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ABsTRACT: In hydraulic and hydrologic design and analysis, enginecers frequently
face uncertaintics involving quantities that cannot be assessed with absolute ac-
curacy. Under such circumstances, uncertainty analysis is undertaken lo examine
the elfects of uncertain factors on the results of design and analysis. The paper
introduces a mathemaltical technique called the Mellin transform. The technique
is analytically convenicnt in detecmining the exact statistical moments of a random
variable that is a function of several nonnegative independent random variables in
a multiplicative form. Two examples are given to demonstrate the application of
the Mellin transform to uncertainty analysis of hydrologic and hydraulic problems.

INTRODUCTION

In hydrologic and hydraulic analyses, engineers frequently encounter
quantities that cannot be quantificd with certainty. The existence of uncer-
tainties directly affects the performance reliability of the hydraulic structure
being designed.

Uncertainties in hydrologic and hydraulic modeling can broadly be clas- -

sified into two types (Tung and Mays 1980): model uncertainty and param-
cter uncertainty. Hydrologic and hydraulic designs invariably involve the use
of equations that are empirically developed or analytically derived under some
idealized conditions. Model uncertainty results from the use of a simplificd
equation to describe a complex hydraulic or hydrologic flow phenomenon
and flow process. For example, Manning’s equation and other steady-state
uniform-flow equations are commonly used in open-channel analysis; the
rational formula and different forms of equations for the time of concentra-
tion are used in urban drainage-structure design.

All hydrologic and hydraulic equations involve several physical parame-
ters that cannot be quantified accurately. This is the parameter uncertainty.
Paramcier uncertainty could be caused by change in operational conditions

of hydraulic structures, inherent variability of input parameters in time and -

in space, and lack of a sufficient amount of data. Conscquently, hydrologic
and hydraulic quantities such as the avcrage flow velocity in the channel and
peak discharge of urban runoff cannot be assessed with certainty.

The main objective of uncertainty analysis is to identify the statistical
propertics of a model output as the function of stochastic input parameters.
This paper describes a mathematical integral transform technique called the
Mellin transform and demonstrates its applications to the uncertainty analysis
of hydrologic and hydraulic problems.
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UNCERTAINTY ANALYSIS

In hydrologic and hydraulic analyses, models or equations that relatc a
dependent variable Y (e.g., peak discharge, flow velocity, time of concen-
tration, etc.) to a number of model parameters X = (X,,X,,....X)) (e.g.,
roughness factor, channel geometry and slope, ctc.) can be expressed

Y=oX)=0X,X0,. . 00 Xi)eooiii il e (1)

In cases where some of the model input parameters are subject to uncer-
tainty, the value that the dependent variable ¥ takes is uncertain. Uncertainty
characteristics of a hydrologic or hydraulic variable under consideration can
be deflined by its distribution and statistical moments such as the mean, vari-
ance, coefficient of variation, and other higher momeats, if necessary. lde-
ally, in uncertainty analysis, derivation of the exact probability density func-
tion (PDF) of Y as the function of the PDFs of stochastic input parameters
X in the model is desirable. However, such a task is difficult, if not im-
possible, because of the nonlinearity in the model. In most engineering de-
signs and analyses, it is generally sufficicnt (o estimate the first few statis-
tical moments of Y as the function of the statistical moments of stochastic
input parameters.

One commonly used method for assessing the statistical moments in the
uncertainty analysis is the mean value first-order second-moment (MFOSM)
method (Benjamin and Cornell 1970; Ang and Tang 1975). Recently, Yen
et al. (1986) gave a very comprehensive evaluation and description of the
MFOSM method in uncertainty and risk analyses. Note that the MFOSM
method only gives approximations of the mean and variance, instead of their
exact values. When higher-order moments are nceded, the MIFOSM method
becomes computationally cumbersotme as the order gets larger. Furthermore,
evidence shows that as the nonlinearity of the functional relation gets higher,
the accuracy of approximation by the MFOSM method deteriorates rapidly,
especially for high-order moments (Gardner et al. 1981; Tung and Hathhorn
1988).

The other type of method useful in uncertainty analysis is the intcgral
transforin techniques. Some well-known integral transforms are the Fourier,
Laplace, and exponential transforms. The present paper describes a trans-
form technique called the Mellin transform (Epstein 1948; Park 1987), which
is less known (o the hydraulics engincering community, and shows its ap-
plications.

If the lunctional relation of Eq. 1 satisfies two conditions, the exact mo-
ments of any order can be derived analytically as the function of moments
ol stochastic input parameters X by the Mellin transform without extensive
simulation or using approximation by MFOSM method. The two conditions
are: (1) The function ((X) has a multiplicative form

where a, are constants; and (2) the stochastic input parameters, Xs, are in-
dependent and nonnegative. The Mellin transform is particularly attractive
in uncertainty analysis of hydrologic and hydraulic problems because nany
equations and their parameters involved satis{ly thesc two conditions.
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In general, the nonnegativity condition of the Xs is not strictly required
in the Mellin transform; but it would require some mathematical manipu-
lations to find the Mellin transform of a function in which random variables
can take negative values (Epstein 1948; Springer 1978).

MOMENTS AND MELLIN TRANSFORM

In this section, the definitions of statistical moments of a random variable
and Mellin transform are given to show the relationships between the two.

Statistical Moments
The statistical moment of order r of a randoin variable X about a refcrence
point X = x, is dcfined as

w = E((X — x)} = J T i 1697 )

where E[ ] = an expectation operator; and f(x) = PDF of random variable
X. In general, statistical moments in uncertainty analysis that are commonly
used are central moments with reference point xo = p and the moments about
the origin with x, = 0. In other words, the central moments and ioments
about origin can be defined, respectively, as

Po= B = ) ) e et e s “4)
R s U (5)

where p = E[X] = expectation of randoin variable X. It can be easily shown,
through the binomial expansion, that the central moments can be obtained
from the moments about the origin as

r

n, = 2 SO I B It o e (6)

=0

where ,C; = r1/[(r — )!i!]. More specifically, the second, third, and fourth
central moments can be expressed as

00 = (X = I e e )
=EXY) = 3pEXY) + 210 e (8)
Ly = E(XY) - 4pEXY) + 6WEX) — 3t oo e )

in which ¢! = variance. From Egs. 7-9, one can calculate the skew coef-
ficient (y) and kurtosis (k) as

T U (10)

Y P

k= (an
(¢

Mellin Transform
The Mellin transform of a function f(x), where x is positive, is defined
as (Giffin 1975; Springer 1978)
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M (s) = M{f(x)] = f XTY@dx, x>0 ... (12)
(4]

where M, (s) is the Mellin transform of f(x). As in the Fourier and Laplace
transforms, there exists a one-to-one correspondence between M,(s) and f(x).
When f(x) is a PDF, one can immediately recognize the relationship between
the Mellin transform of a PDF and the moments about the origin as

By = EXTY) = MaS) e e e e e e e e e e e (13)

fors =1, 2, . As can be secn, the Mecllin transform provides an alter-
native way to {ind the moments of any order of a nonnegative random vari-
able.

OPERATIONAL PROPERTIES OF MELLIN TRANSFORM

Consider that a random variable Z is the product of two independent non-
negative random variables, i.e. Z = XY. The PDF of Z, f(2), can be obtained
as

fz) = f g(5> BOVY « v v veee e e e e e e (14)
0 Yy

where g( ) and i( ) = PDF's of X and Y, respectively. In fact, Eq. 14 is
exactly the definition of Mellin convolution (Springer 1978). Thercfore, sim-
ilar to the convolutional property of the Laplace and Fourier transforms, the
Mellin transform of f(z) can be obtained as

M,(s) = MLS()] = MIGE)*R(3)] = MuMU(S) . e vvveeenraennnnn. (15)

in which * = convolution operator. Froin Eq. 15, the Mecllin transform of
the convolution of the PDFs associated with two independent random vari-
ables in a product form simply is equal to the product of the Mellin transform
of two individual PDFs. Eq. 15 can be extended to a geneml case involving
more than two independent random variables.

From this convolutional property of the Mellin transform and its relation-
ship between statistical moments, one can immediately sece the advantage of
the Mellin transform as a tool in obtaining the moments of a random variable
that is related to other random variables in a multiplicative fashion. In ad-
dition to the convolutional property, which is of primary importance, the
Mellin transform also has several useful operational properties, which are
summarized in Table | (Bateman 1954; Park 1987). These properties of the

TABLE 1. Operation Propertles of Mellin Transform on a PDF

Property PDF Random variable Mellin transform
() (2) 3) (4)
Standard J(x) X M,(s)
Scaling S(ax) X a’M.(s)
Lincar af(x) X aM,(s)
Translation x°f(x) X M, (a + 5)
Exponentiation J(x%) X a 'M,(s/a)

662



TABLE 2. Mellln Transform of Products and Quotients of Random Varlables

Random variable PDF given M. (s) =
(1) (2) (3)
Z=X J(x) M.(s)
Z=Xx" J(x) M(bs — b+ 1)
Z=1/X J(x) M2 - s)
Z =Xy J(x), g(y) M., ()M (5)
z=Xx/Y S(x), g(y) M,(5IM(2 — )
Z = aX'r* Sx), g(y) a'M(bs ~ b + DM(cs ~c + 1)

Note: a, b, ¢ = constants; and X, Y, Z = random variables.

Mellin transform can be derived from the basic definition given in Eq. 12.
Applying the definition of the Mellin transform and its basic operational
properties, along with the convolutional properties, the Mellin transform of
algebra of random variables in the form of products and quotients can be
derived. Some uselul results arc summarized in Table 2 (Park 1987).

MELLIN TRANSFORM OF SOME PRoBABILITY DENSITY FUNCTIONS

In uncertainty analysis, model parameters with uncertainty are treated as
random variables associated with a PDF. Given the functional relationship
as Eq. 2, in which Y is related to the Xs in a multiplicative fashion, the
statistical moments of Y can be obtained by Mellin transform of the PDF of
the Xs. From previous studies (Epstein 1948; Park 1987), the Mellin trans-
forin of some commonly used PDFs are tabulated in Table 3. Using the
results in Tables 2 and 3, one can derive the exact moments of the dependent
random variable Y.

Although the Mellin transform is useful for uncertainty analysis under the
conditions stated previously, it possesses one drawback that should be pointed
out: under some certain combinations of distribution and functional form,
the resulting transform may not be analytic for all ss. This could occur es-
pecially when quotients or variables with negative exponents are involved.
For example, if the random variable Y is related to the inverse of X, i.e. ¥
= 1/X, and X has a uniform distribution in (0,1), then M(s) = M (2 — 5)
= 1/(2 — 5). In this case, the expected value of Y, E(Y), which can be
calculated, in theory, by M,(s = 2), does not exist because M,(s = 2) = 1/
0, which is not defined. Under such circumstances, other transforms such
as the Laplace transform could be used to find the moments.

SenSITIVITY OF COMPONENT UNCERTAINTY ON OVERALL UNCERTAINTY

In enginecering designs, sensitivity analysis is commonly used when the
designs are performed under uncertainty. In uncertainty analysis, investi-
gating the impact of component uncertainty on the uncertainty level of the
output provides important information regarding the relative coatribution of
component uncertainty to the overall uncertainty in model output.

Refer to a multiplicative model involving independent nonnegative random
variables as in Eq. 2. The first two moments about the origin of the model
output Y, using Table 2, can be obtained, respectively, as
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TABLE 3. Mellin Transforms for Some Commonly Used Probabllity Density Functions
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&

EY) =M@ =ao | [ Ml +a) oo, (16)
=1
&

EXYY =MB3) =a [[Ma(l +2a)...coooiiiiiii amn
=

where My (1 + a)) and M,(1 + 2a,) = the first two moments about the origin
for the ith tenn, Y, = X7, in Eq. 2. The variance (Var) of the model output
Y can be expressed as

k k

Var(Y) = a(’,[ﬂ My(1 + 2a) - [] M1 + a,)] .................... (18)
i=1 =]

and the coefficient of variation (CV) as

4
v+ =Jlleviry+ 1o (19)

i=1

where CV(Y,) is the coefficient of variation of the ith term in Eq. 2, i.e., Y,
= XJ.

To examine the impact of component uncertainty on the overall uncer-
tainty in modecl output, it is necessary to express the coefficient of variation
of Y in teris of the coefficients of variation of stochastic input paramcters,
X. Since Y; = X[, the relation between the coefficients of variation of Y;
and X, can be similarly derived as

CVHY) = BICVIX) oot (20

where

. ( M3(2) )(Mx,-(l + 2a) - ML(1 + a,))
=\ My(3) — ML(Q2)

and CV(X,) = coelficient of variation of stochastic input parameter X; which
is computed as

V(3) — Mi(2)

CV(X ) = o et e i e e, 22
X)) M) (22)
Substituting Eq. 20 into Eq. 19 one obtains the following rclation:
k
CVAY) + 1= []IBICVAX) + 1] oo 23)
=1

The scnsitivity of the model-output uncertainty with respect to the uncer-
tainty of the ith stochastic parameter, X,, can be obtained as
aCV(Y) BICV(X)ICVI(Y) + 1]

e e (24)
ICV(X) CVIIPICVI(X) + 1)

The sensitivity coeflicients computed by Eq. 24 represent the rate of change
in model-output uncertainty resulting from a unit change in the ith input
variable. Such information could be used as an important guide for future
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data-collection-program design in an attempt to reduce the total model-output
uncertainty.

Referring to Eq. 23, it is seen that under Eq. 2, the relation between output
uncertainty and the uncertainties of the input parameters is essentially mul-
tiplicative. Therefore, isolation of the exact impact of individual-component
uncertainty is difficult. As an approximation, the MFOSM method can be
applicd, which leads to the following expression:

R v
CVHY) = D0 alCVIX) oot (25)

Ll

From Eq. 25, the percentage of contribution of each individual random model
parameter to the overall output uncertainty can be estimated. The approxi-
mated sensitivity coefficients with respect to individual component uncer-
tainty, based on Eq. 25, can be derived as

ICV(Y) alCVv(X)
ICV(X) Cw(Y)

It should be emphasized that Eqs. 25 and 26 are only approximations of the
true relationship given in Eqs. 23 and 24, respectively.

EXAMPLES

This section presents two examples to demonstrate the use of the Mellin
transform in hydrologic and hydraulic uncertainty analysis and reliability
analysis.

Example No. 1 (Uncertainty of Flood Travel Time)

Uncertainty analyses of hydraulic computations in channel flood routing
are mainly concerned with the assessmnent of the uncertainty feature of the
computation results. In channel [lood routing, the results of primary interest
are the travel time of flood water, the maguitude of peak, the corresponding
water-surface profile, and the area of inundation. This example examines
the uncertainty of the travel time derived from using the kinematic-wave
routing model. Using Manning’s forinula, the travel time T of a kinematic
wave in a wide rectangular channel carrying a flow of Q can be determined

by (Chow et al. 1988)

2 3/
T= 3 (—L) O L o Qn
5 \1.495,'?

where B = channel width; n = Manning’s roughness; and L = length of
channel reach. In hydrological analyses of urban drainage design, many
equations used for computing the lag time or time of concentration have a
form similar to Eq. 27 (Kibler 1982; Chen and Wang 1989).

In Eq. 27, the parameters on the right-hand side of the equation are treated
as random variables resulting from the spatial/temporal variabilitics and
measuring errors. Since the travel time T is related to n, B, Sy, Q, and L in
a multiplicative manner and all the parameters with uncertainty are nonnega-
tive, the Mellin transform is applicable. Based on Eq. 27 and using Table
2, the Mellin transform of the PDF of the travel time can be expressed as
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TABLE 4. Data Used In Example No. 1

Variable Distribution L* M* H*
(1) (2 (3) 4) (5)
n Triangular 0.03 0.045 0.055
B (fy Triangular 180 200 220
So (f1/11) Triangular 0.00025 0.00035 0.00045
Q (cfs) Triangular 9,000 10,000 11,000
L (mi) Triangular 99 100 101

‘L, M, and H = lower bound, mode, and upper bound, respectively, of a random vari-
able having a triangular distribution,

Note: 1 ft = 0.305 m; 1 mi

1.609 km; 1 cfs

= 0.0283 cms.

E(T*™") = My(s) = ¢ 'M(0.65 + 0.4)My(0.45s + 0.6)Mg(—0.3s

+ 1L.)Mp(—0.45s + 1.4)M,(s) .

where ¢; = 0.6(1.49)7®%, More specifically, the first four moments of the
travel time about the origin are

TABLE 5. Computations of Example No. 1 In Assessing Uncertainty of Travel

E(T) = M7(2) = cr M, (1.6)Mp(1.)Msp0. TIMGO.6M(2) . ......o..... (28b)
E(T?Y) = My (3) = ciM(2.2)Mp(1.8)Mso(0.4)MoO. DM, (3) ... .. (28¢)
E(T?) = My(4) = c]M(2.8)Mp(2.2)M5(0. DMy(—0.2)M (4) ........... (28d)
E(T*) = M(5) = ciM(3.H)Mp(2.6)Ms(—0.2)My(~0.6)M(5) ......... (28¢)

Depending on the distributional propettics of individual random variables
on the right-hand side (1cfer to Table 3), the moments about the origin of
the travel time can be calculated. To illustrate the computations, data shown
in Table 4 are used. The values of the Mellin transforins corresponding o
the appropriate argument for the different paramcters, the moments about
the origin, and the associated central moments are given in Table 5. The
values of the statistical moments so obtained, in theory, are exact rather than
approximations. However, during the computation, caution should be given
to the potential numerical-rounding error when random variables with rela-
tively small uncertainty are analyzed.

Once the basic statistical moments of the travel time are determined, one
might further be interested in knowing other statistical properties of the travel
time such as the confidence interval, the probability that the travel time is
shorter than a certain value, and so on. To obtain such information, onc has
to know the PDF of the travel time. In theory, the PDF of the travel time
J1 (1), from the one-to-anc correspondence of f7.(f) and M, (s), can be derived
through the inverse Mellin transform on Eq. 28. However, such an inverse
transform involves integration operations in the complex variable space and
is an analytically formidable task (Springer 1978). As a practical alternative,
some paramctric PDFs are used. Normal and log-normal distributions are
among those that are frequently applied for which the first two moments are
sufficient to characterize them.

Two other more complicated distributions, i.e., Fisher-Cornish asymptotic
expansion and Pearson distributions, were used recently to compute the quantile
of the travel time (Tung 1989). The main reason for using the Fisher-Cornish
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Time
Order of Moment of Travel Time
1 2 3 4
(1) (2 3) (4 (5) (6)
n s 1.6 2.2 2.8 3.4
n M (s) 1.5183E-1 2.3170E-2 3.5535E-3 5.4761E—-4
B s 1.4 1.8 2.2 2.6
B My(s) 8.3239E+0 6.9305E+1 5.7772E+2 4.8083E+3
So K 0.7 0.4 0.1 -0.2
So My(s) 1.0913E+1 1.1925E+2 1.3047E+3 1.4294E +4
Q $ 0.6 0.2 -0.2 ~0.6
Q My(s) {2.5130E-2 | 6.3172E-4 1.5884E-5 3.9952E-7
L s 2.0 3.0 4.0 5.0
L M,(s) 1.0000E+2 1.0000C +4 1.0000E+6 1.0000E+8
n = ET) —_ 1.6371E+1 2.6987E+2 4.4793E+3 7.4842E+4
—_ 0.0 1.8772E+0 —1.0743E-2 8.8442E+0
Meltin — 1.6371E+1° | 1.3701E+0" | —4.1768E—2° 2.5098E+0*
MFOSM — 1.6350E+1" | 1.3515E+4+0" | —2.9970E—I° —
*mean,
*standard deviation.
“skewness.
“kurtosis.

and Pearson distributions is that the third and the fourth moments calculated
from the Mellin transform are exact values rather than approximations, or
are estimated from the sample data. ‘The main featurcs of the two distribu-
tions are described here without giving the mathematical details.

The Fisher-Cornish asymptotic expansion approximates the quantiles of
any distribution by those of the normal distribution with correction given to
the presence of higher motments such as skew cocefficient and kurtosis, which
are not equal to those for normal random variables (Fisher and Cornish 1960;
Kendall et al. 1987). Using only the first two moments, the quantiles of the
Fisher-Cornish expansion reduces to those of the normal distribution.

The Pearson distribution is a four-parameler distribution. It is a very gen-
eral distribution that encompasses the majority of the paramctric PDEs that
have been commonly used in statistical analyscs. Distributions such as nor-
mal, gamma, and beta are the members of the Pearson family. The type of
distribution in the Pearson system can be determined on the basis of the
values of skew coefficient and kurtosis. A chart has been prepared for that
purpose (Kendall et al. 1987). Parameters in the PDF can be determined by
relating them to the first four moments (Kendall et al. 1987). Solomon and
Stephens (1978) showed that the Pearson distribution gives an excellent ap-
proximation to the long tail of a distribution when the first four moments
are known exactly.

Based on Table 5, it is observed that the travel time resulting from the
data in Table 4, strictly speaking, is not normal because its skew coefficient
is not zero and kurtosis is not equal to 3. In fact, the negative skewness
indicates that the distribution of the travel time is not log-normal, cither.
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TABLE 6. The 90% and 95% Confidence Intervals of Travel Time (Bays)

Confidence Intervals
Distribution 90% 95%

) (2) (3)
Normal (14.12, 18.63) (13.69, 19.06)
Log-normal (14.22, 18.72) (13.85, 19.22)
Fisher-Comish (14.09, 18.62) (13.70, 18.98)
Pearson (14.09, 18.61) (13.73, 18.95)

For comparison, the 90% and 95% confidence intervals of the travel time
under different distributional assumptions are shown in Table 6. It is found
that the confidence intervals derived from using the Fisher-Comish expan-
sion and Pearson distribution are practically identical. Because log-normal
distribution assumes a positive skewness for the travel time, its confidence
intervals shift to the right compared with the other three distributions con-
sidered. Considering the ncgative skewness of the travel time, the upper
bound of the confidence interval resulting from Fisher-Comish and Pearson
distributions is smaller than that of normal distribution.

Comparing the boltom two rows of Table 5, the expected flood-arrival
time and its standard deviation estimated by the MFOSM method are close
to those estimated by the Mellin transform. [owever, the skew coefficient
estimated by the MIFOSM method is significantly larger than that calculated
by the Mellin transform. For this particular example, the use of the MFOSM
method with an adoption of a normal distribution, as is commonly done,
yields an accurate result because the skew coelficient is very close to zero.
However, the use of log-normal distribution might lead to a biased result.

Table 7 contains the sensitivity coefficients with respect to the uncertainty
of individual input parameters in Eq. 27. Both Eqs. 24 and 26 indicate that
the uncertainty in roughness factor has the dominant effect on the total un-
certainty in estimating flood travel time. The two cquations fait to agrec on
which variable should be ranked as the second; Eq. 24 picks the channcl
slope while Eq. 26 selects the top width. The magnitudes of sensitivity coef-
ficients, except channel top width, computed by the two equations are close.

Example No. 2 (Risk Analysis of Storm Sewer Design)
Consider the design of a storm sewer system. The sewer {low carrying
capacity Q, is determined by the Manning's formula

TABLE 7. Sensltivity Coefficlents of Stochastic Input Parameters in Example
No. 1

Stochastic Input Parameters

Melhod | Roughness (n) | Width (B) | Slope (S,) | Discharge (Q) | Length (L)
() @) (3) (4) (5) (6)
Mellin 0.52119 0.07751 0.13091 0.08316 0.04917
MFOSM 0.50991 0.22663 0.12544 0.07804 0.04883
669

0.463

n

Qc =

where n = Manning’s roughness; \,, = model correction factor to account
for the model uncertainty; d = actual pipe diameter; and S, = pipc.slopg.
The inflow g, to the sewer is surface runoff whose peak discharge is esti-
mated by the. rational formula

QL = RLCIA ................................................... (30)

in which A, = correction factor for model uncertainty; C = runoflf coeffi-
cient; J = rainfall intensity; and A = runoff-contribution arca. )

In practice, it is reasonable to assume that all the parameters on the rlg!lt-
hand side of Eqs. 29 and 30 are subjcct to uncertainty. The sewer capacity
Oc and peak inflow @, from surface runoff, consequently, c.anno( be quan-
tified with absolute certainty. The risk of the sewer not being able to ac-
commodate inflow can be computed by

Pr=PriQc < Q= PriZ < O] oo (31)

in which p, = risk (probability of failure); Pr{ J = probability operator; and
Z = Q¢ — Q., a performance variable. ] ' )

Solving p, requires knowledge about the statistical properties of Z. \V.l[h
the assumption of statistical independence of all stochastic parameters n-
volved, the sewer capacity Q¢ and peak surlace runoff Q, are uncorrelated.
The statistical moments of Z about the origin, in terms of those of Q¢ and
Q., can be obtained as

E@ZY=E(WQc) — E(QL) - oo oii ittt (32)
E(ZY) = E(QY) — 2EQOEQ) + E@D) ..o ovv i (33)
E(Z%) = E@QY) — 3EQDEQL) + 3EQIE@H — EQ@D «vnvvnennn (34)
E@*) = EQY ~ 4EQDEQ) + GEQHEQD — AEQIEQD

O (2 NP (35)

As can be seen, the moments of Z are functions of moments of Q¢ an.d
0., which, in turn, are functions of statistical propertics of basic stuFllas(tc
parameters in Eqs. 29 and 30. Note that both Q¢ and Q, are f-uncuons of
several nonnegative stochastic model parameters and these functional forms
are multiplicative. Hence, the moments of various orders of QC and @, on
the right-hand sides of Eqs. 3235 can be obtained by the Mellin transform.
More specifically, the moments about the origin of Q¢ and Q, can, respec-
tively, be expressed through the Mellin transforin as

EQY) = Ma(s =k + 1)

8 5 s 1
— s—1 ’ —_ —— - il B A I PSP 36
= 0.463''M,,()M,(2 S)Md( 3 3)M‘m(2 2) o
EQD=Mus=k+ 1) = My (MM (SMAS) oot @7

in which M,(w) represents the Mellin transform of the PDF'OI' random vari-
able X with an argument w. Substituting Eqs. 36 and 37 into Egs. 32-35
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TABLE 8. Data for Example No. 2

Variable Mean Standard deviation Disliribution
(1) (2) () 4)

Am 1.100 0.098 Triangular

n 0.015 0.00083 Gama

d (i) 3.000 0.123 Triangular

So (It/F1) 0.005 0.00082 Tiiangular

A 1.000 0.123 Triangular

C 0.825 0.051 Triangular

I (in./hr) 4.000 0.612 Triangular

A (acre) 10.00 0.408 Triangular

Note: | ft = 0.305 m; 1 in. = 2.54 cm; | acre = 4,047 m’.

using an appropriate value for the argument s, one can compute the moments
about the origin of performance variable Z. Once E(Z") are computed, the
mean, variance, skew cocfficient, and kurtosis of Z can be obtained by using
Eqs. 7-11.

To estimate the probability of failure p;, one has to know the PDF of
performance variable Z. In general, the exact PDF of Z cannot be easily
derived. llence, a simpler probability distribution is assumed for Z in prac-
tice. If a normal or log-normal distribution is used, then only the first two
moments are needed. To use a more complicated PDF such as the Pearson
distribution or the Edgeworth asymptotic expansion (Abramowitz and Stegun
1972; Kendall et al. 1987), the required information about higher-order mo-
ments can be obtained with few additional computations. Similar to the Fisher-
Cornish expansion, the Edgeworth expansion approximates the probability
and PDF of a nonnormal random variable by the normal variable with cor-
rection terms for higher-order moments. The difference between the two
methods is that the Fisher-Cornish expansion approximates the quantiles,
while the Edgeworth expansion approximates the value of probability or PDI.

TABLE 9. Moments of 0, Q,, and Z In Example No. 2

Variables
Order of moments Q. (08 z
(1) (2) (3) (4)
I 4.505E+1 3.300E+1 1.205E+1
2 2.090E+3 1.137E+3 2.543E+2
3* 9.980E+4 4.086E+4 5.756E+3
4* 4.902E+6 1.526E+6 1.550E+5
1* 45.05 33.00 12.05
2° 60.80 48.46 109.30
KN 1.846E+2 1.247E+2 59.95
4° §.135E4+4 6.919E+3 3.595LE+4
Skew 0.389 0.370 0.052
Kurtosis 3.070 2.946 3.011

*Moments about the origin.
*Central moments.
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To illustrate the application of the method, numerical data presented in
Table 8 are used. Table 9 shows the computational results for the statistical
moments of sewer capacity O, runoff peak discharge Q,, and performance
variable Z. The probabilities of failure computed by using normal, log-nor-
mal, Edgeworth expansion, and Pearson distribution are 0.00275, 0.00192,
0.00213, 0.00299, respectively. The maximum difference in risk values among
these four distributions is about 36%. Further numerical investigations by
changing the pipe size indicate that the percent difference in risk values de-
creases as Lhe risk value increascs.

ConcLusIONS

This paper introduces a mathematical transform technique called the Mel-
lin transform, which is potentially useful in uncertainty analyses of hydro-
logic and hydraulic problems. Many equations used in engineering designs
in hydrology and hydraulics are empirically derived involving parameters
subject to uncertainty. The Mellin transform is especially attractive and sim-
ple to use when the dependent random variable is rclated to several inde-
pendent random variables in a multiplicative manner. Under such circum-
stances, exact values of the moments of any order can be derived with simple
algebraic manipulations. In fact, many equations in hydrologic and hydraulic
computations are of this nature, to which the Mellin transform is applicable.

The description of the mathcmatics of the Mellin transform in the paper
assumes that random model parameters are nonnegative and uncorrclated. In
actuality, such restrictions for the random variables are not absolutely re-
quired. However, the removal of such restrictions increases mathematical
manipulation tremendously (Springer 1979). Using integral transform tech-
niques requires specilying the PDFs of stochastic input parameters, not just
the first two statistical moments. Incorporation of corrclations among input
parameters requires that the joint PDFs are specificd. This could be dilficult
in practice.

In uncertainty analysis, the objective often focuses on quantifying the sta-
tistical moments of model output when stochastic input parameters are in-
volved. The statistical moments of model output are dependent on the mo-
ments as well as the PDFs of model parameters. Given the values of the
first two moments of a random variable, there could be several PDFs yicld-
ing the same moments. Methods like the MFOSM technique then are unable
to examnine the impact of the form of PDF on the moments of the output.
To investigate the effect of PDFs of input parameters on the statistical mo-
ments of the model output, the Mellin transform and other integral transform
techniques, when appropriate, can provide an analytically easy tool to do
s0.

Finally, the Mellin transform yields an expression of uncertainty in model
output that is amenable for analytical sensitivity analysis. Results of sensi-
tivity analysis provide useful information in directing future data-collection
efforts in an attempt to reduce uncertainty in model output.
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AppenDIX II. NOTATION
The following symbols are used in this paper:

A = drainage area (acres);
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L (A T |

constant associated with the ith stochastic input parameter;
top width of channel (ft);

runoff coefficient;

coefficient of variation;

sewer pipe diameter (in.);

expectation operator;

rainfall intensity (in./hr);

fength of channel reach;

Mellin transform of function f(x);

Manning’s roughness coefficient;

probability operator;

probability of failure;

discharge (cfs);

sewer capacity (cfs);

surface runoff loading to sewer system (cfs);
channel slope or pipe slope;

travel time of flood (days);

variance operator;

the ith stochastic model input parameter;

model output (random variable);

skew coefficient;

kurtosis;

model uncertainty term for runoff loading equation;
model uncertainty term for sewer-capacity equation,
mean value;

the rth moment of random variable about any arbitrary refer-
ence point xo;

the rth central moment;

the rth moment about the origin;

standard deviation; and

convolution operator.
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