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MELLIN TRANSFORM AITLIED TO UNCERTAINTY 
ANALYSIS IN IIYDROLoGY/IIYuRAULICS 

By Yeou-Koung Tu~ig,’ Associate Member, ASCE 

AesrflAcr: I n  hydraulic and hydrologic design and analysis, engineers frequently 
face uncerlaiiiticn involving quantities tlint carino~ tie assessed with absolute ac- 
curacy. Uridcr such circuiiistanccs, uiiceitnirity aiialysis is uivlerlakeci to cxriiiiiic 
tlic elrccts of unccrtain factors on  the rcsults o l  design arid anaiysis. Tlic papcr 
introduces a matlieiiiatical tecliiiique called the hlellin transform. *Ihe lecliniquc 
is  analytically convenient in determining the exact statistical ~nornents of a rrndoin 
variablc that is e function of several nonnegative iridepcndent raiitloni variablcs iii 
a iiiultiplicative fotln. T w o  cxaniples arc given to deiiiouslrate tlic application of 
the hlclliii transform to uncertainty analysis of hydrologic and Iiydraulic problciiis. 

INTRODUCTION 

Iri hydrologic arid hydraulic analyses, engineers freqrietitly encounter 
quantities that caiitiot be quantified with ccrtaiirty. ‘The existence of uticer- 
tnitities directly affects the perforniance reliability of tlie Iiyclcaulic stnicturc 
being rlcsigticd. 

Uncertaitities i i i  Iiydrologic atid hydraulic inodeling caii broadly bc clns- 
sified into two types (Tung and Mays 1980): tiiodel uncertainty ant1 parani- 
eter uncertainty. I iydrologic atid hydraulic designs invariably involve the use 
of cquatiotis that arc ct~ipirically developed or atialytically derived uritler sotiie 
idcalized conditioiis. Modcl uiicei taiiity resulis froiii llic use of a simplified 
equation to describe a coniplcx hydraulic or hydrologic flow phcnoiiieiiori 
and flow process. For cxatiiplc, hlatiiiitig’s cquatioti aiid othcr steady-state 
unifotiii-flow equatioiis are corntiiorily used in open-cliannel analysis; tlie 
rational fortiiula atid different fortiis of equations for tlie tiriie of conccntra- 
tion are uscd in uiban drainagc-structure design. 

All hydrologic and hydraulic equations itivolvc several pliysical prairie- 
tcrs that cannot be quaiitified accurately. This is [lie parameter uncertainty. 
Pararnctcr uiicertairity could bc caused by cliarigc i n  operational coriditiotis 
of hydraulic structures, inherent variability of input parariieters in tiiiie and 
in space, and lack of a suiiicietii atiiouiit of data. Coriscqc~ently, hydrologic 
and hydraulic quatititics such as the avctagc flow velocity in tlic cliatincl atid 
peak discharge of urbaii r u d f  cannot bc assessed with certaiiity. 

The iiiaiii objective of uncertaitity aiidysis is to identify (lie statistical 
proyettics of a model output as the function of stochastic input paratiieters. 
7’1iis pnpcr describes a niatlicntatical irikgral transform tccliniqtie called tlic 
htelliri traiisform arid detiioiistratcs its ;ipplicatioiis to  tlic uriccrtaitity aiialysis 
o f  Iiydt ologic and hydraulic problciiis. 

iAssoc: I’roI., Wyoitiing Water Rcs. Ctr. aiid Statistics Uelit., Uiiiv. of Wyoming, 
Laramie, IVY 82071. 
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UNCERTAINTY ANALYSIS 

In hydrologic and hydraulic analyses, models or equations that relate a 
dependent variable Y (e.g., peak discharge, flow velocity, time of conccn- 

roughacss factor, channel geometry and slope, ctc.) caii be expressed 
tratiori, etc.) to a number of tiiodcl parameters X = (XI,X2, .  . . .XJ (e.g., 

Y = r ( X )  = r(X,,Xz,. ,XA). (1 )  .. ....................................... 
I n  cases where some of the inodel input paraiiiclers are subject to uiiccr- 
tairity, the value Illat thc depcnclent vaiiabtc I’ takcs is uncertain. Uiiccrtainty 
cliaracteristics of a hydrologic or I~ydritulic vat iable under cotisidcratiori caii 
be defined by its distribution and statisticid ~iiotneiits such as the tiicaii, vnri- 
mice, coefficient of variation, mid othcr liiglier ~iio~iie~its, if tieccssary. Idc- 
ally, in unceitairity analysis, derivation of the exact Iwobability density func- 
tion (PDF) of Y as the function of the I’D13 of stochastic input paraiiieters 
X in the invdel is desirable. However, such a task is difficult, if not ini- 
possible, because of tlie nonlinearity in tlie model. In most engineering de- 
signs arid analyses, it is generally sufficient to estimate thc first few statis- 
tical riioiiients of Y as the fuiiction of tlic statistical riioinerits or stochastic 
input paraiiieters. 

Oiic cotiitnoiily used rnettiod for assessing the statistical iiiotnciits i n  tlic 
uncertainly analysis is the mean value first-order secoiid-tnoiiient (h1FOSM) 
nietfiod (Benjamin and Corriell 1970; htig and Tang 1975). Recently, Yen 
et al. (1986) gave a very comprehensive evaluation and description of lhc 
MFOSM method in uncertaiiily aiid risk analyses. Note that the MFOSM 
riictliod oiily gives approxitiiatioris of llic iiieaii atid vat iarice, iiislcad of their 
cxact values. Whcri Iiighcr-order moments are ncedcd, the MI’OSh.1 inetliod 
becotiies cotiiputationally cuinbersotiie as the ordcr gcts larger. Fui tlicriiiorc, 
evidence shows that as the riorilirieatity of the fuiictional rclatioti gets liighcr, 
tlie accuracy of approximation by tlic MFOSM iiictliod clcteriorates rapidly, 
especially for high-order irioiiienls (Gartlticr et al. 198 I ; Tung and I In~tiliorn 
1988). 

The otlicr type of tiictliocl useful in uricettaiiity analysis is the iiitcgral 
transform tccliiiiques. Some well-known iiitcgral transforms arc the Four icr, 
Laplace, and exponential tramfortm. llie pesent paper dcscribes a trails- 
forin technique called the Melliii trarisfortii (Eysteiti IY48; I’ark I Y87), wliicli 
is less knowti to the hydraulics erigirieeririg coiiiriiuaity, and sliows its ap- 
plications. 

If tlie rurictioiial relation of Eq. I satisfies two conditions, the exact 1110- 
riierits of any order can be derived annlytically as h e  function of  niotiients 
of stochastic input paranictcrs X by the Mellin ttaiisforiii without cxtensive 
simulation or using approxiiiialioii by MFOSh.1 tnetliod. Tlic two cotiditions 
ate: ( I )  -1hc function r(X) has a iiiultiplicative form 

Y = [(XI = av 17 XO’ ............................................. (2) 
R 

I-I 

where (I, arc constants; and (2) the stochastic input parameters, Xs, are in- 
dependent and iionnegative. The Mclliri transforin is particularly attractive 
i n  uncertainty aiialysis of hydrologic arid Iiydraulic probletiis bccause triariy 
eqiialions arid their paraiiietcrs involved satisfy tlicsc two conditioiis. 
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Iti general, the riontiegativity condition of the Xs is not strictly required 
in the Mellin transform; but it would require some iiiatheniatical manipu- 
lations to find the Mellin transforni of a function in which randotii variables 
can take negative values (Epstein 1948; Springer 1978). 

MOMENTS AND MELLIN TRANSFORM 

111 this section, the dcfinitioiis of statistical moments of a randoin variable 
atid Mclliri transforin arc giveti to sliow tlic rclationsliips bclwcetr tlic two. 

Shtislicril hloiiieiits 

point X = xo is dcfined as 
‘rile statistical rnotiieiit of order r of a randoin variable X about a rcfcrencc 

p: = E [ ( X  - X J ]  = (x - xo)’l(x)& ............................. (3) 1. 
wliere E [  ] = an expectation operator; andf(n) = PDF of random variablc 
X. In general, statistical iiiotiiciits i n  unccrtaiitty analysis that are conirriotily 
used are central rnoriients with reference point -ro = IL arid the nionicnts about 
tlic origin with x,, = 0. In otlicr woids, h e  cciitral riiorricnts and tnoiiicnts 
about origin caii bc dcfiiied, respectively, as 

p-, = E[(X - JL)‘] ................................................ (4) 

k: = E1X‘J ..................................................... ( 5 )  

wliere p = E [ X ]  = expectation of randoin variable X. It can be easily sliowii, 
through the binotiiial expansion, that the central iiioriierits can be obtained 
from the moments about tlic origin as 

r 

pr = C rCi(- l)ip‘p,!-i ........................................... (6) 
1-0 

where rCi = r ! / [ ( r  - i)!i!]. More specifically, the second, third, and fourth 
central tiiotiieiits can be expressed as 

u2 = E ( X 2 )  - p2 ................................................ (7) 

p3 = E(P) - 3@(x2) t 21~’ ..................................... (8) 

p4 = E(X4) - 4@(X3) + 6p2E(X2) - 3p‘ ........................... (9) 

i n  which u2 = variance. From Eqs. 7-9, one can calculate the skew coef- 
ficient (y) arid kurtosis (K) ns 

........................................................ (10) P3 
Y = 2  

P 4  K = -  ........................................................ (11) 
u4 

hlelliii Trnnsform 

as ( G i l h  1975; Springer 1978) 
The Mellin transform of a function f ( x ) ,  where x is positive, is dcfined 

wliere M,(s) i s  the Mellin transform off(x). As in the Fourier and Laplace 
transforins, there exists a one-to-one corrcsponderice between M,(s) arid f ( . r ) .  
WlieiiJ(x) is a PDF, oiic can iiiimediately recognize the relationship between 
the Mellin trgiisfonn of a PDF and llic tiioriierits about tlie origin as 

p;-t = E(X’-’) = M&) .......................................... (13) 

for s = 1 ,  2, .... As can be secii, tlic Mclliii traiisform providcs an alter- 
native way to find tlie riiomciits of aiiy order of a nonnegative raiidotri vari- 
able. 

OPERATIONAL PROPERTIES OF MELLlN TRANSFORM 

Consider that a random variable Z is the product of two independent non- 
negative raiidoni variables, i.c. 2 = XY. Tlie PDF of Z , J ( z ) ,  can be obtained 
as 

-rn . . 
/(z) = I, g(:) ~l(y)tly .......................................... (14) 

where g( ) arid \I( ) = PDF’s of X and Y, respectively. hi fact, Eq. 14 is 
exactly the definition of Melliri convolution (Springer 1978). I’licrcfore, sirn- 
ilar to the convolutional property of tlic Laplace atid Fouricr transfortiis, tlie 
Melliri traiisforrii of J ( z )  cat1 be obtained as 

Al,(s) = M [ / ( x ) ]  = n.llg(x)*h(y)] = nl,(s)n!y(s).  ...................... (15) 

in which * =,convolution operator. Froin Eq. 15, the Mcllin transform of 
the corivolution of the PDFs associated with two independent randoin vari- 
ables in a product rorln simply is equal to the product of the Melliti transforin 
of two individual I’DFs. Eq. 15 can be extended to a general case involviiig 
iiiore than two iiidepeiidciit random variables. 

Fro~ii this convolutiotial propcrty or the Melliii transforin atid its iclatioii- 
sliip bclwecn statistical moments, one caii imtiiediatcly see tlie advantage of 
the Mellin tLansform as a tool in  obtaining the inoriients of a raridoni variable 
that is related to otlicr raridorii variables in a inultiplicative fasliioii. I n  ad- 
ditioii to the convolutiorial property, which is of primary iinportance, the 
Mellin transform also has several useful operational properties, whicli are 
suiiitiiarized in Table 1 (Batciiiati 1954; Park 1987). ‘I’liese properties of thc 

TABLE 1. Operation Propertles of Mellln Transform on a PDF 

Property Random variable Mellin lransform 
(1 1 
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TABLE 2. Mellln Transform of Products and Quotlents of Random Varlables 

z = x  
z = x' 
Z =  I /X 
z = XY 
z = X/Y 
z = axbY 

N o t e :  n,  6 ,  c = constants; and X. Y ,  2 = raiidonr viuiables. 

Melliii transfonii can be derived from the basic definition giveii in Eq. 12. 
Applying the definition of the Meliin transform and its basic operational 

properties, along with the convolutional properties, the Mellin traiisforiii of 
algebra of random variables in the form of products mid quotients can be 
derived. Soriie useful results arc suininarized in Table 2 (Park 1987). 

MELLIN TRANSFORM OF SOME PROBABILITY DENSITY FUNCTIONS 

I n  uncertainty analysis, model parameters with uncertainty are treated as 
random variables associated with a PDF. Given the functional relationship 
as Eq. 2, in  which Y is related to the Xs in a multiplicative fashion, the 
statistical riioiiierits of I' can be obtained by Mellin transforin of the PDF of 
the Xs. Froin previuus studies (Epsteiti 1948; Park 1987), the Melliii trans- 
form of some cornmonly used I'DFs are tabulated in Table 3. Using llie 
results in Tables 2 and 3, one can derive the exact moments of the dependent 
random variable Y. 

Although the Mellin transform is useful for uncertainty analysis under the 
conditions stated previously, it possesses one drawback that sliould be pointed 
out: under some certain combinations of distribution arid functional form, 
Ilic rcsultirig transroriii may not be arialytic for all ss. This couid occur es- 
pecially when quotients or variables with negative exponents are irivolved. 
For example, if the rilndorii variable Y is related to the iiiversc of X, i.e. Y 
= l/X, arid X has a uniform distributioii iii (O,l), tlicii hf,.(s) = MX(2 - s) 
= i /(2 - s). 111 this case, the expected value of Y, E'(I'), which call be 
calculated, in  theory, by M,(s = 2), does not cxist because My(s = 2) = 1/  
0, which is not dcfined. Under such ciicumstances, other transforms such 
as the Laplacc transform could be used to find the nioments. 

SENSITIVITY OF COMPONENT UNCERTAINTY ON OVERALL UNCEFITAINTY 

In  engineering designs, sensitivity analysis is cornrnoiily used when tlic 
designs are performed uiider uncertainty. I n  uticertainty analysis, invesli- 
gating tlic inipact of coiriponciit uncertainty 011 tlic uncertaiiity level of the 
output provides itnportant infomiation regarding the relative contribution of 
cornponent uncertainty to the overall uricertaiiily in model output. 

Refer to a multiplicative model involving indeyeridciit noiinegative raiidoiri 
variables as in &I. 2. Tlie first two tnoments about the origin of the model 
output l', usiiig Table 2, can be obtaincd, respectively, as 

Y 

C 
3 
5 
l i  

0 

0 
VI 
E 

L e 
0 A- * A '  
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‘ k  

E ( Y )  = M,(2) = o0 I-1 Mxi(l + ai) ................................ (16) 
1-1 

k 

E(U2) = M,.(3) = a% fl hixi( I + 2a,) ............................... (17) 

where Mxi( 1 + a,) and Mxi( 1 + 2ni) = the first two morncnts about the origin 
for the itli tenn, Y, = X:, in Eq. 2. The variance (Var) of the model output 
I’ can be expressed as 

I-  I 

k I ~ ~ ~ ( 1  + 2ai) - 11 hfzi(l + 0,) .................... (18)  
I =  I 

and the coefficient of variation (CV) as 
k 

CV2(Y)  + 1 = n [CV’(V,) + 11 .................................. (19) 
I- I 

where CV(Y,)  is the coefficient of variation of the ith term in Eq. 2, i.e., Y, 
= XT‘. 

To examine the impact of component uncertainty on the overall uncer- 
tainty i n  rnodcl output, i t  is riecessary to express the coefficient of variation 
of Y in tcnns of [lie coefficients of variation of stochastic input parameters, 
X. Since Yi = Xp‘, the relation between the coefficients of variation of Ui 
and X i  car1 be similarly derived as 

CV*(Y,) = p:cv’(x,) ............................................ (20) 

where 

. . . . . . . . . . . . . . . . . . .  (21) 

and CV(Xi) = coefficient of variation of stochastic input parameter X, wliicli 
is coinputed as 

) Mij(2) A f , i ( l  + 2 4  - na:j(l + Oi) 

hiXj(3) - Mii (2 )  P:=( Mii( 1 + O r )  )( 

V ~ f x I ( 3 )  - hjij(2) 

hfxr(2) 
CV(X,) = ..................................... (22) 

Substituting Eq. 20 into Eq. 19 one obtains tlie following rclation: 
k 

C V 2 ( Y )  -1- 1 = n [f3:CV2(X,) + I ]  ................................ (23) 
I =  I 

The sensitivity of the model-output uncertainty with respect to the uncer- 
tainty of the itli stochastic parameter, X,,  can be obtained as 

dC\’(l’) Q;c\’(xi)[cv2(Y) + 1) 

dCV(,Y,) cv(l’){p:cV*(s,) -1- 1 J 
(24) -- - .................................. 

The sensitivity coeflicients computed by Eq. 24 reprcsent tlie rate of change 
in model-output uncertainty resulting from a unit change in the ith input 
vnriallc. Such iriformation could be used as an important guide for future 

. data-collection-program design in an attempt to reduce the total model-output 
uncertainty . 

Referring to Eq. 23, it is seen that under Eq. 2 ,  the relation between output 
uncertainty and the uncertainties of the input parameters is essentially mul- 
tiplicative. Therefore, isolation of the exact impact of individual-coniponent 
uncertniaty is difficult. As an approxiination, the MFOSM method can be 
applicd, which leads to the following expression: 

x 
CV’(Y)  = a:CV2(X,) ......................................... (25) 

1- I 

From Eq. 25, the percentage of contribution of each individual raridoni riiorlel 
paranicter to the overall output uncertainty can be estimated. ?’he approxi- 
mated sensitivity coefficients with respect to individual component uncer- 
tainty, based on Eq. 25, can be derived as 

acv( Y) a:cv(x,) 
(26) -u- ............................................. acv(x,) CV( U) 

It should be emphasized that Eqs. 25 and 26 are only approximations of the 
true relationship given in Eys. 23 and 24, rcspectively. 

EXAMPLES 

This section presents two examples to demonstrate the use of the hlellin 
trailsforill in hydrologic and hydraulic uncei tairity analysis and reliability 
analysis. 

Example No. 1 (Uncertainty of Flood Travel Time) 
Uncertainty aiialyses of hydraulic computations in channel flood routing 

are triaiiily concerned with the assessirient of the uncertainty feature of tlie 
computation results. In channel flood routing, the results of pritiiary interest 
are the travel time of flood watcr, the iiiagiiitude of peak, the corresponding 
water-sui face profile, atid the area o f  iriundalion. ’This example examines 
the iiricertainty of the travel time derived from using tlie kiiieniatic-wave 
routing model. Using hlanaing’s formula, (lie travel time T of a kinematic 
wave in a wide rectangular clianiiel carrying a flow of Q can be deleriilined 
by (Chow et al. 1988) 

Q - I ~ ~ L  ....................................... (27) 

where l? = cliaiiticl width; 11 = Marining’s roriglrtless; and L = Iciigtli of 
cllaiiriel reach. I n  hydrological analyses of ut  ban drainage design, many 
equations used for coaiputing h e  lag ~iriie or time of concentration have a 
form sitiiilar to Eq. 27 (Kibler 1982; Clien and Waiig 1989). 

I n  Eq. 27, the paraiiieters on the riglit-hand side of  the cquatiun are treatccl 
as random variables resulting froni the spatial/ternporal variabilities a i d  
measuriiig errors. Since the travel titrie T is  related to 1 1 ,  B, So, Q* atid L in 
a multiplicative niaiiner and all the parameters with uncertainty are nonnega- 
tive, the Mellin trarisfonii is applicable. Based o n  Eq. 27 and using Table 
2, the Mellin transform of the PDF of the travel time can be expressed as 

665 666 



I .  

Variable 
(1) 

n 

B (f0 
5, Cft/ft) 
0 (cfs) 
L (mi) 

Dlstribulion L' A P  If. 
(2) (3) (4) (5)  

Triangular 0.03 0.045 0.055 

Triangular 0.00025 0.00035 0.00045 
Triangular 180 200 220 

Triangular 9,OOO 10,OOO 11,OOo 
Triaiigular 99 100 101 

E(T'-') = hl,(s)  = C ~ - ' ' ~ I , , ( O . G S  + 0.4)MB(0.4s + 0 .6 )Mm(-0 .3~  

+ 1.3)Mu(-0.4~ t 1.4)hfL(~). . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . ( 2 8 ~ )  

where cr = 0.6(1.49)-0.6. More specifically, the first four moments of the 
travel time about tlie origin are 

E(T) = M r ( 2 )  = c,AI,,( f . 6 ) A t B (  1.4)Al~,(O.7)hf,(0.6)M~(2) . . . . . . . . . . . . . (280) 

E(T2) = M,(3)  = c:M,,(2.2)MB( 1 .8)hfs,(0.4)M,(0.2)ML(3) . . . . . . . . . . . . (28c) 

E(T3) = hi, (4) = c:n~"(2.8)M,(2.2)n.(O. I)MQ(-0.2)M,(4) . . . . . . . . . . . (28d) 

E(7*4) = M r ( 5 )  = C : M , ( ~ . ~ ~ ) M , ( ~ . ~ , ) A ~ , , ( - O . ~ ) M , ( - O . G ) M , ( ~ )  . . . . . . . . . ( 2 8 ~ )  

Dcpciiding on the disciibutional properties of individual random variablcs 
on the right-hand side (refer to Table 3), tlie rnoiiients about the origin of 
the travel tiirie can be calculated. To illustrate the coiiiyutations, data sliowii 
iri 'Table 4 arc used. l'lie values of [lie Melliri transfoiins correspoiiding to 
the appropriate argument for the difrererit paratiicters, tlie moiiiciits about 
tlic origin, and tlic associated celltrill iiioiiicnts are given i n  'Table 5 .  llie 
values of tlic statistical nioiiients so obtained, i n  theory, are exact rather than 
approxiinations. However, during the computation, caution should be giver1 
to tlic potential iiuincrical-rouiidinI: error when ratidoiri variables with reia- 
tively small uiicertaiiity aie analyzed. 

Oiice the basic statisl id iiioriieiils of the travel time are dcterriiiricd, oiie 
tiiiglit iu1tlier be iiitcrestcd in knowing other statistical properties of the travel 
tiirie such as the confidence interval, the probability that the travel time is 
shorter tliaii a certain value, and so on. To obtain such information, one has 
to know tlie PDF of tlie travel time. 111 theory, tlic PDF of thc travel time 
JI ( I ) ,  f I o r i 1  the onc-to-ci i ic  coricspondcticc off ,  (I) ntid M I ( $ ) ,  caii bc dcrivcd 
through the iiiverse blellin transforin on Eq. 28. I lowcver, such ail inverse 
frnrisfur i i i  irivolvcs iritcgrntioii operations iri tlic coriiplcx vari;tbJc spacc and 
is an aiialytically for Illidable task (Springer 1978). As a practical alteriiativc, 
some paraiiictric PDFs are used. Normal and log-normal distributions are 
atnong those that are frccpently applied for which tlic first two niotiiciits are 
su i f  ic icii t to charac tcrize them. 

Two other more coiiiplicated distributions, i.e., Fisher-Coniish asymptotic 
expansion arid Pearson distributions, were used receiitly to coriipute tlic quaitile 
of the travel time (Tung 1 Y89). I'lie riiain reason for using fhe Fislier-Corriisli 
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TABLE 5. Cornputatlons of Example No. 1 In Assesslng Uncertalnty of Travel 
Time 

(1) 
n 
n 
U 
U 
s o  
s o  
Q 
Q 
L 
L 

Pr 
Mellin 
MFOSM 

I.: = E(T') 

'mean. 
bstandard deviation. 
'skewness. 
'kurlosis. 

1 
(3) 

I .6 
I .5 I83E- 1 
1.4 
8.3239E t 0 
0.7 
I .09l38-t 1 
0.6  
2.51 308-2 
2.0 
I.OOOOEt2 
I .6371E+ 1 
0.0 
I .6371E+ I'  
I .63508+ 1' 

Order of Moment of Travel Time 

2 
(4) 

2.2 
2 .3  1708-2 
I .8 
6.93058+ 1 
0.4 
l .1925Ef2 
0 .2  
6.3 f72E-4 
3.0 
I.OOOOE+4 
2.69878+2 
I .R772Et0 
1.3701E+Oh 
l.3515E-tOh 

3 
(5) 

2.8 
3.55358- 3 
2.2 
5.7772Et 2 
0 . 1  
1.30478+3 

-0.2 
I .5884E-5 
4 .O 
1.0000EtG 
4.47938+ 3 

- I .0743E-2 
-4.1768E-2' 
-2.9970E- I' 

3.4 
5.476 I E-4 
2 .6  
4.8083E t 3 

-0 .2  
I . 42948t4  

-0.6 
3.9952 E- 7 

5 . 0  
1 . ~ E t 8  
7.4842E+4 
8.8442E+ 0 
2.5098E-t Od 
- 

and Pearson distributions is that the third and the fourth iiiouieiits calculated 
from the Mellin transform are exact values ratlicr than approxiinations, or 
are estiinated from the sample data. 'I'he tiiaii i  features of tlic two clistribu- 
tions ale desctibed herc without giviiig [lie iiiatlicinaticnl dctails. 

The Fislicr-Cor~iisli asymptotic expnsioii approxiiiiatcs the qunntilcs of  
any distribution by those of the rioriiiill distribution with corrcctioii givcii to 
the presence of higlier nroriients such as skew cocfficierit and kurtosis, which 
are not equal to those for normal random variables (Fisher atid Cornish 1960; 
Keiidall et al. 1987). Using only tlie first two moments, tlic quatitiles o f  the 
Fislicr-Curiiisli expansioti reduces to those of the nomiat disti ibution. 

The Pearson distributiori is a four-pnraincter distributiori. It is a vcry gen- 
eral distribution that encoriiyasses the majority of the paraiiictric I'DFs h a t  
have been commonly used in statistical analyscs. Distributions such as nor- 
irial, gainma, and beta are the meinbers of tlie t'carsoti faiiiily. I'hc type o f  
distribution in the Pearson system can bc dcteniiiiicd oil the basis of (lie 
values of skew coefficierit arid kurtosis. A cliart Jim been prejmrcd for  tliat 
purpose (Keiidall et al. 1987). Paranietcrs in tlie IWF caii be detcrtiiiiicd by 
relalirig tlieni to Lhc first four iiioriietits (Ketidall ct al. 1987). Solotiion arid 
Stcpliens (1978) showed that tlie I'crlrsoii distribution gives ail excelletit ap- 
proximation to the long tail of a disttibution wlien the first four rnoinents 
are kiiown exactly. 

Based on Table 5 ,  it is observed that the travel time resulting fro i l l  the 
data in 'Table 4, strictly speaking, is not normal because its skew coefficient 
is not zero aiid kurtosis is not equal to 3. I n  fact, the negative skewness 
indicates that the distribution of the travel h i e  is iiot log-norriial, eiher. 
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TABLE 6. The 90% and 95% Confidence Intervals of Travel Tlme (Days] . 
I Confidence lnlervals 

Normal 
Log-normal 
Fishe r-Cornish 
Pearson 

95% I (2) I (31 
90% Distribution 

(1) 
~ _ _  

(14.12, 18.63) (13.69, 19.06) 
(14.22, 18.72) (13.85, 19.22) 
(14.09, 18.42) (13.70, 18.98) 
(14.09, 18.61) (13.73, 18.95) 

Melhod 
(1) 

Mellin 
hlFOSM 

For comparison, the 90% and 95% confidence intervals of the travel time 
under different distributional assumptions are sliown in Table 6. It is found 
that tlie confidence intcrvals derived from using the Fislier-Cornish expan- 
sion and Pearson distribution are practically identical. Because log-normal 
distribution assumes a positive skewness for the travel time, its confidence 
iiitervals sliift to the right coiripared with the other three distributions con- 
sidered. Coilsidering the ricgative skewness of the travel fiine, the upper 
bound of the cotifidence interval resulting from Fisher-Coniisli and Pearson 
distributions is smaller than that of normal distribution. 

Coiiiparing the bottom two rows of Table 5 ,  the expected flood-arrival 
time arid its standard deviation eslirriated by the MFOSM mctliod are close 
to those estimated by the Mellin transform. I Iowever, the skew coefficient 
estiriiated by tlic MFOSM tiietliod is significantly larger than that calculated 
by the Melliti transforrti. For this particular exariiple, the USC of tlic MFOSM 
niethod with an adoption of a noniial distribution, as is coilitnoilly done, 
yields an accurate rcsult because tlie skew coefficierit is very close to zero. 
IIowever, the use of log-nornial distribution tiiight lead to a biased result. 

Table 7 contains the sensitivity coefficients with respect to the uncertainty 
of individual input parameters iri Eq. 27. 130th Eqs. 24 and 26 iitdicate that 
the uncertainty in roughness factor has the dominant cffect on tlie total un- 
certainty i n  estiriiatiiig flood travel t h e .  The two cquntions Fail to agrec o i i  

which variable sliould be ranked as the second; Eq. 24 picks the channel 
slope while Eq. 26 selects the top width. The niagiiitudes of sensitivity coef- 
ficients, except channcl top width, cotnputed by tlie two equations u e  close. 

~ -~~ ~~ 

Stochastic Input Parameters 

Roughness ( 1 1 )  Widlh (0) Slope (So) Discharge ( Q )  Length (t) 
(2) (3) (4 1 (5) (6) 

0.521 19 0.07751 0.13091 0.083 I6 0.049 I7 
0.50991 0.22663 0. I2544 0.0 7 804 0.04883 

Example No. 2 (Risk Analysis of Storm Sewer Desigu) 

capacity Q, is deteniiiried by the Manning's formula 
Consider the design of a storm sewer system. The sewer flow carrying 

TABLE 7. Sensltlvlly Coeftlclents of Stochastlc Input Paramelers In Example 
No. 1 

0.463 
Qc = h,dg"S~'*. .......................................... (29) 

where t i  = Manning's roughness; Am = model correction factor to accourit 
for tlie model uncertainty; (I = actual pipe diameter; and So = pipe slopc. 
The inflow Q L  to the sewer is surface runoff whose peak discharge is esti- 
mated by h e .  rational formula 

QL = hLCI/I ................................................... (30) 

in which X L  = coracctioli factor for iiiodel uncertainty; C = runoIf cocffi- 
ciciit; I = rainfall intensity; a i d  A = iuiioff-coricributi~~n arca. 

In practice, it is reasonable to assume that all the parameters 011 tile right- 
hand side of Eqs. 29 and 30 are subjcct to uncertainty. The sewer capacity 
Qc and peak inflow Q L  from surface ruiioff, coiisequcntly, caiiriot bc quan- 
tified with absolute certainty. The risk of the sewer riot bcirig able to ac- 
coinniodate iiiflow can be computed by 
pf = I 'r[Q, < QL3 = Pr\Z < O] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (31) 

in which pf = risk (probsbility of failure); Pr[ ] = probability operator; and 
Z = Qzc - (IL, a performance variable. 

Solving p, requires knowledge about tlie statistical properties of 2. W i h  
the assumption of statistical independence of all stocliastic pararlictcrs in-  
volved, tlie sewer capacity Qc arid peak surface runoff QL are uiicorrelaled. 
The statistical inometlts of Z about the origiii, in terms of those of Qc atid 
Q L ,  can be obtained as 

(32) E(2) = E(Qc) - E(QL) .......................................... 
E(Z2) = E(Q:) - 2E(Q,-)E(QL) + E ( Q i )  ............................ (33) 

E ( Z s )  = E(&) - 3E(Q:)E(QJ + 3E(Qc)E(Qi) - E ( Q i )  . . . . . . . . . . . . . .  (34) 

E(Z') = E(Q:) - 4E(Qi)E(QL)  + bE(Qi)E(&;) - 4E(Qc)E(Ql) 
+ E ( Q l )  ...................................................... (35) 

As can be seen, (lie tiionients of 2 are fiinctions of rnonients of Q, and 
Qt, which, in turn, are functions of statistical properties of basic stochastic 
parameters in Eqs. 29 and 30. Note that both QLq a i d  QL ar'e ruiictiotis of 
several nonnegative stochastic model para~iictcrs atid hese  furictiorial forms 
are inultiplicative. IJeiice, tlie inoriients of various orders of Qc and Q,. on 
the right-hand sides of Eqs. 32-35 can be obtained by llie Mellirr transform. 
More specifically, the triotrierits about tlic origin of Q, a id  QL can, respcc- 
tivcly, be expressed tlirougli the Mclliii traiisfonn as 

E(QZ) = Mpc(S = k + 1) 

= 0.463'-'M,,,,(s)M,(2 - s)Md(: - :)Mm(; - '2) . . . . . . . . . . . . . . . . . .  (36) 

E(Q3 = h!QL(s = k + I) = n'~,(s)ns,($)n!,(s)nl,(s) . . . . . . . . . . . . . . . . . . .  (37) 

in which Af,(w) represents the Mellin transform of the PDF of random vari- 
able X with a11 arguiiient w .  Substituting Eqs. 3 6  and 37 iiito Eqs. 32-35 
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TABLE 8. 

Slandard devlalion 
(3) . 

~~ ~ 

Mean 
(2) 

1 . 1 0 0  
0.015 
3 .O00 
0.005 
I .o(m 
0.825 
4.000 

10.00 

Dlslrlbution 
(4) 

0.098 
0.00083 
0.123 
0.00082 
0.123 
0.051 
0.612 
0.408 

Note: 1 fr = 0.305 in: I in. = 2.54 cm: I acre = 4.047 rn'. 

Triangular 
Gaiiriira 
Triairgular 
Tt iangular 
Triangular 
Triangular 
Triangular 
Triangular 

using an appropriate value for tlie argument s, one can compute the moments 
about the origin of perforrnance variable Z. Once E(2')  are computed, ttie 
iiiean, variance, skew coefficient, and kurtosis of Z can be obtained by using 

To estimate tlie probability of failure p,, one has to know thc PDF of 
perforniance variable 2. In general, tlie exact PDF of Z cannot be easily 
derived. Ilence, a simpler probability distribution is assumed for 2 i n  prac- 
tice. If  a riornial or log-normal distribution is used, tlieo only the first two 
nioiiietits are needed. To use a niore cotiiplicated PIIF sucli as the Pearson 
distribution or  the Edgcworth asyiiiptotic expansioii (Abraiiiowitz and Slegun 
1972; Kendall et al. 1987), the required information about higher-order nio- 
merits can lx obtained with few additional computations. Similar to die Fisher- 
Cox nish expansion, the Edgeworth expansion approxiniates thc probability 
and PDF of a iionnoriiial random variable by the normal variable with cor- 
rection terms for higher-order inonicots. Tlie difference bctweeri llic two 
iiictliods is tliat the Fisher-Cornisli cxpaiision aiqwoxitiiales tlic quaiililcs, 
wlde ttic mgewortli expansion approxitiiates tlie value of probability or PDF. 

EGIS. 7-1 1. 

TABLE 9. Moments of Qr,  QL, and Z In Example No. 2 

Order of moments 
(1)  

I '  
2' 
3' 
4' 
Ib 
2b 
3h 
4b 

Skew 
Kurtosis 

'Moments about the origin. 
'CenrraI iiiotiients. 

4.5058+ 1 
2 .O90E-k 3 
9.980E.t 4 
4.9028 t G 

45.05 
60.80 
1.846Et2 
1.1358-1- 4 

0.389 
3.070 

Variables 

Qt 

(3) 
3.300E-t 1 
1.137B-t-3 
4.086E t4 
1.5268 t 6 

33.00 
48.46 

1.2478+2 
6.9 19E t 3 

0.370 
2.946 

z 
(4) 

f .205E+ I 
2.543E+2 
5.75GE 1.3 
I .5.50E-t5 

12.05 
109.30 
59.95 

3.595li + 4 
0.052 
3.01 1 

To illustrate the application of the method, numerical data prescnted in 
Table 8 are used. Table 9 shows ttie computational results for tlie statistical 
moments of sewer capacity Q,, runoff peak discharge Q,, and perfonnniice 
variable 2. Tlie probabilities of failure cornputed by using noniial, log-nor- 
nial, Edgeworth expansion, and Pearson distribution are O.oO275. 0.001 92, 
0.002 13, 0.00299, respectively. The maxiinurn dirference in risk values aniong 
tliesc four distributions is about 36%. Furtlier riuiiierical investigations by 
cliangiug tlic pipe size indicate that tlie percent difference in risk values de- 
creases as tlic risk value iricrcascs. 

CONCLUSIONS 

This paper introduces a mathematical transform tecliniquc called tlie Mel- 
l in  transform, whicli is potentially useful in uncertainty analyses of tiydro- 
logic and hydraulic problems. Many equations used in engineering designs 
in hydrology and hydraulics are enipirically derived involving parameters 
subjcct to uncertainty. The Mellin transform is especially attractive arid sitii- 
ple to use when (lie dependent random variable is rclatcd to scvcral iiidc- 
pcndciit raiidorii variables in a iiiultiplicative manner. Urider such circuin- 
stances, exact values of the irioiiients of any orclcr can be dcrived with siiiiple 
algebraic iiiarripulations. 111 fact, many equations i n  hydrologic arid hydraulic 
coriipu~atioiis are of this naturc, to which tlic Mcllin transfonii is applicablc. 

'Hie description of the tnatlicniatics of tlie h.lelliii traiisforiii in tlic p p c r  
assumes tliat random tiiodel parameters are nonriegative aiid uncori clated. 111 
actuality, such restrictions for the raiidoiii variables are not absolukly re- 
quired. I iowever, tile renioval of such restrictions iricreascs iiiatheniatical 
inariipulation trciiiendously (Springer 1979). Using ititegral t t  atisforiii tech- 
niques requires spccifying tlic PDFs of stochastic iiiput paiaiiictcrs, not just 
thc first two statistical moments. Iiicorporatioii of conelations aiiiong input 
paratiieters rcquires tliat tlie joint I'DFs arc specified. This could be difficult 
in  practice. 

In uncertainty analysis, the objective oftcn focuses on quantifying the sta- 
tistical iiiornents of iiiodel output wlicii stochastic input paraiiieters are in- 
volved. Tlie statistical riioriierits of tiiodel output are dcperident on the i i io-  
riierits as well as tlie PDFs of model paraiiieters. Given tlie values of the 
first two rnoiiients of a randoiii variable, tliere could be several PDFs yicld- 
ing [lie same motnetits. Methods like the MFOSM teclitiique tlieri are unable 
to examine the impact of tlie forin of PDF on tlie iiioriieiits of tlie output. 
'To investigate tlie effect of PDFs of input parameters on tlie statistical 1110- 

rnents of the model output, the Mellin transform and other integral traiisforiii 
tccliniques, when appropriate, can provide an analytically easy tool to do 

Finally, the Mellin transform yields an expression of uncertainty i n  niodel 
output that is aincriable for analytical seiisitivity analysis. Results of sensi- 
tivity analysis provide useful information in directing future data-collection 
dforts iri an atteiiipt to reduce uncertainty in model output. 

so. 
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a( = 
B =  
c =  

CV( ) = 
d =  

E O  = 
I =  
L =  

MA 1 = 

PI-[ ] = 
r?f = 
Q =  

e c  = 
QL = 
s o  = 
T =  

V a r ( )  = 
.u, = 
Y =  
Y =  

h L  = 
h, = 
c L =  
Fr = 

I1 = 

K =  

constant associated with the itli stochastic input parameter; 
top width of channel (ft); 
runoff coefficient; 
coefficient of variation; 
sewer pipe diameter (in.); 
expectation operator; 
rainfall intensity (in./trr); 
length of channel reach; 
Mellin transform of function J(x);  
Manning's roughness coefficient; 
probability operator; 
probability of failure; 
discharge (cfs); 
sewer capacity (cfs); 
surface runoff loading to sewer system (cfs); 
channel slope or pipe slope; 
travel time of flood (days); 
variance operator; 
the ith stochastic model input parameter; 
model output (random variable); 
skew coefficient; 
kurtosis; 
r i d e l  uncertainty terrii for runoff loadiiig equation; 
model uncertainty term for sewer-capacity equation; 
mean value; 
the rth moment of random variable about any arbitrary refer- 
ence point xo; 
the t-th central monrent; 
the rtti moment about the origin; 
staadard deviation; and 
convolution operator. 

APPENDIX II. NOTATION 

The folloivirig symbols are used irr this paper: 

A = drainage area (acres); 
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