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1. 

HOW AQUIFER HETEROGENEITIES AFFECT 
NU-RICAL GROUNDWATER MODELS 

by Myron B. Allen * and Richard E. Ewing ** 

INTRODUCTION. 

One can argue that the nature of heterogeneities in an underground 
formation is the most influential factor limiting the success of mathematical 
models of flow or transport in the aquifer. Lack of adequate knowledge of 
aquifer heterogeneity and the attendant difficulty in assessing the realism of 
a model’s predictions make the modeler’s job a frustrating one. 

The importance of heterogeneity elicits discomfort among many of us 
whose research concerns new numerical techniques for groundwater model- 
ing. Part of the uneasiness over heterogeneity arises from a widely shared 
view of its importance. The valid premise of this view is that difficulties 
in accurately quantifying underground heterogeneity impose constraints on 
the accuracy of mathematical models, owing to limitations in the quality 
of the input data. The argument then proceeds as follows: Since poorly 
quantified heterogeneity is the dominant source of prediction error in most 
groundwater models, there is little point in focusing research on improved 
numerical techniques. After all, even if we use more accurate numerics, the 
deleterious effects of inadequate input data will still be present, swamping 
any improvements to be gained through mathematical refinements. The nat- 
ural conclusion is that research into methods for detecting and characterizing 
underground heterogeneity have much more potential for improving mathe- 
matical models than does research into the numerical techniques themselves. 

We offer a different perspective. No one would deny that improved 
methods for quantifying heterogeneity are crucial to advances in the realism 
and utility of groundwater models, in accordance with tbe popular maxim, 
“garbage in, garbage out.” However, we contend that the most commonly 
used mathematical methods are inadequate to model heterogeneous aquifers. 
As we review in Section 3, even in the ideal case when the heterogeneities 
are “perfectly” known, standard methods can perform poorly, suggesting a 
new adage: “heterogeneity in, garbage out.” 
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In a more realistic scenario, where one relies on detailed statistical char- 
acterizations of heterogeneous aquifers, existing mathematical techniques are 
largely inadequate at answering the hydrologist’s questions. Here, quantifi- 
able control over the uncertainties in aquifer parameters can fail to yield 
reasonable control over the reliability of the numerical solution. We illus- 
trate this problem in Section 4. This observation suggests the even more 
distressing adage: %tatistics in, garbage out.” 

In what follows, we examine these notions and briefly indicate promising 
avenues for overcoming the difficulties. We hope to aErm the importance of 
continued research into mathematical techniques used in numerical models 
of groundwater flow and transport, thereby rebutting the conclusions of the 
conventional wisdom. 

2. GOmRNING EQUATIONS. 

To clarify what we mean by aquifer heterogeneity, it is useful to review 
the governing equations used in groundwater models. We begin with the 
equations describing groundwater flow. Groundwater obeys a mass balance, 

where S, is the specific storage, H is the hydraulic head, v denotes the 
superficial velocity, and Q accounts for sources and sinks (Huyakorn and 
Pinder, 1983, Section 
hydraulic head by the 

Here, p is the density 

4.2). According to Darcy’s law, v is related to the 
equation 

(2) v = -- p g k V H  = -KVH. 
ct 

of water; g is the gravitational acceleration; k is the 
permeability of the rock matrix, and p is the water’s dynamic viscosity. 
Hydrologists typically use the lumped parameter K, called the hydraulic 
conductivity. In many contexts, Equation (2) is too restrictive, and k (and 
hence K) must be a tensor to accommodate anisotropies in the aquifer’s 
flow characteristics. This consideration can have practical importance, but 
it imposes complications that are not essential to our thesis. 

Heterogeneity, in this context, refers to spatial variations in the aquifer 
parameters Ss(z, y, z )  and K ( z ,  y, 2)- For simplicity, we focus on variations 
in K .  A wide array of phenomena associated with the rock’s deposition 
and diagenesis contribute to these variations, which may occur smoothly or 
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discontinuously. One point that is all too easy to neglect in this connection 
is that Darcy’s law describes the macroscopic velocity of fluids, which in 
some sense represents an average of the velocity in the tortuous, microscopic 
interstices of the rock that are essentially inaccessible to observation. Thus 
spatial variations in K reflect what we might call mucroscopic heterogeneity, 
as opposed to the microscopic variability in pore geometry that Equations 
(1) and (2) cannot explicitly model, even in principle. 

In formulating numerical models of groundwater flow, people commonly 
substitute Equation (2) into Equation (1) to get the groundwater flow equa- 
tion, 

aH 
a t  

S8- - V (KVH) = Q. (3) 

As we discuss in Section 3, discretizing Equations (1) and (2) separately 
can yield significant advantages over the usual approaches to discretizing 
Equation (3). 

When the modeler is interested in how a dissolved contaminant moves in 
a flowing aquifer, it is necessary to solve a transport equation. In the absence 
of chemical reactions and interphase mass transfer, the equation governing 
the concentration c ( z , y , z , t )  of solute has the form 

a(dc) + V (VC) - V ( ~ D V C )  = q. at (4) 

Here, q5 stands for the porosity of the rock matrix, Q accounts for sources and 
sinks of contaminant, and v is the velocity computed using a flow model. D 
denotes the hydrodynamic dispersion tensor, which is a crude attempt to4 ac- 
count for a variety of microscopic phenomena that cause the macroscopically 
observed concentration to diffuse with respect to the advective field v. 

We shall not delve into the controversial physics of D (see Fried, 1975, 
Chapter 2, for the standard model). We note, though, that techniques for 
evaluating D in actual fieldwork are quite poor and are possibly sensitive to 
what length scales the measurer identifies as microscopic. Notwithstanding, 
D can exhibit macroscopic spatial variations attributable, in the standard 
model, both to variations in the rock matrix and to variations in v. Thus 
heterogeneity affects the transport equation (4) through the variability in 
v inherited from flow models, through spatial variations in porosity 4, and 
through the intrinsic variability in D. 

These equations suffice to illustrate our views on heterogeneity; however, 
more complicated underground flows have attracted considerable recent at- 
tention among hydrologists. Noteworthy are flows involving several fluid 
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phases with interphase mass transfer, as commonly occurs when nonaqueous 
liquid contaminants percolate through partially saturated soils. Heterogene- 
ity plays no less important a role in these flows. In fact, heterogeneity can 
exacerbate several types of instability that arise from the nonlinearity of the 
equations that govern these more complicated fiows. The physics here are 
by no means well understood; we refer to Schwille (1984) for an overview. 

3. HETEROGENEITY IN, GARBAGE OUT. 

Having established how heterogeneity enters into groundwater models, 
we now examine how it leads to poor performance in standard numerical 
models of groundwater flow. For the remainder of this section we assume, 
for the sake of argument, that the modeler has “perfect” knowledge of an 
aquifer’s heterogeneities. By this, we mean that the modeler knows the 
values of K(z ,  y,z) and S8(z,y,x) at every point (2, y,z) in the aquifer. 
Notice that such knowledge does not imply any detailed knowledge about 
the microscopic heterogeneities associated with the tortuous interstices of 
the rock. We consider the case when significant spatial variations in K occur 
on a scale that is small compared with the size of the domain to be modeled, 
and for simplicity we neglect spatial variations in S8. 

The small-scale structure of K forces the modeler to use a fine dis- 
cretization of the spatial domain. For example, if one uses finite differences 
to approximate the flow equations, then the maximum dimension h of the 
grid cells must be small enough to resolve the significant fluctuations in hy- 
draulic conductivity. Finitedifference and finite-element schemes for solving 
the flow equation (3) yield large matrix equations to be solved for nodal 
values of head H at each time level in the model. Thus, smaller values of 
the grid mesh h lead to larger numbers of nodal heads and hence to larger 
and computationally more expensive matrix equations. 

What is worse, smaller values of h yield more poorly conditioned matri- 
ces. For typical discretizations having spatial error 0 (h2), for example, the 
condition number of the matrix at each time level is 0(h-2)  (see Johnson, 
1987, Section 7.7). If one uses direct solution techniques such as the Cholesky 
decomposition, this large condition number can lead to enormous roundoff 
errors in the matrix solution, yielding unacceptably inaccurate values of head 
H. Numerically differentiating these heads to compute transport velocities 
via Equation (2) compounds the inaccuracies, and the result can be a useless 
velocity field v computed from a “perfectly” known hydraulic conductivity. 

One can ameliorate the accumulation of roundoff by using iterative tech- 
niques, such as variants of relaxation schemes or conjugate gradients. Here 
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again, large condition numbers lead to difficulties, this time in the form of 
slow iterative convergence. One attractive property of conjugate-gradient 
techniques is that they are readily amenable to preconditioning, which can 
reduce this effect. Research into preconditioners that eliminate the slow con- 
vergence associated with fine discretizations is an active field of research; see 
Golub and O’Leary (1989) for a review. 

Still, fine grids do not tell the entire story. When K varies spatially, there 
is a contribution to poor conditioning attributable simply to the discrepancy 
between the largest and smallest values, say Kmax and Kmin,  occurring in 
the modei’s domain. Li fact, when one uses an Iterative sciieixe to sciw 
the matrix equations, the factor by which each iteration reduces the error 
in the approximate solution typically has the form 1 - O(Krnin/Krnax) (see, 
for example, Allen et al., in preparation). Thus the convergence rate can be 
close to 1, and therefore prohibitively slow, when Kmin differs from Kmax by 
several orders of magnitude, independent of the grid mesh h. 

Research by many investigators indicates that there is hope for this 
problem. Our own work, for example, suggests that a profitable first step 
is to isolate the two sources of poor conditioning by solving Equations (1) 
and (2) a a coupled system, using mixed finite-elemem zet, lods (see, for 
example, Allen et al., 1985). The effects of highly variable conductivity 
K then influencz only the discrete analog of Equt ion (3), -xX& one c m  
attack using any of several preconditioning schemes that effectively adapt to 
the heterogeneity. One can then address the effects of small grid mesh h by 
developing appropriate preconditioners for the conjugate-gradient method, 
as in Ewing et al. (to appear), or by exploiting multigrid techniques, as in 
Allen et al. (in preparation). 

As an illustration of the potential for success in this area, we present 
iterative convergence rates for two schemes applied to steady-state flows in a 
set of fictitious aquifers (Allen et al., in preparation). The functional forms 
used for K in these experiments, listed in Table 1, are clearly contrived, 
yet in their spatial variability they can be just as troublesome as many oc- 
curring in nature. Figure 1 shows plots of iterative convergence rate ver- 
sus grid mesh for each realization of K, using a scheme whose convergence 
rate is theoretically independent of h owing to a peculiar splitting of the 
mixed-method equations. This scheme overcomes sensitivity to small h but 
remains sensitive to spatial variations in K, as the slow convergence rates for 
the realization KV attest. Table 2 displays iterative convergence rates for a 
modified version of the splitting scheme. Here, we precondition the discrete 
Darcy equations arising from the mixed method to mitigate sensitivity to 
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heterogeneity. Theory estimates a convergence rate of 0.5, independent of h 
and K, an estimate that the computed rates confirm. The methods used to 
generate these results by no means offer a final solution to the poor condi- 
tioning arising from heterogeneity, but they demonstrate that heterogeneity 
actually heightens the need for advances in numerical analysis. 

The proper use of mixed finite-element methods offers the further ad- 
vantage of avoiding the deterioration in accuracy that occurs when one nu- 
merically differentiates heads to compute Darcy velocities. As Ewing and 
Wheeler (1983) explain, mixed methods can generate approximate heads 
and velocities that have equal-order accuracy, a property that is especially 
attractive in the context of contaminant transport modeling. 

Still, problems remain. We have not considered the effects of spatial 
variability in specific storage. Moreover, considerable work remains to be 
done to make mixed finite-element models truly efficient and flexible. Issces 
such as adaptive local grid refinement, exploitation of parallel computing 
architectures, and the treatment of nonlinearities associated with multiphase 
flows are prime examples of ongoing work along these lines. 

4. STATISTICS IN, GARBAGE OUT. 

In reality, heterogenities will never be “perfectly” known. The best 
we are likely to achieve are fairly detailed statistical descriptions of hetero- 
geneities below some scale, which is likely to be large in practice. Thus it 
may suffice to use models to generate suites of scenarios yielding statistical 
predictions of aquifer behavior. For this strategy to be successful, ensem- 
bles of “statistically equivalent” realizations of a given heterogeneous aquifer 
must yield predictions that are “statistically similar.” In other words, the 
model’s predictions should be “stable,” in some sense, against changes in 
heterogeneous structure that preserve the detailed statistics of the aquifer. 
Otherwise, a given statistical description of an aquifer might be consistent 
with a large and wildly varying class of model predictions. The notions of 
statistical equivalence, statistical similarity, and stability lack rigorous def- 
inition at this point, but we contend that there is considerable work to be 
done to make this strategy practical. 

As evidence for our contention, we consider a set of numerical experi- 
ments involving coupled underground flow and solute transport. The cou- 
pling consists of the usual dependence of the solute transport coefficients 
on the output of a flow model, together with a dependence of the dynamic 
viscosity p on the concentration c predicted by the transport model. This 



model has its origin in oilfield applications, where injection of miscible fluids 
less viscous than oil is a common form of enhanced oil recovery. Neverthe- 
less, there are clear analogies to be drawn with the physics of groundwater 
contamination and remediation. The experiments suggest that statistically 
similar heterogeneous porous media can yield flow fields that are qualitatively 

. dissimilar in significant respects. 

In the cases modeled, p is a decreasing function of c ,  so the injected 
fluid is more mobile than the displaced fluid. This adverse mobility ratio 
makes the displacement unstable: Small perturbations in the geometry of 
the displacement front can lead to large differences in the fraction of the 
pore space contacted by the injectant. One manifestation of the instabil- 
ity is the occurrence of viscous fingers in the displacement front. It is not 
clear physically how small the perturbations can be and still trigger these 
fingers, but it is conceivable that they could arise from heterogeneities at the 
microscopic scale as well as the macroscopic scale. In this case, no model 
based on Equations (1) through (4) can possibly resolve all of the instabilities 
occurring in macroscopic flows. With this caveat in mind, we examine the 
effects of fine-scale but macroscopically resolvable heterogeneities on miscible 
displacement. 

Figure 2 shows concentration isopleths for simulated displacements in 
two random porous media, with fluid being injected in the lower left corner 
and produced at the upper right (Ewing et al., 1989). The two media are 
independent realizations of the same lognormal spatial permeability distribu- 
tion, and they have the same correlation length. The predicted displacement 
patterns show that the flows in the two model media yield qualitatively dif- 
ferent concentration fields. In fact, the flows differ significantly even with 
respect to relatively coarse measures, such as the pore volumes of resident 
fluid produced after one pore volume of injection. The result for Figure 2a 
is 0.6921, while that for Figure 2b is 0.4968 - a decrease of over 28 percent. 
Clearly, these st at ist ically similar media have dissimilar flow characteristics, 
at least for the physics modeled here. 

Overcoming the difficulties associated with statistical characterizations 
of heterogeneity will require new modeling techniques and perhaps to wholly 
new ways of using models. Among the promising avenues for the near term 
are methods for scaling up fine-scale information to produce realistic models 
using coarse, computationally affordable grid cells. Homogenization theory 
(Bourgeat, 1984), flux-based averaging (White and Horne, 1987), and ef- 
fective macroscopic dispersion tensors (Ewing et al., 1989) are three such 
approaches. 
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In the long run, the issue of uncertainty arising from aquifer heterogene- 
ity has a direct bearing on the uses of deterministic models, since some uncer- 
tainty will doubtless remain as numerical analysis progresses. The inherently 
statistical nature of the problem reflects, in part, the discrepancy between 
the scales at which Equations (1) through (4) apply and the scales at which 
aquifers are accessible to measurement. This discrepancy implies a need for 
broader research into the relationships between fundamental physics, model 
formulation, numerical analysis, and parameter identification in groundwater 
modeling. 

5. CONCLUSIONS. 
The adages, “heterogeneity in, garbage out,” and “statistics in, garbage 

out: are probably too pessimistic. We really intend the first adage as a 
caution: Modelers should not assume that all is settled on the numerical 
front, and that all we need are better measurements to feed into existing 
models. Numerical methods that are standard engineering practice today 
will become increasingly inadequate as better measurements of heterogeneous 
aquifer parameters become available. The second adage is a caution of a 
different sort. It suggests that the problems associated with uncertainty in 
heterogeneous aquifers may not be amenable to solution via straighforward 
discretization of the standard governing equations. Instead, these problems 
may require new approaches, in which rigorous numerical work contributes 
to the development of model formulations appropriate to the scales at which 
the models will actually be run. 
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TABLE 1. CONDUCTIVITY FIELDS USED IN NUMERICAL EXPERIMENTS 
FOR ITERATIVE SOLUTIONS OF MIXED FINITE-ELEMENT MODELS FOR 
STEADY-STATE GROUNDWATER FLOW 

K&y) = P-”; 
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TABLE 2. CONVERGENCE RATES FOR A UNIFORMLY CONDITIONED 
ITERATIVE SCHEME APPLIED TO PROBLEMS IDENTIFIED IN TABLE 1. 
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Figure 1. Convergence rates for an h-independent iterative scheme applied 
to probrems identified in Table 1. 

Figure 2. Concentration isopleths after injection of one pore volume for 
model miscible dispIacements in two random media having similar statistics. 


