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CHAPTER 14 

RELIABILITY-OPTIMIZATION BASED MODELS 

Francois Bouchart, Ning Duan, Ian Goulter, Kevin E. Lansey, 
Larry W. Mays, Yu-Chun Su and Y.K. Tung 

14.1 RELIABILITY-BASED OPTIMIZATION MODEL FOR WATER 
DISTRIBUTION SYSTEMS 

This section presents the basic framework for a model that can be 
used to determine the optimal (least cost) design of a water distribution 
system subject to continuity, conservation of energy, nodal head bounds, 
and reliability constraints. Reliability is defied as the probability of satis- 
fying nodal demands and pressure heads for various possible pipe failures 
(breaks) in the water distribution system. The overall model includes 
three models that are linked: a steady-state simulation model, a reliability 
model, and an optimization model. The simulation model is used to 
implicitly solve the continuity and energy constraints and is used in the 
reliability model to define minimum cut-sets. The reliability model 
which is based on a minimum cut-set method determines the values of 
system and nodal reliability. The optimization model is based on a 
generalized reduced gradient method. Examples are used to illustrate the 
model. 

14.1.1 Previous Models 

Numerous optimization models have been developed and reported 
in the literature. However, very few optimization models have included 
the reliability aspects in the design of water distribution systems. Damelin, 
Shamir and Arad (1972) developed a model to evaluate the reliability of 
supplying a known demand pattern in a given water supply system in 
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which shortfalls were caused by random failures of the pumping equip- 
ment. However, there is no optimization performed in their model and 
only p u p  failures are considered. The major components considered in 
the Shamir and Howard (1979) model are the storage volume and the 
standby pumps. 

Tung (1985) discussed six techniques for water distribution system 
reliability evaluation and concluded that the cut-set method is the most 
efficient technique in evaluating the system reliability of water distri- 
bution systems. Goulter and Coals (1986) developed a model in which 
they incorporated reliability aspects into a linear programming model. 
One disadvantage of the Goulter and Coals (1986) model is the assumption 
that all the pipes connecting a node have similar diameters and hence 
have similar values of the failure probability which is not applicable in 
real pipe networks. A second disadvantage is a theoretical weakness in the 
node isolation approach. The model considers a node to be adequately 
supplied as long as there is at least one link connecting it to the rest of the 
network. In addition, the model is not able to determine the design of 
pumps and storage tanks or consider multiple loading conditions. 

Mays and Cullinane (1986) introduced methods for evaluating the 
reliability of individual water distribution system components which 
included the concepts of mean time to failure analysis and stress-strength 
or load-resistance analysis. They also concluded that the most promising 
methods for determining the system reliability and availability for simple 
series-parallel combination systems were the cut-set method and the path- 
enumeration method. 

Wagner, Shamir and Marks (1986) developed a model for the 
calculation of probabilistic reliability measures for water distribution 
systems. They defined the term "reachability" to denote the situation 
when one specified demand node in the network is connected to at least 
one source. Since there are an exponential number of configurations 
which are used in searching and computing the reachability of demand 
nodes, methods for calculating these probability measures must be effi- 
cient which may not be applicable to large or even moderately sized, 
complex systems. Also, Wagner, Shamir and Marks (1986) could not 
include the multiple loading conditions into the model. Furthermore, 
this model did not incorporate the reachability aspects into an optimi- 
zation model for the design of water distribution systems. 

14.1.2 Problem Description 

The overall optimization problem for the design of water distri- 
bution networks considering the reliability aspect can be stated as follows: 
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Objective: 

Minimize Cost f (D,L) (14.1.1) 

subject to 

Conservation of flow and conservation of energy constraints 

(14. I .2) 

Pressure head bound 

(14.1.3) 
- 
H 2 H 2 H  

Reliabilities constraints - for both system and demand nodes 

R 2 R  (14.1.4) 

Non-negativity constraints 

D20 (14.1.5) 

where D is the pipe diameter; L is the pipe length; H is the nodal 
pressure head; and R is the reliability. 

For a water distribution network design problem, the objective is to 
minimize the total cost of the network. The variables in the objective 
function are the nodal pressure head, H, the flowrate, Q, and the pipe dia- 
meter D. Also the pipe length, L, is a parameter in the objective function. 
Since the flowrate, Q, can be written in terms of H via the flow equation it 
does not appear in the objective function, equation (14.1.1). 

The constraints of this optimization model are: 

1. Conservation of Mass and Enerm - The total amount of water 
flow into a junction node should be equal to the total amount of water 
flow out from this junction node. For each junction node the continuity 
equation can be written as 

CQh - Ca,, = Qe (j equations) (1 4.1.6) 
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where Qin is the flowrate of the water into the junction; Qout is the flow- 
rate of the water from the junction; Qe is the external demand at the 
junction node; and j is the number of junction nodes. 

The conservation of energy constraint for each primary loop states 
that the sum of the energy loss in each pipe should equal to the energy put 
into the liquid. For each primary loop which is an independent closed 
path, the conservation of energy equation can be written for the pipe in 
the loop as follows 

C h L  = C E P  (m equations) (14.1.7) 

where hL is energy loss in each pipe, Ep is energy produced by a pump, and 
m is number of primary loops. 

For f fixed grade nodes, f-1 independent conservation of energy 
equations can be written for paths of pipes between any two fixed grade 
nodes as follows 

(f - 1 equations) (14. I .8) 

where AE is difference in total grade between the two fixed grade nodes 
and f is the number of fixed grade nodes. 

2. Head Bounds - The pressure head H at each demand node 
should be within a specified range of a minimum required head H and a 
maximum R: 

- 
H 2 H 2  H for each demand node (14.1.9) 

3. Reliabilitv Constraints - Both the system and nodal reliabilities 
should be greater than or equal to a lower bound which may be different 
for the different reliabilities. 

Rs(H,D) 2 -s R for the network (14.1.10) 

R(H,D) 2 R for each demand node (14.1 .I I) 

4. Non-negativitv Constraints on pipe diameter, equation (14.1.5). 
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By using the formulation proposed by Lansey and Mays (1985) f ie  
above model can be used to determine the design of pumps and storage 
tanks while considering multiple loading conditions. The model here 
only considers the reliability aspect of the pipe network. 

14.1.3 Model AIgori thm 

Three models have been combined to develop the framework for a 
methodology to define the overall optimal (least cost) reliability based 
design of water distribution systems. A simple flowchart is presented in 
Fig. 14.1.1 illustrating the basic concepts of this methodology. The optimi- 
zation model used is the generalized reduced gradient model, GRG2, by 
Lasdon and Waren (1979, 1984) which solves an optimization problem 
with a nonlinear objective function and nonlinear constraints. A simu- 
lation model is used to implicitly solve the continuity and conservation of 
energy constraints, equation (14.1.21, at each iteration of the optimization 
procedure. The simulation model adopted is the University of Kentucky 
Model known as KYPIPE by Wood (1980) which simulates steady state flow 
in a water distribution system based upon the continuity and conservation 
of energy equations. The model determines the pressure head at each 
node satisfying continuity. A reliability model is used to determine the 
nodal and system reliabilities at each iteration of the optimization proce- 
dure using the minimum cut-set method. A minimum cut-set is a set of 
system components which, when failed, causes failure of the system but 
when any one component of the set has not failed, does not cause system 
failure (Billinton and Allan, 1983). 

For each iteration of the optimization model (GRGZ), the reliability 
model computes the values of the system and nodal reliabilities based 
upon the minimum cut-set method. By assuming that a pipe break can be 
isolated from the rest of the system, minimum cut-sets are determined by 
closing a pipe or combination of pipes in the water distribution system and 
using the simulation model (KYPFE) to obtain the values of pressure 
head at each demand node of the system. By comparing these pressure 
heads with minimum pressure head requirements, the reliability model 
can determine whether or not this pipe or combination of pipes is a mini- 
mum cut-set of the system as well as of the demand nodes whose pressure 
head does not meet the minimum requirement. This procedure is 
repeated until all the combinations of pipes have been considered and 
hence all the minimum cut-sets of the demand nodes and the total system 
have been determined. The reliability model then computes the values of 
system and nodal reliability and returns to the optimization model. 

The optimization model determines whether the solution is opti- 
mal or not. If not, the optimization model based on the reduced gradient 
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System Simulation Model .) System Reliability Model 

(Minimum Cut Set Method) (Univ. of Kentucky Model) 4 

Subroutine 

GCOMP 

F i g u r e  14.1.1 Flowchart of Reliability Based Optimization 

Model of Water Distribution Systems 

477 



method determines a new solution point in the direction of improving 
the value of the objective function (minimizing cost) and a new iteration 
begins. The model stops either with an optimal solution or with a mes- 
sage that the solution is infeasible which means that at least one of the 
constraints cannot be satisfied. 

14.1.4 The Reliabilitv Model 

Water main failures, as pointed out by O'Day (1982), are principally 
due to excessive load, temperature or corrosion. Break rates are dependent 
upon pipe size, geographic location, method of pipe manufacture, soil 
type, etc. Kettler and Goulter (1983) have shown that the failure rate for 
cast iron pipes in Winnipeg, Canada, has a strong relationship with pipe 
diameter. 

The method used herein to determine the probability of failure of 
individual pipes is similar to the procedure developed by Goulter and 
Coals (1986). The probability of failure of pipe j, Pj, can be determined 
using the Poisson probability distribution 

P. = b e  -Pi 
J 

and 

pj = rj Lj 

(14.1.12) 

(14. I. 13) 

where pj is the expected number of failures per year for pipe j; rj is the 
expected number of failures per year per unit length of pipe j; and Lj is the 
length of pipe j. 

Assuming there are n components (pipes) in the i-th minimum 
cut-set of a water distribution system then the failure probability of the j-th 
component in the i-th minimum cut-set is Pi,j which can be obtained by 
equation (14.1.12). The failure probability of the i-th minimum cut-set is 

P(MCi) = n P i , j  = P Pi,* ... p. 
j= 1 i, 1 c n (14.1.14) 

The basic assumption is that the occurrence of the failure of the compo- 
nents within a minimum cut-set are statistically independent. 
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For example, if a water distribution network has four minimum 
cut-sets, MCI, MC2, MC3, and MC4 for the system reliability, the failure 
probability of the system, Ps, is then defined as (Billinton and Allan, 1983) 

MC,UMC~UMC,UMC, 
S 

= &Ci) i =1 

- $ $ P( MC, n MC. 
i = l  j= i+ l  J 

+ x P ( M C i n M C . n M C k  
i < j c k  I 

MC, n MC, n MC, n MC4 (14.1.15) 

By applying the principle of inclusion and exclusion (Ross, 1985) which 
gives the upper bound of PSI equation (14.1.15) can be reduced to 

MC, u MC, u MC, u MC, 

= P ( MC1) + P ( MC,) + P ( MC3) 

= P(MCi) 
i =1 

+P(MC4) 

Expressing equation (14.1.16) in a more general form as 

P s = 2 P(MCi) 
i = l  

then the minimum system reliability, Rs, is expressed as 

M 
R S = I -Ps  = l-&(MC.) 1 

i =1 

(14.1.16) 

(14.1.17) 

(14.1.18) 
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where M is the number of minimum cut-sets in the system. The same 
approach can be applied to compute the values for the nodal reliabilities. 

The procedure of determining the reliability of a water distribution 
system based on the minimum cut-set method is as follows. For a given 
initial solution (pipe diameters), one of the pipes in the system is closed (a 
simulated break) which means that no flow can pass through this pipe. 
Then a simulation is performed using KYPIPE to determine the pipe flows 
and nodal pressures throughout the network. This simulation model 
implicitly satisfies nodal continuity so that the resulting pressure heads at 
demand nodes of the system are compared to see if they satisfy the mini- 
mum pressure head. If the pressure head at any one of the nodes in the 
system is below the minimum required level due to the closure (simula- 
ted failure) of this pipe, this closed pipe is a minimum cut-set of the sys- 
tem and the nodes whose pressure head does not meet the required level. 
This pipe is then opened and another pipe is closed and the simulation 
model is run again. This procedure is repeated until all pipes in the 
system have been considered. 

The model then closes combinations of pipes simulating simul- 
taneous failures of two pipes and KYPIPE is run for each combination. If 
the resulting pressure head at any one of the demand nodes of the system 
goes below the required level, the closed pipes are a cut-set of the system 
and the demand nodes whose pressure are not satisfied. If any one of the 
pipes in this cut-set is already a minimum cut-set of the system, by defi- 
nition, this cut-set is not a minimum cut-set of the system; otherwise, it is 
a minimum cut-set of the system. A similar comparison is made for the 
demand nodes. 

After all combinations of pipes have been considered by the above 
procedure, all the minimum cut-sets of both the system and the demand 
nodes are obtained. The values of the failure probability of each pipe is 
obtained by using the Poisson distribution as previously described. The 
probability of failure of a minimum cut-set is then equal to the product of 
the failure probabilities of the pipes of this minimum cut-set, assuming 
that the failures of pipes are independent. The system reliability is then 
obtained by equation (14.1.18). Similarly, the reliability of each demand 
node in the water distribution system can be obtained. Later in this sec- 
tion, examples are presented to illustrate that the simultaneous failure of 
combination of pipes may not have a major impact on the reliability of the 
system because of the small probability of the failures of combination of 
pipes. 

The generalized reduced gradient code, GRG2, by Lasdon and 
Waren (1984) has been used to solve the optimization model. GRG2 
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requires a user-supplied subroutine GCOMP for the purposes of com- 
puting the constraint and objective function values of the decision 
variables, GCOMP can also be used to read in initial values of any user- 
required constants. GRG2 is a modular program written to provide 
dynamic memory allocation with all arrays set up as portions of one large 
main array so that redimensioning of arrays is never required. 

Generalized reduced gradient methods such as GRG2 require an 
initial solution to start the optimization search. GRG2 does have the 
option of using an initial solution provided by the user or to start from an 
arbitrary solution, as determined by the lower bounds of the decision 
variables. If the initial solution is an infeasible solution, a phase I optimi- 
zation is initiated which minimizes an objective function consisting of the 
sum of infeasibilities until a feasible point is found. Once this is achieved, 
the actual objective function replaces the sum of infeasibilities and the 
actual optimization phase is initiated. Using an initial point provided by 
the user allows the inclusion of engineering judgment in selecting a good 
initial solution which may or may not be feasible. In either case, experi- 
ence has shown that a good user-provided initial point results in less 
computer time than initializing the algorithms from the lower bounds. 
Although the model is able to give an optimal solution to the problem, a 
global optimal solution can not be guaranteed. Multiple starting points 
could be used to obtain different local optimal solutions and the one with 
lowest cost would be chosen as the final design. 

GRG2 like most nonlinear programming codes require the gradi- 
ents of the objective function and constraints with respect to the decision 
variables to determine search directions. Due to the way the reliabilities 
and the definition of a minimum cut-set must be determined, these gradi- 
ents cannot be computed analytically. A numerical scheme must be used 
which perturbs each decision variable individually, computes the objec- 
tive function and constraints for the perturbed values and then calculates 
the gradients, e.g., af/& = &/Ax. 

14.1.5 Example Application 

A hypothetical one-loop 14pipe network as shown in Fig. 14.1.2 is 
used to illustrate the model. This example has a requirement to design a 
least cost water supply network to satisfy the demands at thirteen demand 
nodes and meet the reliability constraints. The length of pipes and asso- 
ciated initial failure probabilities for an initial solution, with all pipe 
diameters being 36 inches, are listed in Table 14.1.1. The values of eleva- 
tion, demand and initial pressure of the nodes resulting from the initial 
flow and geometry condition are listed in Table 14.1.2. The pump in pipe 1 
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Figure 14.1.2 Water Distribution Network of Example 

482 



x 
w
 

0
0

0
0

0
0

0
0

0
0

0
0

0
0

 
o

o
o

o
o

o
o

o
o

o
o

o
I

n
o

 
0

~
0

0
0

0
~

0
~

0
0

0
m

P
 

r
l 

r
l

d
r

l
r

l
 

r
l 

d
r

l
r

(
 



Table 14.1.2 Character is t ics  of Demand Nodes 

Node 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

FGN 

0.75 

0.75 

0.75 

1.50 

0.75 

3.00 

0.00 

1.50 

1.50 

0.75 

0.75 

0.75 

1.50 

-14.25 

Elevat i o n  

( f e e t )  
~ 

2518.0 

2517.0 

2498.0 

2492.0 

2508.0 

2523.0 

2513.0 

2532.0 

2512.0 

2520 .O 

2540.0 

2530.0 

2552.0 

2323.0 

I n i t i a l  Pressure 

( p s i )  

62.68 

63.11 

71.41 

74.00 

67.01 

60.50 

64.85 

56.62 

65.34 

61.89 

53.16 

57.49 

47.96 

0.00 



has a useful pumping power of 550 horsepower. The objective function 
for pipe cost (Quindry, Brill and Liebman, 1981) used in this example is 

Minimize f (D,L) = 1.1 Df:24 L.. 
'J '1 i,j 

(14.1 22). 

where Dij is the Pipe diameter (inches) and Lijis the pipe length (feet). The 
constraints are equations (14.1.6), (14.1.7), (14.1 -8) solved implicitly using 
KYPIPE and 

Hi 2 92.3 feet (40 psi) (14.1.23) 

Rs 2 0.80 for system (14.1.24) 

R. 2 0.95 for all demand nodes (14.1.25) 

for all demand nodes 

1 

D.. 2 0 
'I 

for all pipes (14.1.26) 

The Hazen-Williams formula is used in KYPIPE to determine the pipe 
flows. A Hazen-Williams roughness coefficient of 130 is used for all pipes. 
English units are used for all computations. Note that the continuity and 
conservation of mass constraints are implicitly satisfied in the simulation 
model, and hence, the explicit constraints considered by GRG2 are equa- 
tions (14.1.23) to (14.1.26). A convergence tolerance of 0.001 is used for all 
constraints. 

Using failure data obtained from the City of St. Louis (1985), a 
regression equation was developed to compute the average break rate, PR 
(breaks/mile/year), as 

-0.1363D 
= 0.819e (14.1.27) 

where D is the pipe diameter in inches. 

The initial and optimal minimum cut-sets and values of reliability 
for the example system and for each demand node of the system are listed 
in Tables 14.1.3. The bptimal value of the objective function is $652,000. 
The final values of the pipe diameters and associated failure probabilities 
of the network are listed in Table 14.1.4. This example required 1,157 
seconds for execution on the CDC Dual Cyber 170/750 mainframe system 
at The University of Texas at Austin. 
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Table 14.1.3 Minimum Cut-Sets and Reliabilities of 
the System and Demand Nodes 

b 

I n i t i a l  Optimal 

System System 

R e l i a b i l  it y Re1 i a b i l i t y  

Minimum Cut S e t s  of System 

(Pipe Number) 

1, 2 ,  3 ,  4 ,  5 ,  6, 8, 9, 11, 13, 

7 & 10, 7 & 12, 7 & 14, 1 0  t 12, 0.88963 0.e39as 

10 & 14, 12 & 1 4 .  
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P i p e  

Number 

Table 1 4 . 1 . 4  O p t i m a l  S o l u t i o n  for Example 

Multiple P i p e  
Minimum Cut  S e t s  

Diameter 

( i n c h e s  ) 

F a i l u r e  

P r o b i l i t y  

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

11 

1 2  

1 3  

1 4  

3 6 . 0 0  

22 .69  

15 .95  

17 .77  

27 .07  

21 .07  

3 5 . 7 9  

20 .29  

29 .40  

13 .98  

11 .68  

35 .13  

20.39 

9.77 

0 .012530 

0 .011481  

0 .021315 

0.019547 

0 .014618 

0 .017221  

0 .008813 

0 .017692 

0 .009773 

0 .023841  

0.028074 

0 .012681  

0 .006206 

0 .023500 

S i n g l e  P i p e  
Minimum C u t  S e t s  

Diameter 

( i n c h e s )  

36 .00  

1 4 . 4 0  

13 .15  

12 .80  

31.73 

25 .30  

21 .30  

36 .00  

36 .00  

12 .93  

11 .76  

1 1 . 1 3  

36 .00  

12 .10  

F a i l u r e  

P r o b i l i t y  

0.012530 

0 .016322 

0.025172 

0.0257 93 

0 .013360 

0 .015239 

0.011994 

0 .012530 

0 .008788 

0 .025558 

0.027894 

0 .029391  

0 .004404 

0 .019091  
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The previous solution for the example computed minimum cut- 
sets considering the failure of single pipes and the simultaneous failure of 
two pipes. Considering simultaneous failure of two pipes has a small 
probability of occurrence and requires considerably more computational 
effort to compute the minimum cut-sets at each iteration of the optimiza- 
tion procedure. The example has been resolved considering only 
minimum cut-sets consisting of single pipe failures. 

The nodal and system minimum cut-sets and reliabilities for the 
initial and final solution for the example are listed in Table 14.1.5. The 
optimal pipe sizes and associated failure probabilities for the examples are 
listed in Table 14.1.4. The optimal objective function values and compu- 
tation time for Example 1 are $651,690 and 1,157 seconds considering both 
single and simultaneous two pipe failures minimum cut-sets as opposed 
to the $622,470 and 515.1 seconds considering only single pipe minimum 
cu t-sets. 

Pipes 7/ 10,12 and 14 are in a loop and are in minimum cut-sets for 
the simultaneous failure of two pipes but are not in minimum cut-sets 
when considering single pipe failures. The fact that these pipes are not in 
the minimum cut-sets for the single pipe failure case excludes them from 
the reliability constraints and causes the model to use larger size pipes in 
other locations such as pipes 5,7,9 and 13 in order to satisfy the reliability 
constraints. 

The system reliability for the optimal design using both single pipe 
and siqultaneous failure of two pipes is 0.83985 as given in Table 14.1.3 
and the system reliability using the single pipe failure is 0.83528 in Table 
14.1.5. The last column in Table 14.1.5 lists the system and nodal 
reliabilities of the optimal design when considering both single and sim- 
ultaneous pipe failure. These values are not significantly different than 
those considering the single pipe failures. The difference in cost for these 
two design is $29,220 for a very small change in system reliability, 0.83985 
as compared to 0.83797 for the design which considered single pipe mini- 
mum cut-sets. Comparing the nodal reliabilities in Tables 14.1.3 and 
14.1.5, there are rather insignificant differences in the nodal reliabilities. 
The last column in Table 14.1.5 lists the system and nodal reliabilities 
using the optimal design (Table 14.1.4) based upon single pipe minimum 
cut-sets, but including the failure of both single pipes and two pipes failing 
simultaneously. This illustrates that when the minimum cut-sets of two 
pipes failing simultaneously are considered for this example that the 
system and nodal reliabilities are reduced only slightly. The small differ- 
ences in system reliability from considering only one pipe minimum cut- 
sets as compared to one pipe and then two pipes failing simultaneously; 
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Table 1 4 . 1 . 5  Minimum Cut-Sets and  R e l i a b i l i t i e s  of t h e  System 

a n d  Demand Nodes ( S i n g l e  Pipe Minimum C u t - S e t s )  

Minimum Cut Sets of System 

(Pipe Number) 

1, 2, 3, 4, 5 ,  6, 

8, 9, 11, 1 3 .  

i 
I n i t i a l  O p t i m a l  

Sys tem Sys tem 

R e l i a b i l i t y  R e l i a b i l i t y  

System 

R e l i a b i l i t y *  

0 . 8 9 0 3 1  0.83797 0 .  e3528 

*Based upon t h e  optimal d e s i g n  (Table 1 4 . 1 . 4 )  for s i n g l e  pipe 

minimum c u t - s e t s  b u t  c o n s i d e r i n g  t h e  r e l i a b i l i t i e s  
for b o t h  s i n g l e  p i p e  and  two pipe f a i l u r e s .  

Node 

Number 

1 

2 

3 

4 

5 

6 

8 

9 

1 0  

11 

1 2  

1 3  

489 

I n i t i a l  O p t i m a l  
Minimum Cut S e t s  Nodal 

Nodal Nodal 
(Pipe Number) R e l i a b i l i t y *  

R e l i a b i l i t y  R e l i a b i l i t y  

0.9500 0.9500 
1, 2, 5, 9. 0 .9574 

0 .9662 0.9653 0.9638 
1, 5, 9. 

0 .9624 0 .9500 0 . 9 5 0 0  
1, 4, 8 .  

0 .9597 0.9597 
1, 6, 8 .  0 .9624 

1, 9, 1 3 .  0 .9743 0.9743 0.9725 

0 .9500 0 .9500 
1, 3, 9, 1 3 .  0 .9617 

0.9787 0 . 9 7 7 1  
I, 9 .  0 .9787 

1, 8 .  0 .9749 0 .9749 0 .9749 

1. 0.9875 0.9875 0 .9875 

0.9787 
1, 9.  0 .9787 0.9787 

1, 9 .  0 .9787 0.9787 0.9774 

1, 9, 11. 0 , 9 6 6 2  0.9508 0 .9508 



however, this can result in rather significant differences in the cost of the 
optimal solution. 

The suggested design procedure is to determine the optimal design 
of a network considering only single pipe failures. The reliabilities of 
optimal design are then computed with both the single and simultaneous 
pipe failures. If the decision maker finds these reliabilities unacceptable, 
the system can be redesigned considering both single and simultaneous 
failures. When making this decision two points should be kept in mind. 
First, the optimal solution consists of continuous pipe diameters and 
rounding to a discrete solution will slightly affect the cost and reliabilities 
of the system. Second, the pipe failure data is not perfect knowledge. 
When reviewing the reliability values, the number of significant figures 
which can be considered as accurate must reflect this knowledge. 

14.1.6 Conclusion 

An optimal (least cost) reliability based design and evaluation 
model of a water distribution network has been presented. The objective 
of the model is to minimize the cost of the water distribution system 
subject to continuity, conservation of energy, nodal pressures, and relia- 
bility constraints. The model has been used on a few simple networks to 
test its validity in designing water distribution systems. This model also 
can be used in optimizing the extension of an existing water distribution 
network by setting the diameter of existing pipes to constant values and 
optimizing the extension. The optimal design of the extension is a func- 
tion of the reliability of the existing system since the pipe breaks in the 
existing system may cause nodal head constraints not to be satisfied in the 
extension. The advantages of this model compared with other models in 
the literature are: 1) it has successfully included the reliability aspects into 
an optimization model; and 2) it can give an optimal (least cost) design of 
a water distribution system while simultaneously satisfying the continu- 
ity, conservation of energy, nodal pressure head bound, and reliability 
constraints. Additional details of this basic framework of the methodology 
presented herein can be found in Su (1986). 

There are two disadvantages of the model. First, the resulting pipe 
diameters may not be commercially available pipe sizes so that these 
resulting pipe diameters must be rounded to the appropriate sizes. These 
rounding diameters might affect the feasibility of the resulting optimal 
solution and further research is being done to solve this problem. The 
second disadvantage is that the model can require considerable computa- 
tional effort to determine the optimal design of large looped networks. 
The computation time required for this model depends on the number of 
pipes and number of loops and to a lesser extent on the initial solution 
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used in the optimization. More research is in progress on reducing the 
computational time required to execute the model. 

More research should also be done to incorporate other system 
components such as pumps, valves, storage tanks, etc. The major problem 
is how to define the reliability of a system which includes all these com- 
ponents. Also, a system under multiple loading conditions with normal 
demand conditions and emergency demands such as fire demands, should 
be considered in the least cost design model to ensure that the nodal pres- 
sures are met for these loads. Furthermore, research may be 
extend this model to incorporate the repair and replacement 

performed to 
type analysis. 

14.2 WATER DISTRIBUTION SYSTEM DESIGN UNDER 
UNCERTAINTIES 

14.2.1 In trod uc ti on 

A chance constrained optimization methodology is presented for 
the minimum cost design of water distribution networks. This method- 
ology attempts to account for the uncertainties in required demands, 
required pressure heads, and roughness coefficients. The optimization 
problem is formulated as a nonlinear programminggroblem which is 
solved using a generalized reduced gradient method. Details of the 
mathematical model formulation are presented along with example 
applications. Results illustrate that uncertainties in demands, pressure 
head requirements and roughness can have significant effects on the 
network design and cost. 

There is currently no universally accepted definition or measure of 
the reliability of water distribution systems. In general, reliability is 
defined as the probability that a system performs its mission within 
specified limits for a given period of time in a specified environment. 
Over the past two decades, there have been many models developed for 
the analysis and the minimum cost design of water distribution networks 
(e.g., Alperovits and Shamir, 1977; Quindry et al., 1981; Morgan and 
Goulter, 1986; Lansey and Mays, 1987). Only a very few models have been 
reported that attempt to consider the reliability of the network and the 
various components. Coals and Goulter, (1985) presented three 
approaches by which the probability of failure of individual pipes can be 
related to a measure of the overall system reliability in a linear program- 
ming minimum cost design procedure. No models explicitly consider the 
uncertainties in demands, pressure heads, and pipe roughness. 
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The real issue of water distribution system reliability concerns the 
ability of the system to supply the demands at the nodes or demand points 
within the system at required minimum pressures. The conventional 
design process for water distribution systems is a trial and error procedure 
that attempts to find a design that represents a least-cost solution that can 
satisfy demands. These trial and error methods make no attempt to ana- 
lyze or define any reliability aspects of the designed system and have no 
guarantee that the resulting system is a minimum cost system. The resul- 
ting system design is not based upon consideration of the various design 
uncertainties. 

Mays and Cullinane (1986) presented a review of methods that can 
be used to define the component reliabilities for the various components 
of a water distribution system. These methods are based upon using time- 
to-failure and time-to-repair data for the various components of the water 
distribution system to 'define reliability and availability. Su et al. (1987) 
presented a procedure for modeling reliability in water distribution net- 
work design that more realistically considers reliability. That is, the 
reliability is defined in terms of the ability of the system to supply the 
demands at the nodes or demand points within the system at or above 
minimum pressure heads. This model uses component failure rates to 
compute component failure probabilities which are then used to define 
nodal and system reliabilities. A minimum cut-set method is used in the 
nodal and system reliability detennination. The key issue in this approach 
was to relate failure probability of the pipes to meeting specified demands 
(flow rates) at minimum pressure heads at the demand nodes. The proce- 
dure was linked to a nonlinear programming optimization model to 
determine a minimum cost water distribution system considering nodal 
and system reliabilities as constraints. 

Water distribution systems are designed to service consumers over 
a long period of time. Because the number and types of future consumers 
are impossible to define with any accuracy, the projected future required 
demands and required pressure heads for design are very uncertain. Ano- 
ther uncertain parameter in the design of a system is the system capacity. 
The capacity is affected by corrosion of pipes, deposition in pipes, even the 
physical layout and installation of the system which has a marked effect 
on the carrying capacity. The change in system capacity can be reflected in 
the roughness coefficient of the pipes (Hudson, 1966). Since the impact of 
the different mechanisms that decrease system capacity is not known, 
there is uncertainty in the projections of the coefficients of roughness. 
The variation of roughness is illustrated in the work by Hudson who 
compared the Hazen-Williams roughness coefficient for seven U.S. cities 
as a function of age of pipe. 
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No models have been developed for the minimum cost design of 
water distribution networks that directly consider the uncertainties in 
demand requirements, pressure head requirements, and roughness coeffi- 
cients. Previous models considered uncertainties in delivering flows and 
pressure heads during pipe failures. There have been many works 
reported in the literature that deal with uncertainties in water supply 
forecasting and modeling; however, very little work has been performed 
in developing a model that directly considers the uncertainties of required 
demand and other system parameters in the design of water distribution 
s ys tems. 

The objective of this section is to present a methodology which 
incorporates the uncertainties in required demands, required pressure 
heads and roughness coefficients in the design of water distribution 
systems. In the technique, each of the parameters is considered as inde- 
pendent. The required demand, Q, and the required pressure head are 
dependent upon consumer needs whereas the roughness coefficient 
depends upon other factors, such as the types of pipes in the system, age, 
amount of deposition, etc. The methodology is presented through the 
formulation of an optimization model for the design of water distribution 
systems. This optimization model is based upon a nonlinear 
constrained fofiulation and can be solved d i n g  generalized 
gradient methods, such as GRG2 by Lasdon and Waren (1984)# 
the mathematical model are given in addition to examples to 
methodology. 

14.2.2 Model DeveloDment 

Chance- 
reduced 
Details of 

illustrate the 

The basic optimization model for water distribution system design 
can be stated in general form as 

Min. Cost = f(Di,j) 
i , jEM 

subject to the following constraints 

x h k = O  

j = 1,. . ., J (nodes) 

k = 1,. . .,K (loops) 

(14.2.1) 

(14.2.2) 

(14.2.3) 

(I 4.2.4) 

i , j E  k 

H. 2 H. 
I 7  

j = 1, ...,J 
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D.. 2 0 (14.2.5) 
111 

The objective function is to minimize cost as a function of the dia- 
meter Di,j/ for the set of possible links, M, connecting nodes i and j in the 
network. Constraint equation (14.2.2) is the continuity equation used to 
satisfy demand at each node in which q,j is the flow rate in the Pipe 
connecting nodes i and j, and Qj is the external demand at node j. This 
constraint is written for each node j in the network. Constraint equation 
(14.2.3) states that the sum of the head losses, hk, around each loop k = l,..., 
K is equal to zero. Equation (14.2.4) defines the lower bound, €3j , on the 
pressure head, Hp at each node. 

The discharge q,j in each pipe connecting nodes i and j can be 
expressed using the Hazen-Williams, so that equation (14.2.2) can be 
expressed as 

(1 4.2.6) 

where K, is a constant to account for flow units; Ci,j is the Hazen- 
Williams roughness coefficient; Hi and Hj are the pressure heads at nodes 
i and j, respectively; Li,j is the length of the pipe connecting nodes i and j; 
and Di,jis the pipe diameter of the pipe connecting nodes i and j. Substi- 
tuting the Hazen-Williams equation into equation (14.2.2) makes equation 
(14.2.3) unnecessary since it is satisfied. The constraint set for the deter- 
ministic model now consists of equations (14.2.4, 14.2.5 and 14.2.6). 

Considering the demands, Qk the minimum pressure head 
requirements, Ep and the pipe roughness coefficients, 
variables, the chance constrained formulation of the 
expressed as 

Min.Cost = [f(Di,j)] 
i,jtsM 

subject to 

(14.2.7) 

0.54 H. - H. 
(I 4.2.8) 



j = 1, ...,J (14.2.9) 

D.. 2 0 
'PI  

(I 4.2.1 0) 

The objective function (14.2.7) is expressed in terms of minimizing 
the costs. Constraint equation (14.2.8) is expressed as the probability, P( 1, of 
satisfying demands, i.e. that demands are equalled or exceeded with 
probability level a.. Similarly, constraint equation (14.2.9) expresses the 
mobability of the minimum pressure head being satisfied, i.e. the pressure 

1 

heads 
bj- 

14.2.3 

equal or exceed the minimum pressure head with probability level 

Deterministic Equivalent Form of Model 

The above model (14.2.7) - (14.2.10) can be transformed to a deter- 
ministic form using the concept of the cumulative probability distribution. 
Although the theory is general and the variables may follow any distri- 
bution, the demands, Qk pressure minimum heads, H+ and roughness 
coefficients, Ci,p are assumed to be normal random variables, with means, 
p, and standard deviations, 0, expressed as 

and 

(14.2.11) 

(14.2.12) 

(1 4.2.13) 

Constraint equation (14.2.9) can be written in terms of the standard 
normal random variable as 

r 1 

(14.2.14) 

Using the definition of the cumulative probability distribution, this can be 
simplified to 
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(14.2.15) 

in which F is the cumulative probability. 

The deterministic form of constraint equation (14.2.9) can then be 
expressed as 

Hi - %j 2 (Ja F (14.2.16) 

Because PH., SH. and pj are all specified, this constraint can be written as a 
simple bound constraint 

-J -J 

(14.2.17) 

Similarly, constraint equation (14.2.8) can also be expressed in a 
deterministic form. The first step is to rewrite the constraint in the 
following form 

'(cqi,j-4 1 0) 2 aj (14.2.18) 

H. - H. 

[y 
and then express the pipe flow using equation (14.2.6) 

(14.2.19) 
0.54 

Because both Qj and Ci!j are considered normal random variables 
and are assumed statistically independent, the term on the left side of the 
inequality 

(14.2.20) 
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is also a normal random 

and standard deviation 

rr 

variable with mean 

(14.2.21) 

Constraint equation (14.2.19) can now be written as 

(1 4.2.23) 

which can be simplified to 

s L a .  (14.2.24) J 

The deterministic form of constraint equation (14.2.19) is then 

(14.2.25) 

in which pwj and owj are defined by equations (14.2.21) and (14.2.22), 

respectively. If the standard deviations OQ, W- and oc are equal to zero, 
the parameters are known with certainty. - 

The deterministic formulation of the chance constrained model is 
expressed by the objective function (14.2.7) and constraint equations 
(14.2.25), (14.2.17), and (14.2.10) as 
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Min. Cost = f (  Di,j) 
i,jEm 

subject to 

D..  2 0 
14 

(14.2.7) 

(14.2.25) 

(14.2.17) 

(I 4.2.1 0) 

This is a nonlinear programming problem in which equations 
(14.2.17) and (14.2.10) are treated as simple bound constraints. Equation 
(14.2.17) is a simple bound because the right-hand side 

is known as previously discussed. Constraint equation (14.2.25) expresses 
the relationship for the decision variables Hj and Di,j. The nonlinear 
problem consists of one nonlinear constraint (14.2.25) for each node and a 
simple bound for each decision variable, i.e., one for each pipe link and 
one for each node. The total number of decision variables is the sum of 
the number of nodes (number of €39 and the number of pipe links 
(number of diameters). 

The model formulation assumes that the decision variables, H and 
D, are independent of the random variables, Qj, Hj, and C. This can be 
done through the zero order decision rule for chance-constrained pro- 
gramming (Charnes and Cooper, 1963; Charnes and Sterdy, 1966). 

14.2.4 Solution Techniaue 

The above deterministic model formulation of the chance con- 
strained model is nonlinear because of the nonlinear objective function 
and nonlinear constraints (14.2.25). The generalized reduced gradient 
code, GRG2, by Lasdon and Waren (1984) has been used to solve the deter- 
ministic form of the chance constrained model. This model is briefly 
described in section 14.1. 
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14.2.5 Example Applications 

To illustrate the use of the model, two examples are included. The 
first is a simple hypotheticd network, shown in Fig. 14.2.1, which has two 
loops and eight pipes, each 3,280 feet in length, and mean demands at each 
node as shown in the figure. All the nodes are assumed to be at the same 
elevation and the pressure head at the source, node 1, is 196.8 feet. The 
mean nodal pressure head requirement at each node is 100 feet, and the 
mean Hazen-Williams roughness coefficient is 100 for each link. The 
formulation, however, does not assume that all nodes have the same 
pressure head requirement or that they are on a level plane. Also, a gen- 
eral network with one or more source nodes can be incorporated, if 
desired. The pipe cost equation used in both examples is 

COST = 0.331LD’” (14.2.26) 

where D is the pipe diameter in inches and L is the length of the link in 
feet. This equation is representative for thickness Class 23 cast iron pipe 
and includes the cost for purchasing, hauling, and laying (U.S. Army - 
Corps of Engineers, 1980). Any cost function, linear or nonlinear, could be 
used as equation (14.2.26) is used only for the purpose of illustrating the 
model application. 

Several computer runs were made using various values of the 
standard deviation of the demand, pressure head, and roughness coeffi- 
cient, in order to illustrate the impact of different levels of uncertainty on 
the design cost. The standard deviation selected for the nodal demands 
were 0.0, 0.10, and 0.25 MGD. Selected standard deviations for the pressure 
heads were 0, 5, and 10 f t  and for the Hazen-Williams roughness were 0,5, 
and 10. A standard deviation equal to zero refers to the case of no uncer- 
tainty, and the larger the standard deviation, the greater the uncertainty. 
Computer runs were made for various values of a and P ranging from 
0.5 to 0.99. Using a = 0.5 (p = 0.5) is equivalent to using mean values of the 
nodal demands and the pressure heads. Higher levels of a and p refer to 
more stringent performance requirements so that the likelihood of system 
failure is reduced. 

Figure 14.2.2 illustrates the impact of increasing the standard 
deviation of the roughness coefficient and the nodal demands, indepen- 
dently, while assuming the nodal pressure head requirement is known 
with certainty (OH = 0). With only Hazen-Williams roughness being 
uncertain (OH = 0 and OQ = o), as expected, the higher the reliability 
requirementTthe greater the cost of the design. The same is true for 

- 
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Figure 14.2.1 Exampie I: Eight Pipe Network 
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different standard deviations of nodal demand and known Hazen- 
Williams roughness coefficient (OH = 0 and oc = 0). Figure 14.2.3 shows 
the change in cost with increasing-b for two standard deviations of nodal 
pressure and no uncertainty in the nodal demands or roughness coeffi- 
cients (OC = 0, OQ = 0 >. The same trend is apparent in this figure as seen in 
Fig. 14.2.2. 

The optimal continuous diameters could be converted to discrete 
diameters by considering them as equivalent pipe diameters and deter- 
mining the lengths of two pipes which make up the link and have the 
same hydraulic characteristics. All of the optimal solutions were branched 
networks as expected for the optimal design of systems under a single 
demand pattern. The nonlinear programming problem for this example 
consisted of 16 decision variables, 6 nonlinear constraints, and 14 simple 
bounds. The computation time required to determine a design was 
approximately 2 seconds of CPU time on the University of Texas Dual 
Cyber 170/750. 

The second application considered a more realistic size network 
consisting of 33 pipes and 16 nodes (Fig. 14.2.4) with the pipe lengths listed 
in Table 14.2.1. This system was also assumed to be on a level plane 
although this restriction is not necessary since the pressure head require- 
ment may be different for each node. The demand is assumed to be 
uniform throughout the system with a 1 mgd mean demand at each node. 
The pipe roughness has a mean of 130 for all pipes and the mean mini- 
mum pressure head requirement is 92.3 ft. at every node. The pressure 
head at the source node was fixed at 135.0 ft. The model was executed for 
values of a and p equal to 0.5,0.75, and 0.90, with the pipe diameters and 
total costs listed in Table 14.2.2. As in the previous example, the cost of the 
system increases with the reliability requirement. The networks for a$ = 
0.5, 0.75 and 0.90 are presented in Figs. 14.2.5,14.2.6, and 14.2.7, respectively. 

The nonlinear programming problem for this example consisted of 
49 decision variables, 16 nonlinear constraints, and 49 simple bounds. The 
computation time required for a typical problem was 100 CPU seconds on 
the University of Texas Dual Cyber System. However, when computing 
the gradients in GRG2 the numerical finite difference scheme was 
employed. Analytically calculating the gradients of the constraints which 
can be written in a closed form would result in significant savings with 
the final computation time being about 20-25% of that required when 
using the numerical gradients. 
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S a U R C E  

( n o t  to scz le )  

Figure 14.2.4 Example 2 Network 
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TABLE 14.2.1 Pipe Lengths for Example 2 

- 

Pipe No. Length (ft.) Pipe No. Length (ft.) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

12000 
12000 
12000 
9000 
6000 
6000 
6000 
6000 
6000 
6000 
6000 
6000 
6000 
6000 
6000 
6000 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

9000 
6000 
6000 
6000 
6000 
6000 
6000 
6000 
6000 
6000 
9000 
6000 
6000 
6000 
6000 

12000 
12000 
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TABLE 14.2.2 Optimal Solution for Different a and b for Example 2 

a = b = 0.90 Pipe a = b = 0.5 a = b = 0.75 

1 22.8 10.4 24.2 
2 18.8 21.7 15.9 
3 20.9 30.0 31.4 
4 
5 0.0 0.0 11.4 
6 21.5 0.0 11.4 
7 0.0 0.0 16.4 

9 0.0 0.0 12.9 

0.0 0.0 0.0 

8 0.0 0.0 0.0 

10 15.3 0.0 0.0 
11 10.5 0.0 0.0 
12 10.5 11.7 0.0 
13 0.0 11.7 0.0 
14 0.0 0.0 0.0 
15 10.0 10.5 0.0 

17 11.5 14.5 0.0 
18 0.0 0.0 0.0 

20 12.5 0.0 0.0 

22 0.0 0.0 0.0 
23 0.0 0.0 0.0 

25 0.0 18.2 0.0 
26 17.5 10.2 0.0 

28 15.7 0.0 0.0 

16 10.0 10.5 12.7 

19 0.0 12.9 1.3 

21 0.0 0.0 14.1 

24 9.6 21.5 28.9 

27 0.0 0.0 12.8 

29 0.0 16.6 17.6 
30 12.8 13.4 14.1 
31 0.0 11.2 17.6 
32 0.0 0.0 0.0 
33 0.0 0.0 0.0 

cost $2,144,300 $2,258,400 $2,613,533 
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Figure 1 4 . 2 . 5  Optimal Network f o r  (a=P=0.50) 
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Figure 14.2.6 I Optimal Network f o r  (a=P=0.75) 
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Figure 14.2.7 Optimal N e t w o r k  for ( a=p=o.gO ) 
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Summary 

In most of the previous sections of this report, the mechanical 
reliability of the system, i.e. the likelihood of component failure, and its 
effect on the hydraulic performance was the primary measure of a sys- 
tem's reliability. However, the hydraulic performance reliability is also 
affected by the uncertain nature of the demands placed on the system, as 
discussed in Chapter 8, and the uncertain rate of decay in the network, as 
reflected in the pipe roughness coefficients. Using a nonlinear chance 
constraint formulation, a methodology to consider these uncertainties has 
been developed. The approach is similar to the load-resistance analysis 
presented in Chapter 8 but considering the ability of the system to meet the 
user's demands on flow and pressure head rather than an individual 
element. 

The application of the methodology showed that as the reliability 
measure increased, the cost of the system increased as did its ability to 
perform satisfactorily under a wider range of conditions. For a specific 
network, a relationship between cost and the reliability measure can be 
developed which will allow a decision-maker to better understand this 
trade-off. Thus, more informed decisions can be made which better reflect 
the goals of the decision-maker and the community. 

14.3 RELIABILITY-CONSTRAINED PIPE NETWORK MODEL 

14.3.1 Introduction 

The explicit consideration of reliability is one of the most difficult 
tasks facing researchers working on the development of least-cost opti- 
mization design models for water distribution networks. Reliability has 
traditionally been addressed in a deterministic sense by providing redun- 
dancy in the form of loops within the distribution network. The existence 
of loops, however, provided a major difficulty for least-cost design models, 
which by their very nature would try to remove redundant or unnecessary 
loops in the search for minimum cost (Templeman, 1982). In many cases, 
the problem was overcome by specifying minimum allowable pipe sizes in 
all links (e.g., Alperovits and Shamir, 1977; Quindry et al., 1981). While 
connectivity is ensked by these minimum pipes, redundancy in terms of 
having adequate and independent flow paths to each node is not guar- 
anteed, and the resulting networks can operate as implicitly branched, 
non-redundant systems (Goulter et al., 1986). This redundancy problem 
has been partially overcome in the design models of Rowel1 and Barnes 
(1982) and Morgan and Goulter (1985) by consideration of a wide range of 
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loading conditions and pipe failure combinations such that every Iink was 
on a primary suppIy path for at least one design condition. The improve- 
ment in redundancy consideration was obtained, however, at the cost of 
mathematical exactitude within the technique. 

There is, however, a critical factor missing in the way in which 
redundancy /reliability is considered in these models. Reliability of a water 
distribution network is also defined by the probability of the network fail- 
ing to perform, either through failure of one or more of its components, 
e.g., pipes or pumps, or through the demand on the system being greater 
than that assumed for design purposes. Very little research activity has 
been reported on the inclusion of these probabilistic issues in optimization 
design models for water distribution networks. This section reports on a 
means of incorporating these probabilistic issues in iterative procedures 
based upon network design models. 

14.3.2 Problem Statement 

Most of the approaches to the probabilistic aspects of reliability in 
water distribution systems can be separated into two main groups. Inclu- 
ded in the first group are those approaches and models which address the 
reliability of the system as a whole. These approaches examine the relia- 
bility of the major components, namely, the supply, treatment, and 
distribution stages, in terms of the performance of the overall system. 
These problems are addressed by Hobbs (19851, Shamir and Howard (1985), 
Germanopoulis et al. (1986), and Hobbs and Beim (1986). 

The approaches and models in the second group are directed at the 
reliability of specific components of the overall system, e.g., the distribu- 
tion network. This section discusses issues related to the reliability of the 
distribution network only and as such falls into this second area. The 
concepts examined relate to pipe size choice and its role in determining 
the network reliability. Some of the earlier work in the field of distribu- 
tion network reliability examined the reliability question in terms of the 
probability distribution of the demand on the network and the implica- 
tions of the flow required within a pipe exceeding its design capacity, e.g., 
Cullinane (1986) and Tung (1986). Wagner et al. (1986) examined the 
reliability of the network by looking at the actual shape or layout of the 
network. Studies by Goulter and Coals (1986), Cullinane (19861, and Mays 
et al. (1986) addressed the reliability question through use of the probability 
of individual pipe failure. Both Goulter and Coals (1986) and Mays et al. 
(1986) also showed how the concept of pipe breakage probability could be 
incorporated into a least-cost model for water distribution network design. 
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In this paper, the least-cost design models of Alperovits and Shamir 
(1977) and Goulter and Coals (1986) are combined and extended to recog- 
nize the probabilistic nature of the reliability issue. The extension is 
achieved through the introduction of reliability constraints, and by the 
inclusion of probabilistic factors in the coefficients in the formulation. 
The reliability constraints restrict the probability that the number of pipe 
breaks in a particular link in a given time period is greater than an accep- 
table value. Restrictions on the probability that the required flow in a pipe 
is greater than its design capacity is achieved by modifications to the flow 
values used in the formulation. 

A network design provided by an optimization model incorpora- 
ting these reliability constraints is, however, only the least-cost "solution" 
for the probabilistic parameters applied through reliability constraints and 
the model coefficients. Furthermore, the probabilistic values do not in 
themselves give true or exact measures of the red network reliability. A 
series of computational steps are required to convert the probability values 
into reasonable measures of overall system performance. Various 
numerical expressions which can be used to guide changes to the model 
parameters such that the solutions obtained achieve improved overall 
reliabilities at least cost, are examined and evaluated in the following 
sections. 

14.3.3 Model Formulation 

The procedure is primarily based upon the least-cost linear program 
design model of Alperovits and Shamir (1977), which can be summarized 
as follows: 

Objective Function: 

subject to 

Length Constraint: 

N g i )  
A L.. = LNi 

'I j= 1 
for all links i 

(I 4.3.1) 

(14.3.2) 
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Minimum Head Requirements at Nodes: 

for all nodes m m 

Head Losses Around Loop: 

c Ng;ijLij = 0 
i E p(m) 

where 

C.. 
'1 

MH m 

H 

L.. 
'I 

H m 

S 

Ji j 

LNi 

ND(i) 

NL 

p(m> 

for all loops 

(14.3.3) 

(14.3.4) 

cost per unit length of j-th diameter in link i ($/m) 

maximum permissible head loss between source 
and node m 

HS - Hm 
pressure head at source (m) 

length of pipe of diameter j in link i 

minimum allowable pressure head at node m (m) 

hydraulic gradient of pipe of j-th diameter in link i 
(derived from the Hazen-Williams formula) (m/m) 

total length of link i (m) 

number of candidate diameters in link i 

total number of links in network 

= set of links on path from source to node m 

The pipe breakage considerations of Goulter and Coals (1986) can be 
included in this formulation by the addition of the following constraint 
set which restricts the average number of breaks per time period permitted 
in each link. 

ND i )  

r..L.. 2 Ri . ' 'I 1J i 
for all links i (14.3.5) 
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where 

r.. = 
'I 

Ri  = 

average number of breaks per year per unit length for j-th 
diameter pipe in link i (breaks/year/m> 

maximum acceptable average number of pipe breaks per 
year in link i 

Probabilitv Distribution of Pipe Breakages 

The formulation described by equations (14.3.1) - (14.3.5) does not 
have any recognition of the probabilistic features of either the rij factors or 
the Q k  demand characteristics. In order to incorporate these probabilistic 
issues, the formulation must be modified as follows. The rij in equation 
(14.3.5) is the number of failures per unit length for a particular pipe dia- 
meter, which may vary significantly from year to year. In order to restrict 
the probability that the number of breaks in a link in any given year is 
greater than some acceptable value, equation (143.5) can be rewritten as 
follows 

Nf)rijLij I mi 
j= 1 

for all links i 

where 

- RHS, - 

VAR(rij) = 

(14.3.6) 

inverse of the cumulative distribution function 
of r.. 

1J 

probability of the number of breaks per year in 
link i 

variance of r.. 
'I 

Probabilitv Distribution of Demand at a Node 

In designing a water distribution network, the flow demands that 
must be provided at minimum specified pressures are generally taken as 
deterministic values. Little or no consideration is given to the possibility 
of these demands being exceeded. A more realistic view of the design 
flows, however, would recognize that the demands themselves are 
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probabilistic and that there is a finite probability that the demands on the 
system will at some time be greater than the design capacity. For example, 
one criteria for design flows may be the 10-year, 1-day maximum demand. 
The 20-year, I-day maximum demand will be larger than this value and is 
likely to occur at least once during the life of the distribution system. 

Once the actual demand exceeds the design capacity, at least ont 
in the network will be required to carry a flow greater than its design 
capacity. Two situations can arise from this condition. The pipes can 
deliver the flow but at pressures below the minimum specified or the 

? link 

pipes will not be able t; provide the flow at all. Either kituation represents 
a "failure" of the network. 

Tung (1986) approached the problem by assuming that the required 
demand and head at a demand node are random variables, with known 
probability distributions. A series of chance constraints for the demands 
and pressure heads at each node could than be formulated for inclusion in 
a least-cost design model. The approach used in this model does not allow 
the use of explicit chance constraints for these flow issues. Rather, the 
probabilistic component is addressed through inclusion in the coefficients 
of the model that are directly related to flow, e.g., Jij. 

The actual incorporation of flow is achieved through the use of the 
following equation to define the demands at each node. 

NQ, = E Demandk) + F-'( pk) SID( Demandk) ( (14.3.7) 

where 

- - 
NQk 

$Demandk) - - 

ST Demand = 
k) 

I - 

- - P, 

value of the demand at node k to be used 
as the design flow (volume/unit time) 

avera e (ex cted) value of demand at 
node % (vocme/unit time) 

standard deviation of demand at node k 
(volume/unit time) 

inverse of the cumulative distribution 
function of Q, 

probability that demand at node k will 
exceed the design demand 

Solution of the optimization formulation described by equations 
(14.3.11, (14.3.3), (14.3.4), (14.3.6), and using the hydraulic gradient Jij values 
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derived from (14.3.7) provides a least-cost network with explicit consider- 
ation of both breakage or mechanical based reliability issues and flow 
exceedance probabilistic reliability measures contribute to the assessment 
of reliability. However, as mentioned earlier, the probabilistic measures 
contained with equations (14.3.6) and (14.3.7) are, however, only surrogates 
for the true reliability of the system, and do not give a real indication of 
the reliability of the network. The means to combine the two measures 
into a single comprehensive measure of pipe network reliability is yet to 
be available. Once a network solution has been obtained from the 
optimization model, it must therefore be examined to see if it contains 
satisfactory levels of reliability as assessed by the design engineer. If the 
network is judged to have satisfactory reliability, the problem is solved. If, 
on the other hand, it is felt that the network is unsatisfactory, then adjust- 
ments must be made to the parameters of the least-cost optimization 
model and the network solved again. 

The question now arises as how to change the parameters of the 
model such that the requested improvements in reliability are obtained at 
the smallest increase in cost. In other words, a method which provides a 
measure of the sensitivity of the least-cost solution to changes in "relia- 
bility" oriented model parameters is needed. Before proceeding with an 
examination of these methods, it is important to note that there are a 
number of similarities in the way in which improvement to one of the 
measures of reliability causes improvements to other measures. 

A number of researchers, e.g., Clark et al. (1982), Ciottoni (1983), and 
Kettler and Goulter (1985) have shown that pipe failure rates are strongly 
related to diameter with the larger diameter pipes having lower rates of 
failure than pipes with smaller diameters. Improvements to the pipe 
breakage or mechanical reliability can therefore be achieved by selecting 
larger diameter pipes. However, these larger diameter pipes also have 
greater hydraulic capacities for the same pressure conditions and therefore 
also provide increased flow capabilities. These increases in the flow capa- 
bilities reduce the probability that the flow required in a link (derived 
from demands at nearby nodes) will be larger than its design capacity. 
Similarly, improvements (reductions) to the flow exceedance probabilities 
at nodes will also improve mechanical reliability by causing the selection 
of larger diameter, high capacity, pipes which, in turn, have reduced rates 
of breakage. 

Under such conditions, it might be expected that unsatisfactory 
sys tem reliability can be identified and improvements subsequently 
achieved through modifying either the mechanically based Ri and F-l(y) 
parameters in equation (14.3.6) or the flow exceedance reliability based F- 
1(pk) parameter in equation (14.3.7). Unfortunately, this is not generally 
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true. Areas with good mechanical reliability may in fact have low flow- 
based reliability probability. Consider a pipe near a source. The pipe % 
likely to be of large diameter as it carries flow for a large downstrem 
portion of the network and will therefore have a low failure rate and 
correspondingly high mechanical reliability. The same pipe, however, 
may have a low flow exceedance-based reliability if the probability of 5 e  
flow exceeding the design capacity is relatively large. 

It can be seen, therefore, that while there is some complementarv 
interaction between the two reliability conditions, care must be taken to 
ensure that areas of low reliability are always identified and the correct 
steps to overall system improvement undertaken. The following sections 
examine a number of ways of identifying system parameters which should 
be changed in order to achieve improvements to system reliability at least 
increase to sys tem cost. 

14.3.4 Means of Improving System Reliabilitv - -  

There are two major issues which must be examined in determin- 
ing how to improve system reliability. The first is which measure is to be 
used to define system reliability. The second is which parameters should 
be modified in order to achieve the desired improvement in reliability. 
Unfortunately, relatively little is known about either problem. Most 
optimization design models simply provide a network solution that may 
or may not address the probabilistic reliability issues of this paper. Gen- 
erally, no assessment of reliability is provided, and furthermore, no 
attempt is made to modify model parameters if reliability should be 
unsatisfactory. 

Cullinane (1986) suggests a measure for system performance which 
considers both the mechanical reliability of the network components and 
the implications of failures of those components on the hydraulic perfor- 
mance of the network relative to its design criteria. The measure was not 
incorporated into an optimization design model. No indication was given 
on how to identify or change model parameters such that the desired 
improvements to network reliability were achieved with the lowest cost 
implications. Goulter and Coals (1986) developed optimization based 
procedures which use a mechanical reliability measure to define system 
reliability in t e r n  of the probability of node isolation, i.e., the probability 
of all links connected to a node failing simultaneously. A means of deter- 
mining which link in the vicinity of the node has the worst probability of 
node isolation to change in order to obtain improved system reliability 
(reduced probability of node isolation) at least-cost was also provided. The 
measure used to identify the link for which the optimization model para- 
meters were to be changed was derived from the dual variables in the 

516 



linear programming solutions and the expected number of breaks in the 
links connected to the critical node. 

It is important to note, however, that while the work of Goulter and 
Coals (1986) was one of the few to address the criteria for improving distri- 
bution network reliability, it was very simplistic and took no account of 
either the flow exceedance issues in network reliability or the probability 
distribution of the rates of pipe breakage. One of the primary features 
examined in this section is how to combine the mechanical and flow based 
reliability factors to provide a balanced measure for identifying how to 
modify the parameters in equations (14.3.6), and (14.3.7). There are, how- 
ever, similarities between the method of Goulter and Coals (1986) and the 
problems of the two reliability measures which can be exploited. Goulter 
and Coals (1986) lower the deterministic Ri values in their model in order 
to achieve the desired improvements. A reduction in y in equation 
(14.3.7) has the same general effect, although it achieves it through a 
probabilistic measure. The dual variable based method of Goulter and 
Coals (1986) therefore appears to have some applications to this extended 
problem and is used as the basis for three of the following measures. 

At present, there is no explicit means of combining the two proba- 
bilistic failure measures in either a general statement of system reliability 
or in a single explicit measure which can be used to guide changes to the 
optimization to achieve more reliable networks. For this reason, a series 
of overall system reliability and improvement measures are formulated 
and critically compared. 

The reliability measure chosen to assess system performance is a 
heuristic measure termed "the probability of 'node failure'.'' This mea- 
sure incorporates both pipe and demand failure through the following 
express ion 

P(no "node failure") = P(no "node isolation") . P (no "demand failure") (14.3.8) 

where P( ) = probability of Occurrence of event. 

It should be noted that the term P(no "node isolation") is the relia- 
bility measure developed by Goulter and Coals (1986). However, in this 
case, the simplistic consideration of node isoIation is improved by com- 
bining it with the flow based probability measure P(no "demand failure"). 

The next problem is that if any part of the network is considered to 
be unreliable, according to equation (14.3.8), how should the parameters of 
the optimization model be modified in order to achieve the desired 
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improvement? One obvious consideration is that any improvement in 
reliability should increase the overall network cost. However, before 
proceeding with examination of the methods used to identify the appro- 
priate model changes, it is necessary to define a new parameter. Let WBi 
represent the "relative importance" or weighting of link i in the network. 
In the context of this paper, the relative importance of a particular link is 
determined by how much flow that link carries relative to the flows in 
other links of the network. The actual value of the weight for a particular 
link is calculated by 

Flow in link i 
Total demand in network 

WB, = (14.3.9) 

The range of measures which were examined as to their suitability 
for determining how to improve the network reliability is described in 
Table 14.3.1. It should be noted that application of each measure requires 
that the portion of the network which has unsatisfactory reliability be 
identified. Within the table, the measures are described in relation to the 
reliability at the single node, k, having the worst "reliability" (as defined by 
equation 14.3.8) and those links connected directly to that node are to be 
addressed by the measures. The measures are, however, generally appli- 
cable to more than one node at a time, with the appropriate connections 
being examined in each case. The description relative to a single node is 
for simplicity in explanation only. 

14.3.5 Application of Methodolodes 

The measures were assessed by application to the network shown in 
Fig. 14.3.1. The pertinent data for the network is given in Tables 14.3.2- 
14.3.4. All links in the network have total length of 1,000 m. 

As equation (14.3.6) is nonlinear, the model cannot be solved 
directly by linear programming. It can obviously be solved by nonlinear 
optimization approaches. However, since the value of the dual variable is 
a crucial element in most of the improvement measures examined (see 
Table 14.3.1)' and the nonlinearity in equation (14.3.6) is not "severe," 
linear programming with successive approximations was used. Experi- 
ence with the formulations and this solution approach showed the 
combination to be very efficient. 

In applying the model to the sample problem, the following "step 
sizes" were used to modify the model parameters when reliability was 
deemed to be unsatisfactory. For modifications (reductions to a particular 
value Ri, a step size corresponding to 10% of the initid Ri was used. For 

5 18 



Table 14.3.1 Description of Measures to Determine How to Improve 
Network Reliability 

Means of Determining Means of Affecting 
Measure Which Link to Change Improvement 

A Link with aCOST/aRHS Decrease the value of Ri for 
value, i.e., link minimum 
dual variable for equation 
(14.3.6) 

link selected 

B 

C 

Link with minimum value 
of link selected 

Decrease the value of Ri for 

BR, WB, 

where BRi = actual number 
of breaks per unit time in 
links (= RHSi when equation 
(14.3.6) is binding for that link) 

Link with minimum value 
of link selected 

Decrease the value of Ri for 

aCOST/aRHS. 1 

where a(Relk) / aRHSi = 
rate of change in probability 
of isolation of node k with 
change is RHSi for link i 
(Goulter and Coals, 1986, 
measure) 

D N.A. Increase confidence interval 
of demand at node by 
decreasing the value of bk 
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A Link Number 

-0- Node Number - Direction of f low in Link 

Figure 14.3.1 Layout of Example Problem 



Table 14.3.2 Demand Characteristics of Each Node 

Elevation of Minimum Average1 Standard Deviation 

(m> (m) (m3/hr) (m3/hr) 
Node Node Pressure Head Demand of Demand 

1 (source) 380.0 - 
2 320.0 30.0 

- - 
150.0 178.1 

3 300.0 30.0 50.0 59.4 
4 330.0 30.0 50.0 59.4 
5 310.0 30.0 50.0 59.4 
6 290.0 30.0 50.0 59.4 
7 320.0 30.0 50.0 59.4 
8 300.0 30.0 150.0 178.1 
9 290.0 30.0 100.0 118.8 

1Demand is assumed to be normally distributed. 

Table 14.3.3 Link Data 

Initial Flow1 Link Weighting 
Link in Link (WBi) 

(m3/hr) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

600.0 
200.0 
700.0 
100.0 
100.0 
200.0 
100.0 
400.0 
100.0 
100.0 
300.0 

0.462 
0.134 
0.538 
0.077 
0.077 
0.154 
0.077 
0.308 
0.077 
0.077 
0.231 

12 100.0 0.077 
IThese flows correspond to a demand confi- 
dence of 80% for all nodes, i.e., Pk = 0.20 for all k 
= 1,2, ..., 9 
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Table 14.3.4 Pipe Cost and Breakage Data 

Diame terl Cost Average Number of Variance of Breaks 
(mm) ($/m) Breaks per yr per km per yr per km 

25 (1.0) 

51 (2.0) 

76 (3.0) 

102 (4.0) 

152 (6.0) 

203 (8.0) 

254 (10.0) 

305 (12.0) 

356 (14.0) 

406 (16.0) 

2.0 

5.0 

8.0 

11.0 

16.0 

23.0 

32.0 

50.0 

60.0 

90.0 

1.552 

1 .so 

1.45 

1.35 

1.05 

0.75 

0.40 

0.10 

0.082 

0.062 

0.0262 

0.023 

0.023 

0.020 

0.012 

0.006 

0.014 

0.01 4 

0.0142 

0.0172 

457 (18.0) 130.0 0.052 0.0172 

508 (20.0) 170.0 0.042 0.0202 

559 (22.0) 300.0 0.042 0.0232 

610 (24.0) 550.0 0.042 0.0262 

IDiameters are given in millimeter equivalents of pipes whose diameters 
are given in inches in the parentheses alongside each value. 

2These values are estimates, other values are taken from the work of 
Kettler and Goulter (1985). 
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modifications to confidence level of demand Pk at a particular node k, the 
following successively tighter confidence levels were used: 80% (initial 
value), 90%, 95%, 97.5%, 99%, 99.5%, and 99.9%. Whenever it was neces- 
sary to change the demand at a particular node to improve network 
reliability, for example, by using measure D, the resulting design flow in 
each link was calculated using the formulae listed in Table 14.3.5. 

A summary of the results obtained from each measure is given in 
Table 14.3.6. The lengths and diameters of the pipes selected using each 
measure are described in Tabie 14.3.7. The base solutions in Tables 14.3.6 
and 14.3.7 correspond to the solution with Pk = 0.20 and no pipe breakage 
constraints (equation 14.3.6) binding. The termination criterion for each 
measure, i.e., the point where the network was considered to have satis- 
factory reliability, was maximum probability of no node failure 2 65%. It 
was not possible to get the probabilities of no node failure to be exactly 
65%. With the exception of measure XI@), the values shown in Table 
14.3.6 represent the closest that the probabilities could be matched without 
using unrealistically high numbers of runs with minor modifications to 
the appropriate parameters. 

The different results shown for D(a) and D(b) in Table 14.3.6 arise 
from use of a different stopping criterion. The criterion for D(a) was the 
same as for Measures A, B, and C, namely the probability of no node failure 
2 65%. The D(b) case arose from examination of the results for D(c), ,which, 
relative to the results for the other measures, showed a higher number of 
expected breaks per year. With Db), an attempt was made to see if a 
solution with a greater cost than that obtained for Measures A, B, and C 
would result in a smaller number of expected breaks per year. It can be 
seen that such a result was not obtainable under the speafied conditions. 

Discussion of Results 

Examination of the results show that there is very little difference 
between the solutions obtained by measures directed at improving the 
reliability by modification to links, Lea, for Measures A, B, and C. The dif- 
ferences between the results is within the accuracy of the solution given 
the estimates of the parameters used in the formulation. The overall 
similarity of the results for the three measures suggests that if "link 
improvement" methods are to be used, the simplest measure, namely 
Measure A, is most appropriate. 

Both applications of Measure D, which is the only measure directed 
at flow rather than component failure, produced improvement to the 
reliability at less cost than either of Measures A, B, or C (see Col. 3 of Table 
14.56). This observation suggests that Measure D is the most efficient 
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Table 14.3.5 Formulae to Determine Design 
Flows in Each Link 

Link Flow In Link 

Table 14.3.6 Summary of Results 

Cost Worst P (no AP(no "node ExpectedNo. 
Solution ($ x 103) "node failure") failure") of Breaks per 

(%I A Cost Year in Network 

Base solution 337.5 55.7 - 7.621 
(80% flow 
confidence level 
and pipe breakage 
constraints not 
binding) 

Measure A 359.1 65.4 2.72 '6.755 
Measure B 359.7 65.5 2.62 6.744 
Measure C 360.4 65.8 2.66 6.775 
Measure D(a) 354.4 67.7 4.30 7.111 
Measure D(b) 363.9 70.0 3.29 6.901 
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1 

Table 14.3.7 Lengths and Diameters of Pipes Selected 

1 
Base Solution 

254 563 
305 437 
203 1000 

356 1000 
152 491 
203 231 
254 278 
152 107 
203 893 

152 320 
203 548 
254 132 

A 

254 
305 
152 
203 
254 
356 
152 
203 
254 
203 
254 

152 
203 
254 

~- 

563 
437 
71 

461 
468 

1000 
491 
231 
278 
323 
677 

320 
548 
132 

B 
Diam.1 Length 
(mm) (m> 

254 
305 
152 
254 

356 
152 
203 
254 
152 
203 
254 
152 
203 
254 

563 
437 
66 

934 

1000 
431 
343 
226 
265 
376 
359 
304 
579 
117 

Measure 
C 

254 
305 
254 
305 

356 
152 
203 
254 
152 
203 
254 
152 
203 
254 

563 
437 
862 
138 

1000 
308 
571 
121 
479 
203 
319 
270 
642 
88 

254 320 
305 680 
203 427 
254 573 

356 1000 
152 185 
203 799 
254 16 
203 1000 

152 152 
203 848 

Diam.1 Length 
(mm) (m) 

305 1000 

203 41 5 
305 585 

1000 356 
152 167 
203 833 

203 1000 

152 52 
203 948 



Table 14.3.7 (cont'd) 

Measure 
Link 

7 

8 

9 LJl 
rJ 
m 

10 

11 

12 

Base Solution 
Diam.1 Length 
(mm) (m) 

152 
203 
254 
254 

152 
203 
254 
152 
203 

203 
254 
152 
203 
254 

612 
7 

381 
1000 

433 
339 
228 
167 
833 

400 
600 
346 
501 
153 

A 

152 
203 

254 

152 
203 
254 
152 
203 
254 
203 
254 
203 
254 

167 
833 

1000 

433 
339 
228 
42 

836 
122 
400 
600 
72 

928 

13 
Diam.1 Length 
(mm) (m) 

152 
203 

254 

152 
203 
254 
152 
254 

203 
254 
203 
254 

167 
833 

1000 

493 
228 
279 
282 
718 

400 
600 

357 
643 

152 
203 

254 

152 
254 

152 
203 
254 
203 
254 
203 
254 

167 
833 

1000 

615 
285 

225 
497 
278 
400 
600 
72 

928 

152 
203 
254 
254 
305 
152 
203 
254 
203 

203 
254 
152 
203 

253 
673 
74 

763 
237 
185 
799 
16 

1000 

282 
71 8 
40 

960 

Diam.1 Length 
(mm) (m) 

152 140 
203 860 

305 663 
356 337 
152 242 
203 694 
305 64 
203 1000 

203 200 
254 800 
203 1000 

IThe actual pipe diameters used were in Imperial units (in), reflecting the availability of break records for these pipes. The 
values given in this table are the "rounded-off' metric equivalents of those diameters. 



measure to use to improve node reliability. Its use appears to provide 
more flexibility in the choice of pipe diameters. Part of this flexibility is 
due to the fact that the improvement is not directed at a single link 
connected to the node of interest,'but rather to a region of the network 
where the reliability problem exists. As described in Table 14.3.5, increases 
in the design demand affect flows and subsequent pipe choices throughout 
the network. This "broad-scale" approach seems to permit the optimiza- 
tion model to adjust large sectors of the network resulting in cheaper 
networks for the same cost. This "broad-scale" approach is also intuitively 
more attractive, as it recognizes relationships within the network as a 
whole. 

It is also interesting to note that both applications of Measure D do 
not reduce the expected number of breaks per year to the same extent as 
the first three measures. If reduction in number of breaks per year is an 
underlying objective of the problem, this feature may be considered a 
weakness. The smaller reduction in breaks required to achieve the better 
reliability does, however, support the general conclusions in the previous 
paragraph. Improvement in network reliability has not been achieved 
simpiy by the "mechanical" improvement used by the other three 
methods. The improvement in reliability is achieved by a more compre- 
hensive consideration of network performance. 

Based on the above features of the four measures, it appears that 
Measure D is the best approach to use to improve network reliability. 
These conclusions are tentative, however, as they may be a function of the 
network chosen and the heuristic reliability measure chosen. The relia- 
bility measure of probability of "no node isolation" is, however, one of the 
most comprehensive measures for pipe network reliability currently 
available in that it explicitly recognizes both the pipe breakage and 
demand exceedance issues of the reliability question. 

14.3.6 Summarv 

A general philosophical framework for approaching the reliability 
issue is the design of optimization-based network design models. The 
framework uses a general optimization model which includes considera- 
tion of the probability of component, in a particular pipe, failure and the 
probability that the actual demand at a node will exceed the design value. 
The component failure issue is addressed through a set of chance con- 
straints which defines acceptable levels for probability of pipe breakage. 
The probability of demand at node being greater than the network capacity 
to supply is addressed through the use of probabilistic-based flow values 
from which the model parameters, such as hydraulic gradient, are derived. 
A new "measure" describing the reliability of the networks in terms of the 
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probability of "no node failure" has been developed and included in the 
overall approach. Although the measure is heuristic, it explicitly com- 
bines mechanical, e.g., pipe, failure probabilities and the probability of a 
"failure" caused by demand being greater than the design value. 

A series of measures which can be employed to guide modification 
to network design to achieve improvements in reliability at least-cost were 
investigated. Based upon the results of application to a sample network, it 
appears that improving the probability that design capacity is greater than 
or equal to actual demand, as opposed to reducing the probability of com- 
ponent failure, provides the most improvement in reliability at least cost. 
If, however, reduction in the expected number of pipe breaks within a 
network over a given time period is a critical issue, measures which 
address the probability of pipe failure appear to be more appropriate. 

These conclusions are preliminary, however, and further work on a 
wider range of networks is needed before any general recommendations 
can be made. 
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