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ABSTRACT 

Channel flow routing provides information on the movement of 
flood wave as it travels downstream. From the flood forecast 
viewpoint, it is desirable to have some knowledge about the 
expected arrival time of peak flow. However, many parameters 
involved in the flow routing model, in reality, can not be 
quantified with certainty. In this paper, a probabilistic 
analysis using the Mellin transform is performed to assess the 
uncertainty in computing the travel time of flood wave based on 
the kinematic wave model. Information about the uncertainty of 
the arrival time of flood peak may have a potential impact on 
decision making relating to various contingency plans in 
attempting to alleviate the potential flood damage. 

INTRODUCTION 

Channel flood routing is an important hydraulic engineering 
practice because it deals with the modeling of movement of flow 
along the channel over time. Results of channel flow routing 
provide information regarding to the temporal and spatial 
distributions of flood wave which is essential f o r  flood warning 
and protection. 

Mathematical models used in channel flood routing range from 
very sophisticated 3D distributed-parameter models such as the 
St. Venant full dynamic wave equation to the simple lump- 
parameter Muskingum model (Chow et al., 1988). Intuitively, a 
sophisticated model not only is expansive and difficult to use, 
but a l s o  it requires a large amount of data with reasonable 
accuracy in order to produce reliable results. The selection of 
an appropriate model to use would generally be dictated by a 
number of factors such as objectives of the study, accuracy 
requirements, data availability, budget and time constraints, and 
others. The solution to a channel flood routing model is a 
function of hydrologic characteristics of the channel such as 
roughness, slope, channel geometry and boundary conditions. 

Deterministic analysis of channel flood routing would assume 
that a l l  model parameters, boundary conditions and initial 
conditions are known with certainty. Such idealizations, in 
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general, are not true because the hydraulic characteristics of 
channels in the model constantly vary both in time and in space. 
Therefore, the uncertainty in model parameters would be carried 
through, the computation and appear in the solution. 

Uncertainty in hydraulic computation for water flowing 
through or passing a hydraulic structure can broadly be 
classified into three types (Tung and Mays, 1980): model 
uncertainty, parameter uncertainty, and uncertainty in 
operational conditions of hydraulic structures. Model 
uncertainty results from the use of a simplified hydraulic 
equation to describe a complex flow phenomenon. Parameter 
uncertainty arises from the inaccuracy associated with the 
quantification of model parameters. Uncertainty in operational 
conditions of hydraulic structures relates to the progressive 
change over time of hydraulic characteristics of the structures 
due to sedimentation and clogging that might change the effective 
opening size of hydraulic structure. For flood routing in a 
natural channel, the uncertainty in operational conditions could 
be lumped into the category of parameter uncertainty. 

Uncertainty analyses of hydraulic computations in channel 
flood routing are mainly concerned with the assessment of the 
uncertainty feature of the computation results. In channel flood 
routing, the results of primary interest are the travel time of 
flood peak, the magnitude of peak and corresponding water surface 
profile along with the area of inundation. This paper examines 
the uncertainty of the travel time derived from using the 
kinematic wave routing procedure. The method of uncertainty 
analysis employed is called the Mellin transform. 

KINEMATIC WAVE MODEL 

The kinematic wave model describes flood wave motion without 
considering the influence of mass and hydrodynamic force. It is 
a simpler version than the full dynamic wave model but still is 
regarded as a distributed-parameter model. The 1D kinematic wave 
model is defined by the following coupled equations: 

3Q a A  

ax at 
Continuity: + = q  

Momentum: so = s, (lb) 

where Q and A are discharge and flow cross-sectional area, 
respectively, which are function of both spatial location x and 
time t, q is the lateral inflow, and So and S, are channel bottom 
slope and frictional slope, respectively. Sometimes, the 
momentum equation can also be expressed in the form 
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~ = a Q d  

Many of the well-known hydraulic equations such as Manning's 
formula can be expressed as Eq. 2 ,  Utilizing Eq.2, the 
continuity equation, although originally involving t w o  dependent 
variables, A and Q, can be reduced to 

( 3 )  
b X  

In theory, the kinemat'ic wave should advance downstream with its 
rising limb getting steeper. However, the s i ze  of the wave does 
not become longer, or attenuated, Therefore, the peak of flood 
stays the same (Chow et ale, 1988). 

The kinematic wave model can be solved by using the finite 
differehce scheme or t h e  method of characteristics, For a 
problem with simpler boundary and initial conditions, kinematic 
wave routing can be performed analytically. For example, in case 
that q=O and a, B values are known, t h e  outflow hydrograph at the 
downstream end from routing an inflow hydrograph can be easi ly  
obtained by shifting the inflow discharge by a t i m e  interval of 
L/ck where c k  is the wave celerity, dx/dt. In other words, a 
discharge Q entering a channel of length L a t  time t, will appear 
at the outlet at time 

It can be easily proved that, using Manning's formula, the travel 
time T of a kinematic wave in a wide rectangular channel carrying 
a flow of Q is (Chow et al., 1988)  

3 

T = - 5 [ ly41 y12 ] Q-2'5 L (6) 

where B is the channel width, n is the Manning's roughness, and L 
is the length of channel reach. 

UNCERTAINTY ANALYSIS OF TRAVEL TIME 

In facing major flood events, the  local authority in charge 
of natural disaster emergency management might consider issuing 
an evacuation warning, The timings of announcing the warning and 
of implementing the evacuation would indeed cause public 
inconvenience even if the threat is imminent. The prediction of 
the  a r r iva l  time of a major flood can be made by solving a flood 
routing model. However, due to the existence of various 
hydraulic uncertainties as described previously, the arrival time 
of a flood is generally n o t  certain, The purpose of uncertainty 
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analysis of the travel time is to assess its random nature. 

Uncertainty characteristics of the travel time can generally 
be defined by its statistical moments such as the mean, variance, 
and other higher moments if necessary. The complete derivation 
of the probability density function (pdf) as the function of 
pdf's of model parameters with uncertainty is generally very 
difficult, if not impossible. Using Eq. 6 as an example, the 
uncertainty of T is a function of uncertainties in n, B, so, Q, 
and L which are related in the multiplicative fashion. One 
commonly used method for assessing the statistical moments in the 
uncertainty analysis is the first-order second-moment (FOSM) 
(Benjamin and Cornell, 1970; Ang and Tang, 1975; Yen et al., 
1986. However, the FOSM analysis only gives approximations of 
the mean and variance instead of their exact values. When higher 
order moments are needed, the FOSM method would become 
computationally cumbersome as the order gets larger. There are 
evidences showing that when the nonlinearity of the functional 
form gets higher the accuracy of approximation by the FOSM method 
would get worse, especially for high order moments (Tung and 
Hathhorn, 1988) . 

Consider a general functional relationship between a 
dependent random variable Y and a number of independent random 
variables 25 =(X1, X,, r . . . ,  Xk) as 

If the functional relation Eq.7 satisfies two conditions, the 
exact moments of any order can be derived by the Mellin transform 
as the function of moments of X ' s  without extensive ,simulation. 
The two conditions are: (1) function u(X) has a multiplicative 
form as Eq.6 and (2) random variables X's are independent, non- 
negative. In general, the non-negativity condition of Xfs is not 
strictly required in the Mellin transform; but it would require 
some mathematical manipulations to find the Mellin transform of a 
function with its variables that can take negative values. The 
Mellin transform is particular attractive in uncertainty analysis 
of hydrologic and hydraulic problems because many equations and 
the variables involved satisfy the above two conditions. 

MOMENTS AND MELLIN TRANSFORM 

Statistical Moments: 

The statistical moment of order r of a random variable X 
about any reference point X=x, is defined as 

p: = E[(X-x,)'] = (x-x,) f (x) dx 



where E [ J  is an expectation operator and f ( x )  is the pdf of 
random variable X. In general, moments in uncertainty analysis 
that are commonly used are central moments with reference point 
x0=p and the moments about the origin with x0=O. In other words, 
the central moments and moments about origin can be defined, 
respectively, as 

where p=E[X]=expectation of random variable X. It can be easily 
shown, through the binomial expansion, that the central moments 
are related to the moments about the origin as 

r 

i=o 
P,  = c ,Ci (-l)i pi 

where , C = r!/ [ (r-i) ! i! 3. More specifically, the second, 
third, and fourth central moments can be expressed as 

E(X*) - p2 (=a) 0 2  = 

(12b) p3 = E(X3) -3pE(X2) + 21.1 3 

p4 = E(X4) -4pE(X3) + 6p2E(X2) -3p4 

in which o2 is the variance. From Eqs. 12b and 12c, one can 
calculate the skew coefficient ( 7 )  and kurtosis (K) as 

7 = p3 / o3 

K = p4 / O4 

(13) 

( 1 4 )  

The Mellin Transform 

The Mellin transform of a function f(x), Mx(s), where x is 
positive, is defined as (Giffin, 1975; Springer, 1978) 

M J s )  = M[f(x)] = f(x) dx, x>O 

Like Fourier and Laplace transforms, there exists a one-to-one 
correspondence between Mx(s) and f (x) . When f (x) is a pdf, one 
can easily identify the relationship between the Mellin transform 
of a pdf and the moments about the origin as 

= E(XS-l) = M J s )  (16) 

f o r  s=1,2, .... As can be seen, Mellin transform provides an 
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alternative way to find the moments of any order of a 
variable. 

ODerational Properties of Mellin Transform 

Consider the product of two independent non-negative 
variables, Z=XY. The pdf of 2, f(z), can be obtained as 

random 

random 

where g() and h() are the pdf's of X and Y, respectively. In 
fact, Eq.17 is exactly the definition of Mellin convolution. 
Therefore, similar to the convolutional property of Laplace and 
Fourier transforms, the Mellin transform of f(z) can be obtained 
as 

in which ' * '  is the convolution operator. From Eq. 18, the 
Mellin transform of the convolution of the pdf's of two random 
variables in the product form is simply the product of the Mellin 
transform of two individual pdf s .  From this convolutional 
property of the Mellin transform and its relationship between 
statistical moments, one can immediately see the advantage of the 
Mellin transform as the tool in obtaining the moments of a random 
variable which is related to other random variables in a 
multiplicative fashion. In addition to the convolutional 
property, which is of primary importance, the Mellin transform 
also has several useful operational properties which are 
summarized in Table 1. These properties of Mellin transform can 
be easily derived from the basic definition given in Eq.15. 

Applying the definition of the Mellin transform and its 
basic operational properties in conjunction with the 
convolutional properties, the Mellin transform of algebra of 
random variables in the form of products and quotients can be 
derived. Some useful results are summarized in Table 2 .  

Mellin Transform of Some Probabilitv Density Functions 

In uncertainty analysis, parameters with uncertainty are 
generally treated as random variables with the associated pdf. 
Given the functional relationship as Eq.7 in which X ' s  are 
related in multiplicative fashion, the moments of Y can be 
obtained by Mellin transform of the pdf of XIS. From the 
previous studies(Epstin, 1948; Park, 1988) , the Mellin transform 
of some commonly used pdf's are tabulated in Table 3 .  Using the 
results in Tables 2 and 3 ,  one can easily derive the exact 
moments of the dependent random variables. 

I 
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APPLICATION 

In this section, the Mellin transform is applied to Eq.6 to 
obtain the statistical moments of the travel time derived from a 
kinematic wave model. Since T is related to n, B, So, Q, L in a 
multiplicative manner and all the parameters with uncertainty are 
non-negative, the Mellin transform is especially applicable. 
Based on Eq.6, the Mellin transform of the pdf of the travel time 
can be expressed as 

s- 1 
= CT M, ( 0 . 6~+0.4 ) % ( 0 . 4  s+O .6) qo - (-0 . 3s+l. 3 )  

Ma (-0.4s+l. 4) M, (s)  (19) 

where ~,=0.6(1.49)-~'~. 
of travel time about the origin are 

More specifically, the first four moments 

E ( T  ) = MT(2) = c: M,(l.~)MB(1.4)Mso(0.7)~(0.6)ML(2) 

E(T2) = MT(3) = C; M,(2.2)M,(1.8)Mso(~.4)~(~=2)ML(3) 

E (T4) = M, (5) = C? M,( 3. 4)MB (2. 6)Mso(-0. 2 ) % ( - 0 .  6)ML (5) 

Depending on the distributional properties of individual 
random variables on the right-hand-side, the moments about the 
origin of travel time can be calculated. To illustrate the 
computations, data shown in Table 4 are used. The values of the 
Mellin transforms corresponding to the appropriate argument Is' 
for the different parameters, the moments about the origin and 
the associated central moments are given in Table 5. The values 
of moments so obtained are exact rather than approximations. 

Once the moments of the travel time are determined, one 
might further be interested in knowing other statistical 
properties of the travel time such as the confidence interval, 
the probability that the travel time is shorter than a certain 
value, etc. However, to obtain such information, one has to know 
the pdf of the travel time. In theory, the pdf of the travel 
time f (t) , from the one-to-one correspondence of f (t) and MT (s) , 
can be derived through the inverse Mellin transform. However, 
such inverse transform involves integration operations in the 
complex variable space and is generally analytically formidable 
(Springer, 1978). As a practical alternative, some parametric 
pdf's are used. Normal and log-normal distributions are among 
those that are frequently applied when the first two moments are 
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sufficient to characterize them. This paper also includes two 
additional distributions to compute the quantile of the travel 
time associated with a given probability level: Fisher-Cornish 
asymptotic expansion and Pearson distributions. 

Fisher-Cornish expansion approximates any distribution by 
the normal distribution with correction given to the presence of 
higher .moments such as skew coefficient , kurtosis , and etc. , 
which are not equal to those for normal random variables (Fisher 
and Cornish, 1960: Kendall et al. , 1987). The quantile of the 
travel time associated with a probability level p using the 
Fisher-Cornish expansion, truncated up to the fourth term, is 

in which zp is the pth-order quantile from standard normal 
distribution, Hr(zp) is the Hermite polynomials which can be 
computed by (Abramowitz and Stegun, 1970) : 

+ 0 . .  (21) Xr-6 
r4 r6 

Xr-4 - r2 
H'(x) = xr - Xr-2 + 

2 l! 22 2! 23 31 

As can be seen, using only the first two moments, the Fisher- 
Cornish expansion reduces to the normal distribution. 

The Pearson distribution is a four-parameter distribution 
with its pdf satisfying the following limiting form 

df (x-a) f 

dx 
- - 

b, + b,x + b2x2' 
The Pearson distribution is a very general distribution which 
encompass the majority of the parametric pdfls that have been 
commonly used. Distributions such as normal, gamma, and beta are 
the members of the Pearson family. The type of distribution in 
the Pearson system can be determined on the basis of the values 
of skew coefficient and kurtosis. A chart has been prepared for 
that purpose (Kendall et al., 1987) . Parameters in Eq.22 can be 
determined by relating them to the first four moments (Kendall et 
al. , 1987). However, it should be noted that there exist 
boundaries for the combinations of skew coefficient and kurtosis 
beyond which Pearson system of distribution does not exist. To 
solve the general Pearson system such as Eq.22, Bowman and 
Shenton (1979 a,b) have developed accurate approximations for the 
percentage points of the Pearson distributions using ratios of 
polynomials in skew coefficient and kurtosis. Recently, a 
computer code based on the works of Bowman and Shenton (1979a,b) 
was developed by Davis and Stephens (1983). 
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The main reason for using the Fisher-Cornish and Pearson 
distributions is that the third and the fourth moments calculated 
from the Mellin transform are exact values rather than 
approximations or estimated from the sample data. Solomon and 
Stephens (1978) showed that the Pearson distribution gives an 
excellent approximation to the long tail of a distribution when 
the first four moments are known exactly. 

Based on Table 5, it is observed that the travel time 
resulting from the data in Table 4 is not normal because its skew 
coefficient is not zero and kurtosis is not 3 .  In fact, it is 
negatively skewed which indicates that the distribution of the 
travel time is not log-normal either. For purpose of comparison, 
the 90% and 95% confidence intervals as well as the shape of 
cdf's of the travel time derived from different distributional 
assumptions are shown in Table 6 and Figure 1, respectively. 

Compare the last two rows of Table 5, the expected flood 
arrival time estimated by the FOSM method is about 4 hours later 
than that of estimated by the Mellin transform. The standard 
deviation and skew coefficient by the FOSM method, however, are 
slightly smaller than those calculated by the Mellin transform. 
For this particular example, the use of FOSM method with the 
adoption of a normal or lognormal distribution as commonly done 
might not be appropriate because the skew coefficient of the 
travel time is negative. 

CONCLUSIONS 

In facing a major flooding event of which the consequence 
could be significant, the knowledge about the uncertainty 
characteristics of the flood arrival time is crucial in decision 
making relating to disaster averting activities such as flood 
warning, implementation of evacuation, and others. Examining the 
95% confidence intervals of the flood travel time associated with 
the numerical example, the differences in the lower end points 
range from 4 to 24 hours with 1 to 8 hours in the upper end 
points. The uncertainty in the flood arrival time is about 3 3  
hours. In reality, an error in predicting the flood arrival time 
for just one hour or less during major event could be vital to 
those individuals at risk. 

This paper applies a useful mathematic technique called the 
Mellin transform to assess the statistical moments of the flood 
travel time derived from the kinematic wave model under some 
simple boundary conditions. The Mellin transform is especially 
attractive and simple to use when the dependent random variable 
is related to a number of independent random variables in 
multiplicative manner. Under such circumstances, exact values of 
the moments of any order can be derived with simple algebraic 
manipulations. In fact, many equations in hydrologic and 
hydraulic computations are of this nature to which the Mellin 
transform is applicable. 
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As the one last reminder, although the Mellin transform is 
powerful for uncertainty analysis under the conditions stated 
previously, it possesses one drawback which should be pointed 
out: under some certain combinations of distribution and 
functional form, the resulting transform may not be analytic for 
all s ' s ,  especially when quotients are involved. For example, if 
the random variable Y is related to the inverse of X, i.e. Y = l / X ,  
and X has a uniform distribution in ( 0 , l )  , then M (s)=M ( 2 - s )  = 
1 / ( 2 - s )  . In this case, the expected value of Y, ETY) , wkch can 
be calculated, in theory, by M ( s = 2 )  does not exist because 
M ( s=2)=1 /0  which is not define& Under such circumstances, 
&her transforms such as the Laplace transform could be used to 
find the moments. 
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Table 1. Operation Properties of Mellin Transform on a PDF. 

Property Pd f Random 
Variable 

Mellin 
Transf o m  

Standard f(x) 

Scaling f (ax) 

Linear af(x) 

Translation xaf (x) 

Exponentiation f(x") 

X 

X 

X 

X 

X 
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Table 2. Mellin Transform of Products and Quotients of Random 
Variables 

Random Variable PDF Given 

Z=X 

Z=Xb 

Z=l/X 

Z=XY 

Z=X/Y 

Z=aXbyc 

M,(bs-b+l) 

a,b,c : constants : X,Y,Z: random variables. 

Table 4 .  Data Used in Example Problem 

Variable Distribution L M H 

n Triangular 0.03 0.045 0.055 

Triangular 

S o (  ft/ft) Triangular 

Triangular 

180 200 220 

0.00025 0.00035 0.00045 

9800 10000 12000 

L(mi) Tr iangul ar 99 100 101 

. 



Table 3. Mellin Transforms for Some Commonly Used Prabability Density Functions 

Probability 
Mellin Transform 

Uniform 

Exponen 

Gamma 

ial 

Triangular 

Standard 
Beta 

Non- 
Stnadard 
Beta 

Normal 

1 
b-a 
- 

-ax a e  

2 (x-L) 
(H-L) (M-L) 

2 ( H-X) 
(H-L) (H-M) 

a f x S b  

L C x g M  

M i x S H  

bs - as 
s (b-a) 

rw  1-s a 

s-1 

k=O 
(H-L) Mx (k+l) 

where M (k) for standard beta. 
X 
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S 
n 

M,(s) 

S 
B 

M, (s) 

S 

M,, ( s )  

S 

Q 
M J s )  

S 
L 

M, ( s )  

= E(T~) 

Table 5. Computations of the Numerical Example In Assessing 
The Uncertainty of the Travel Time. 

Order of Moment of The Travel Time 

1 2 3 4 

1.6 2.2 2.8 3.4 

1.52E-1 2.323-2 3.55E-3 5.48E-4 

1.4 1.8 2.2 2.6 

8.32E+O 6 . 93E+1 5.77E+2 4 . 81E+3 
0.7 0.4 0.1 -0.2 

1 . 09E+1 1.19E+2 1.31E+3 1.43E+4 

0.6 0.2 -0.2 -0.6 

2.51E-2 6.31E-4 1.59E-5 3 . 993-7 
2.0 3.0 4.0 5.0 

1 . 00E+2 l000E+4 1.00E+6 1 . 00E+8 
16.36 2 . 70E+2 4.473+3 7.47E+4 

1.39 I -0.48 I 9.00 

FOSM I 16.54 I 1.34 1 -0.30 I 

Table 6. The 90% and 95% Confidence Intervals of the Travel 
Time ( in Days ) .  

Distln 

Normal 

Log-normal 

Fisher- 
Cornish 

Pearson 

Confidence Intervals 
1 

90% 95% 

(14.08,18.64) 

(14.18,18.74) 

(14.06,18.28) 

(14.11,18.44) 

(13.64,19.08) 

(13.81,19.25) 

(12 . 80,19.30) 
(13.45,18.97) 



1.0 

0.8 

0.6 

0.4 

0.2 

n n  
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TRAVEL TIME (in DAYS) 

Figure 1. Comparison of the Cumulative Distribution Functions of the Travel Time 


