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We examine algorithmic aspects of M.  Celia’s alternating-direction scheme for finite-element 
collocation, especially as implemented for the two-dimensional advection-diffusion equation 
governing solute transport in groundwater. Collocation offers savings over other finite-element 
techniques by obviating the numerical quadrature and global matrix assembly procedures 
ordinarily needed in Galerkin formulations. The alternating-direction approach offers further 
saving in storage and serial runtime and, significantly, yields highly parallel algorithms 
involving the solution of problems having only one-dimensional structure. We explore this 
parallelism. 
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1. INTRODUCTION 

Alternating-direction (AD) methods have been of in- 
terest in the numerical solution of partial differential 
equations since their introduction in 1955 by Peaceman 
and Rachford’. In 1970 Douglas and Dupont’ 
developed an alternating-direction Galerkin method, 
variants of which have attracted the attention of several 
authors, including Dendy and Fairweather and Hayes 
and Kr i~hnamachar i~ .  Analogous alternating-direction 
collocation (ADC) methods have also appeared in 
several papers, including those by Bangia et al. 5 ,  Chang 
and Finlayson6, Hayes’, Celia et a1.8, Celia’, and Celia 
and Pinder lo .  Reference 9, in particular, demonstrates 
the applicability of ADC to problems of practical im- 
portance in water resources engineering. 

We examine Celia’s ADC for the two-dimensional 
advection-diffusion equation for solute transport in a 
known velocity field. Of interest here are algorithmic 
features of ADC that enhance its efficiency in com- 
parison with standard two-dimensional collocation, 
especially the amenability of ADC to implementation 
on parallel-architecture computers. The paper has the 
following structure: section 2 briefly reviews finite- 
element collocation using bicubic Hermite bases; section 
3 discusses the AD method applied to collocation; in 
section 4 we discuss the method’s performance on a 
parallel computer. 

2. REVIEW OF FINITE-ELEMENT 
COLLOCATION 

We begin by reviewing finite-element collocation for 
problems in two space dimensions. The primary aim 
of this review is to establish notation and terminology 
for the rest of the paper. Lapidus and Pinder I ’  give an 
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alternative, more detailed description of the 
methodology that may be more appropriate for those 
seeking an introduction. 

Consider the following problem, posed on the rec- 
tangular spatial domain Q = ( a ,  b )  x ( c ,  d ) :  

(a) a , U  + v - VU - v . (DVU ) = 0,( X, Y ,  t ) E Q x ( 0 , ~  ), 

(b) u ( - y ,  Y, 0) = W ( X ,  y > ,  0, Y )  6 Q, 

In equation (la), v = v(x, y )  represents a known fluid 
velocity, which in applications might be the Darcy - 
velocity computed using a groundwater flow model. 
D = D ( x ,  y )  is a diffusion coefficient, which in 
underground flows could serve as a simple model of  
hydrodynamic dispersion. (For purposes of testing the 
efficiency of collocation algorithms, we neglect the 
possible tensorial nature of D and suppress explicit con- 
sideration of any dependence on the fixed velocity field 
v . )  The unknown function u = u(x ,  y ,  t )  represents a 
solute concentration. Equation (1 b) gives the initial con- 
centration field, while equation (lc) imposes Dirichlet 
boundary conditions. These boundary data are not 
the only ones to which the ADC method applies; in 
fact, one could just as well impose Neumann, Robin, or 
mixed boundary conditions. 

We use finite-element collocation to discretize the 
spatial dimensions in the following class of semidiscrete 
analogs: 

(1) 

(c) UO, Y ,  t )  = u B ( . y ,  Y ,  t ) ,  ( x , Y )  E aQ2, t 2 0. 

u’I+1 - I{’? + k [ v  VUn+e - v.  (Dvu”+e)] = 0, 

n = 0 , 1 , 2  ,..., (2) 

where integer superscripts indicate time level. The nota- 
tion ( - ) ”+’  signifies a convex combination 
19( . ) ”+ ’+ (1  - O ) ( - ) “  of the quantity ( . )  at successive 
time levels, where 0 < 0 6 1 ,  and k denotes the time 
step. In particular, the choice 19 = 1/2 yields a Crank- 
Nicolson scheme, for which we expect the local trunca- 
tion error to be O ( k ’ ) .  

I 990 Con1 pi1 r ;it 10 ii;i I PI cc ha n i cs  P u bl ic;i[ io ii\ 
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We begin by establishing a rectangular grid on  Q and 
a corresponding space of finite-element interpolating 
functions. Let A ,  = { n  = so, ..., x , ~ ,  = b )  and A,. = 
{ c = V O ,  ..., y ~ ,  = d 1 be grids on the x- and y-intervals 
( a ,  b )  and (c, d) ,  respectively, and call h ,  = Y, 

I x, - x,- I ) and h,. = may1 s l G ~ i  { y, - y,- ) .  The Her- 
mite piecewise cubics on these one-dimensional grids are 
functions belonging to the spaces 

* //!(A\) = 

* / / ; ( A , )  = 

I f d ( [ c r , b l ) / f J r \ ,  , . \ , I  is cubic, i =  I , . . .  AI, 

{ f € C ' ( [ c , d ] ) l f ( [ , ,  , . \ , I  is cubic, j =  1 ,... , N , ] ,  

Here f l  I*\,-,,+,,] denotes the restriction of the globally 
defined function f to the subinterval [ xr- 1, x,] . Thus 
each function in either of these spaces agrees with some 
cubic polynomial on any subinterval in the grid, and 
these cubic 'pieces' connect in a manner that preserves 
global continuous differentiability. As Prenter l 2  shows, 
each of these spaces has an  interpolating basis 
{ ho,, hlr ];2oor ly,, every element of which has support 
confined to  at most two adjacent subintervals [ x l -  1, x,] 
or [ *v,- 1 ,  y,] . Given any function f € ,  / /:(Ak),  for 
example, the representation of f with respect t o  this 
basis takes the form 

$, 

f ( x )  = c [f(x,)ho,(s) + f' (x,)hl/(-x-)l * 
r = O  

For the two-dimensional problem ( l ) ,  we use these 
interpolating spaces to form a tensor-product inter- 
polating space ,,//:(A,) @ ,  //:(Ay), This space has a 
basis in which each function is the product of a 
piecewise cubic basis function in d/ : (A , )  and one in 

/ / ; ( A y ) .  At each time level n ,  we compute an  approx- 
imate solution f i " ( x , y )  belonging to the trial space 

. // = { u E .  U : ( A , )  @ ,,//!(A,) I v(x, y )  
- = U d X ,  y )  v (-& v) E 1 * 

As the notation indicates, each function in , // 
automatically obeys the boundary conditions (lc) and 
has the form 

N, v, 
f i " (x ,  y )  = c c [ fi'f ( X I ,  y,)HOo/J(*Y, Y )  

/ = O  J = o  

+ a r f i n ( X t ,  Y,)H~~,,(X, U )  
+ a,,fin(.yl, Y,)H~~,(X, Y )  
+ a k y f i w l ,  Y ~ ) M ~ ~ , ( X ,  Y N  , 

where HI, ,~~,(X,  y )  = h/,(x)h,,(y). 
At t = 0 we form the initial approximate solution f i 0  

by using the nodal values of the initial function U I  and 
its x-, y- ,  and xy-derivatives to form the projection of 
the true initial concentration onto .>l/. These criteria 
specify f i 0  completely. For subsequent time levels, the 
fact that every function in the trial space,  N satisfies the 
boundary conditions fixes the nodal values and tangen- 
tial derivatives of the approximate solute concentration 
along the boundary aQ. A careful count will reveal that 
the boundary conditions determine 4(N, + N,! + 1) of 
the 4(N, + l)(Ny + I )  nodal coefficientc for each 
unknown function l i ' ,  f i 2 ,  ... . 

At each new time level n + I ,  we use our knowledge 
of the most recently computed approximatt. solution ii" 

to determine the remaining 4N,,Nv degrees of freedom 
for 17'"~. We first form the residual 

R'If1 - - $ / + I  - f i " + k [ v . o f i " ' v - V . ( D V f i n f v ) ] .  

U'e then pick a collection { ( X I , ~ I ) ,   XI,^%), ..., (j?2.bt, 

* i * 2 \ J ) ]  of 4N,h$ collocation points and force 
R " + I  (S,,j,) = 0 at each, thus enforcing precisely the 
correct number of conditions to determine f i " + l .  In par- 
ticular, we choose Xp and jq to be the two-point Gauss- 
quadrature abscissae on each subinterval [ xr-  I ,  x,] or 
[ ~ ; - ~ , - v , ] .  Since the spatial problem to be solved at 
each time level is elliptic we expect this choice of col- 
location points to yield optimal global error estimates of  
the form llu" - fi"llm = 0 (h: + h-;) (see Refs 13 and 14). 

3. THE ALTERNATING-DIRECTION METHOD 

The aim of ADC is t o  modify the ordinary two- 
dimensional collocation procedure via an operator split- 
ting. This splitting reduces the discrete problem to one 
in\.olving a sequence of matrix equations, each of which 
has the same sparse structure as the one-dimensional 
collocation system. The following description of this 
splitting approach is essentially a review of the develop- 
ment presented by Celia and Pinder in Ref. 10. 

We first perturb equation (2) by a term that is 0 (k2) 
to get 

(Reference 10 treats the advection-diffusion equation in 
a slightly different fashion, splitting only the diffusive 
part of the spatial operator.) Rearranging equation (3) 
and factoring gives 

- 

(1 + kOYP,)(l + ~ O Y , ) ( U ' ~ + '  - u " )  = - k ( 9 ,  + Y'-,.)u''. 

Conceptually, we can solve (1 + kOYy)z = k(g', + g).)u'' 
for the intermediate unknown z ,  then solve 
(1 + kOYx)(u"+' - u " )  = z for the time increment in fi. 

To see how this works algebraically, notice that 
substituting Hermite bicubic trial functions for ii and 
collocating produces a matrix equation Ku'*+'  = r", 
where u"" is the vector of time increments for the 
unknown nodal coefficients of f i n + ' .  Consider a typical 
entry of the matrix K: 

where Hlmij is some basis function in the tensor-product 
interpolation space. Each H//nij(x, y )  = h/i(x)h,,ij(y), SO 
we can expand the expression (4) and factor it to get 

This factoring of each matrix entry, together with 
Celia's scheme' for numbering and renumbering equa- 
tions and unknowns, allows us to factor the entire 
matrix equation at each time level in a computationally 
attractive fashion. I f  we number the equations and 
unknowns 'vertically,' that is, consecutively along the 
lines x=S, , ,  as shown in Fig. la,  then the 
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5 2Ny  t 5 4 N ,  + 5  G N v + 5  8 N v  + 5  

0 A h  .L 
1. .. 

4 2 N , + 4  4N,+.i 6 N V + 4  SN,, + 4  

3 2 4 , + 3  4 N , , + 3  S N v + 3  8 N u + 3  
(4 

& A A 

Fig. I .  (a) Vertical nuinbering scheme f o r  the equa- 
tions used in the y-sweep. Equation numbers occupy 
the sites of corresponding collocation points; the sym- 
bols indicate nodes in the grid. (b) Horizontal number- 
ing scheme for  the equations used in the x-sweep. (c) 
Association scheme for numbering nodal unknowns 
following a given numbering scheiiie for  the collocation 
points surrounding the node. 

4N,-N, x 4“V,Nl. matrix’K factors as follows: 

Each 2N,. x 2N. block Yp,p has the five-band structure 
of a one-dimensional collocation matrix, shown in Fig. 
2. Moreo\,er, The entries in Yp,,, depend only on the 
y-coordinates of collocation points. 

Now consider the matrix X. I f  we switch to the 
‘horizontal’ numbering scheme for equations and 
unknowns, illustrated in Fig. Ib, then X transforms to 
a block-diagonal matrix that we denote as follows: 

(We usc the superscript * to indicate thc result of 

- 
x x x  
x x x  

x x x  x 
x x x  x 

x x x x  0 
x x x x  

x x x x  
x x x x  

a 

a 

0 x x x  x 
x x x x  

x x x x  
x x x x  

x x x  
x x x  

c 

Fig. 2. 
inatrix for  standard one-dimensional collocation 

Five-band zero structure associated with the 

switching to the ‘horizontal’ numbering scheme.) 
Again, each 2 N ,  x 2 N ,  block X:,q has the five-band 
structure shown in Fig. 2. 

In light of these observations, we can solve the two- 
dimensional matrix equation Ku”+l  = r ”  by the follow- 
ing procedure. 

1 .  Adopt the ‘vertical’ numbering scheme, and solve 
Yz = r ”  for the intermediate vector z by solving the 
independent problems Y,.,z, = r:, p = 1, ..., 2N,. 

2.  Renumber according to the ‘horizontal’ scheme, 
converting z to the reordered vector z * .  This 
renumbering transforms X to the block-diagonar 
form x*. 

3 .  Solve X*U‘’+’ = z* for the desired time increments by 
solving the independent systems X:,qul+l = 23, 
q = 1, ..., 2 N p  

Thus each time step involves the solution of matrix 
equations that are at worst one-dimensional in 
structure. 

At this point we can make some comments regarding 
the efficiency to be gained by the splitting scheme. For 
simplicity, let us assume that N., = N,, = N .  In the fully 
two-dimensional matrix problem K u ” ”  = r”, there are 
then 4 N 2  unknowns, and the matrix K is asymmetric. I f  
we order equations and unknowns to allow for row 
reduction without pivoting, K will have a bandwidth 
Bz=8N+ 16 (see Ref. 15). Assuming that row 
reduction accounts for the bulk of the computational 
work in the sparse matrix solver used, we can expect the 
operation count for solving the fully two-dimensional 
equations at each time step to be roughly 
4N2B: = 256N4 for large N. By contrast, ADC calls for 
the solution o f  4 N  matrix equations of bandwidth 
B I  = 5 and order 2 N  at each time level. Thus an upper 
bound for the number of arithmetic operations required 
in the row reductions for ADC is 4 N ( 2 N B f )  = 200N’. 

Furthermore, each of the ‘one-dimensional’ systems 
in steps 1 and 3 of ADC is independent of any other. 
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Therefore these steps can r ~ i n  concurrently, whereas 
there appears to be no such obvious parallelism in the 
standard solvers for the fully two-dimensional 
formulation. We explore the inherent parallelism of 
ADC in the next section. 

4. IMPLEMENTATION 03 A PARALLEL 
COMPUTER 

We have implemented ADC on an Alliant FX/8 parallel 
processing computer. The Alliant has eight processors 
in a shared-memory configuration in which each pro- 
cessor is a vector-architecture machine. The Alliant 
allows users to control concurrency within a standard 
Fortran code through the use of compiler derectives. 
Since we are mainly interested in the general advantages 
to be gained through the shared-memory architecture 
and the concurrency controls furnished by the compiler, 
we shall not consider such other machine-specific 
features as size of the cache (high-speed memory), 
number of processors, or speed of the random-access 
memory. 

The following is a description of the code outlined in 
Steps 1-3 of section 3. The compiler directives 
themselves begin with the flag CVD$ starting in the first 
column of code. 

Initialize t io ,  set n = o 
Begin time level n T 1 

CVD$L CNCALL (Compiler directive to permit the con- 
current mecution of the following loop 
containing a reference to an  external 
procedure.) 

DO for each p = 1 ,  ..., 2 N ,  
CALL YSWEEP (Constructs the system 

E',,,z, = r:, solves i t ,  and 
saves the results.) 

END DO 
CALL RENUM (Reorders z to get z*) 

CVD$L CNCALL 
DO for each q = 1, .. ., 2 N ,  

4,(1 (I 

CALL XSWEEP (Constructs * the system x* u I I + I  - - z y ,  solves it and 
updates the nodal coefficients 
of Li to time level n + 1.) 

END DO 
End time step 

CVD$R NOCONCUR (DirectiL e to  supress concurrency 
until the end of the subroutine.) 

SUBROUTINE YSWEEP 

SUBROUTINE XSWEEP 
CVD$R NOCONCUR 

The directi1.e CNCALL forces the passes through a 
DO loop to execute in parallel, within the limitations of 
the machine's configuration. Thus, for example, i f  the 
algorithm calls for eight passes through the loop and 
there are eight processors, then CNCALL forces the 
operating system to map each pass onto a separate pro- 
cessor, allowing concurrent execution of the passes. If, 
on the same machine, the algortithm calls for nine 
passes through the loop, then the last pass must wait un- 
t i l  one of the first eight terminates before the operating 
system can map the ninth onto a free processor. This 
logic implies that certain efficiencies accrue when the 
number of independent processes is aii integer multiple 
of the number of processors in the machine being used. 

The need for the directive NOCONCUR arises from 
the structure of the Alliant's optimizing compiler, which 
often must choose among several levels of parallelism 
in a code. By default, the compiler optimizes for 
parallelism at the finest level. Thus, for example, it will 
force independent processes within a subroutine to run 
concurrently, in preference to forcing independent calls 
to the subroutine itself to run concurrently, Inserting 
the directive NOCONCUR before the SUBROUTINE 
statement overrides the default level for optimization. 
This de\ice allows the compiler to treat each call to the 
subroutine as an independent process, even if the poten- 
tial for concurrency exists at a finer level inside the 
subroutine. 

One measure of how well the algorithm make; use of 
the machine's parallel capabilities is the speedup. 
Speedup for n processors is the ratio of the CPU time 
needed by one processor to the time used by n pro- 
cessors to perform a set of tasks in parallel. For a 
perfectly parallel algorithm requiring no overhead to 
monitor or schedule the various processes and no 
storage of their results, the speedup for n processors 
would be n. Figure 3 shows the speedup curve for the 
ADC algorithm, implemented for the advection- 
diffusion problem on a 40 x 40-element spatial grid. The 
CPU time used to compute these ratios is actual clock 
time, excluding the processing required for initializing 
the code but including computational overhead required 
for scheduling and storage of intermediate results. The 
speedup curve is quite close to the ideal curve of unit 
slope, yielding a speedup of 7.27  for eight processors. 
Clearly, ADC makes very good use of the Alliant's 
shared-memory parallel architecture. 

We caution against extrapolating these speedup 
results to much larger problems on the Alliant as con- 
figured. The size of the cache memory in any particular 

h 
3 
-u 
Q) al 
cn a 

2 3 4 5 6 7 8  

Number of Processors 

Fig. 3. 
slim-eci-memory architecture 

Speedup curve for ADC using the Alliatit FA'/$ 
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computer clearly constrains that machine's ability to 
compute efficiently. What is important here is not the 
computational horsepower of the particular machine we 
have used but rather the natural parallelism inherent in 
the ADC algorithm. This parallelism can yield signifi- 
cant speedups on essentially any shared-memory 
parallel architecture. 

To confirm that ADC gives useful approximations, 
Figs 4 and 5 show solution plots for two different prob- 
lems. Figure 4 shows the results of a rotating plume pro- 
blem on Q = ( -  1, 1) x ( -  1 , 1)) with N.,- = ni;. = 40 and 
k = 0.004. Here, v = 2 ~ (  - y ,  x) is a circular velocity 
field, D = 0, and the initial concentration plume u I ( s ,  y )  
is a 'Gauss hill' with center at  (0, -0.6) and standard 
deviation 0 = 0.066. This pure advection problem, while 
physically unrealistic, poses a fairly severe test of 
ADC's ability to approximate solutions with steep 
fronts in highly advective flow fields. In this case, the 
global error at t = 1, when the exact solution is identical 
to the initial condition, is less than 0.08 1 1  u I i m .  

Figure 5 displays the results of an advection-diffusion 

I 1  I I 1 I I I I I I 

-1 
-1 1 

Fig. 4. Concentration contours f o r  the purely advec- 
tive rotating plume problem at vnrious time levels. Con- 
tour interivl is 0.1 

A 

Fig. 5 .  
an ad~,ec.tiorl-diffiision probleiii with Durcy Jro M' 

Plot of concentrution distribirtion ut t = 0.3 for 

problem on Q = (0, 1) x (0, l ) ,  with N., = Nv = 20 and 
k = 0.004. The diffusion coefficient here is D = 0.00385. 
The velocity field is v(x ,  y )  = 2e-"(x, - y ) ,  which cor- 
responds to the steady-state Darcy velocity - K W  on R 
when the hydraulic conductivity is K ( x ,  y )  = e" and thy 
head obeys the boundary conditions +(x, y )  = x 2  - J -  
on as2. The inital concentration distribution U I  for this 
problem is another 'Gauss hill,' with (T = 0.05 and center 
(0.75,0.25). 

5. CONCLUSIONS 
From operation counts alone, it has been clear for some 
time that ADC offers distinct efficiencies over standard 
met hods for two-dimensional collocation in a serial 
computing environment. With the advent of practical 
parallel computers, ADC holds even more promise, 
since the splitting scheme converts a fully two- 
dimensional problem into a sequence of 'one- 
dimensional' problems that are amenable to concurrent 
processing. Similar observations should hold for other 
alternating-direction methods, including techniques for 
multidimensional finite-difference and Galerkin 
aproximations. 
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