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PARALLEL COMPUTING S I ~ ~ U P S  Fort 
ALTERNATING DIRECTION COLLOCATION 

Mark C. Curran and Myron B. Allen I11 
Department of Mathematics, University of Wyoming 

Lararnie, WY 82070 U.S.A. 

ABSTRACT 

We apply finite-elcment collocation to  the two-dimensional advection-diffusion equa- 
tion. Collocation oflcrs eavings over other finitc-element tcchniques in that matrix ele- 
mcnts arc found by point evaluations rathcr than intcgrations. Additional computer time 
and storage is savcd by application of an  alternating direction process, which allows a 
tnultidimcnsional problem to be solved as a scqucnce of onc-dimcnsional prohlcms. Since 
thcse onc-dimcnsional problems are independent, the specd of the method is enhanced 
firrthcr through USC of a parallcl computing architecture. 

, 

' 

1. INTRODUCTION 

hltcrnating Jircction (AD) methods have becn formulatcd for the numerical solution 
of partial diflcrcntial equations since their introduction in 1955 by Peaceman and Rach- 
rord 111. In 1970 Dortglas and Dupont 121 dcvclopcd the alternating direction Galerkin 
mcthod. More rcccntly, the alternating direction collocation (ADC) method has appeared 
in scvcral forrnulations by Bangia ct  al. 131, Chang and Finlayson 141, IIayes IS], Celia e t  
al. 101, Cclia 171, and Cclia and Pindcr 181. 

Wc cxarniric Cclia'a ADC for tlic two-dimcnsional advcction-diffusion equation. Of 
spccinl irrtcrcst hcrc is the arncnability of the procedure to  implcincntation on parallcl- 
architccturc computcrs. T h e  paper has the following structure: Section 2 briefly rc- 
vicws finitc-elcmcnt collocation using a bicubic IIcrmite basis; Section 3 discusses the 
1\11 mcthod applicd to collocation; Section 4 concludes the paper with an examination 
of thc rncthod's performance on a parallel computer. 

2. REVIEW OF FINITE-ELEMENT COLLOCATION 

Corisidcr tlic following problem posed on the spatial domain f l  = (u,b) x (c ,d ) :  

(a) a,u + v * v u  - v ' (DVU) = 0, (2, y, I )  E I1 x (0, oo), 
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Here v = v(z,y) represents fluid velocity; D = D ( z , y )  is a diRusion coefficient, and 
u = u(z, y,t) represents solute concentration. We apply finite-element collocation to the 
following semidiscrete analog: 

U"+l - u" + k" * vun+' - v * (0Vu"'")I = 0, (2) 

where integer siiperscripts indicate time level, (a)"+'  U(-)ntt + (1 - O)(-)", 0 5 0 5 1, 
and k signifies the time step. 

We begin by establishing a grid on R. Let A= = {zi = a + ih,, i = 0, .  . . , N x }  and 
A, = {yj = c + j h , ,  j = 0 , .  . . ,N,}, where h, = (b - a ) / N z  and h, = (c - d ) / N , .  Tlic 
Hermite piecewise cubics on these grids are 

N;(A2) = { I  E C'(fi) I &i-,,2;~ is  cubic, i = 1,. . . , N x } ,  

and similarly for M:(A,). As Prenter 191 shows, each of these spaces has an intcrpolat- 
ing basis { h n i , h i i } ~ ~ N y *  every element of which has support confined to at most two 
adjacent subintervals [zi-t, xi1 or [yj-1, yj]. 

A t  each time level n we compute an  approxirliate solution G"(z,y) belonging to the 
tensor-product trial space 

M = ( u  E M;(AJ ca M : ( A ~ )  I +,Y) = uD(z,y) for (w) E an}. 
Each function in I4 obeys the boundary conditions (lc) and has the form 

where Ilrmij(x,y) = hti(r)hmj(y). A t  1 = 0 wc forin Go by projecting the initial function 
ur onto M. Thcse criteria specify Go cornpletcly and dctcrminc! 4 ( N ,  -t N, + 1) of the 
4 ( N ,  + l)(IV, + 1) nodal coeficients for G ' , O ' , .  . . . 

To determine the remaining 4N,N, degrees of freedom a t  each time Icvel n -I- 1, we 
first for,,m the residual 

R"+I = fi"+1 - 0" + & [. . VG"+# - v . (DVG"+')] . 
\Ve then pick a collection ((21, B I ) ,  (51,!h), . . . , (Z2~,,92~,)) of collocation poirits and 
force R""(Fh,fjt)  = 0 a t  each. To obtain optimal ~ ( ( I L ,  4- hU)') error cstirnatcs, we 
choose zt  and pt to be the two-point Gauss-qaadraturc abscissae on each subinterval 
lxi-t,xi] O r  [yj-ic Y j l *  

3. TIIE ALTERNATING DIRECTION hlETIlOD 

To obtain a matrix that can be factored into A11 form, we first perturb Equation (2) 
by a term that i s  O ( k ' )  to get 

U"+l - U" + k ( t ,  + f")U"+' + k'O'( t .L3,)(U"+' - tl") = 0 ,  (3) 
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where 
f = uLar - a,(Da,) and f , = uvar - av(Da,) .  

Rearranging Equation (3) and factoring gives 

(1 + k U L , ) ( l +  kOL,)(u"+' - u") = 4 ( L Z  + C,)un. 

Now we can solve (1 + kBL,) t  = - k ( L ,  + Ll)un9 followed by (1 + kOC,)(u"+' - u") = t .  
Whcn we substitute Hermite bicubic trial functions for 6,  we get a matrix equation 

Nu"+1 = r", where u"" is the vector of time increments for the unknown nodal coefi- 
cicnts of 0 .  Consider a typical entry of I<: 

wlicre lie is shorthand for some basis function H l m i j -  Each NU(z ,y)  = h,(z)hb(y), with 
a = ( i , r )  and 

' 

= (j*ti)* 80 we can expand the expression (4) and factor it to get 

If we number the nodes along the lines z = Z t ,  we can use this observation to factor the 
4 N z N ,  x 4 N x N ,  matrix K as follows: 

Each 2N, x 2N, block y i , j  has the five-band structure of a one-dimensional collocation 
matrix, and its entries depend only on the y-coordinates of collocation points. 

We can solve the matrix equation I<u"+' = r" by the following procedure. 

1. Order the nodes vertically and solve Y z  = rn by solving the independent problems 
Yj,jZj = r?, j = 1,. . . , 2 N z .  

2. Reorder the nodes horizontally to  convert z to z*. This operation transforms X to 
a block-diagonal form X' whose blocks have one-dimensional structure. 

3. Solve X'U"~ = t* by solving the independent systems X;,,ul" = tf, i = 1,. . . , 2N,. 
Each of the "onc-dimensional" systems in steps 1 and 3 is independent of any other. 
Therefore tlicse steps can be done concurrently. 

4. IMPLEMENTATION ON A PARALLEL COhlPUTER 

We have implemented ADC on an Alliant FX/8 parallcl processing computer. The hl- 
liarit is an eight-processor, sharcd-memory macliine with optimization capability for both 
concurrent and vector programming. The machine allows users to control concurrency 
within a Fortran code through the use of compiler directives. The following is a dcscrip- 
tion of the code outlined in Steps 1-3 of Section 3. The compiler directives themselves 
begin with tlic flag CVD$ starting in the first column of code. 

. 
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Initialize Q”, set  n = 0 
Begin time level n + 1 

CVDSL CNCAtL (Compiler directive to permit the concurrent execution of the following loop 

DO for each j = 1 , .  . . ,2N* 
END DO 
CALL RENUhI (Reorder8 8 to get 8 . )  

CVDSL CNCALL 
DO for each i s  l,..,,2Np 

containing a reference to an external procedure.) 

CALL YSWEEP (Constructo the system Yj,,ai = r;, solvcr it and maws the result#.) 

CALL XSWEEP (conrtructr the oystem X:,iuy+’ = z f ,  oolves it and update8 the 
appropriate coalllcientm of a to time level n + I.) 

END DO 
End timc rtcp 

CVDSR NOCONCUR (Directive to ruprerr concurrency until the end of the routine.) 

CVDSR NOCONCUR 
SURROUTINE YSWEEP 

SURROUTINE XSWEEP 

One nicasurc of how well the algorithm makcs iisc! of tlic rnac.liit~c’s pnrallcl capabilities 
is the spcedrrp. Fpccdup for n proccssors is tlic ratio of tho timc! riccdctl h y  onc procrssor 
to thc tinic n s r d  by n proccssors to pcrforrrl a sv t  of tasks i n  pnrnllc*l. For a pcrfrctly 
parallcl algorithm requiring no overhead to mollitor and scltctlr~lc thc various procrssors, 
the specdup for rt processors would bc n. Figitrc 1 shows the spcctlllp curve For this 
algorithm, excluding initialization. The  speedup for eight proccssors is 7.27. Clcarly, 
ADC makes very good use of the shared-memory parallcl arclritcct~trc. 

To confirm that ADC gives useful approximations, Figrlrcs 2 and 3 show sol~ltion plots 
lor two diffrrcnt problems. Figure 2 shows tlic rcsrilts of a rotatirlg pltirnc problcrn on 
n = ( - 1 , l )  x (--1,1), with N, = Nv = 40 aiid k = 0.004. I l v r r ,  v -- 2 n ( - y , r )  is a 
circular velocity ficld, D = 0, and the initial concrntratiotl plrltnc rt,(z,y) is R “Gams 
hill“ with center at (0, -0.6) and standard deviation u = O.OGG, Figiirc 3 displays lhc 
results of a n  acl\.crtion-difiusion problcm on fI r- (0, 1) x (0, I ) ,  with N .  = Nv = 20 and 
k = 0.004. Thc diffusion coeficient is D = 0.00385, and v(z, y) = 2erY(-y,s). IIcrc, I I ~  

is a uGquss hill” with u = 0.05 centered a t  (0.75,0.25). In both problcrns thc global crror 
is less than .02111t11~. 
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Figure 1. Speedup curve for ADC using the Alliant FX/8 shared-memory architecture. - 
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Figure 2. Concentration contours for the purely advective rotating plume problcrn at 
various time levels. Contour interval is 0.1. 
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Figure 3. Plot of concentration distribution at t =: 0.3 lor an advcctioii-c~ilrusion problcrn 
with potential flow. 


