
Parallel Computing for Solute Transport Models Via
Alternating Direction Collocation

M. C. Curran

Journal Article

M. B. Allen HI

1990
WWRC-90-24

In

Advanced Water Resources

Volume 13

M. C. Curran and M. B. Allen 111
Department of Mathematics

University of Wyoming
Laramie, Wyoming

Parallel computing for solute transport models via
alternating direction collocation

M. C. Curran and M. B. Allen 111

Department of Mathematics, University of Wyoming, Laramie, WY 82070 U.S.A

We examine algorithmic aspects of M. Celia’s alternating-direction scheme for finite-element
collocation, especially as implemented for the two-dimensional advection-diffusion equation
governing solute transport in groundwater. Collocation offers savings over other finite-element
techniques by obviating the numerical quadrature and global matrix assembly procedures
ordinarily needed in Galerkin formulations. The alternating-direction approach offers further
saving in storage and serial runtime and, significantly, yields highly parallel algorithms
involving the solution of problems having only one-dimensional structure. We explore this
parallelism.

Key Words: Alternating-direction methods, collocation, parallel computing.

1. INTRODUCTION

Alternating-direction (AD) methods have been of in-
terest in the numerical solution of partial differential
equations since their introduction in 1955 by Peaceman
and Rachford’. In 1970 Douglas and Dupont’
developed an alternating-direction Galerkin method,
variants of which have attracted the attention of several
authors, including Dendy and Fairweather and Hayes
and Kr i~hnamachar i~ . Analogous alternating-direction
collocation (ADC) methods have also appeared in
several papers, including those by Bangia et al. 5 , Chang
and Finlayson6, Hayes’, Celia et a1.8, Celia’, and Celia
and Pinder lo . Reference 9, in particular, demonstrates
the applicability of ADC to problems of practical im-
portance in water resources engineering.

We examine Celia’s ADC for the two-dimensional
advection-diffusion equation for solute transport in a
known velocity field. Of interest here are algorithmic
features of ADC that enhance its efficiency in com-
parison with standard two-dimensional collocation,
especially the amenability of ADC to implementation
on parallel-architecture computers. The paper has the
following structure: section 2 briefly reviews finite-
element collocation using bicubic Hermite bases; section
3 discusses the AD method applied to collocation; in
section 4 we discuss the method’s performance on a
parallel computer.

2. REVIEW OF FINITE-ELEMENT
COLLOCATION

We begin by reviewing finite-element collocation for
problems in two space dimensions. The primary aim
of this review is to establish notation and terminology
for the rest of the paper. Lapidus and Pinder I ’ give an

Accepted September 1989. Discussion closes December 1’390.

alternative, more detailed description of the
methodology that may be more appropriate for those
seeking an introduction.

Consider the following problem, posed on the rec-
tangular spatial domain Q = (a , b) x (c , d) :

(a) a , U + v - VU - v . (DVU) = 0,(X, Y , t) E Q x (0 , ~),

(b) u (- y , Y, 0) = W (X , y > , 0, Y) 6 Q,

In equation (la), v = v(x, y) represents a known fluid
velocity, which in applications might be the Darcy -
velocity computed using a groundwater flow model.
D = D (x , y) is a diffusion coefficient, which in
underground flows could serve as a simple model of
hydrodynamic dispersion. (For purposes of testing the
efficiency of collocation algorithms, we neglect the
possible tensorial nature of D and suppress explicit con-
sideration of any dependence on the fixed velocity field
v .) The unknown function u = u(x , y , t) represents a
solute concentration. Equation (1 b) gives the initial con-
centration field, while equation (lc) imposes Dirichlet
boundary conditions. These boundary data are not
the only ones to which the ADC method applies; in
fact, one could just as well impose Neumann, Robin, or
mixed boundary conditions.

We use finite-element collocation to discretize the
spatial dimensions in the following class of semidiscrete
analogs:

(1)

(c) UO, Y , t) = u B (. y , Y , t) , (x , Y) E aQ2, t 2 0.

u’I+1 - I{’? + k [v VUn+e - v. (Dvu”+e)] = 0,

n = 0 , 1 , 2 ,..., (2)

where integer superscripts indicate time level. The nota-
tion (-) ”+’ signifies a convex combination
19(.) ”+ ’+ (1 - O) (-) “ of the quantity (.) at successive
time levels, where 0 < 0 6 1 , and k denotes the time
step. In particular, the choice 19 = 1/2 yields a Crank-
Nicolson scheme, for which we expect the local trunca-
tion error to be O (k ’) .

I 990 Con1 pi1 r ;it 10 ii;i I PI cc ha n i cs P u bl ic;i[io ii\

70 Adv. Wuter Resources, 1990, Vol. 13, No. 2

Panillel conipiiting: M. C. Crrrran and M. B. Allen

We begin by establishing a rectangular grid on Q and
a corresponding space of finite-element interpolating
functions. Let A , = { n = so, ..., x , ~ , = b) and A,. =
{ c = V O , ..., y ~ , = d 1 be grids on the x- and y-intervals
(a , b) and (c, d) , respectively, and call h , = Y,

I x, - x,- I) and h,. = may1 s l G ~ i { y, - y,-) . The Her-
mite piecewise cubics on these one-dimensional grids are
functions belonging to the spaces

* //!(A\) =

* / / ; (A ,) =

I f d ([c r , b l) / f J r \ , , . \ , I is cubic, i = I , . . . AI,

{ f € C ' ([c , d]) l f ([, , , . \ , I is cubic, j = 1 ,... , N ,] ,

Here f l I*\,-,,+,,] denotes the restriction of the globally
defined function f to the subinterval [xr- 1, x,] . Thus
each function in either of these spaces agrees with some
cubic polynomial on any subinterval in the grid, and
these cubic 'pieces' connect in a manner that preserves
global continuous differentiability. As Prenter l 2 shows,
each of these spaces has an interpolating basis
{ ho,, hlr];2oor ly,, every element of which has support
confined to at most two adjacent subintervals [x l - 1, x,]
or [*v,- 1 , y,] . Given any function f € , / /:(Ak), for
example, the representation of f with respect t o this
basis takes the form

$,

f (x) = c [f(x,)ho,(s) + f' (x,)hl/(-x-)l *
r = O

For the two-dimensional problem (l) , we use these
interpolating spaces to form a tensor-product inter-
polating space ,,//:(A,) @ , //:(Ay), This space has a
basis in which each function is the product of a
piecewise cubic basis function in d/ : (A ,) and one in

/ / ; (A y) . At each time level n , we compute an approx-
imate solution f i " (x , y) belonging to the trial space

. // = { u E . U : (A ,) @ ,,//!(A,) I v(x, y)
- = U d X , y) v (-& v) E 1 *

As the notation indicates, each function in , //
automatically obeys the boundary conditions (lc) and
has the form

N, v,
f i " (x , y) = c c [fi'f (X I , y,)HOo/J(*Y, Y)

/ = O J = o

+ a r f i n (X t , Y,)H~~,,(X, U)
+ a,,fin(.yl, Y,)H~~,(X, Y)
+ a k y f i w l , Y ~) M ~ ~ , (X , Y N ,

where HI, ,~~,(X, y) = h/,(x)h,,(y).
At t = 0 we form the initial approximate solution f i 0

by using the nodal values of the initial function U I and
its x-, y- , and xy-derivatives to form the projection of
the true initial concentration onto .>l/. These criteria
specify f i 0 completely. For subsequent time levels, the
fact that every function in the trial space, N satisfies the
boundary conditions fixes the nodal values and tangen-
tial derivatives of the approximate solute concentration
along the boundary aQ. A careful count will reveal that
the boundary conditions determine 4(N, + N,! + 1) of
the 4(N, + l)(Ny + I) nodal coefficientc for each
unknown function l i ' , f i 2 ,

At each new time level n + I , we use our knowledge
of the most recently computed approximatt. solution ii"

to determine the remaining 4N,,Nv degrees of freedom
for 17'"~. We first form the residual

R'If1 - - $ / + I - f i " + k [v . o f i " ' v - V . (D V f i n f v)] .

U'e then pick a collection { (X I , ~ I) , XI,^%), ..., (j?2.bt,

* i * 2 \ J)] of 4N,h$ collocation points and force
R " + I (S,,j,) = 0 at each, thus enforcing precisely the
correct number of conditions to determine f i " + l . In par-
ticular, we choose Xp and jq to be the two-point Gauss-
quadrature abscissae on each subinterval [xr- I , x,] or
[~ ; - ~ , - v ,] . Since the spatial problem to be solved at
each time level is elliptic we expect this choice of col-
location points to yield optimal global error estimates of
the form llu" - fi"llm = 0 (h: + h-;) (see Refs 13 and 14).

3. THE ALTERNATING-DIRECTION METHOD

The aim of ADC is t o modify the ordinary two-
dimensional collocation procedure via an operator split-
ting. This splitting reduces the discrete problem to one
in\.olving a sequence of matrix equations, each of which
has the same sparse structure as the one-dimensional
collocation system. The following description of this
splitting approach is essentially a review of the develop-
ment presented by Celia and Pinder in Ref. 10.

We first perturb equation (2) by a term that is 0 (k2)
to get

(Reference 10 treats the advection-diffusion equation in
a slightly different fashion, splitting only the diffusive
part of the spatial operator.) Rearranging equation (3)
and factoring gives

-

(1 + kOYP,)(l + ~ O Y ,) (U ' ~ + ' - u ") = - k (9 , + Y'-,.)u''.

Conceptually, we can solve (1 + kOYy)z = k(g', + g).)u''
for the intermediate unknown z , then solve
(1 + kOYx)(u"+' - u ") = z for the time increment in fi.

To see how this works algebraically, notice that
substituting Hermite bicubic trial functions for ii and
collocating produces a matrix equation Ku'*+' = r",
where u"" is the vector of time increments for the
unknown nodal coefficients of f i n + ' . Consider a typical
entry of the matrix K:

where Hlmij is some basis function in the tensor-product
interpolation space. Each H//nij(x, y) = h/i(x)h,,ij(y), SO
we can expand the expression (4) and factor it to get

This factoring of each matrix entry, together with
Celia's scheme' for numbering and renumbering equa-
tions and unknowns, allows us to factor the entire
matrix equation at each time level in a computationally
attractive fashion. I f we number the equations and
unknowns 'vertically,' that is, consecutively along the
lines x=S, , , as shown in Fig. la, then the

Adv. Water Resources, 1990, Vol. 13, h'o. 2 71

Parallel computing: M . C. Currun and M . B. Allen

5 2Ny t 5 4 N , + 5 G N v + 5 8 N v + 5

0 A h .L
1. ..

4 2 N , + 4 4N,+.i 6 N V + 4 SN,, + 4

3 2 4 , + 3 4 N , , + 3 S N v + 3 8 N u + 3
(4

& A A

Fig. I . (a) Vertical nuinbering scheme f o r the equa-
tions used in the y-sweep. Equation numbers occupy
the sites of corresponding collocation points; the sym-
bols indicate nodes in the grid. (b) Horizontal number-
ing scheme for the equations used in the x-sweep. (c)
Association scheme for numbering nodal unknowns
following a given numbering scheiiie for the collocation
points surrounding the node.

4N,-N, x 4“V,Nl. matrix’K factors as follows:

Each 2N,. x 2N. block Yp,p has the five-band structure
of a one-dimensional collocation matrix, shown in Fig.
2. Moreo\,er, The entries in Yp,,, depend only on the
y-coordinates of collocation points.

Now consider the matrix X. I f we switch to the
‘horizontal’ numbering scheme for equations and
unknowns, illustrated in Fig. Ib, then X transforms to
a block-diagonal matrix that we denote as follows:

(We usc the superscript * to indicate thc result of

-
x x x
x x x

x x x x
x x x x

x x x x 0
x x x x

x x x x
x x x x

a

a

0 x x x x
x x x x

x x x x
x x x x

x x x
x x x

c

Fig. 2.
inatrix for standard one-dimensional collocation

Five-band zero structure associated with the

switching to the ‘horizontal’ numbering scheme.)
Again, each 2 N , x 2 N , block X:,q has the five-band
structure shown in Fig. 2.

In light of these observations, we can solve the two-
dimensional matrix equation Ku”+l = r ” by the follow-
ing procedure.

1 . Adopt the ‘vertical’ numbering scheme, and solve
Yz = r ” for the intermediate vector z by solving the
independent problems Y,.,z, = r:, p = 1, ..., 2N,.

2. Renumber according to the ‘horizontal’ scheme,
converting z to the reordered vector z * . This
renumbering transforms X to the block-diagonar
form x*.

3 . Solve X*U‘’+’ = z* for the desired time increments by
solving the independent systems X:,qul+l = 23,
q = 1, ..., 2 N p

Thus each time step involves the solution of matrix
equations that are at worst one-dimensional in
structure.

At this point we can make some comments regarding
the efficiency to be gained by the splitting scheme. For
simplicity, let us assume that N., = N,, = N . In the fully
two-dimensional matrix problem K u ” ” = r”, there are
then 4 N 2 unknowns, and the matrix K is asymmetric. I f
we order equations and unknowns to allow for row
reduction without pivoting, K will have a bandwidth
Bz=8N+ 16 (see Ref. 15). Assuming that row
reduction accounts for the bulk of the computational
work in the sparse matrix solver used, we can expect the
operation count for solving the fully two-dimensional
equations at each time step to be roughly
4N2B: = 256N4 for large N. By contrast, ADC calls for
the solution o f 4 N matrix equations of bandwidth
B I = 5 and order 2 N at each time level. Thus an upper
bound for the number of arithmetic operations required
in the row reductions for ADC is 4 N (2 N B f) = 200N’.

Furthermore, each of the ‘one-dimensional’ systems
in steps 1 and 3 of ADC is independent of any other.

72 Ad).. I I irto. Resources, 1990. Vol. 13, No. 2

Purallel cotirputing: itl. C. Curran and M. B. Allen

Therefore these steps can r ~ i n concurrently, whereas
there appears to be no such obvious parallelism in the
standard solvers for the fully two-dimensional
formulation. We explore the inherent parallelism of
ADC in the next section.

4. IMPLEMENTATION 03 A PARALLEL
COMPUTER

We have implemented ADC on an Alliant FX/8 parallel
processing computer. The Alliant has eight processors
in a shared-memory configuration in which each pro-
cessor is a vector-architecture machine. The Alliant
allows users to control concurrency within a standard
Fortran code through the use of compiler derectives.
Since we are mainly interested in the general advantages
to be gained through the shared-memory architecture
and the concurrency controls furnished by the compiler,
we shall not consider such other machine-specific
features as size of the cache (high-speed memory),
number of processors, or speed of the random-access
memory.

The following is a description of the code outlined in
Steps 1-3 of section 3. The compiler directives
themselves begin with the flag CVD$ starting in the first
column of code.

Initialize t io , set n = o
Begin time level n T 1

CVD$L CNCALL (Compiler directive to permit the con-
current mecution of the following loop
containing a reference to an external
procedure.)

DO for each p = 1 , ..., 2 N ,
CALL YSWEEP (Constructs the system

E',,,z, = r:, solves i t , and
saves the results.)

END DO
CALL RENUM (Reorders z to get z*)

CVD$L CNCALL
DO for each q = 1, .. ., 2 N ,

4,(1 (I

CALL XSWEEP (Constructs * the system x* u I I + I - - z y , solves it and
updates the nodal coefficients
of Li to time level n + 1.)

END DO
End time step

CVD$R NOCONCUR (DirectiL e to supress concurrency
until the end of the subroutine.)

SUBROUTINE YSWEEP

SUBROUTINE XSWEEP
CVD$R NOCONCUR

The directi1.e CNCALL forces the passes through a
DO loop to execute in parallel, within the limitations of
the machine's configuration. Thus, for example, i f the
algorithm calls for eight passes through the loop and
there are eight processors, then CNCALL forces the
operating system to map each pass onto a separate pro-
cessor, allowing concurrent execution of the passes. If,
on the same machine, the algortithm calls for nine
passes through the loop, then the last pass must wait un-
t i l one of the first eight terminates before the operating
system can map the ninth onto a free processor. This
logic implies that certain efficiencies accrue when the
number of independent processes is aii integer multiple
of the number of processors in the machine being used.

The need for the directive NOCONCUR arises from
the structure of the Alliant's optimizing compiler, which
often must choose among several levels of parallelism
in a code. By default, the compiler optimizes for
parallelism at the finest level. Thus, for example, it will
force independent processes within a subroutine to run
concurrently, in preference to forcing independent calls
to the subroutine itself to run concurrently, Inserting
the directive NOCONCUR before the SUBROUTINE
statement overrides the default level for optimization.
This de\ice allows the compiler to treat each call to the
subroutine as an independent process, even if the poten-
tial for concurrency exists at a finer level inside the
subroutine.

One measure of how well the algorithm make; use of
the machine's parallel capabilities is the speedup.
Speedup for n processors is the ratio of the CPU time
needed by one processor to the time used by n pro-
cessors to perform a set of tasks in parallel. For a
perfectly parallel algorithm requiring no overhead to
monitor or schedule the various processes and no
storage of their results, the speedup for n processors
would be n. Figure 3 shows the speedup curve for the
ADC algorithm, implemented for the advection-
diffusion problem on a 40 x 40-element spatial grid. The
CPU time used to compute these ratios is actual clock
time, excluding the processing required for initializing
the code but including computational overhead required
for scheduling and storage of intermediate results. The
speedup curve is quite close to the ideal curve of unit
slope, yielding a speedup of 7.27 for eight processors.
Clearly, ADC makes very good use of the Alliant's
shared-memory parallel architecture.

We caution against extrapolating these speedup
results to much larger problems on the Alliant as con-
figured. The size of the cache memory in any particular

h
3
-u
Q) al
cn a

2 3 4 5 6 7 8

Number of Processors

Fig. 3.
slim-eci-memory architecture

Speedup curve for ADC using the Alliatit FA'/$

Adv. Wuter R ~ S O L I I Y ~ S , 1990, Vol. 13, No. 2 73

Purullel computing: M . C. Currun and M . B. Allen

computer clearly constrains that machine's ability to
compute efficiently. What is important here is not the
computational horsepower of the particular machine we
have used but rather the natural parallelism inherent in
the ADC algorithm. This parallelism can yield signifi-
cant speedups on essentially any shared-memory
parallel architecture.

To confirm that ADC gives useful approximations,
Figs 4 and 5 show solution plots for two different prob-
lems. Figure 4 shows the results of a rotating plume pro-
blem on Q = (- 1, 1) x (- 1 , 1)) with N.,- = ni;. = 40 and
k = 0.004. Here, v = 2 ~ (- y , x) is a circular velocity
field, D = 0, and the initial concentration plume u I (s , y)
is a 'Gauss hill' with center at (0, -0.6) and standard
deviation 0 = 0.066. This pure advection problem, while
physically unrealistic, poses a fairly severe test of
ADC's ability to approximate solutions with steep
fronts in highly advective flow fields. In this case, the
global error at t = 1, when the exact solution is identical
to the initial condition, is less than 0.08 1 1 u I i m .

Figure 5 displays the results of an advection-diffusion

I 1 I I 1 I I I I I I

-1
-1 1

Fig. 4. Concentration contours f o r the purely advec-
tive rotating plume problem at vnrious time levels. Con-
tour interivl is 0.1

A

Fig. 5 .
an ad~,ec.tiorl-diffiision probleiii with Durcy Jro M'

Plot of concentrution distribirtion ut t = 0.3 for

problem on Q = (0, 1) x (0, l) , with N., = Nv = 20 and
k = 0.004. The diffusion coefficient here is D = 0.00385.
The velocity field is v(x , y) = 2e-"(x, - y) , which cor-
responds to the steady-state Darcy velocity - K W on R
when the hydraulic conductivity is K (x , y) = e" and thy
head obeys the boundary conditions +(x, y) = x 2 - J -
on as2. The inital concentration distribution U I for this
problem is another 'Gauss hill,' with (T = 0.05 and center
(0.75,0.25).

5. CONCLUSIONS
From operation counts alone, it has been clear for some
time that ADC offers distinct efficiencies over standard
met hods for two-dimensional collocation in a serial
computing environment. With the advent of practical
parallel computers, ADC holds even more promise,
since the splitting scheme converts a fully two-
dimensional problem into a sequence of 'one-
dimensional' problems that are amenable to concurrent
processing. Similar observations should hold for other
alternating-direction methods, including techniques for
multidimensional finite-difference and Galerkin
aproximations.

ACKNOWLEDGMENTS
The Wyoming Water Research Center supported this
work. We also received support from NSF grant
RII-8610680, EPA cooperative agreement
CR8 13928-01-0, and ONR contract 0014-88-K-0370.

REFERENCES
1

2

3

4

5

6

7

8

9

10

Peaceman, D. W. and Rachford, H. H. The numerical sol-
ution of parabolic and elliptic equations, SZAM J . 1955, 3,

Douglas, Jr., J . and Dupont, T. Alternating-direction
Galerkin methods on rectangles, Numerical Solution of
Partial Differential Equations, Vol. 2,' B. Hubbard, ed.,
Academic, New York, 1971, 133-214
Dendy, J. and Fairweather, G . Alternating-direction Galerkin
schemes for parabolic and hyperbolic problems on rectangular
polygons, SIAiM J. Numer. Anal. 1975, 2 , 144-163
Hayes, L. J . and Krishnamachari, S. V. Alternating direction
along flow lines in a fluid flow problem, Comp. Meth. App.
Mech. and Engg 1989, 47, 187-203
Bangia, V. K., Bennett, C. and Reynolds, A. Alternating
direction collocation for simulating reservoir performance,
53rd annual fall conference, Society of Petroleum Engineers,
Houston, 1978
Chang, P . W. and Finlayson, B. A. Orthogonal collocation on
finite elements for elliptic equations, Marh. Comp. Simu-
lation, 1978, 83-92
Hayes, L. J . ,4n alternating-direction collocation method for
finite element approximations on rectangles, Cornput. Math.

Celia, M. A., Pinder G. F. and Hayes, L. J . Alternating direc-
tion collocation simulation of the transport equation, Pro-
ceedings Third Int. Con f, Finite Elements in Water Resources,
S . Y. Wang er al., eds., University of Mississippi, Oxford,

Celia, M. A.. Collocation on deformed jinite elements and
alternating direction collocation merhods, Ph. D. Dissertation,
Princeton University, 1983
Celia, M. A. and Pinder, G. F. Analysis of alternating-
direction methods for parabolic equations, Niimer. Mrth.
P.D.E. 1985, 1, 57-70

.

28-41

Appl., 1980, 6, 45-50

MS, 1980, 3.36-3.48

73 Ad\'. Itirter Resources, 1990, Vol. I.3, No. 2

1 1 Lapidus, L. and Pinder, G . F. Numerical solution of partial
dqferential equations in science and engineering. New York,
I982
Prenter, P. M. Splines and variational methods, New York,
I975
Percell, P. and Wheeler, X I . F., A C’ finite element colloca-
tion method for elliptic problems, SlAM J . Numer. Anal. 17

12

13

1980. 605-622

Parnllel computing: M . C. Curran und M. B. Allen

14 Dyksen, W . R., Lynch, R . E. , Rice, J . R. and Houstis, E. N .
The performance of the collocation and Galerkin methods
with hermit bicubics, SIAM J. Numer. Anal., 1984, 21.
675-7 15
Frind, E. 0. and Pinder, G. F. A collocation finite element
method for potential problems in irregular domains, Int. J.
A’umer. Meth. Engg 1979, 14, 681-701

15

A h . Wuter Resoirrces, 1990, c’ol. 13, No. 2 75

