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ABSTRACT 

Tung, Y.K. and Hathhorn, W.E., 1990. Stochastic waste load allocation. Ecol. Modelling, 51: 
29-46. 

This paper considers solving a stochastic waste load allocation model in a chance-con- 
strained format. The model explicitly takes into account the uncertainty of the water quality 
parameters including their spatial and cross-correlations. Random characteristics of the 
coefficients in the water quality constraints are obtained by using unconditional simulation. 
A hypothetical example is used to demonstrate the methodologies and investigate the effects 
of water quality compliance reliability and correlation structures of the water quality 
parameters on the optimal solution of the waste load allocation problem. 

INTRODUCTION 

Water quality management is the practice of protecting the physical, 
chemical and biologcal characteristics of various water resources. Histori- 
cally, such efforts have been guided toward the goal of assessing and 
controlling the impacts of human activities on the quality of water. To 
implement water quality management measures in a conscious manner, one 
must acknowledge both the activities of the society and the inherently 
random nature of the stream environment itself (Ward and Loftis, 1983). 

To date, much of the research in developing predictive water quality 
models has been based on a deterministic evaluation of the stream environ- 
ment. Only in recent years has the random nature of the stream environment 
been recognized in the waste load allocation (WLA) process. Some notable 
pilot works in the development of stochastic WLA models include Lohani 
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and Thanh (1979) and Yaron (1979). Nevertheless, their models are not 
complete in that only the streamflow or background pollution is considered 
a random variable. The limitations of such models was pointed out by Brill 
et al. (1979). Invariably, the main reason for having such idealizations is the 
ability to solve the stochastic WLA problem by well-known linear program- 
ming (LP) techniques. 

More recently, Burn and McBean (1985) and Fujiwara et al. (1986) have 
developed stochastic WLA models using a chance-constrained formulation 
in an attempt to incorporate some of the uncertainty of the system into the 
optimization framework. Nevertheless, stream flow remained the only ran- 
dom variable considered. Later, Fujiwara et al. (1987) expand their previous 
model to include randomness of tributary flow and storm runoff. One of the 
earliest works to broaden the realm of uncertainty considered was that 
presented by Ellis (1987). Ellis (1987) used the management model of 
Fujiwara et al. (1986) to develop an imbedded chance-constrained formula- 
tion considering stochastic water quality parameters. 

In t h s  context, it should be noted that the left-hand-side (LHS) coeffi- 
cients of the water quality constraints in a WLA model are functions of 
various random water quality parameters. As a result, these LHS coefficients 
are random variables as well. Furthermore, correlation exists among these 
LHS coefficients because: (1) they are functions of the same water quality 
parameters; and (2) some water quality parameters are correlated with each 
other. Moreover, the water quality parameters along a stream are spatially 
correlated. Therefore, to reflect the reality of a stream system, a stochastic 
WLA model should account for the randomness of the water quality 
parameters, including spatial and cross-correlations of each parameter. 

The main objective of this paper is to present methodologies to solve a 
stochastic WLA problem in a chance-constrained frame-work. The random- 
ness of the water quality parameters and their spatial and cross-correlations 
are also taken into account. A six-reach example is utilized to demonstrate 
these methodologies. Factors affecting the model solution to be examined 
are: (1) the distribution of the LHS coefficients in water quality constraints; 
and (2) the spatial correlation of water quality parameters. 

L 

GENERALIZED CHANCE-CONSTRAINED FORMULATION 

In all fields of science and engineering, the decision-making process is 
dependent on several variables. More often than not at least one of these 
variables cannot be assessed with certainty. In particular, the environment in 
whch decisions are to be made concerning instream water quality manage- 
ment are inherently subject to many uncertainties. The stream system itself, 

-I 
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through nature, is an environment abundant with ever-changing and com- 
plex processes, both physically and biologcally. 

Attempts to manage such an environment deterministically implies that 
the compliance of water quality standards at all control points in the stream 
system could be assured with absolute certainty. This, of course, is unrealis- 
tic. The existence of the uncertainties associated with stream environments 
should not be ignored. Thus, it is more appropriate in such an environment 
to examine the performance of the constraints of a mathematical program- 
ming model in a probabilistic context. 

Consider a generalized LP model formulation. By imposing a reliability 
restriction, a, on the system constraints, the LP model can be transformed 
into the following chance-constrained formulation: 

subject to 

x 2 0  
where a represents an rn-dimensional column vector of desired performance 
reliability for each constraint, 0 5 a 5 1; Pr{ } is the probability operator; 
x and c are n-dimensional column vectors of decision variables and the 
associated objective function coefficients, respectively; b is an rn-dimen- 
sional vector of the right-hand-side (RHS); and A is an rn by n matrix of 
the technological coefficients (Taha, 1982); the subscript ‘ t’ represents the 
transpose of a vector. For a detailed analysis of chance-constrained prob- 
lems, readers are referred to Charnes and Cooper (1963), Vajda (1972) and 
Kolbin (1977). 

In chance-constrained models, the elements in A ,  b and c can be random 
variables. When the objective function coefficient cj’s are random variables, 
it is common to replace them by their expected values. Hence, three cases 
remain: (1) elements of the technological coefficient matrix ( a , j ’ s )  are 
random variables; (2) elements of the RHS vector b,’s are random variables; 
and (3) elements a i j  and b, are simultaneously random variables. 

It should be noted that a probabilistic statement of the constraints, like 
the one in equation (2), is not mathematically operational. It is necessary to 
develop a deterministic equivalent for equation (2) if the model is to be 
solved. In doing so, the statistical characteristics of a random variable can be 
described by its probability distribution and statistical moments. 

Consider the i th constraint whose technologcal coefficients a,, ’s are 
random. The deterministic equivalent of the chance constraint: 

Maximize ctx (1) 

P r { A x s b }  > a  (2) 
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can be derived as (Vajda, 1972; 
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j =  1 

_ _  

Y.K TUNG AND W.E. HATHHORN 

Kolbin, 1977): \ 

bi 

where E[ ] is an expectation operator, F i ' (  a,) the appropriate quantile for 
the ai percentage given by the CDF of Z j ,  and C an n by n covariance 
matrix of n technological coefficients ( a i l ,  a,*, . . . , a in)  in the ith con- 
straint. If all a .  .'s are independent random variables, i.e. p( a i j ,  a i j t )  = 0 for 
j # j ' ,  C then is a diagonal matrix: f J  

C=diag(oi, o;, ..., 0;) 
where p(  ) is a correlation coefficient, and 0;. the variance of coefficient 
a i j .  In the case that correlation between a .  .'s exists, off-diagonal elements of 
C are non-zero. The resulting deterrnilvstic equivalents of the chance 
constraints, when aij's are random, are no longer linear functions of the 
decision variables. The treatment of these nonlinearities is addressed in 
detail in a later section of this paper. 

l J .  

DETERMINISTIC WASTE LOAD ALLOCATION MODEL 

Any number of pollutants may be considered in the overall quality 
management of a river system. However, the use of BOD-DO interactions in 
the WLA have been implemented in various optimization framework (Loucks 
et al., 1967; Lohani and Thanh, 1978; Burn and McBean, 1985). In this 
paper, BOD-DO water quality model is also adopted. 

In LP format, the deterministic WLA model considered herein can be 
written as: 

N 

Maximize ( B j +  0,) 
j = 1  

subject to 
- constraints on water quality: 

n1 n1 

a,, + OjjBj + lnijDj 5  DO^^ -  DO^^^ 
j = 1  j= 1 

- constraints on treatment equity: 

- constraints on treatment efficiency: 
g j s 1 - B j / I j s Z j  for j = l , 2 ,  ..., N 

for i = l , 2 ,  ..., A4 ( 6 )  

where B,, Dj, and I j  are the effluent waste concentration (mg/L BOD), 
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effluent dissolved oxygen (DO) deficit concentration (mg/L), and raw waste 
influent concentration (mg/L BOD) at discharge location j ,  respectively; N 
is the total number of waste dischargers. The LHS coefficients a,,, 0, and 
Qj in equation ( 6 )  are the technological transfer coefficients relating impact 
on DO concentrations at downstream locations, i ,  resulting from the back- 
ground waste and waste input at an upstream location, j .  These technologi- 
cal transfer coefficients are functions of water quality parameters such as 
reaeriation and deoxygenation rates, flow velocity, etc.  DO:'^ and  DO^^^ 
represent the required DO standard and saturated DO concentration at 
control point i, respectively. Finally, EA is the allowable difference (i.e., 
equity) in treatment efficiency between two waste dischargers; and gj and Zj 
are the lower and upper bounds of waste removal efficiency for the j t h  
discharger, respectively. The importance of incorporating the treatment 
equity in the WLA problems is discussed by many researchers (Gross, 1965; 
Loucks et al., 1967; Brill et al., 1976; Miller and Gill, 1976; Chadderton et 
al., 1981). 

Water quality constraint relating the response of DO to the effluent waste 
can be defined by water quality models such as the Streeter-Phelps equation 
(Streeter and Phelps, 1925) or its variations (Dobbins, 1964; Krenkel and 
Novotny, 1980). To demonstrate the proposed methodologies the original 
Streeter-Phelps equation is used to derive the water quality constraints. 
Expressions for Oij ,  Qij based on the Streeter-Phelps equation can be found 
elsewhere (Hathhorn and Tung, 1987). 

i 1 
I 

. .  . .  

. .  

CHANCE-CONSTRAINED WASTE LOAD ALLOCATION MODEL 

The deterministic WLA model presented above, equations (5)-(8), serves 
as the basic model for deriving the stochastic WLA model. In considering 
the existence of uncertainty within the stream environment (Ellis, 1987), the 
water quality constraints given by equation (6) can be expressed probabilis- 
tically as: 

(9) 

Based on equation (4) the deterministic equivalent of (9) can be derived as: 
n, n, 

x E [ O i j ] B j +  E I D i j ] D j + F i l ( a i ) / ( B ,  D ) ' C ( 8 , , J z j ) ( B ,  0 )  I R ~  
j= 1 j=l 

(10) 
# 

in which Ri =  DO:^^ -  DO^^^ - E[ai j ] ,  ( B ,  D )  is the column vector of BOD 
and DO deficit concentrations in waste effluents, and C ( e j ,  0,) the covari- 
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ante matrix associated with the technological transfer coefficients in the i th 
water quality constraint, including aoi. The stochastic WLA model to be 
solved consists of equations (9, (lo), (7) and (8). 

t 

ASSESSMENTS OF THE STATISTICAL PROPERTIES OF RANDOM 
TECHNOLOGICAL COEFFICIENTS IN STOCHASTIC WLA MODEL 

To solve the stochastic WLA model, it is necessary to assess the statistical 
properties of the random LHS in the chance-constraint equation (10). As 
mentioned previously, the technological transfer coefficients 0, and 52, are 
nonlinear functions of the stochastic water quality parameters which are 
cross-correlated amongst themselves within each stream reach and spatially 
correlated between stream reaches. Furthermore, the complexity of func- 
tional relationships between these transfer coefficients and the water quality 
parameters increases rapidly as the control point moves downstream. Hence, 
the analytical derivation of the statistical properties of Oij and Qij becomes 
a formidable task given even a small number of reaches. As a practical 
alternative, simulation procedures may be used to estimate the mean and 
covariance structure of the random technological coefficients within a given 
water quality constraint. In particular, the method of unconditional simula- 
tion developed in geostatistics is applied in this research to generate the 
random, spatially correlated water quality parameters (Journal and 
Huijbregts, 1978). 

The assumptions made in the unconditional simulation to generate water 
quality parameters in all reaches of the stream system are as follows: 

(1) The representative values for the reaeriation coefficient, deoxygena- 
tion coefficient, and average flow velocity in each reach are second-order 
stationary. That is, the spatial covariance functions of water quality parame- 
ters are dependent only on the ‘space lag’ or separation distance. 

(2) Correlation between the reaeriation coefficient and average flow 
velocity exists only within the same stream reach. 

(3) Background DO and BOD concentrations at the upstream end of the 
entire stream system are independent of each other and of all other water 
quality parameters. 

(4) All water quality parameters follow a normal distribution. 
Some investigators have considered a positive correlation between the 

reaeriaton and deoxygenation coefficients (Esen and Rathbun, 1976; Padgett, 
1978). Although statistical analysis of a given data set might reveal a 
correlation between these parameters, it does not necessarily imply that such 
correlation has any meaningful physical representation of the system behav- 
ior. The reaeriation coefficient is a function of the physical characteristic of 
the stream whereas deoxygenation coefficient is characterized by the biologi- 
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cal composition of the waste discharge and stream environment. Thus, the 
correlation between reaeriation and deoxygenation coefficients appears to be 
spurious and, hence, is not considered in this study. 

In the unconditional simulation, variance-covariance matrices repre- 
senting the spatial correlation of water quality parameter can be derived 
from the variogram models (Journal and Huijbregts, 1978). The three 
variogram models used in this study are: 
- transitive variogram model: 

- spherical variogram model: 

- Gaussian variogram model: 

in which C( 1 h I) represents the value of covariance between two measure- 
ments of the same water quality parameter separated by a distance lhl 
apart, h ,  is the length of zone of influence, and o2 the variance of water 
quality parameter within a given reach. When the distance between the 
centers of reaches exceeds h,, the value of the covariance function goes to 
zero. Graphically, these three variograrns are shown in Fig. 1. 

To illustrate the concept, consider the water quality parameters reaeria- 
tion coefficient, K,,  and average flow velocity, U. From the variogram 
models, the variance-covariance matrix for the two parameters can be 
constructed as follows: 

r 
(14) 

in which K ,  = ( Ka,l, Ka,2, . . . , &) and U = (U, U2, . . . , UN) are vectors of 
the reaeriation coefficient and average velocity in each stream reach, respec- 
tively (see Table 1). In equation (14), C‘ a, CK,,,, C , ,  are N by N square, 
symmetric covariance matrices with N being the number of stream reaches 
in the WLA model. Submatrices CKa,Ka and C,,, define the spatial correla- 
tion of K ,  and U between the reaches, while submatrix CK , defines the 
cross-correlation between K ,  and U within the same reaih. Under the 
assumption (2) mentioned above, the submatrix CK a’ , is a diagonal matrix. 
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(4 
Fig. 1. Graphs of the three variogram models used: (a) transitive model; b) spherical model; 
(c) Gaussian model. 

For water quality parameters which are not cross-correlated with other 
parameters, but are spatially correlated, the associated variance-covariance 
matrix has the form similar to Cuu. For parameters that are spatially 
independent, their covariance matrices are diagonal. 

To present the procedures of unconditional simulation, the arguments in 
the covariance matrix C ( K , ,  U) are dropped. Note that the covariance 
matrix constructed using variogram model is positive semidefinite. Consider 

? 

t. 
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the case that matrix C is strictly positive definite. Matrix C can be 
decomposed into: 

c=  VLV‘ (15)  

in which matrix L = diag( a,, 6,, . . . , 6,) with all its eigenvalues aj > 0, and 
Y is an N by N matrix composed of the corresponding eigenvectors 
(Quimby, 1986). Based on the eigenvalues and eigenvectors matrices, a 
random water quality parameter for N stream reaches with a covariance 
matrix C can be generated as: 

P = pp + VL”*Z 

in which p is an N by 1 column vector for a given water quality parameter, 
p p  is the vector of the mean values, and z is an N by 1 column vector of 
standardized independent random variables with zero mean and unit vari- 
ance. If the random water quality parameter is normally distributed, the 
elements of vector z in equation (16) are the independent standard normal 
variates. 

In summary, the unconditional simulation for generating spatial and 
cross-correlated water quality parameters can be outlined as follows: 
(1) Identify the variogram model for a given water quality parameter and 

(2) Apply eigenvalue-eigenvector decomposition to the covariance matrix X 

(3) Generate vector of standard random variates z. 
(4) Apply equation (16) to obtain the values of the water quality parameter 

( 5 )  Repeat steps (1)-(4) for all water quality parameters. 
For each set of the water quality parameters generated by steps (1)-(4), 

the value of each technological coefficient is computed and incorporated 

construct the corresponding covariance matrix C. 

by using equation (15). 

for each reach in the WLA model. 
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into the water quality constraints. In simulation, parameter sets are pro- 
duced repeatedly and their corresponding technological coefficients com- 
puted. Based on the simulated values, the mean and covariance matrices of 
the random technological coefficients for each water quality constraint is 
calculated and used in solving the stochastic WLA problem. 

TECHNIQUE FOR SOLVING OPTIMAL STOCHASTIC WLA MODEL 

The deterministic WLA model presented previously follows an LP format 
which can be solved using the simplex algorithm. However, the deterministic 
equivalent of the chance-constrained water quality constraints are nonlinear. 
Thus, the problem is one of nonlinear optimization which can be solved by 
various nonlinear programming techniques such as the generalized reduced 
gradient technique (Lasdon and Warren, 1979). Moreover, if the covariance 
matrix C( eij, a,,) in equation (10) is diagonal, the model can be trans- 
formed into a separable programming model (Taha, 1982). 

Alternatively, this study adopts a linearization procedure for the water 
quality constraints of the stochastic WLA model and solves the linearized 
model using the standard LP techniques. 

Tung (1986) proposed an approach using first-order Taylor’s expansion to 
linearize the terms involving the square root of the variance. The lineariza- 
tion procedure requires and a-priori estimation of the solution to the 
optimization problem. As a result, the linearized problem is solved itera- 
tively until the solution converges. Nevertheless, the linearization process 
utilized by Tung (1986) is not a practical approach for the WLA problem 
because the functional relationships involving the technological transfer 
coefficients Oij and Q . .  are highly nonlinear. The first-order Taylor expan- 
sion of such functions is both cumbersome and insufficient in representing 
the functions’ highly nonlinear nature. By contrast, a simpler procedure is 
employed wherein the assumed solution to the stochastic WLA model is 
used to calculate the value of the nonlinear terms. The nonlinear terms 
become constants and are then moved to the RHS of the constraints. The 
resulting linearized water quality constraints can be written as: 

? 

n, f 

j=1 j =  1 

in which 6 and 3 are assumed solution vectors to the stochastic WLA 
model. 

The linearized stochastic WLA model, replacing equation (10) by equa- 
tion (17), can be solved using the LP techniques repeatedly, each time 
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1 
stochastic WLA model 

Eqs. ( 5 )  (17 )  (7) (8) 
by LP techniques 7 

No 

m Optimum solution found 

Fig. 2. Flow chart for solving the linearized stochastic WLA model. 

updating the previous solution values with those obtained from the current 
iteration, resulting in new values for the RHS. These steps are repeated until 
convergence criteria are met between any two successive iterations. A flow 
chart depicting the procedures is shown in Fig. 2. Of course, alternative 
stopping rules could be incorporated in the algorithm to prevent excessive 
iteration during the computation. Prior to the application of these solution 
procedures, an assumption for the distribution of the random LHS must be 
made to determine the appropriate value for the term Fil ( a i )  in equation 
(17)- 

Due to the nonlinear nature of the stochastic WLA model, the global 
optimum solution, in general, cannot be guaranteed. It is suggested that a 
few runs of the solution procedure with different initial solutions be carried 
out to ensure that model solution converges to the overall optimum. A 
reasonable initial solution is to select the waste effluent concentration for 
each discharger associated with the upper bounds of their respective treat- 
ment levels. By doing so, the initial solution corresponds to the waste 
discharge at their respective lower limits. If the stochastic WLA solution is 
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infeasible during the first iteration, it is likely that the feasible solution to 
the stochastic WLA problem does not exist. Hence, time and computational 
effort could be saved in searching for an optimal solution which might not 
exist. 3 

NUMERICAL EXAMPLE AND DISCUSSION OF MODEL PERFORMANCE 

The model is applied to a six-reach example which is shown in Fig. 3. The 
means and standard deviations for the water quality parameters in each 
reach are given in Tables 2 and 3. .The waste influent and mean water 
quality parameters in each reach are obtained from Chadderton et al. (1981). 
Standard deviations of water quality parameters are artificially imposed 
such that the range of coefficient of variation (ratio of standard deviation to 
mean) of the water quality parameters are within those reported in the 
literature (Churchill et al., 1962; Chadderton et al., 1982; Zielinski, 1988). 

To assess the statistical properties (i.e. the mean and covariance matrix) 
of the random technological coefficients in the water quality constraints, the 
unconditional simulation procedure described earlier is implemented to 
generate multivariate normal water quality parameters. Different numbers 
of simulation sets are generated to examine the stability of resulting means 
and covariance matrix of technological coefficients. It was found that the 
statistical properties of Oi, and Qij become stable using 200 sets of simu- 
lated parameters. In the example, a positive correlation coefficient of 0.8 
between the reaeriation coefficient and average flow velocity is used. Both 

. .  . .  . . .  .. - 

. .  . .  - .  

# 1  
# 2" 
# 3  
# 4  
# 5  
# 6  

0.0 
10.0 
20.0 
30.0 
40.0 
50.0 

1370 

665 
910 

1500 
410 

6.0 
0.5 

44.0 
4.62 

35.81 
3.2 
0.78 

a Tributary. Background characteristics: Lo = 5.0 mg/L; Qo =115 ft3/s; Do =1.0 mg/L 

D i s c h a r g e r  #6 
L 

D i s c h a r g e r  114 
D i s c h a r g e r  W2 

Di.schare,er # 3  

D i s c h a r g e r  #5 

Fig. 3. Schematic sketch of the example system in WLA problem. 



STOCHASTIC WASTE LOAD ALLOCATION 41 

. .  . .  . _  

. -  . .  
. .  
. .  . .  

. .  
. .  
- .  I 

~ -. 

t TABLE 2 

I Mean values of physical stream parameters used in the example of WLA model 

(a) Mean stream characteristics for each reach 
t 

Reach Deoxygenation Reaeration Average Raw Effluent 
i coefficient coefficient stream waste flow 

Kd K a  velocity concentration rate 
U I 4 

1 0.6 
2 0.6 
3 0.6 
4 0.6 
5 0.6 
6 0.6 

1.84 16.4 1370 0.15 
2.13 16.4 6 44.00 
1.98 16.4 665 4.62 
1.64 16.4 910 35.81 
1.64 16.4 1500 3.20 
1.48 16.4 410 0.78 

Units day-' day-' miles/day mg/L BOD ft3/S 

(b) Background characteristics 

Upstream 
waste 
concentration 
LO 

Upstream 
flow rate 
Qo 

Upstream 
DO deficit 
DO 

5 .O 
mg/L BOD 

115.0 
ft3/s 

1 .o 
mg/L 

mile = 1.609 km; mile/day = 67 m/h. ft3 = 28.32 L. 

TABLE 3 

Standard deviations selected for the physical stream characteristics 

(a) For each reach 
~~~~ 

Reach Deoxygena tion Reaeration Average 
coefficient coefficient stream 
Kd Ka velocity 

U 
1-6 

units 

0.2 

day-' 

0.4 

day-' 

4.0 

ft3/S 

(b) Background characteristics 

Upstream Waste 
concentration 
LO 

Upstream 
flow rate 
Qo 

Upstream 
DO deficit 
DO 

r 1 .o 
mg/L BOD 

20.0 

ft3/s 

0.3 

mg/L 
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normal and lognormal distributions are assumed for the random LHS of the 
water quality constraints: 

n, n ,  

a o i +  e i j B j +  QijDj 
j=1 j=1 

in equation (9). Various reliability levels, ai, ranging from 0.85 to 0.99, for 
the water quality constraints are considered. 

In addition, the stochastic WLA model is solved under the conditions that 
the water quality parameters have different spatial correlation structures. 
The spatial correlation of representative water quality parameter values 
between two reaches is computed based on a separation distance between 
the centers of the two reaches. Two zones of influence ( h ,  = 15 miles and 
h ,  = 30 miles) along with the three variogram models, equations (11)-(13), 
are used for examining the effect of spatial correlation structure on the 
optimal waste load allocation. In Fig. 3 the length of each reach in the 
system is 10 miles. A value of h ,  = 15 miles implies that the water quality 
parameters in a gven reach are spatially correlated only with the two 
immediate adjacent reaches. For h,  = 30 miles, the spatial correlation ex- 
tends two reaches upstream and downstream of the reach under considera- 
tion. To create spatial independence of water quality parameters, the zone of 
influence, h,,  can be set shorter than 10 miles. The optimal solutions to the 
stochastic WLA problem under these various conditions are presented in 
Tables 4 and 5. 

In examining the results in Tables 4 and 5, the maximum total BOD 
discharge, under a given spatial correlation structure, reduces as the reliabil- 
ity of water quality constraints increases. This behavior is expected since an 
increase in water quality compliance reliability is equivalent to imposing 
stricter standards on water quality assurance. To meet this increased water 
quality compliance reliability, the amount of waste discharge must be 

TABLE 4 

Maximum total BOD load that can be discharged for different reliability levels and spatial 
correlation structures under normal distribution 

a I "  h ,  =15 miles h ,  = 30 miles 

T S G T S G 

0.85 671 734 737 679 659 664 694 
0.90 633 693 695 639 624 625 656 
0.95 588 644 646 593 580 578 610 
0.99 521 570 572 524 516 511 541 

a I, independence; T, transitive model; S, spherical model; G, Gaussian model 
Total BOD Load Concentration in mg/L. b 
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TABLE 5 

Maximum total BOD load that can be discharged for different reliability levels and spatial 
correlation structures under lognormal distribution 

i 

t a I "  h ,  =15 miles h ,  = 30 miles 
I 

T S G T S G 

. .  
. I  . .  . _  . .  
. -  . .  . .  . .  

. .  . . .  - -  

. .  . .  
. . .  

0.85 691 753 755 699 676 686 712 
0.90 633 692 694 640 623 626 655 
0.95 560 614 616 565 554 661 582 
0.99 424 496 498 425 420 388 471 

~~ ~~~ 

a I, independence; T, transitive model; S, spherical model; G, Gaussian model. 
Total BOD Load concentration in mg/L. - 

reduced to lower the risk of water quality violation at the various control 
points. Continuing to increase the required reliability for the water quality 
constraints, at some point these restrictions could becomes too stringent and 
feasible solution to the problem no longer obtainable. 

From Tables 4 and 5,  using a lognormal distribution for the LHS of water 
quality constraints yields a higher total BOD discharge than that under a 
normal distribution when the performance reliability requirement is 0.85. 
However, the results reverse themselves when reliability requirements are 
greater than or equal to 0.90. This indicates that the optimal solution to the 
stochastic WLA model depends on the distribution used for the LHS of the 
water quality constraints. From the previous empirical investigation (Tung 
and Hathhorn, 1988), lognormal distribution was found to best describe the 
DO deficit concentration in a single-reach case. In other words, each term of 
the LHS in water quality constraints could be considered as a lognormal 
random variable. Therefore, the LHS is the sum of correlated lognormal 
random variables. For the first two or three reaches from the upstream end 
of the system, the distribution of the LHS may close to be lognormal 
because the number of terms in the LHS is few. However, when consider the 
control point for much downstream reaches, the number of terms in the 
LHS increase and the resulting distribution may approach to normal from 
the argument of central limit theorem. Since the true distribution for the 
LHS of water quality constraints is not known, it is suggested that different 
distributions are used for model solutions and, from a conservative view- 
point, adopt the least amount of total BOD load for implementation. 

From the tables of results, the impacts of the extent of the spatial 
correlation of the water quality parameters (represented by the length of h,) 
and the structure (represented by the form of the variogram) on the results 
of stochastic WLA model can also be observed. When h,  = 15 miles, where 
the spatial correlation of the water quality parameters extends only one 

I 

I 
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reach, the maximum allowable total BOD load, for all three variogram 
models, is higher than that of spatially independent case. When the spatial 
correlation extends over two reaches (i.e., h,  = 30 miles), the use of transi- 
tive and spherical variogram models results in lower maximum total BOD 
loads than that of the spatial independence case, while the use of Gaussian 
variogram yields a higher total BOD load. The model results using a transi- 
tive variogram are very similar to that of a spherical model. 

As a final comment on the computational aspects of the proposed 
technique for solving the stochastic nonlinear WLA model formulated in 
this study, it was observed that the iterative technique proposed takes three 
to five iterations to converge for all the cases investigated. Therefore, the 
proposed solution procedure is quite efficient in solving the stochastic WLA 
model. 

SUMMARY AND CONCLUSIONS 

. .  . .  

A practical approach for solving a chance-constrained stochastic WLA 
model is presented. The method consists of a simple linearization procedure 
for solving a nonlinear stochastic WLA model in whch the statistical 
properties (i.e. the mean and covariance matrix) of the left-hand-side coeffi- 
cients in water quality constraints are estimated using the unconditional 
simulation. The stochastic WLA model presented here considers uncertainty 
in all the water quality parameters in the Streeter-Phelps equation. In 
addition, spatial and cross-correlation of the water quality parameters are 
also modeled by means of unconditional simulation. The results observed 
from the hypothetical example used clearly demonstrated the existence of 
the tradeoff between the requirement on water quality performance reliabil- 
ity and the maximum total allowable BOD discharge. An increase in water 
quality compliance reliability results in a reduction of the total allowable 
BOD to be discharged into the stream system. This can only be achieved with 
an increase in treatment cost. This tradeoff implies that persons in charge of 
managing the stream environment must be cognizant of both the need to 
ensure water quality protection and the desire to meet this goal at a reduced 
cost. 

Furthermore, the results from the example application revealed the sig- 
nificant effect the spatial correlation has on the solution of stochastic WLA 
problems. The maximum total BOD that can be discharged into the stream 
system is dependent on the extent and structure of the spatial correlation. It 
should be emphasized that, even if the water quality parameters are assumed 
to be spatially independent, the resulting technological coefficients in the 
water quality constraints are not independent of each other. A full account- 
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ing of such correlation for the technological coefficients in the water quality 
constraints is essential for solving the stochastic WLA problems correctly. 
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