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Abstract. Because of its complexity from both a legal and economic standpoint, the problem of optimal 
waste load allocation is rnultiobjective by nature and should be treated accordingly. To perform this 
task, an optimization technique known as fuzzy linear programming is utilized in solving a multiple- 
discharge, two-objective waste load allocation problem. The two objectives considered are: (1) the 
maximization of waste discharge and (2) the minimization of the largest difference in equity measure 
between the various dischargers. Results from this study reveal that fuzzy linear programming is a 
valuable tool for solving the multiple-objective water quality management problems. Moreover, it is 
shown that the selection of a linear or logistic membership function in providing preference criteria 
between the two objects, has no effect on the ‘best compromising solution’. 

Key words. Waste load allocation, water quality manazement, multiple-objective analysis, fuzzy linear 
programming. 
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1. Introduction 

Ever since the introduction of the original Streeter-Phelps equation in 1925 (Streeter 
and Phelps, 1925), researchers have conducted a number of studies in attempts 
to understand more fully the n,atural assimilative capacity of streams and the 
interaction of waste discharge and dissolved oxygen (DO) within the stream 

of optimization techniques, the problem of optimal waste load allocation (WLA) 
has been formulated and solved using a variety of mathematical techniques. The 
idea of optimizing waste discharge to a receiving stream is certainly not new to 
the field of water quality management. The work presented by Loucks et al. (1967) 
and ReVelle et al. (1968) are some of the notable contributions to the use of single- 
objective linear programming (LP) in solving the problem of deterministic optimal 
WLA. Other optimization techniques, such as dynamic and geometric programming, 
have also been utilized by Liebman and Lynn (1966) and Ecker (1975). 

Although these techniques have been praised by many as useful tools in the 

I environment. Moreover, with the conception and growth in popularity of a number 
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regulation and management of aquatic environments, some have criticised their 
over-simplification within the decision-making process in arriving at the so-called 
‘optimum solution’. It should be pointed out that much of the research work 
conducted in this area, to date, has centered around the use of a single-objective 
function optimization (i.e. the minimization of treatment costs or the maximization 
of waste discharge). The so-called ‘optimum solutions’ are obtained based on a 
single measure of utility for the feasible alternatives. The validity or usefulness 
of optimal solutions obtained in this fashion may be, questioned. In reality, most 
environmental problems are inherently complex from both a legal and economic 
viewpoint. It is unlikely that a truly optimum solution can be obtained by using 
only one measure of utility to identify the best alternative, Rather, a solution based 
on a number of desired objectives which consider a multitude of legal and economic 
factors would likely provide a more realistic solution to the WLA problem. 

To perform such an analysis, the methods of multi-objective analysis can be 
utilized. It is within this framework that the analyst is simultaneously allowed to 
incorporate the tradeoff of a variety of noncommensurable, mutually conflicting 
objectives. A number of multi-objective analysis techniques have already been 
developed. For a thorough review of multi-objective methodologies, readers are 
referred to Monarchi et al. (1973) and Cohon (1978). It is not the intention of 
this article to develop another, but rather to utilize an existing methodology believed 
to be a potentially useful tool in solving such problems. Of particular interest in 
this study are the methodologies for solving the tradeoff of a bi-objective model. 
The methodology used here is known as fuzzy linear programming (FLP) and will 
be shown to be a tractable technique for solving the WLA problem within a bi- 
objective framework. 

2. General Framework of the Multi-Objective Optimization Model 

2.1. VECTOR OPTIMIZATION 

Within the multi-objective framework, the problem consists of more than one scaler 
objective function. The problem is one of ‘vector optimization’ which can be expressed 
as 

Max Z(X> = [ZI (X) ,  2 2  (X), .’., 2, (X)] 

subject to 

where z(X) is a k-dimensional vector of the objective functions, X is an n-dimen- 
sional vector containing the decision variables, and g(X) is an m-dimensional vector 
of constraints. 
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Two objective functions are considered for the WLA problem in this study: (1) 
.the rnaximization of waste discharge and (2) the minimization of the largest 
differences in equity measures between the various waste dischargers. Each of these 
objectives are discussed in greater detail in the following paragraphs. 

The first objective, i.e. the maximization of waste discharge, can be expressed as 
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Max 2, = c (Bj + Dj), 
J= 1 

(3) 

where Bj and Dj are the decision variables representing effluent waste discharge 
(mg/l BOD) and DO deficit (mg/l) a t  each discharge location j ,  respectively; N 
is the total number of discharge locations. The decision variables, effluent waste 
discharge and DO deficit, were selected in accordance with the Streeter-Phelps 
equation. It should be pointed out  that the concentrations of instream DO are 
not only a function of the waste input, but also the DO deficit in the waste emuent. 
The incorporation of a waste transfer function, through the use of the Streeter- 
Phelps equation, into the model formulation is discussed in the model constraints 
section of this paper. 

By contrast, the most common objective function used is that of minimizing 
treatment costs. Here, the first objective is to maximize waste discharge and effluent 
DO deficit. Although not apparent at  first, there is an analogy between the two. 
Maximizing waste discharge and effluent DO deficits may be translated to minimizing 
waste treatment and, thus, reduced costs. 

The second objective considers the equity between the various waste dischargers. 
It is unreasonable to consider the WLA model complete without incorporating 
the idea of ‘fairness’ into the model formulation. There have been several articles 
citing the importance of equity considerations in the WLA problem (Gross, 1965; 
Loucks et al., 1967; Miller and Gill, 1976; Brill et al., 1976). 

Recognizing the importance of equity consideration in the WLA process, the 
choice must then be made as to the type of equity measure to be used. Based 
on the conclusion drawn by Chadderton et al. (1981), two types of equity are 
considered in this study: (1) equal percent removal and (2) equal effluent concen- 
tration. Because the values of equity measure could vary among dischargers, a 
sinzls measure representing the worst case is adopted. Hence, the second objective 
is to minimize the largest difference in equity between the various waste dischargers. 

where SE,,, is a decision variable representing the largest difference in equity between 
the various dischargers; i.e., 6E,,, = max ( I E j  - E,l) for all i # j in which Ej 
is the equity measure for the ith waste discharger. The types of equity utilized 
in this study and their importance are discussed later. 
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2.3. M O D E L  CONSTRAINTS 

The constraints in a mathematical programming model define the physical, biological, 
legal, and economic limitations of the system. I n  this study, the objectives of the 
WLLA problems are to maximize waste discharge and to minimize the kargest 
difference in equity, However, this action is not without its own limitations. 
Obviously, the unrestricted waste discharge to a stream environment will pose 
detrimental effects to the aquatic biota, eventually producing an anaerobic envi- 
ronment in which all forms of desired aquatic life cease to exist. Hence, the inclusion 
of constraints which properly defined and protect the use of the limited resources 
within the stream environment are essential in the WLA problem formulation. 

Constraints on Water Quality 

The most common requirement of the WLA problem has been the assurance of 
minimum concentrations of DO throughout the river system in an attempt to support 
the desired aquatic biota. Specifically, the constraint which relates the response 
of DO to the addition of in-stream waste, is generally defined by the Streeter- 
Phelps equation or its variations (ReVelle et al., 1968; Bathala et al., 1979). By 
utilizing the Streeter-Phelps equation, each control point and discharge location 
becomes a constraint in a mathematical programming model providing a check 
on water quality a t  that location. Within a generalized framework, water quality 
constraints are derived by applying the Streeter-Phelps equation in succession across 
each reach within the stream environment under investigation. A typical water quality 
constraint for the model proposed could be expressed as follows: 

n i  " i  

where Oii and are the technological transfer coefficients indicating the relative 
impact on DO concentration a t  downstream locations, i, resulting from a waste 
input at an upstream location, j ;  nj is the number of the dischargers upstream 
of the control point i; R j  represents the allowable DO available for the utilization 
of waste discharge at the control point i; and Ad is the total number of control 
points. 

Constraints on Treatment Equity 

In addition to the constraints satisfying water qualit);? constraints are also employed 
to define equity between the various discharsers along the stream system. Without 
the inclusion of equity considerations in the WLA model, any attempts to maximize 
waste discharge could result in the allocation of large quantities of waste to the 
upstream users, while the downstream dischargers would be required to treat their 
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effluents at levels of maximum possible efficiency. (This is especially true for fast- 
moving streams.) In mathematical form, constraints for equity can be generally 
expressed as 

where Ej represents the equity measure considered for discharger j ,  SE,,, (a decision 
variable) represents the largest difference in equity between the two dischargers 
j and /’. In order to incorporate these constraints into an LP model, they must 
be expressed as linear functions of the decision variables (i.e., effluent waste 
concentration at each discharge location, Bj). In following this approach, the 
constraints for equity when considering equal percent removal between the disL 
chargers can be written as 

and when considering equal effluent concentrations 

I B j -  Bjp I < 6E,,, , for j +  j ’ ,  (8) 

where Ij is the influent raw waste concentration (mg/l BOD) at discbarge locations j .  
Additionally, it should be noted that for any given stream system, one or more 

of the discharges considered may be an influent tributary. The discharge from a 
tributary should be excluded from the consideration of equity in order to prevent 
undue restrictions being placed on the required treatment levels assigned to other 
dischargers. Therefore, provisions should be included to account for tributary flows 
and their waste inputs in order to identify the entirety of potential waste sources. 

Constraints on Treatment Efficiency 

The final set of constraints to consider are those defining the acceptable range 
of the treatment efficiency. To illustrate its use, a range between 35 and 90% removal 
of raw waste at each discharge location was arbitrarily selected for this constraint. 
The treatment efficiency constraints for each discharge location then can be expressed 
as 

0.35 G 1 -B/a 0 .90 ,  for all j =  1,2 ,..., N .  ( 9 )  
‘Ii 

Certainly, the readcr may argue that the limits set on treatment efficiency are 
antiquated. Nonetheless, these limits were selected solely as a means to illustrate 
the use of the methods presented here. By changinz these limits, only the size of 
the feasible region if affected, not the utility of the methods themselves. It  is the 
intent of the paper to focus the presentation on the use of a methodology for 
which the problem of WLA may be analyzed within a bi-objective framework. 
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The foundation for this methodology was born out of the fuzzy set theory introduced 
by Zadeh (1965). Zadeh’s original studies were in search of improved decision analysis 
in .the ares of expert systems and artificial intelligence. Since its conception, the 
application of fuzzy set theory to the field of mathematical programming has been 
led by a number of early research works, including those written by Zimmerman 
(1976, 1984) and Kickert (1978). More recently, the popularity of its use has grown 
to include some notable works by Sakawa et al. (1987), Orlovsky (1984), Korhonen 
et al. (1987), Sakawa (1983) and Bogardi et al. (1983). 

In order to completely grasp the use of these procedures, the methodologies 
associated with ELP can be divided into two central concepts: (1) defining the 
membership functions and (2) outlining the FLP model formulation. Each of these’. 
concepts are discussed in detail below. 

3.1. THE MEMBERSHIP FUNCTION 

The most important point to note in implementing the FLP formulation is that 
the objective function and system constraints are defined by a unique membership 
function. This membership function acts as a surrogate characterization of preference 
in determining the desired outcome for each of the objectives within the multi- 
objective framework. The process to  appropriately define the membership function 
is performed in such a manner as to allow the function to take on values in the 
interval [0,1]. The membership function, denoted pk for the kth objective, should 
at least satisfy the following conditions: 

where zk(x)  is the outcome of kth objective; Lk and u k  represent the least acceptable 
and most desirable outcome for Zk(X), respectively. 

By defining the membership function in such a manner, the analyst and decision- 
maker, working interactively, can program a level of desirability for the various 
outcomes of each of the objectives into the model formulation. Once completed, 
the membership function acts as a scaling device in assigning a level of acceptance 
to each of the alternatives considered in the multi-objective formulation. Ultimately, 
the best-compromise solution can be identified as the alternative which attains the 
highest level of desirability while simultaneously satisfying the model constraints. 

Several membership functions have been employed in FLP: (1) linear, (2) 
exponential, (3) hyperbolic, and (4) logistic (Sakawa and Yano, 1985). This list 
is by no means intended to rspresent the entirety of membership functions in existence. 
Although a variety of such functions are accessible, the linear and logistic membership 
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functions are selected as the means of defining the level of desirability in this study. 
Through an  appropriate transformation, the logistic membership function can be 
linearized preserving the linearity of the LP formulation. 

The linear form of the membership function (shown in Figure l), can be expressed 
as 

I O, 

1 

where dk is the range of outcomes for z k ( x )  determined by ( u k  - L k ) .  
The logistic membership function (shown in Figure 2), is defined as 

Fig. 1; Linear membership function. 
. .  

. .  . .  

‘b “k 
‘k 

Fig. 2. Logistic membership function. 
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where P, and P, represent the degree of decision-rnaker’s preference corresponding 
to the lowest and highest attainable values for the kth objective, where ak and 
p k  are constants in the membership function which can be determined by 

In general, values for 
0.05, respectively. 

P, and P, are selected between 0.95 and 0.99 and 0.10 and 

3.2. THE GENERALIZED FLP MODEL FORMULATION 

Given the theory behind the FLP model formulation,the goal of this technique 
is to obtain a best-compromise solution which maximizes the level of desirability 
for each of the objectives in the multi-objective problem. More precisely, the goal 
is to maximize the minimum attainable membership function value for each of 
the objectives. That is, the model adopts a ‘max-mid principle. This is accomplished 
by introducing a new decision variable, A, representing the minimum attainable 
membership function value of all the objectives. The problem is then formulated 
in a generalized LP format as follows: 

Max X 

subject to 

pk[Zk(X) ]  - h < 0, for all k = 1,2, ..., K ,  

where K is the number of objectives considered in the problem formulation. 

basic steps: 
In solving the FLP model formulation, the procedures can be outlined in four 

(1) Solve the multiple-objective problem using only one objective at a time, 
ignoring all others. Repeat the process until all objectives have been evaluated. 

(2) From the solutions in step (l), determine the best (U,) and worst ( L k )  outcomes 
for each of the objectives, k .  

(3) Define the membership function for each objective, &[&(x)], from the results 
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obtained for the objective in step (2). 
(4) Redefine the objective function to maximize the minimum ( p k [ Z k ( X ) ]  }, include 

constraints Equation ( 16) (in addition to those controlling water quality, 
treatment, and equity), and solve the final formulation. 

When performed correctly, these four steps provide an effective means of obtaining 
a direct solution to the best-compromise alternative in the multi-objective model 
formulation (Zimmerman, 1976, 1984; Ignizio, 1982). 

4. Bi-0  bjective WLA Using Fuzzy Linear Programming 

4.1. THE LINEAR MEMBERSHIP MODEL 

The bi-objective WLA problem considered herein has two objectives: (1) the 
maximization of total waste discharge and (2) the minimization of the maximum 
difference in equity. Referring to the generalized LP format presented earlier, the 
FLP formulation can be expressed as 

Max h (15) 

subject to  

(1) Original constraints in WLA model: 

n i  ni 

C e i j B j +  2 a i j ~ j < ~ i ,  
j= 1 j= 1 

i=1,2, ..., M ,  

0.35 < 1 -A< 0.90,  for all j =  1,2 ,..., N .  
li 

(2) Linear membership constraints: 

(i) for the maximization of total waste discharge 

(ii) for 

1 - 
d2 

N 

j= 1 
c (Bj  + Dj) + h G 

the minimization of maximum equity difference 



252 
where 

WADE E. HATHHORN AND YEOU-KOUNG TUNG 

. .  

. . .  . _  . .  . . .  
. .  . . .  . .  . . . .  . . . .  

. . .  

. .  

4.2. THE LOGISTIC MEMBERSHIP MODEL 

Referring to Equation (19) we realize that a transformation of variables must be 
made in order to develop a linearized function for Z,(X) before the logistic function 
can be incorporated into a linear programming framework. Similar to the linear 
membership case, the constraints associated with the objectives in the FLP for- 
mulation can be expressed as 

After some algebraic manipulations, Equation (20) can be written as 

Although A is the decision variable to be maximized, the term In[ X /(1 - A] poses 
no difficulty, since it is a strictly montonically increasing function of A. To maximize 
X will also maximize In[ A /(1 - A)]. With this property, we can define a new 
decision variable E = In[ A /(1 - A)]. Thus, Equation (21) can be reduced to linear 
form as 

Notice that the value for E can be negative, zero, and positive (i.e., E is unrestricted- 
in-sign). When using the simplex algorithm for solving an LP model, a nonnegativity 
requirement for decision variables is normally imposed. To satisfy this requirement, 
the decision variable E (which is unrestricted-in-sign) can be replaced by the difference 
of two nonnegative decision variables defined as E = E +  - E - .  

Using the two new nonnegative decision variables E +  and E-, a relationship utilizing 
the logistic membership can be incorporated into a multi-objective LP format. The 
resulting FLP model can be expressed as 

Max e L  - E- (23) 

subject to 

(1) Original constraints including Equation (9, (6 ) ,  (9); 
( 2 )  Logistic membership constraints: 

(i) for the maximization of total waste load 
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Discharger No. 6 
I = 410 mg/l 

x = 201.1 km 
q = 221 l/s 

Background 
Characteris tics Discharger No. 4 
Lo =5.0 mg/l 
Q o  = 3256 I/s  Discharger No. 2 

x = 160.9 lull 
q = 130.8 1/s 
x=80.45km 

q = 4.25 l/s 
x = 0.0 km 

Fig. 3. Schematic sketch of example river system in WLA problem. 

(ii) for the minimization of maximum equity difference 

(iii) nonnegative constraints : 

€ +  2 0, E -  2 0, 6Ema, 2 0, and Bj 2 0, Dj 2 0, for all j .  

The coefficients a’s and p’s in Equation (24) and (25) can be computed by Equation 
(1 3) and (14), respectively. 

Table 1. Data of Dhysical characteristics used in the exampie of WLA models 

(a) Stream characteristics for each reach 

Reach Deoxygenation Reaeration Average stream Raw waste EMuent 
coefficient coefficient velocity concen. flow rate 
( 1 /days) (l/days) (kmlday) (mg/l BOD) (m3/sec) 

1 
2 
3 

0.6 
0.6 
0.6 

1.84 
2.13 
1.98 

26.4 
26.4 
26.4 

1370 
6 

665 

0.0042 
1.2460 
0.1308 

4 0.6 1.64 26.4 910 1.0141 
1.64 26.4 1500 0.0906 5 0.6 

6 0.6 1.48 26.4 410 0.022 1 

(b) Background characteristics 

Upstream waste concentration Upstream flow rate Upstream DO deficit 
(mg/l BOD) (m /sec) (mg/U 

1 .o 5 .O 3.2568 
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5. Application of Fuzzy Linear Programming to Example WLA Problem 
A hypothetical stream system involving six discharging points outlined in Figure 
3 and Table I has been used for example illustration. The FLP models based on 
the two different membership functions are solved using the two-objective model 
and the four basic steps outlined previously. The best and worst objective function 
values of the two objectives considered are given in Table 11. 

6 .  Results and Discussion 

The FLP solutions to the two-objective WLA problem for the six-reach example 
using a linear membership function are displayed in Tables I11 and IV. Specifically, 
Table I11 contains the best-compromise solution to the example WLA problem 
when the equity of equal percent removal between the dischargers is considered, 
while Table IV is associated with the equity of equal effluent concentrations. When 

Table 11. The best (ti,) and worst (Lk) solutions for each objective when considering 
the two types of equity 

(a) Equity type: equal percent removal 

Bounds 

0 bjectives 

Z1: Maximize total waste discharge (mg/l) 269 1 493 
2,: Minimize maximum difference in equity (%) 0.0 54.3 

(b) Equity type: equal effluent concentration 

Bounds 

Objectives 

2,: Maximize total waste discharge (mg/l) 269 1 758 
2,: Minimize maximum difference in equity (mg/l) 0.0 878 

Table 111. 
membership function and the equity of equal percent removal 

Optimal allocation of waste for the two-objective problem using FLP with the linear 

Discharger No. 1 No. 2" No. 3 No. 4 No. 5 No. 6 

Allowable waste 5 39 6 262 142 590 161 
discharge (mg/i) 

Required percentage 60.7 0 60.7 84.5 60.7 60.7 
raw waste removal (%) 

a Discharger No. 2 is a tributary. 
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Table IV. 
membership function and the equity of equal effluent concentration 

Optimal allocation of waste for the two-objective problem using FLP with the linear 

Discharger No. I No. No. 3 No. 4 NO. 5 No. 6 

Allowable waste 502 6 4232 129 502 266 
discharge (mg/l) 

Required percentage 
raw waste removal (%) 

63.4 0 35.0 85.8 66.5 35.0 

a Discharger No. 2 is a tributary. 

comparing the two sets of optimal allocations, the total allowable waste discharge 
for the equity of equal percent removal (1700 mg/l BOD) is less than the total 
for the equity of equal effluent concentrations (1837 mg/l BOD). This is the result 
of the unique characteristics possessed by each of the membership functions 
associated with the individual formulations. By considering the two different types 
of equity, two separate and distinct problems are formulated according to the FLP 
procedures. Once solved, the individual model formulations result in unique 
solutions. 

Additionally, the solution procedures were repeated using the logistic membership 
function as reported in Equation (20) to (22) .  The best-compromise allocations 
obtained for each type of equity using either a logistic or linear membership function 
were identical. Because of the unique analytic expressions associated with the two 
membership functions, it was originally thought that these results were erroneous 
or coincidental to the example system chosen. Upon further analytical investigation, 
the identical results obtained or the linear and logistic membership functions were 
proven to be always true. The formal proof to support this statement is shown 
by Hathhorn (1986). 

In the proof, the arithmetic sum of the linear membership constraints *given by 
Equation (17) and (18) is shown to be identical to the sum of the logistic membership 
constraints given by Equation (24) and (25). The physical interpretation here is 
that the feasible domain described by each of the membership functions share an 
identical boundary containing the optimal solution. The difference between these 
feasible domains is related to the total volume of feasible domain. 

Clarifications of these arguments can be made by referring to the schematic diagram 
shown in Figure 4 which represents the feasible domain corresponding to the two- 
objective FLP problem. The domain bounded by points ABCD and ABEFare assumed 
to represent the feasible space for the linear and logistic membership functions, 
respectively. Additionally, point 0 (which is shared by each of the domains) represents 
the optimal solution to the two-objective WLA problem in the FLP framework. 
By changing the assumption of the membership function, the planes ABC and Al3.D 
are repositioned to ABE and ABF, respectively. More importantly, the position 
of the ridge boundary defined by line AB remains unaffected. Hence, the solution 

'. 
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Fig. 4. Feasible region defined by membership functions in WLA model. 

of the FLP problem remains unchanged. However, these results should only be 
considered true for any bi-objective model formulation. Until further analysis is 
conducted, these conclusions should not be extrapolated to problem formulations 
considering three or more objectives. 

7, Summary and Conclusions 

In the past, waste load allocation problems have been solved in a single-objective 
optimization framework. However, most of environmental water quality manage- 
ment problems are multi-objective by nature. In answer to the shortcomings of 
the single-objective approach, this paper has presented a methodology for solving 
a waste load allocation problem utilizing the framework of fuzzy linear programming. 
In essence, fuzzy linear programming applies the min-rnax principle and prior 
articulation of preference in attempt to reach the best-compromise solution. It is 
a rather viable and potentially useful technique for solving multi-objective water 
quality management problems. 
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