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PARALLEL COMPUTING SPEEDUPS FOR
ALTERNATING DIRECTION COLLOCATION

Mark C. Curran and Myron B. Allen III
Department of Mathematics, University of Wyoming
Laramie, WY 82070 U.S.A.

ABSTRACT

We apply finite-element collocation to the two-dimensional advection-diffusion equa-
tion. Collocation offers savings over other finite-element techniques in that matrix ele-
ments are found by point evaluations rather than integrations. Additional computer time
and storage is saved by application of an alternating direction process, which allows a
multidimensional problem to be solved as a sequence of one-dimensional problems. Since
these onc-dimensional problems are independent, the speed of the method is enhanced
further through use of a parallel computing architecture.

1. INTRODUCTION

Alternating direction (AD) methods have been formulated for the numerical solution
of partial differential equations since their introduction in 1955 by Peaceman and Rach-
ford [1}. In 1970 Douglas and Dupont [2] developed the alternating direction Galerkin
mcthod. More recently, the alternating direction collocation (ADC) method has appeared
in several formulations by Bangia et al. [3], Chang and Finlayson |1], Hayes [5], Celia et
al. [6], Celia |7|, and Celia and Pinder [8].

We examine Celia’s ADC for the two-dimensional advection-diffusion equation. Of
special interest here is the amenability of the procedure to implementation on parallel-
architecture computers. The paper has the following structure: Section 2 briefly re-
views finite-clement collocation using a bicubic Hermite basis; Section 3 discusses the
AD method applied to collocation; Section 4 concludes the paper with an examination
of the method’s performance on a parallel computer.

2. REVIEW OF FINITE-ELEMENT COLLOCATION

Consider the following problem posed on the spatial domain {1 = (a,b) x (¢, d):

(@) Au+v-Vu—V.(DVe)=0, (z,y,t) € 1 x (0,00),
(%) u(z,v,0) = ufz,y), (z,¥) €N, (1)

(¢) u(z,9,t) =up(z,p,t), (z,¥) €3N, t>0.
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Here v = v(z,y) represents fluid velocity; D = D(z,y) is a diffusion cocmc.icnt, and
u = u(z,y,t) represents solute concentration. We apply finite-element collocation to the
following semidiscrete analog:

u" w4kl - Vet - V- (DVuH)] = 0, (2)

where integer superscripts indicate time level, (=6t +(1-0)()",0<0<1,
and k signifies the time step. o

We begin by establishing a grid on . Let A, = {z; =a + thy,i = 0,...,N;} ':\‘nd
A, = {y; = ¢+ jhy,j =0,...,N,}, where h. = (b - a)/N, and h, = (¢ — d)/N,. The
Hermite piecewise cubics on these grids are

MY(AL) = {f € CH1) | fliziey.za is cublic, i = 1,..., N, },

and similarly for M}(4,). As Prenter [9] shows, each of these spaces has an interpolat-
ing basis {ho,-,hu)!v:'o"N’, every element of which has support confined to at most two
adjacent subintervals [z;_y,z;] or lyi-1, ¥i]- o )

At each time level n we compute an approximate solution @"(z,y) belonging to the

tensor-product trial space
M= {ve M](B:)® M}(4,) | v(z,y) = upl(z,y) for (z,y) € 90}

Each function in M obeys the boundary conditions {1c) and has the form

N, Ny aun
z,y) = XY, [ﬁ"(z,-,y,-)”wi(z,y) + —g(x;,y,-)"mi,'(z.y)
i=0 j=0

o8 O i) s (2,)
+8—y(1-'.yj)Hou,-(z.y)+m(x.,y, ni (7, 9)]

where Hymis(z,9) = he(r)hmi(y). Att =0 we form @#° by projecting the initial function
uy onto M. These criteria specify ° completely and determine 4(N, + N, + 1) of the
: 1 a1
4(N, + 1}(N, + 1) nodal coeflicients for &', d°%,.... .
( T’o dezt(:rn:ine Zhe remaining 4N, N, degrees of freedom at cach time level n + 1, we

first form the residual
RmH = ﬁn+l —a"+k [V i Vﬁ"*' ~v. (DVﬁ"+')] .
We then pick a collection {(i:l,l];),(:'cl,yg),...,(:T::N.yﬁm,)} of collocation points and

force R**!(%4,%) = O at each. To obtain optimal O((h, + h,)*) error cstim:\.t.os, we
choose %, and §; to be the two-point Gauss-quadrature abscissac on cach subinterval

lzi1,xi} or lyj-1,¥5)-

3. THE ALTERNATING DIRECTION METHOD

To obtain a matrix that can be factored into AD form, we first perturb Equation (2)
by a term that is O(k?) to get

un“ —u™ 4+ k(f, + C,)u"” + k’0‘(£,£,)(u"“ _ “n) =0, (3)
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where
L, =v,8, - 3,(D3;) and L, = v,3, — 3,(D3,).
Rearranging Equation (3) and factoring gives

(14 kOL)(1 + kOLy) (™ = w™) = —k(L, + L,)u"

Now we can solve (1 +k8L,)z = —k(L. + L,)u", followed by (1 + k0L,)(u™*! —e™) = 2.

When we substitute Hermite bicubic trial functions for @, we get a matrix equation
Kum*! = " where u™*! is the vector of time increments for the unknown nodal coeffi-
cients of ii. Consider a typical entry of K:

{[1+k0(Le + £,) + K07(LoL,)] 1o} (2, 50), (1)

where 11, is shorthand for some basis function Hemi;. Each H,(z,y) = ha(z}hs(y), with
a = (i,r) and § = (4, 3), 80 we can expand the expression (4) and factor it to get

[ha(Zs) + KO(Loha)(2a)] - [ho(Te) + kO(Lyho)(5e)] -

If we number the nodes along the lines z = %,, we can use this observation to factor the
4NNy x AN, N, matrix K as follows:

Y1 X1 - X,
K=Y -X= . 1. .

Yan, an, Xaw, 4 coc Xaw,aw,

Each 2N, x 2N, block Y;; has the five-band structure of a one-dimensional collocation
matrix, and its entries depend only on the y-coordinates of collocation points.
We can solve the matrix equation u"*! = r" by the following procedure.

1. Order the nodes vertically and solve Yz = r™ by solving the independent problems
Y,-_,'z,v = I';‘, ] = l,...,2N,.

2. Reorder the nodes horizontally to convert z to z*. This operation transforms X to
a block-diagonal form X* whose blocks X;; have one-dimensional structure.
3. Solve X*u™*! = 2* by solving the independent systems Xuuitt =z2,i=1,...,2N,.
Each of the “onc-dimensional” systems in steps 1 and 3 is independent of any other.
Therefore these steps can be done concurrently.

4. IMPLEMENTATION ON A PARALLEL COMPUTER

We have implemented ADC on an Alliant FX/8 parallel processing computer. The Al-
liant is an cight-processor, shared-mnemory machine with optimization capability for both
concutrrent and vector programming. The machine allows users to control concurrency
within a Fortran code through the use of compiler directives. The following is a descrip-
tion of the code outlined in Steps 1-3 of Section 3. The compiler directives themselves
begin with the flag CVD$ starting in the first column of code.
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Initialize 8", set n =0
Begin time level n 1
CVDSL  CNCALL (Compiler directive to permit the concurrent execution of the following loop
containing a reference to an external procedure.)
DO for each 5 =1,...,2N,
CALL YSWEEP (Constructs the system Y; ;z; = r7, solves it and saves the results.)
END DO
CALL RENUM (Reorders s to get 5°)
CVDSL CNCALL
DO for ench i =1,...,2N,
CALL XSWEEP (constructs the system X uft! =z, solves It and updates the
appropriate coefficients of @ to time level n +1.)
END DO
End time etep

CVD$R NOCONCUR (Directive to supress concurrency until the end of the routine.)
SUBROUTINE YSWEEP

CVD$R NOCONCUR
SUBROUTINE XSWEEP

One measure of how well the algorithm makes use of the machine’s parallel capabilitics
is the speedup. Speedup for n processors is the ratio of the time needed by one processor
to the time used by n processors to perform a sct of tasks in parallel. For a perfectly
parallel algorithm requiring no overhead to monitor and schedule the various processors,
the speedup for n processors would be n. Figure 1 shows the speeditp curve for this
algorithm, excluding initialization. The speedup for cight processors is 7.27. Clearly,
ADC makes very good use of the shared-memory parallel architecture.

To confirm that ADC gives useful approximations, Figures 2 and 3 show solution plots
for two different problems. Figure 2 shows the results of a rotating plumne problem on
N = (-1,1) x (-1,1), with ¥, = N, = 40 and k = 0.004. llere, v = 2n(~y,z) is a
circular velocity field, D = 0, and the initial concentration plume u;(z,y) is a “Gauss
hill” with center at (0, —0.6) and standard deviation o = 0.066. Figure 3 displays the
resulls of an advection-diffusion problem on 11 = (0,1) x (0,1), with N, = N, = 20 and
k = 0.004. The diffusion coeflicient is D = 0.00385, and v(z,y) = 2¢¥(-y,z). Here, us
is a “Gauss hill” with o = 0.05 centered at (0.75,0.25). In both problems the global error
is less than .02|]u||eo.
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Figure 1. Speedup curve for ADC using the Alliant FX/8 shared-memory architecture.
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Figure 2. Concentration contours for the purely advective rotating plume problem at
various time levels. Contour interval is 0.1.

Figure 3. Plot of concentration distribution at ¢ = 0.3 for an advection-diffusion problem
with potential flow.




