 

$username: iiiyiiaiiie 

$ p as sowor d : my p as s 

(If your .Zogin file on the Alliant doesn’t automatically set ).our 

terminal type to vt100, type 

$set teriii=vt1OO 

in response to the nest prompt. If you’re not sure lvhat cz , login 
file is or don’t linow if you has-e one: type the alioi-e coiiiiiiaiid 

anyway.) 

$imkdir adccode 

(makes a s II 11 directory 11 a mecl * ad c co cl e ‘ ) 

$cp*.” adccode 

Scp makefile aclccocle 



$cp lfig adccode 

$cp 5fig adccode 

(copies every file to the directory adccode. Now, you want to  go 
up to the top directory and erase those files from it.) 

$cd. . 
(takes you to the directory above where you are sitting.) 

Srm *.f 

(removes all your fortran files in the top directory.) 

$rm *.in 

(removes all your .in files in the top directory.) 

Srxii makefile 

Tliis procedure assuiiies that you have a fresh account 011 the Alliant . 
0 t herwise, you should have first made the subdirectory ‘adccode’ and 
then transferred files from the floppy disk to that subdirectory. 

RUNNING THE CODE 
To i d ; e  a successful ruii of the ADNOC,  the user iiecds to go tlirougli 

the following steps: 



Now we discuss these steps. Refer t o  the flowchart at tlie end of this 
user’s guide for information about the subroutine structure of the code. 

a) Getting your program ready for a run. 
The input data are read in the main program, adc.f, from the data file 

adc. in. The program currently assumes that the initial contaminant 

plume is a ‘Gauss hill’ (i.e., binormal distribution in space) with spec- 
ified center of mass and standard deviation. The input data include: 

DT - size of time-steps 

THETA - timestepping parameter (0 gives an explicit scheme, and 
1 gives an implicit scheme.) 

XDIM and YDIM - length of the domain in the x- and ?/-directions, 
respectively. 

X1 and Y1 - the starting point in x- and y-directions, respectively, 
for the spatial domain. 

SIGh4A - standard deviation of the initial plume. 

XO and YO - the origin of the concentration plume. 

XNODE and YNODE - numer of nodes in x- and y-directions. 

You should check and possibly adjust tlie parameters J INON,  
MNOCP, NROW are used in the subroutines &.f, cchar. j, ir~it.j, 
kir2clex.L priitt.f, 7-eJormz.fi and upclnte.f. AINON respresents the iiiasi- 

mum number of nodes and is olitained by multiplj-ing XKODE by YX- 
ODE. h l N 0 C P  is the iiiczsimuiii nunilxr of collocatioll poirits; its \.aiue 

is 4 times the iiuiiilier of eleiiiciits in the cloiiiaiii. To Iic inore precise, 

MNOCP = 4(XNODE-l)x(YNODE-l). NROW is the iiuiiiber of collo- 

cation points in one row in the x-clirection, that is, NRO\V=’2( S N O D E -  
I). If the parameter iralues in  t l ie  I.’ortrati c.oclc arc iiot coiisistcnt \ [* i t  11 



the data in adc.in, you must edit the Fortran code to change the pa- 

rameter s t atement s. 

Suppose we want to make three different runs using the three differ- 
ent sample data files provided in this directory. In our first run we use 

the file adcl.in, which gives the rotating velocity field v = 27;(--?/ ,  s).  

The spatial domain for this run is (-1, 1) x (-1, 1), and 101 nodes are 
used in each coordinate direction. The initial plume is centered at the 

point (x, y)=(0,-0.5), and it has standard deviation 0.16; it completes 

one rotation in 100 time steps. Every tenth time step is printed since 
NPRINT=10. 

The velocity field is defined in the subroutine cchar. f. The velocity 
fields ‘rotating plume’ and ‘shear’ are made available to  the user in the 

subroutine. To activate the desired velocity field, just ‘comment out’ 

all the other velocity fields that are provided (by placing a ‘c’ in column 

1 of each line of the source code) and uncominent the wanted velocity 

field. You may also define a new velocity field by writing a.ppropriate 

Fort.ran code in the subroutine cchar. f .  

Xoriiiallj-, we would need to go through steps b) and c), described 
Before describing these steps, beloiv, to see the results of this run. 

though. we describe the remaining two sample runs. 

111 our second run, l y e  use the same spatial doiliain as the first run. 

1I-e center the initial plume at cz different locatioii and  use the shear- 

floiv \-elocity field UR: = + I / )  and u y  = 0. To iiin1;e these cliangcs, 

\ye 11s~ the input lile a d c 2 . i ~ .  Soiv \re need to edit tlic files nt1c.f’ and 

rlzcltlefile, changing every occurrelice of cidcl. i i i  to ciclc?. i i i .  \Ire also 

need to coniinent out the rotating velocity field and uiicotiiiiieiit t lie 

sliear-flow 1-elocity field in  cc1inr.t 



Our third run is quite different from the first two runs. Here we use 

a rectangular domain and leave it up to the user to choose the velocity 
field. It can be the rotating field, the shear field, or a new velocity field 

defined by the user in cchar.irt. Here we use the data file acZc3.f and 
so we need to change adc.f and makefile just as we did when we used 

adc2.in. Notice that we need to use a different graphic file here, one 

that accomodates the rectangular domain. 

b) Coiiipiliiig and executing 
To compile the program on the Alliant just type make. Minor mod- 

ifications of the makefile routine might be necessary to compile the 

program on another machine. The command make causes the Alliant 
to produce an executable file called a k z .  To run the program just 

type the name of the executable file, adc.z. Since this program takes 

up to an hour to run, it is advisable to run it in background, that is, to 

assign it a low priority on tlie machine’s scheduler to avoid interfering 

with other users. This is what you need to do: 

Scd adccode 

(changes directory to adccode) 

S 111 a ke 

(coinpiles program adc) 

(The coniiiiand ‘ac1c.x’ causes the prograin ndc to run. and  tlie 

modifier ‘SS’ puts t,liis job in 1xicl;grouiitl.) 



is the last output file that the program generates, is in your directory, 
then the run is over. To get a list of files in the directory, type 

Sls 

If the run is not over and you want to laow how much time the machine 

allocated to running your program, type: 

Sps -aux 

(This command lists all the jobs presently running on tlie ma- 
chine along with some information about them, such as how much 

computer time has been allocated to them.) 

c )  Viewing the graphics 
At the present we are running our program on the Alliant FX/S and 

using the Iris to view tlie output files. This means that we need to take 
our output files from the Alliant to the Iris. To do so, we use the utility 
FTP. For example, suppose we are in the directory ‘adccode’ on the 
Alliant that contains our output files, namely, aclcUUUUU,. . ., acZcOOlUU. 

We want first to create directory ‘mygraphics’ on tlie Iris and then to 
transfer our output files from ‘adccode’ on the Alliant to ‘niygraphics’ 
on the Iris. While you are logged into the Alliant, proceed as follows: 

$1-1 o g i 11 j u 11 i o r 

(‘juiiior’ is the network name for the Iris.) 

S us ern am e : my 11 a 111 e 

s p ass \YO r cl : my p as s 

(user logged ill) 



(makes a subdirectory named ‘mygraphics’) 

$10 

(log out command; now you are back on the Alliant.) 

Sftp junior 

Susername:iiiynaiile 

S p ass wor d : my p as s 

S c d my gra p 11 i c s 

(changes directory to ‘mygraphics’ on the Iris.) 

$111 put ad c 0 0 * 

(copy all the Alliant files starting with ‘adcU0’in the subdirectory 
‘mygraphics’ on the Iris. The utility will ask you, file by file, 
whether you want the file to be transferred. Respond with ‘y), 

followed by a return, for each file. If ‘mput’ does not work, then 
simply transfer the files one by one using the FTP command ‘put’.) 

Sput lfig 

Sput 5fig 

( I j y  and 5J;g give data to the graphic software on the Iris.) 

$bye 

(Now you are 11acl.r to your Xlliaiit account .)  

So\v log out of tlie Allinlit, go to the Iris \rorlistatioii, niicl  log into 

J-our accoliiit 011 that inacliiiic. 1 lie h i s  n*odistaLiou is a11 Iris-niisi 

terniirial, and 3 7 0 u  have to set i t  accordingly as f’oilo\vs: 

r i  

Ssc t t, ern1 = i r i s- ails i 

10 



If you are working with a square grid, for instance, using ndcl. in or 

adcZ.in, all you have to do on the Iris is type: 

Svisioiis Ifig 

While you are in the subdirectory ‘mygraphics’. 

A small red square will appear on the screen; this is a window that you 

need to open up. Using the mouse, move the arrow on the monitor t o  
the upper left corner of the screen and, while holding the right button, 
move the arrow to the lower right corner of the screen. Now let go 
of the right button. The viewing window is now open and you are 

looking at a graph of the data stored in the first output file, acZcOUUU0, 

which records the initial time step. Moving the mouse arrow inside the 
blue domain and holding the right button down initiates the animation 
option, which can be activated by letting go of the right button when 
the arrow points to the words ‘animation on’. You now are looking at 

animated perspective plots of tlie data stored in the output files. 

To close tlie graphics window, place the arrow on the bar at the top 
of the screen and hold down the right mouse button. A window with 

different command options appears on the screen. While lioldiiig the 

right mouse button clown, place the arrow on the ‘Quit ISC Visions‘ 

option. So\\. let go of tlic right niouse button to close the graphics 

wind ow. 

GETTING HARD COPY O F  SOURCE FILES 
The Xliant clirectory iiito \\*liicli 3-011 cluiiipccl the coiitctits oC tlie floppy 

disk contains tlie t’ollon.iiig filcs: 



The flowchart at the end of this document shows how these files work 
together. To get a hard copy of one or more of these files in Ross 
Hall, one needs to copy these files to the Sun worl;station, indeiitified 

as ‘sunrise’ on the network. For a printout on the line printer, type 

S p r i lit fi 1 e 11 aiii e 

While you are logged onto the Sun, t o  get a laser printout, type 

$ i 111 p r i 11 t - P s u 11s e t fi 1 en am e 

More than one file can be sent to the printers simply by listing more 

than one filename. For instance, type 

S i i i i  p r i lit - P s u 11 set ad c . f c ch ar . f 11 e r 111. f 

to get laser printouts of ac1c.J ccj1ar.f and herm.f 
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Flowchart of t he  transport  code ADAIOC 
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