
ADAPTIVE LOCAL GRID REFINEMENT 
ALGORITHMS FOR FINITE-ELEMENT COLLOCATION 

M . B .  Allen 
M.C. Curran 

Journal Article 
1989 

WWRC - 8 9 - 24 

In 

Numerical Methods for Partial 
Differential Equations 

Volume 5 

M . B .  Allen 
M.C. Curran 

Department of Mathematics 
University of Wyoming 

Laramie, Wyoming 



Adaptive Local Grid Refinement 
Algori t h rns for Fin itte-Element 
Collocation 
Myron B. Allen and Mark C. Curran 
Department of Mathematics, University of Wyoming, Laramie, 
Wyoming 82077 

An adaptive grid refinement procedure allows accurate solutions to advection-dominated, 
time-dependent flows using finite-element collocation. The technique relies on a data 
structure that is readily amenable to parallel computing. The paper discusses computa- 
tional aspects of the method. 

1. INTRODUCTION 

Adaptive gndding offers an important class of strategies for computing accu- 
rate solutions to highly advective fluid flows. We present an adaptive local grid 
refinement scheme for use in finite-element collocation models for such flows. 
Of special interest here are the algorithmic aspects of the procedure, which is 
readily amenable to implementation on parallel-architecture computers. We 
focus on transient flows in one space dimension. The paper has the following 
structure: Section II briefly reviews finite-element collocation on fixed grids; 
Section 111 discusses the grid-refinement algorithm for the linear advection- 
diffusion equation; Section IV extends the algorithm to nonlinear problems 
using Burgers’ equation as an example; Section V concludes the paper with an 
examination of the method’s performance on a parallel computer. 

II .  REVIEW OF FINITE-ELEMENT COLLOCATION 

The method of finite-element collocation has its roots in the engineering lit- 
erature of the 1930s (see [ 1 ]), but we owe the modern version to de Boor and 
Swartz [2] and Douglas and Dupont [3], among others. For purposes of illustra- 
tion, consider the constant-coefficient advection-diffusion problem posed on the 
spatial domain = (0, L): 

u(x,O> = u,(x), x E 0, (W 

Numerical Methods for Partiai Differential Equations, 5, 121-132 (1989) 
0 1989 John Wiley & Sons, Inc. CCC 0749- 159)(/89!05 12 1 - 12SO4.Oo 



122 ALLEN AND CURRAN 

Here, v > 0 represents fluid velocity, 0 > 0 is a diffusion coefficient, and 
u = u(x, t )  stands for an unknown function, say, solute concentration. We shall 
apply finite-element collocation to the Crank-Nicolson semidiscrete analog 

where the superscripts indicate time level, ( . ) n + ( 1 ' 2 )  3 ;[(-)"" + (*)"I, and k sig- 
nifies the time step. 

We begin by establishing a spatial grid A' = (0 = xo, h = x , ,  9 , Nh = 
xN = L } ,  and call [xi- ,, xi] = fli.  In later sections, A' will be the coarse grid, 
and ai will be the ith coarse-grid element. The space of Hermite piecewise cu- 
bics for the grid A' on a = [0, I ]  is 

7 

b 

&:(A') = (f E C '@)I fln, is cubic} . 

In other words, f is cubic on each subinterval ai and, globally, is continuously 
differentiable. This order of continuity is the lowest for which one can use col- 
location on a second-order differential equation (Birkhoff and Lynch [4], p. 200). 

in which the sup- 
port of each function H,,j(n) is a small subset of a = [O,L] consisting of at 
most two adjacent subintervals, ai-I U ai (Renter [ 5 ] ,  Chapter 3). In terms of 
this basis, we can write anyfo E A:(Ao) as a linear combination involving Val- 
ues off and f '  at the nodes of A': 

The space U:(Ao) has an interpolating basis {Hi,', Hi,  

In fact, for any g E C'(a) ,  we can define a projection onto &:(Ao) as 

To solve the semidiscrete analog of the problem (l), we determine a se- 
quence {ZY),"=~ by first imposing initial and boundary conditions: 

a"x) = n0uul(.> v x E a;  

These criteria specify 8' completely and determine two of the 2N x 2 nodal 
degrees of freedom for ii ', I i2 ,  . To determine the remaining 2N degrees of 
freedom at each time level n + 1, we first form the residual 

We then pick a collection {Z,, ,Em} C 0 of collocation points and foye  

tain optimal-order error estimates of the form Ilii" - z i ( S 7  nk)llr = O(h4) by choos- \ 
Rn+I(Fk) = 0,  k = 1, 9 , 2 N .  Douglas and Dupont [3] show that one can o \ 
ing the x,- to be the two-Doint Gauss-quadrature abscissae in each element (ni. _j_\\___-.__ ._ 



-7 
ADAPTIVE LOCAL GRID REFlNEMENT ALGORITHM 123 

Allen and Pinder [ 61 demonstrate an upstream-weighted technique assigning 
precisely these collocation points to all terms in the residual except the advec- 
tion terms kvdP/dr ,  for which the "collocation" points have the form .,* = 
xk - ch,c > 0. 

Despite the smoothness required of the trial function iY, two features of colloca- 
tion make it an attractive scheme for modeling transient, advection-dominated 
flows. First, the matrix for the system of collocation equations at each time 
level has bandwidth five in one space dimension and is therefore sparser than 
the matrices arising from other fourth-order finite-element schemes. The price 
paid for this sparseness is a loss of symmetry in the matrix equations approxi- 
mating self-adjoint problems -a penalty that is irrelevant in advective prob- 
lems, since they are generally nonself-adjoint. Second, in contrast with classical 
Galerkin formulations, computing the collocation matrix requires neither the 
calculation of integrals nor formal assembly of a global matrix from local ele- 
ment matrices. This latter fact makes the method especially useful in transient, 
nonlinear problems, which typically require the computation of a new matrix at 
each iteration of each time step. 

- 

111. THE ADVECTION-DIFFUSION EQUATION 

Finite element collocation, like other discrete methods, tends to yield unac- 
ceptable results for the advection-diffusion equation when the Peclet number 
P = vL/D % 1. In its standard O(h4) version, collocation yields spuriously os- 
cillatory solutions near sharp fronts unless h < a / P  (Jensen and Finlayson 
[7]). On the other hand, the upstream collocation scheme just cited smears 
sharp fronts as a consequence of a numerical diffusion coefficient proportional 
to Ph 5 (Allen [SJ). Figure 1 illustrates these types of error. When P B 1, using 
a uniform grid A' fine enough to mitigate these errors can be expensive. One 
way around this dilemma is to adjust h locally, so that the grid spacing is small 
only in regions where the solution exhibits sharp fronts needing fine-scale spa- 
tial resoluton. Since the sharp fronts move, it is necessary to refine the gAd 
adaptively, so that the refined zone follows the front. 

Toward this end, we construct a sequence {A"},"=, of grids, each associated 
with a time level n. For computational convenience we demand that each An 3 
A', so that the variables associated with the original coarse grid do are present at 
every time level. Thus at each time level n we construct a mapping Y": { 1, * , 
N }  - (0, 1 , 2 ,  0 )  assigning ~ " ( i )  new nodes, assumed evenly spaced, to each 
coarse-grid element al = [+, x i  J formed by A'. To avoid unnecessary com- 
putational effort, we want vn(i)  = 0 except when ai lies near a sharp front. In 
these exceptional cases , we determine Y"( i) according to a grid-refinement strat- 
egy appropriate for the equation being solved. We denote by 2" = zy=l v"((i) the 
total number of new nodes added at time level n. Also, we associate with each 
grid An a trial space &:(A") and a corresponding projectiofi 7 ~ " :  C'(a) + 

:(A") mapping continuously differentiable functions onto ihat trial space. 
Since the polynomial degree of the finite-element approximatibn remains con- 
stant while the grid spacing changes, this scheme is an example bf h-refinement. 

- 



124 

U 

ALLEN AND CURRAN 

- ANALYTIC SOLUTION 

< I 

0.2 0.4 
' X  

' x  

FIG. 1. Spurious oscjllations and numerical diffusion associated with (a) standard and 
(b) upstream-weightefl collocation solutions to the advection-diffusion equation. In all 
cases, h = 1/40, k f= 1/20, P = 1069. 

We now collodate as before to determine a sequence 
I 

using the 2(N + 2"") Gauss abscissae for An+' as collocation points to solve 
for the unknown Hernite coordinates of ii"' * . One new wrinkle is that we must 
project the old solution 6" E &:(A") forward to the new trial space A;(A"+') to 
form the residual, getting collocation equations that have the form 

L -1 



ADAPTIVE LOCAL GRID REFINEMENT ALGORITHM 125 

~~~ -~ 

X X Y  
X Y X  

x x x  x 
x x x  x 

x x x x  A,, 
x x x x  

x x x x  
x x x x  

There is another new wrinkle. The addition of 2" new nodes, and hence 22" 
new unknowns and equations, disrupts the matrix structure associated with col- 
location on A ' J f  we have an efficient matrix solver for the structure associated 
with A', then it makes sense to decouple the equations associated with newly 
added nodal parameters of f i n + ' ,  leaving a system having the original structure 
for the 2N coarse-,orid unknowns along with a set of smaller systems for the 22"" 
new unknowns the construction of a p-refinement scheme for collocation, in 
which they improve spatial resolution by increasing the ,local polynomial degree 
of the aproximation. 

We accomplish the decoupling in an elementwise fashion, using sparse row 
reduction on each of the augmented equation sets associated with refined 
coarse-grid elements ai. At a typical time level n + 1, the procedure, which 
we call elementwise condensation, yields a system of the form 

where u:" E RzN denotes the vector of coarse-grid unknowns; u:" E [WE"+' 
denotes the vector of refinement unknowns; A:+' E ~zz"+lxzz"+l is an upper bidi- 
agonal matrix multiplying the refinement unknowns, and B"+' E ~ 2 z " c l x w  is 
the matrix coupling new unknowns to the coarse-grid values. In practice. A:+' 
has the same size and zero structure as the matrix associated with collocation 
on A', and Bn+' is sparse, having one 2v"+'(i) x 4 nonzero block fGr every re- 
fined element ni. Figure 2 shows the block structure of Eq. ( 2 )  in more detail. 

of coarse-grid variables 
using our efficient coarse-grid solver, then solve for the refinement unknowns 
essentially using back substitution via the coupling block B"' I .  The time-stepping 
procedure, starting with ii" known, is as follows: 

1. Compute v""(i), i = 1, , N ,  using an adaptive refinement strategy. 
2. Form the projection d?Y"' 

Given this structure, we can solve for the vector 

x X X  x 
x * * x  

x x x x  
x x x x  

X Z  x 
x x  x 

E 
FIG. 2 .  
mentwise condensation. 

Block structure of the matrix equation for the locally refined system after ele- 



126 

3. 
4. 
5. 
6. 

Step 

ALLEN AND CURRAN 

Compute the matrix entries associated with the refined problem. 
Use elementwise condensation to construct the system (2). 
Solve A:%:+' = 3:" for coarse-grid values. 
Solve Bu;;fl + A, u, = f i+'  for variables introduced by the refinement. 
6 actually reduces to a set of decoupled problems, each of which has the 

n+l n+l 

form 

for a particular refined coarse-grid element ai. Here, BY" E [WW+ I(i)xl multi- 
plies the coarse-grid unknowns in ai, and the upper bidiagonal matrix An+' E 

multiplies the refinement unknowns in ai. Observe that the back 
substitutions (3) associated with different refined elements ai are independent 
and therefore are amenable to concurrent processing. Similarly, the elernent- 
wise tasks called for in steps 1, 2, 3, and 4 are also parallelizable. We explore 
this aspect of the method in Section V. 

A sample computation demonstrates the effectiveness of this procedure in 
yielding accurate simulations. Consider the problem (1) on f2 = (0, 1) with 
square-wave data, 

[ W ~ V R +  ' ( i ) x 2 v n + l ( i )  

u,(x> = 0, Ug = 1, u; = 0,  

when v = 0.369 and D = 0.001. If we use a coarse gird A' having h = 
k = 0.05 and employ upstream weighting with 5 = 0.2, then the numerical 
solution will exhibit significant smearing, as shown in Figure 3 for t = 1. We 
can virtually eliminate this smearing by forcing h < 1/P globally, but as Fig- 
ure 3 also shows, we can achieve comparable results by enforcing the same cri- 
tenon only in zones where sup,,~,ldli"/drl > (5h)-',  that is, where the solution 
is steep. The latter strategy involves solving for at most 180 unknowns per time 
step, while global refinement requires solving for about 400. 

IV. BURGERS' EQUATION 

For nonlinear problems the time-stepping procedure is somewhat more com- 
plicated. Here, the use of an implicit scheme for stability forces one to iterate 
between time steps. Since frontal velocities may be functions of the unknown 
solution, it is possible that zones needing refinement at a particular time level 
will be identifiable only in the last few iterations of the time step, when the it- 
erative scheme has nearly converged. We use this reasoning in developing a 
grid-refinement algorithm for Burgers' equation, 



ADAPTIVE LOCAL GRID REFINEMENT ALGORITHM 127 

CONCENTRATION FRONT PROFILES A T  T = 1 

A No refinement 

.8 *'I 
' t  t v = 0.369 

h i  I Local refinement 

Global refinement 
\ i  A 

6l D=O.OOl '$ 
z 
0 u 

. 4  

. 3  

.2 

. 1  

0 

h = 0.05 

k = 0.05 

8 = 0.5 

L 
R 

X 

FIG. 3.  
using a coarse grid, a globally refined grid, and a locally refined grid. 

Upstream-weighted collocation solutions to the advection-diffusion equation 

assuming initial and boundary data having the form 

u(0,r) = uo, u(L, t )  = u,. 

In this equation, u stands for fluid velocity, while p represents a fluid viscosity. 
When p 4 1, the equation models nearly inviscid, self-advected flows and has 
shock-like solutions needing local fine-scale spatial resolution. 

In the refined problem on A', we compute a sequence { l in}T=o in &:(Ao), sat- 
isfying the initial and boundary conditions, such that the residual vanishes at 
each collocation point Xk E 0. In this case, the residual for the semidiscrete 
scheme is 

R"+' = Z Y + l  - 

which is a nonlinear function of the unknown Hermite coordinates 
I n + l  

(uJn+l,  (u ;>"+ ' ,  ' , (UJ 1 



128 ALLEN AND CURRAN 

for each fixed value of Xk. To solve this nonlinear problem for 2"" in terms of 
a" ,  we linearize it using Newton's method. Thus we make an initial guess 
zY"'lvO = li" and, at each iterative level rn > 0, solve for a new iterate 

N 
d n + l * m + l  = { [ ( u ~ ) ~ + ' ~ ~  + 6;]Ho,i + [ ( u , ! ) ~ + ' * ~  + 61!]Hl, i} .  

i=O 

Clearly 6, = 6, = 0; the boundary values of fin+' are known. To compute the 
vector 6 of remaining increments, we solve the linear system 

j n + l , m S  = - r n + l , m ,  

where the kth entry of I J I + ' * m  is R"+'+ (&), and Jntiim is the Jacobian matrix of 
rn+lirn with respect to the unknown Hennite coordinates. Given a tolerance 7 > 
0, we iterate until llrn+l*m+l I I p  < r ,  then set u " + ' * ~ + * .  

In practice this scheme has several nice attributes. First, it is stable for very 
large time steps, including "Courant" numbers Illi"+'ll,k/h > 100 that far exceed 
those required to keep the temporal truncation error reasonably small. Second, 
it converges rapidly. Using N = 100, the scheme reaches Ilrn+1*m+1115, < lo-' in 
three or four interations, almost independent of the time step k. 

To implement adaptive local grid refinement, we adopt a simple "predictor- 
corrector" strategy in this Newton scheme. This strategy determines the refined 
grid A"' only after performing a few Newton iterations on the coarse grid A'. 
The algorithm runs as follows: for the "predictor" stage, we iterate on A' to reach 
a tolerance T~ > 0: 

t- rotin. 1, i y + ' , O  
2. Solve Jn+'vm6 = -rn+'vrn on A' to get iterates u ~ + ' ~ ~ + ~  E A:(Ao). Stop 

when Ilrn+19Mllp < 7,. 

At this point we have a crude approximation to the new solution t in+',  which 
we use to determine the refined grid: 

Finally, we perform the "corrector" stage, iterating on An+ ' to reach a .tolerance 
r1  > 0: 

3. Construct An+' according to some refinement strategy. 

4. U n + l , M + O  c- 7 T n + ' U " + 1 * M .  

5. Solve J n + l * M + m  6 =  -r  E n + l . M + m + l  on A"" to get iterates u n + l , M + m  

A :(An+ I ) .  
6. ~ n + l  t- i j n + l , M + m + l .  , n  c - n  + 1. 

In step 5 we use the elementwise condensation algorithm outlined in the previ- 
ous section to solve the linear system involving J n + l V M ?  

A sample calculation paralleling that described in Chong [ 101 illustrates this 
procedure. Consider problem (3) with N-wave data on fl = (0, 1): 

and let p = lo? For the true solution, ldli/dxl = O(1) except in an interior 
layer of thickness O(p), in which lda/dxl = O(p-').  If h denotes the coarse- 
grid mesh, then we insert O(p-') refinement nodes in each coarse-grid element 



ADAPTIVE LOCAL GRID REFINEMENT ALGORITHM 129 

Ri where (u; - u;-,)/h > 2. Figure 4 shows the resulting numerical solutions 
at different time levels, using h = k = 0.05, together with a plot of the exact 
solution for comparison. 

V. IMPLEMENTATION ON A PARALLEL COMPUTER 

We have implemented this refinement strategy on an Alliant FW8 parallel 
processing computer. The Alliant is a shared-memory machine with optimiza- 
tion capability for both concurrent and vector programming. Five compu- 
tational elements or processors are available on our machine as currently 
configured. 

The computations associated with each refined coarse-grid element ai are 
contained in three subroutines. The first routine, called REGRID constructs 
the nonsquare system of equations involving variables associated with aj. The 
second, called CNDNS, perfoms the elementwise condensation and decompo- 
sition. The third, BAKSUB, solves for the refinement variables after the solu- 
tion on the coarse grid is known. These routines are implemented for each refined 
coarse-grid element Ki . In each routine calculations for separate coarse-grid 
elements are performed concurrently. All computation inside each routine must 
be done sequentially since the processors are in use at this time. However, the 
sequential calculations in each routine are optimized for vectorization. 

.4 

* 3  

i;"(.) 

0 
2 

FIG. 4. 
solution for comparison in the last time step. 

Solution profiles for Burgers' equation with N-wave data, showing the exact 



130 ALLEN AND CURRAN 

The machine allows users to control concurrency within a Fortran code 
through the use of compiler directives. The following is a description of the 
“corrector” stage of the nonlinear algorithm described in Section IV. The com- 
piler directives themselves begin with the flag CVD$ starting in the first col- 
umn of code. 

CVD$L 

CVD$L 

CVD$L 

CVD$R 

CVD$R 

CVD$R 

Construct the refined grid An+’ 
Begin iteration on refined grid until Ilrn+’vM+”’+’ II < TI 

Determine right hand side vector for coarse-grid equations 
CNCALL (Compiler directive to permit the concurrent execution of the 
following loop containing a reference to an external procedure.) 
DO for each refined ai 
END DO 
Check for convergence 
Determine matrix multiplying coarse-grid variables 
CNCALL 
DO for each refined ni 
END DO 
Solve for coarse-grid variables 
CNCALL 
DO for each refined ?& 

END DO 
End Iteration 

CALL REGRID (Constructs nonsquare systems .) 

CALL CNDNS (Performs condensation and decomposition.) 

CALL BAKSUB (Solves for refinement variables.) 

NOCONCUR (Directive to supress concurrency until the end of the routine.) 
SUBROUTINE REGRID 
NOCONCUR 
SUBROUTINE CNDNS 
NOCONCUR 
SUBROUTINE BAKSUB 

One measure of how well the algorithm makes use of the machine’s parallel 
capabilities is the speedup. Speedup for n processors is the ratio of the time 
needed by one processor to the time used by n processors to perform the com- 
putation associated with gnd refinement. If there were no overhead required to 
monitor and schedule the various processors, the speedup for n processors 
would be n. Figure 5 shows four speedup curves. These plots represent the 
speedups achieved by our algorithm for an average of two, four, six, and eight 
elements refined per time step in the Burgers’ equation solver. As expected, for 
an average of two elements refined per time step, the speedup does not improve 
for more than two processors and even decreases slightly due to the increased 
overhead. Similarly, for an average of four elements refined in each time step, 
speedup does not improve when a fifth processor is used. Figure 6 shows the 
speedup curve when five elements are refined per time step. Clearly, this 
amounts to a special case for our machine configuration. The speedup for five 
processors is 3.51. This result compares with a machine peak of 4.5, observed 
by Puckett and Schmidt [ l l ]  while using a purely parallel algorithm with no 



ADAPTIVE LOCAL GRID REFINEMENT ALGORITHM 131 

Q 
3 

73 aJ a 
Q 
c/) 

Average Number of 
Refined Elements 

1 2 3 4 5 

Number of Processors 

FIG. 5. Speedup plots for the parallel computations in the local gridding algorithm im- 
plemented on a five-processor machine with shared memory. Different curves represent 
different average numbers of coarse-grid elements refined per time step. 

I I I I 

1 2 3 4 5 

Number of Processors 

FIG. 6. Speedup plot for the parallel computations in the local gridding algorithm 
implemented on a five-processor machine with an average of five coarse-grid elements 
refined per time step. 



132 ALLEN AND CURRAN 

data sharing among processors and no accumulation of results. Those authors 
found that peak performance occurs only when the number of iterations in 
a concurrent loop is quite large: They achieved the speedup of 4.5 in a loop 
having 3600 iterations. 

There are several factors that prevent optimal speedup in our algorithm for 
grid refinement. First, not every processor has the same computational burden, 
since the amount of refinement in the coarse-grid elements can vary spatially. 
Second, the number of iterations performed in each loop is typically small, 
owing to the local nature of the refinement. A third banier to the attainment of 
peak performance is the necessity to accumulate the results of the parallel com- 
putations in memory for use in subsequent calculations. These limitations seem 
inherent in any adaptive gridding procedure for nonlinear, transient flows. With 
this proviso, our algorithm appears to make good use of the shared-memory 
parallel architecture. 

3 

The National Science Foundation supported this work through grants DMS-8504360 and 
RII-86 10680. The Wyoming Water Research Center also provided support through a 
grant-in-aid to the authors. 

References 

B. A. Finlayson, The Method of Weighted Residuals and Variational Principles, 
Academic Press, New York, 1972. 
C. de Boor and B. Swartz, “Collocation at Gaussian points,” SIAM J .  Numer. 
Anal., 10, 582-606 (1973). 
J. Douglas and T. Dupont, “A finite element collocation method for quasi-linear 
parabolic equations,” Math. Comp., 27, 17-28 (1973). 
G. Birkhoff and R. E. Lynch, Numerical Solution of Elliptic Problems, SIAM, 
Philadelphia, 1984. 
P. M. Prenter, Splines and Variational Methods, Wiley, New York, 1975. 
M. B. Allen and G. F. Pinder, “Collocation simulation of multiphase porous- 
medium flow,” SOC. Pet. Eng. J .  135-142 (1983). 
0. K. Jensen and B. A. Finlayson, “Oscillation Limits for Weighted Residual 
Methods Applied to Convective Diffusion Equations,” Int. J .  Numer. Meth. Eng., 

M. B. Allen, “How upstream collocation works,” Int. J .  Numer. Meth. Eng., 19, 
1753-1763 (1983). 
M. F. N. Mohsen and G. F. Pinder, “Collocation with ‘adaptive’ finite elements,” 
Int. J .  Numer. Meth. Eng., 20, 1901-1910 (1984). 
T. H. Chong, “A variable mesh finite difference method for solving a class of 
parabolic differential equations in one space variable,” SIAM J .  Numer. Anal. 15, 

J. A. Puckett and R. J .  Schmidt, “Finite strip method in a parallel computer envi- 
ronment ,” preprint, Department of Civil Engineering , University of Wyoming, 
Laramie, Wyoming, 1988. 

15, 168 1-1689 (1980). 

835-857 (1978). b 

> ,  ‘. 


