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CHAPTER 9 

RELIABILITY ANALYSIS OF SYSTEMS 

by 

Y. K. Tung, Larry W. Mays and M. John Cullinane 

9.1 SIMPLE SYSTEMS 

Most systems are composed of several subsystems. The reliability of 
a system depends on how the components are interconnected. Several 
methods for computing system reliability are presented below. 

9.1.1 Series Svstems 

The simplest type system is a series system in which every conipo- 
nent must function if the system is to function (see Fig. 9.1.1). Considering 
the random variable of the time of failure as Ti for the i-th component, 
then for a system of n components, the system reliability over the period 
(0, t) is 

n n 

i = l  i = l  
R 3 (t) = n P ( T i  > t) = I1 Ri(t) (9.1.1) 

where Ri(t) is the reliability for the i-th component. For a system that has 
failure times exponentially distributed (with constant failure rates) so that 
the i-th component reliability is em%', then the system reliability is 
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Figure 9.1.1 Components Arranged in Series 

F i g u r e  9.1.2 Components Arranged in Parallel  
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RJt) = exp( -2 i=l  kit) 

The MTTF is 

(9.1.2) 

(9.1.3) 

As an example of the series system, consider two different pumps in series, 
both of which must operate to pump the required quantity. The constant 
failure rates for the pumps are Xi = 0.0003 failures/hr and X2 = 0.0002 fail- 
ures/hr. For a 2,000-hr mission time, the system reliability is 

and the MTTF 

MTTF = 

is 

= 2,000 hr 1 
0.0003 + 0.0002 

(9.1.4) 

(9.1.5) 

9.1.2 Chain-Series Systems 

A chain-series model is a series system such that if any one compo- 
nent fails, the system will fail. This model is based on the idea of a chain 
composed of n links where the chain will break if the applied stress X 
exceeds the strength Y of any one link. This model is also referred to as a 
weakest link model. The system reliability is then 

R~ = min(Ri} 
i 

(9.1 6) 

The reliability for any one link by equation (9.1.3) is 
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(9.1.7) 

9.1.3 Parallel Systems 

A parallel system is defined as one which will fail if and only if all 
units in the system fail or malfunction (see Fig. 9.1.2). The pure parallel 
system is one in which all components are initially activated, and any 
component can maintain the system operation. The system reliability is 
then expressed as 

n 
RJt) = 1 - n[l - Ri(t)] 

i= 1 
(9.1.8) 

For a system with exponentially distributed time to failure and a constant 
failure rate for each component of the system, the system reliability is 

and the MTTF for a system with identical components is 

(9.1.9) 

(9. I. 1 0) 

As an example of a parallel system, consider two identical pumps 
operating in a redundant configuration so that either pump could fail and 
the peak discharge could still be delivered. Both pumps have a failure rate 
of X = 0.0005 and both pumps start operating at t = 0. The system reliability 
for a mission time of t = 1,000 hr is 
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1 - e  

-Xt -2At = 2 e  - e  

= 1.2131 - 0.3679 

= 0.8452 

The MTTF is 

(9.1.11) 

(9.1.1 2) 

9.1.4 Standbv Redundancv 

A standby-redundant system is a parallel system in which only one 
component or subsystem is in operation (see Fig. 9.1.3). If the operating 
component fails, then another component is operated. This type of system 
is different than the parallel network where all the components are oper- 
ating because standby units do not operate. The system reliability for a 
system with n + 1 components in which one component is operating and 
n units are on standby until the operating unit fails, is given by 

(9. I. 1 3) 

This assumes the following: the switching arrangement is perfect, the 
units are identical, the component failure rates are constant, the standby 
units are as good as new, and the unit failures are statistically indepen- 
dent. For n + 1 nonidentical components with different failure time 
density functions, the system reliability is 

RJt) = 

where fst(t) is 

(9.1.14) 
t 

the standby-redundant system failure density given by 
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Figure 9.1.3 Standby-Redundancy System 

265 



Example 

As an example of a standby-redundant system, assume an expo- 
nential failure distribution and consider two identical pumps, one 
operating and the second on standby, with identical failure rates of h = 
0.0005 failures/hr. The standby unit is as good as new at time t = 0. The 
system reliability for t = 1,000 hr is 

Rst(t) = (1 + ht)e-'' = (1 + 0.0005 1000)e -(0'0005) (*O0O) = 0.9098 (9.1.16) 

K-out-of-n Systems 

A k-out-of-n system is a system in which a specified number k of n 
subsystems must be good for system success. The binomial distribution is 
used to define the system reliability for k-out-of-n of independent and 
identical units given by 

i=k 

where 

n! (1) = i! (n - i)! 

For a constant failure rate the reliability is expressed as 

Example 

(9. I. 1 7) 

(9. I. 1 8) 

As an example of a k-out-of-n system, consider a pumping system 
with three pumps, one of which is standby, all with constant failure rates 
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of h = 0.0005 failures/hr. The system reliability for t = 1,000 hr, n = 3 and k 
= 2, is 

= 1.1036 - 0.4463 

= 0.6573 (9.1 .I 9) 

9.2 COMPLEX SYSTEMS 

As shown in the previous section, the reliability of series-parallel 
systems is generally straightforward. In most practical situations, such as 
water distribution systems have a nonseries-paralIel configuration and the 
evaluation is much more difficult. There have been many techniques 
developed for system reliability evaluation. A great deal of work has been 
done on state enumeration methods (event-space methods), network 
reduction methods, and path enumeration methods. A brief summary is 
provided of each of these methods. 

9.2.1 State-Enumeration Methods 

This method lists all possible mutually exclusive states of the sys- 
tem. A state is defined by listing the successful and failed elements in the 
system. For a system with n elements or components, in general, there are 
2" states, so that a system with 10 components would have 1,024 states. 
The states which result in successful system operation are identified and 
the probability of occurrence of each successful state is computed. The last 
step is to sum all the successful state probabilities which give the system 
reliability. This method can be computa tionally infeasible for systems 
having a large number of components (Brown, 1971). The event-tree 
technique is a typical method that uses the approach. 

Examvle 

Consider a simple water distribution network consisting of five 
pipes and one loop, as shown in Fig. 9.2.1. Node 1 is the source node and 
nodes 3,4, and 5 are demand nodes. The components of this network 
subject to possible failure are the five pipe sections. Within a given time 
period, each pipe section has an identical failure probability of 5% due to 
breakage or other causes that require it to be removed from service. The 
system reliability is defined as the probability that water can reach all three 
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0 - Node 

I- Pipe  

Figure 9.2.1 Simple Example Water 
Distribution Network 
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demand nodes from the source node. Furthermore, it is assumed that the 
states of serviceability of each pipe are independent. 

Using the state-enumeration method for system reliability evalua- 
tion, the associated event tree can be constructed depicting all possible 
combinations of component states in the system, as shown in Fig. 9.2.2. 
Since each pipe has two possible states, i.e., failure (F) or nonfailure (N), 
the tree, if fully expanded, would have 25 = 32 branches. However, know- 
ing the role that each pipe component plays in the network connectivity, 
exhaustive enumeration of ail possible states is not necessary. 

For example, referring to Fig. 9.2.2, we realize that when pipe 1 fails, 
all demand nodes cannot receive water, indicating a system failure, regard- 
less of the state of the remaining pipe sections. Therefore, branches in the 
event tree beyond this point do not have to be constructed. Applying 
some judgment in event-tree construction in this fashion can generally 
lead to a smaller tree. However, for a complex system, this may not be 
easy. 

The system reliability can be obtained by summing up the probabili- 
ties associated with all of the nonfailure branches. In this example, the 
sys tem reliability is 

= 0.9367 

where P(B[i]) = the probability that the branch B[il of the event tree. For 
example, the probability that branch Bpi  occurs is 

= (0.95) (0.95) (0.95) (0.95) (0.05) 

= 0.04073 
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Pipe  # 1 Pipe # 2 Pipe # 3 P ipe  # 4 Pipe I 5 

I 
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I 
1 
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I 

I 
1 

Noae 4 unserv iced  

Nodes 4 ,  5 u n s e r v i c e d  

Y 
r0 151 0.04073 

I U I  
7' 

Nodes 3 ,  5 u n s e r v i c e d  

7 t N o d e  \& ! 3 u j s e r v i c e d  3 
I 
I 
I 
I w, A l l  demaid nodes u n i e r v i c e d  

y j  All demand noaes  unserv iced  i 
I I I 

N i  
T i  = F a i l u r e  of pipe i 

jj 

= Non-failure of pipe i 

= Branch associated with unserviceability of one or 

more demand nodes 

[il = The i-th b r a n c h  indicating system reliability 

Figure 9.2.2 Example Event Tree for State 
Enumeration Method 
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9.2.2 Net work-Reduc tion Methods 

These methods combine the series, parallel, and series-parallel sub- 
systems until a nonseries-parallel system which cannot be further reduced 
is obtained. Factoring theorems are then used to obtain system reliability. 
A component A is selected, and two networks are obtained and generated 
when A is replaced by a short circuit (perfect competition) and an open 
circuit. If the two networks are simple series-parallel, they can be reduced; 
otherwise, the next block A must be selected and the procedure is repeated. 
Further discussions of network-reduction methods can be found in 
Moscowitz (1958), Buzacott (1970), Banerjee and Rajamani (19721, and 
Misra (1972). 

In general, network-reduction methods are useful if the network 
system under investigation consists of a single-source node and a single- 
sink node. Because of the nature of a water distribution network that 
involves multiple source and sink nodes, the technique of network- 
reduction methods cannot be directly applied for system reliability 
evaluation. 

9.2.3 Path-Enumeration Methods 

Path-enumeration methods are very valuable tools for system reli- 
ability evaluation. The tie-set analysis and the cut-set analysis are the two 
well-known methods in which the former uses the minimum path con- 
cept while the latter uses the minimum cut-set concept. A path is a set of 
elements (components) which form a connection between input and out- 
put when traversed in a stated direction. A minimal path is one in which 
no node is traversed more than once in going along the path. The i-th 
minimal path will be denoted as Ti, i = I, ..., m. Assuming that any path is 
operable and the system performs adequately, then the system reliability is 

R = P  [ ;* T] (9.2.1) 

where P [ J represents probability that at least one of the m paths wilI be 
operable and u denotes the union. 

Example 

Refer to the previous example with the simple water distribution 
network as shown in Fig. 9.2.1 The minimum tie-set (or path), based on 
the definition of system reliability given previously, for the example net- 
work are 
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1 T, = {Nl n N, n N, n N, 

T, = {N, n N, n N5 n N, 

where Ti = the i-th minimum tie-set and Nk = the nonfailure of the k-th 
pipe link in the network. The four minimum tie-sets are shown in Fig. 
9.2.3. The system reliability, based on equation (9.2.1), is 

T, v T, v T3 v T4 

=P T + P T  +P T + P T  ( 1) ( 2) ( 3) ( 4) 

-[ P ( T l n T 2 ) + P ( T l n T 3 ) + P ( T , n T 4 )  

+ P(T2 n T3) + P (  T, n T,) + P(T3 n T,) ] 

) ]  - P ( T l n T 2 n T 3 n T 4  

Since all pipes in the network behave independently, all minimum tie-sets 
(or paths) behave independently. In such circumstances, the probability of 
the joint occurrence of multiple independent events is simply the multi- 
plication of the probability of the individual event. That is, 

P ( T1) = P ( N1)*P (N,)*P (N,).P ( N5) = (0.95) 4 = 0.81451 

Similarly, 

P ( T,) = P ( T3) = P ( T,) = 0.81451 

Note that, in this example, the intersections of more than two minimum 
tie-sets is the intersection of the nonfailure state of all five pipe sections, 
i.e., N1 n N2 n N3 n N4 n N5. The system reliability can be reduced to 
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T, = ( N l n  N 2  n N n N 5 ) 4 

T 4  = ( N l n  N 2 n  N n N ) 
3 5 

Ti = t h e  ith tie s e t  

Nk = Non-fa i lure  s t a t e  of pipe section k 

Figure 9.2.3 The Four Minimum Tie-Sets (or Paths) 
for the Example Network 
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N 1 n N Z n N 3 n N 4 n N 5  

= 4 (0.81451) - 3 (0.95)5 

= 0.9367 

A cut-set is defined as a set of elements which, if i t  fails, causes the 
system to fail regardless of the condition of the other elements in the sys- 
tem. A minimal cut is one in which there is no proper subset of elements 
whose failure alone will cause the system to fail. In other words, a mini- 
mal cut is such that if any component is removed from the set, the 
remaining elements collectively are no longer a cut-set. The minimal cut- 
sets are denoted as Ci, i = 1,. . .,m and ci denotes the complement of Ci, i.e., 
the failure of all elements of the cut Ci. The system reliability is 

R i = l - P  u Ci =I' n Ci [ iyl ] [ i I l - ]  
(9.2.2) 

Example 

Again, refer to the previous simple water distribution network 
example. We now like to evaluate system reliability using the minimum 
cut-set method. Based on the system reliability as defined, the minimum 
cut-sets for the example network are 

= 1 =  {Fl} 

= (F2 F4} 

=2 = (F2 F3} 

c4 = (F3  F4} 

where Ci = the i-th cut-set and Fk = the failure state of pipe link k. The 
above seven cut-sets for the example network is shown in Fig. 9.2.4. The 

274 



. - -  

Ci = the ith cut s e t  

Figure 9.2.4 Cut-Sets for the Example Water 
Distribution Network 
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system unreliability R is the probability of occurrence of the union of the 
cut-set, i.e., 

- 
R s = P  U Ci [ i I ,  ] 

The system reliability can be obtained by subtracting Rs from 1. However, 
the computation, in general, will be very cumbersome for finding the 
probability of the union of large numbers of events, even if they are inde- 
pendent. In this circumstance, it is computationally easier to compute the 
system reliability, by equation (9.2.2), as 

R s = P  u Ci = P  n Ci [ i I ,  ] 1 
where the overbar "-" represents the complement of the event. Since ail 
cut-sets behave independently, all their complements also behave inde- 
pendently. The probability of the intersection of a number of independent 
events, as described previously is 

Rs = f i P ( c i )  
i=l 

where 

P ( el) = 0.95, P ( C2) = P (5;) = . . . = P (C,) = 0.9975 

Hence, the system reliability of the example network is 

Rs = (0.95) (0.9975>6 = 0.9360 

A basic algorithm for the path-enumeration method can be stated as 
(Henley and Garidhi, 1975): 

a. Find all minimal paths using the reliability graph. Several com- 
puter codes have been developed for this purpose which are 
discussed in a later section. 
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b. Find ail required unions of the paths. 

c. Give each path union a reliability expression in terms of module 
reliability. 

d. Use the following equation expressing the system reliability in 
terms of module reliabili ties. 

i=l 

where the members of the i-th path are denoted as I E Pi, the union of the 
i-th and j-th paths are denoted by 1 E Pi u pi, etc. 

9.2.4 Conditional-Probabili tv Amroach 

The approach starts with a selection of key elements (or compo- 
nents) whose states (operational or failure) would decompose the entire 
system into simple series and/or parallel subsystems for which the relia- 
bility and risk of subsystems can be easily evaluated. Then, the reliability 
of the entire system is obtained by combining the subsystems using the 
condi tionai probabiii ty rule as: 

P (system success or failure) = 
P (system success or failure if component X is good) P (X is good) 
+ P (system success or failure if component X is bad) P (X is bad) 

Except for a very simple and small system, a nested conditional-probability 
operation is inevitable. Efficient evaluation of system reliability of a com- 
plex system hinges entirely on a proper selection of key elements which 
generally 'would be a difficult task when one deals with a moderate or 
large water distribution network. The technique also cannot be easily 
adopted to computerization for problem solving. 
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Example 

Using the conditional-probability approach for system reliability 
evaluation, first select pipe section 1 as the key element which decomposes 
the system into a simpler configuration, as shown in Fig. 9.2.5. After the 
entire system is decomposed into a simple-system configuration, the con- 
di tional probability of the decomposed systems can be easily evaluated. 
For example, the conditional system reliability, after imposing N1 and F3 
for pipes 1 and 3, respectively, can be expressed as 

3 N2 n N, n N, = (0.95) = 0.8574 

where Rs 1 N ~ ,  F~ = conditional system reliability. Conditional system relia- 
bilities for other imposed conditions are shown in Fig. 9.2.5 After the 
conditional system reliabilities for the decomposed sys tems are calculated, 
the reliability of the entire system can be combined using equation (9.2.5). 
For this particular example, the system reliability is 

= (0.8574) (0.95) (0.9975) (0.95)3 + (0.9025) (0.95)* (0.05) 

= 0.9370 

9.2.5 Review of Svstem Reliabilitv Evaluation Techniaues for Complex 
Systems 

Hwang, Tillman, and Lee (1981) presented a review of literature 
related to system reliability evaluation techniques for small to large com- 
plex systems. A large system was defined as one which was more than ten 
components and a moderate system as one which has more than six com- 
ponents and less than ten. Complex systems were defined as ones which 
could not be reduced to a series-parallel system. 

Hwang, Tillman, and Lee (1981) concluded that for a large complex 
system, computer programs should be used that provide the minimum 
cut-sets and calculate the minimal cut approximation to system reliability. 
Minimal paths can be generated from minimum cuts. Based on mini- 
mum cut-sets, reliability approximations can then be obtained for large 
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O r i g i n a l  System 

Pipe 1 Works Pipe 1 Fails I 

- 0 . 8 5 7 4  

R s l N 1 , N , , T  
= P( N ,  n~ - ( 0 . 3 5 1 2  

El 

.. 0 . 9 0 2 5  

Figure 9.2.5 Illusbation of ConditionaI Probability Method 
for System Reliability Evaluation 
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complex networks. Hwang, Tillman, and Lee also rioted that Monte Carlo 
methods for system reliability evaluation can be used when component 
reliabilities are sampled by the Monte Carlo method. They also identified 
several miscellaneous approaches for evaluating complex systems includ- 
ing a moment method, a block diagram method, Bayesian decomposition, 
and decomposition by Boolean expression. 

Hwang, Tillman, and Lee (1981) concluded that of all the evaluation 
techniques in the papers surveyed, only a few had limited success in solv- 
ing some large complex system reliability problems and few techniques 
have been completely effective when applied to large system reliability 
problems. They suggested that a generally efficient graph partitioning 
technique for reliability evaluation of large, highly interconnected net- 
works should be developed. 

Since the 1981 paper of Hwang, Tillman, and Lee, several other sys- 
tem reliability evaluation techniques have been reported in the literature. 
Aggarwal, Chopra, and Bajwa (1982) presented a method that uses decom- 
position of a probabilistic graph using cut-sets. The method is applied to a 
simplified network with five nodes and seven links and only limited 
computational results are presented. 

Bennetts (1982) presents a method for the analysis of reliability block 
diagrams using Boolean algebra techniques. The method is based on an 
analysis of path sets derived from reliability block diagrams. Boolean 
methods are applied to each path so that the component reliability param- 
eters are considered to be Boolean variables rather than probabilistic 
variables and the whole problem is treated in a Boolean framework. 
Hagstrom (1983) presents a model using decomposition trees of a network 
based upon finding and analyzing triconnected components of the 
network. 

Deuermeyer (1982) presented an interesting approach to network 
reliability analysis of flow networks that is based upon developing net- 
work functions. A network function specifies the maximum flow 
deliverable by the network while in a specific state. The maximum flow 
problem can be represented as a linear programming problem in which 
the objective is to maximize flow. The probability distribution of maxi- 
mum flow can then be determined and used as an index of reliability. 

Touey (1983) presented a new algorithm for computing network 
terminal reliability from a set of paths or cut-sets. This algorithm is based 
on selective generation of relevant states by way of methods for choosing 
and pruning branches of a binary tree. The author states that the method 
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is easy to implement and to understand, and has proven in practice to be 
more efficient than the fastest methods published. 

9.2.6 Multistate Systems with Multistate Components 

Hudson and Kapur (1982) present models for reliability analysis to 
systems which can have a range of states and all of its components can also 
have a range of multiple states. Such systems generally have various 
levels of operational performance so that the total system effectiveness 
measures reflect all the performance levels and their reliabilities. Binary 
system theory requires that each component, as well as the entire system, 
be considered either functioning or failed. Multistate approaches allow 
states of partial failure for both the system and its components. The 
advantage is that either standby or active redundancy can be considered. 
The methodology presented in Hudson and Kapur's paper is illustrated by 
a simple example of a domestic hot water system consisting of compo- 
nents representing a gas-fired subsystem, a solar collector-controller, two 
pumps, and a solar piping and storage subsystem. 

This type of approach seems to be in the developmental stages and 
may be a little premature for application to water distribution systems. 
However, once the technology is developed, this should prove to be very 
promising. Earlier work on the multistate (discrete state) point of work 
was reported by Dhillon (1975), Murchland (1975), Barlow and Wu (1978), 
and El-Heweihi, Proschan, and Sethuraman (1978). 

9.3 FAULT-TREE ANALYSIS 

include: 

a. 

b. 

C 

d. 

Fault-tree analysis has been proposed as a method for evaluating 
the reliability of systems. A fault tree is a logical diagram representing the 
consequences of the component failures (basic or primary failures) on sys- 
tem failure (top failure). Dhillon and Singh (1981) defined the advantages 
and disadvantages of the fault-tree analysis technique. Advantages 

provides insight into the system behavior; 

requires the reliability analyst to understand the system thor- 
oughly and deal specifically with one particular failure at a time; 

helps to ferret out failures deductively; 

provides a visible and instructive tool to designers, users and 
management to justify design changes and trade-off studies; 



e. provides options to perform quantitative or qualitative reliabil- 
ity analysis; 

f. technique can handle complex systems; 

g. commercial codes are available to perform the analysis. 

Disadvantages include: 

a. can be costly and time-consuming; 

b. results can be difficult to check; 

c technique normally considers that the system components are in 
either working or failed state; therefore, the partial failure states 
of components are difficult to handle; 

d. analytical solution for fault trees containing standbys and 
repairable components are difficult to obtain for the general case; 

e. to include all types of common-cause failure requires consider- 
able effort. 

Another advantage not mentioned by Dhillon and Singh (1981) is 
that commercial codes are available to perform the analysis. 

9.3.1 Fault-Tree Construction 

Before constructing a fault tree, the analyst must thoroughly under- 
stand the system and its intended use. One must determine the higher 
order functional events and continue the fault-event analysis to deter- 
mine their logical relationships with lower level events. Once this is 
accomplished, the fault tree can be constructed. A brief description of 
fault-tree construction is presented below. The basic concepts of fault-tree 
analysis are presented in Henley and Kumamoto (1981) and Dhillon and 
Singh (1981). 

The major objective of fault-tree construction is to represent the 
system condition, which may cause system failure, in a symbolic manner. 
In other words, the fatilt tree consists of sequences of events that lead to 
system failure. There are actually two types of building blocks: gate sym- 
bols and event symbols. 
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Gate symbols connect events according to their casual relation such 
that they may have one or more input events but only one output event. 
Table 9.3.1 lists the various gate symbols (Henley and Kumamoto, 1981 ). 
The AND gate denotes that an output event occurs if, and only if, all the 
input events occur. The OR gate is an intermediate event which denotes 
that there is not output unless one, and only one, of the input events 
occur. The priority AND gate is logically equivalent to an AND gate with 
the exception that the input events must occur in a specific order. The 
inhibit gate produces output only when the conditional input is satisfied 
and is logically equivalent to an AND gate with two input events. 

Event symbols are shown in Table 9.3.2. A fault event, denoted by a 
rectangular box, results from a combination of more basic faults acting 
through logic gates. A circle denotes a basic component failure that repre- 
sents the limit of resolution of a fault tree. A diamond represents a fault 
event whose causes have not been fully developed. A house-shaped 
event denotes a fault event which is expected to occur. A triangle denotes 
a transfer IN or OUT and is used to avoid repeating sections of the fault 
tree. 

There are two approaches, forward analysis and backward analysis, 
for analyzing causal relations. Forward analysis starts with a set of failure 
events and proceeds forward, looking for possible consequences resulting 
from the events. The backward analysis, which is used in fault-tree analy- 
sis, begins with a system hazard (failure) and traces backward, searching for 
possible causes of the hazard. 

Henley and Kumamoto (1981) present heuristic guidelines for con- 
structing fault trees which are summarized in Table 9.3.3 and Fig. 9.3.1, 
and are listed below: 

a) Replace abstract events by less abstract events. 

b) Classify an event into more elementary events. 

c) Identify distinct causes for an event. 

d) Couple trigger event with "no protection actions." 

e) Find cooperative causes for an event. 

0 Pinpoint component failure events. 

@ Develop component failure using Fig. 9.3.1. 
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Table 9.3.1 Gate Symbols in Fault-Tree Analysis 
(From Henley and Kumamoto, Reiiabilitv Ensrinecrinp and Risk Assessment Prentice-Hall, 

Inc., Englewood Cliffs, N.J., 1981.) 

GATE SYMBOL 

cnl 

8 

;ATE NAME 

AND GATE 

OR GATE 

INHIB IT  
GATE 

PRIORITY 
AND 

GATE 

EXCLUSIVE 
OR 

GATE 

m 
OUT OF 
n GATE 

(VOTING OR 
SAMPLE GATE) 

CAUSAL RELATION 

OUTPUT EVENT OCCURS IF 
A L L  INPUT EVENTS OCCUR 
Sl MU L T  A N €  OUSL Y. 

OUTPUT EVENT OCCURS IF 
ANY ONE OF THE INPUT 
EVENTS OCCURS. 

INPUT PROOUCES OUTPUT 
WHEN CONOlT lONAL EVENT 
OCCURS. 

~ ~~ 

OUTPUT EVENT OCCURS IF 
A L L  INPUT EVENTS OCCUR 
IN THE ORDER FROM LEFT 
TO RIGHT. 

OUTPUT EVENT OCCURS IF 
ONE, BUT NOT BOTH. OF 
THE INPUT EVENTS OCCUR. 

OUTPUT EVENT OCCURS I F  
m OUT OF n INPUT EVENTS 
OCCUR. 



Table 9.3.2 Event Symbols in F a d  t-Tree Analysis 
(From Hcnley and Kumamoto, Reliabili t s  Enginccrinc and Risk Assessment Prcntice-Hall, 

Inc., Englewood Cliffs, N.J., 1981.) 

EVENT SYMBOL I MEANING OF SYMBOLS I 

BASIC EVENT W I T H  
SUFFICIENT DATA 

DIAMOND 

UNDEVELOPED 
EVENT 

EVENT REPRESENTEO 
BY A GATE 

RECTANGLE I J 
I 

O V A L  

CONDlTtONAL EVENT 
USED WITH INHIBIT 
GATE 

HOUSE EVENT. EITHER 
OCCURRING O R  NOT 
OCCURRING 

A A  
TRAINGLES 

TRANSFER SYMBOL 
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Table 9.3.3 Heuristic Guidelines for Fault-Tree Construction 
(From Henley and Kumamoto, Peliabilitv EnrinecrinP and Risk Assess ment Prcntice-Hall, 

Inc., Englewood Cliffs, NJ., 1981.) 

IEVELOPMENT POLICY 

EOUIVALENT BUT 
LESS ABSTRACT 
EVENT F 

CLASSIFICATION 
OF EVENT E 

DISTINCT CAUSES 
FOR E V E N T  E 

TRIGGER VERSU: 
NO PROTECTIVE 
EVENT 

COOPERATIVE 
CAUSE 

PtNPOlNT A 
COMPONENT 
F A I L U R E  E V E N T  

CORRESPONDING PART OF FAULT T R E E  

E V E N T  E 52 
ABSTRACT 

E V E N T  F 

a 
a 

B 
EVENT 1 x 

. 
COOPERAT tVE COOPERATIVE 

CAUSE F CAUSE G 

& EVENT F 

-+ 
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COMPONENT FAtLURE 
(STATE-OF-COMPON ENT 

Figure 9.3.1 Development of a Component Failure 
(From Henley and Kumamoto, ReliabiIity EnPineerinn and Risk Assessment, Prentice-Hall, 

Inc., Englewood Cliffs, N.J., 1981.) 

OPERATOR 

Figure 9.3.2 Schematic Diagram for an Example Pumping System 
(From Hcnley and Kumamoto, Reliabilitv Enrrinecrinz and Risk Assessment, Prtntice-Hall, 

Inc., Englewood Cliffs, N.J., 1981.) 



An example of a fault-tree construction is given for the system in 
Fig. 9.3.2. In this pumping system, the tank is filled in 10 min. and emp- 
ties in 50, having a cycle time of 60 min. After the switch is closed, the 
time is set to open the contacts in 10 min. If the mechanism fails, then the 
horn sounds and the operator opens the switch to prevent pressure tank 
rupture. The fault tree for the pumping system is shown in Fig. 9.3.3. 

9.3.3 Evaluation of Fault Trees 

The basic steps used to evaluate fault trees include: 

a) Construct the fault tree. 

b) Determine the minimal cut-sets. 

c) Develop primary event information. 

d) Develop cut-set information. 

e) Develop top event information. 

In order to evaluate the fault tree, one should always start from the 
minimal cut-sets which, in essence, are critical paths. Basically, the fault- 
tree evaluation comprises two distinct processes: (a) the determination of 
the logical combination of events that cause top event failure expressed in 
minimal cut-se ts; and (b) the numerical evaluation of the expression. 

Cut-sets are collections of basic events such that if all these basic 
events occur, then the top event is guaranteed to occur. The path-set is a 
dual concept to the cut-set in that it is a collection of basic events. If none 
of the events in the set occur, then the top event is guaranteed not to 
occur. As one could imagine, a large system has an enormous number of 
failure modes. A minimal cut-set is one that if any basic event is removed 
from the set, the remaining events collectively are no longer a cut-set. By 
the use of minimum cut-sets, the number of cut-sets and basic events are 
reduced in order to simplify the analysis. Several computer codes are 
available for generating cut-sets, including MOCUS (Fussell, Henry, and 
Marshall, 1974) which was developed to obtain minimal cut-sets from 
fault trees. 

The system availability, A&), is the probability that the top event 
does not exist at time t, which is the probability of the systems operating 
successfully when the top event is an OR combination of all system haz- 
ards. System unavailability, U,(t), is the probability that the top event 
exists at time t, which is either the probability of system failure or the 

2aa 



IMLURISTIC GUIOELlNf !  

C U R R E N I  

T M )  LONG 
TO MoIon 

C W t  ACTS 
CLOBtO TOO 

LOMO 

MO COUUAMQ 
W'ZMIWG 

COUTACTS 

RvlTCM 
CLOSED TOO 

Figure 9.3.3 Fault Tree for the Example Pumping System 
(From Henley and Kumamoto, Reliabilitv Endneering and Risk Assessment, Prcntice-Hall, 

Inc., Englewood Cliffs, N.J., 1981.) 
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probability of a particular system hazard at time t. The system availability 
and system unavailability are complementary, i.e., 

As(t) + Us (t) = 1 (9.3.1) 

System reliability Rs(t) is the probability that the top event does not 
occur over time interval (0,t). System reliability requires continuation of 
the nonexistence of the top event and the following holds 

The system unreliability F,(t) is the probability that the top event 
occurs before time t and is complementary to the system reliability 

(9.3.3) 

(9.3.4) 

The system failure density fs(t) is defined as 

dFs(t) 
dt fs(t) = - (9.3.5) 

System conditional failure intensity ws(t) is the probability that the 
top event occurs per unit time at time t given that it does not exist at time 
t. The system unconditional failure intensity, Ws(dt), is the probability 
that the top event occurs per unit time at time t. The expected number of 
top events during time interval (t, t + dt) is 

t+dt 

WJt, t + dt) = J ws(t)dt 
t 

(9.3.6) 

The mean time to first failure is the expected length of time to the 
first occurrence of the top event and is given by 
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00 

MTTFS= J tfg(t)dt 
0 

(9.3.7) 

Considering independent basic events B1.. . Bn, the probability of a 
cut-set occurrence at time t, U*(t) is obtained from the intersection of the 
basic events as 

n 
uyt) = P ( B ~  n B, n. . . n B ~ )  = n uj(t) 

j=l 
(9.3.8) 

where n is the number of cut-set members and Uj(t) is the probability of 
the j-th basic event existing at time t. A cut-set occurrence is when all basic 
events in the cut-set are occurring. The asterisk (*) is used to denote that 
the quantity is a cut-set. The notation U(t) refers to a component unavail- 
ability, U*( t) refers to the cut-set unavailability. 

The probability of occurrence of a cut-set per unit time at time t, 
given no cut-set failure at time t, is denoted as h*(t). The probability that 
the cut-set occurs during the time interval (t, t + dt) is 

(9.3.9) 

where 

C*(t, t + dt) = occurrence of the cut-set during (t, t + dt) 
CYt) = the nonexistence of the cut-set failure at time t. 

Henley and Kumamoto (1981) show that the numerator is W*(t)dt, so that 

2 w. (Odt n U (t) 
i= 1 k=l I 

k + j  
1 - u * (t) h*( t) dt = (9.3.1 0)  

Each term in the summation is the probability of the j-th basic event 
during (t, t + dt) with the remaining basic event existing at time t. The 
denominator is the probability of the nonexistence of the cut-set failure at 
time t. 

29 1 



The term W*(t) is the expected number of times the cut-set occurs 
per unit time at time t, defined as 

so that 

(9.3.1 I) 

(9.3.1 2) 

Similar expressions hold for the unconditional repair in tensity, i.e. 
v*W 

and the conditional repair intensity u*( t), 

(9.3.13) 

(9.3.14) 

The values of the expected number of failures WY0,t) and the 
expected number of repairs V*(O,t) are 

t 

W*(O,t) = w*(h)dh 
0 

t 

V'(0, t) = I v*(h)dh 
0 

(9.3.15) 

(9.3.1 6) 

Henley and Kumamoto (1981) show that the system unavailability 
can be determined using 

Nc Nc i - 1  
U p  = c Ui(t) - c c n U(t) + ... 

i =1 i = 2  j=1 i , j  
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m 
+ ( - l )m-l  c 

1 I il < iz < ... < im _<Nc il ... i 

+ ... + ( -1)r- l  n U(t) 

il *.* i% 

(9.3.17) 

where 

n = product of U(t) for the basic events in cut-sets il or i2 ... or im 

Nc = total number of minimal cuts 

The lower and upper bounds for Qs(t) can be written as (Henley and 
Kumamoto, 1981) 

Nc Nc i - 1  NC c u;(o - c c n U(t) s u S (t) 5 c U?t) 1 

i = l  i = 2  j=1 i,j i = l  
(9.3.18) 

where n refers to the product of cut-sets i or j. 

The expected number of times the top event occurs at time t, per 
unit time, is w,(t). Let ei be the event that the i-th cut-set failure occurs at 
time t to t + dt SO that P(ei) = Wi*(t)dt. For the top event to occur in time 
(t, t + dt), none of the cut-set failures can exist at time t and one or more 
must fail during the time t to t + dt, so that 

where 

Nc 

A u e. is A m( 2 e. 
1 1 

i = l  i= 1 

(9.3.1 9) 
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( $ e ) =  i= 1 

A =  

the event that one or more of the cut-set failures 
occur at time t 

the event of none of the cut-set failures existing at 
time t 

This can be reduced to (Henley and Kumamoto, 1981): 

(9.3.20) 

where 

w“’(t) = contribution from the event that one or more cut-sets fail 
during time (t, t + dt). S 

(2) ws (t) = those cases in which one or more cut-sets fail during 
(t, t + dt), while the other cut-sets that have already 
failed to time t, have not been repaired. 

Computer programs have been developed to compute system 
parameters (unavailability, availability, expected number of failures and 
repairs, and conditional failure and repair intensities) given minimal cut- 
or path-sets of large complicated fault trees. HTT-1 (VeseIy and Narum, 
1970) applies the above concepts of kinetic tree theory. The program han- 
dles independent basic events which are either repairable or nonrepairable 
and have constant failure rates and constant repair rates u. Another ver- 
sion of the program, KITT-2, allows for time-varying failure and repair 
rates. A later version called KITT-1T (Ong and Henley, 1980) is a modified 
version of KITT-1 to include time delays provided by storage tanks and 
component (standby) redundancy. 

9.4 APPLICATION AND COMPARISON OF METHODS 

To demonstrate the applicability of the various techniques described 
in sections 9.2 and 9.3 for evaluating the reliability of a complex system, a 
simple water distribution network as shown in Fig. 9.4.1 is used. The dis- 
tribution system involves eight pipe sections of equal length and four 
demand points (nodes 3, 4, 6, and 7). The system service reliability is 
defined as the probability that demands for all users are met. The example 
considers the connectivity of pipes from source to users and ignores the 
level of hydraulic pressure required. All pipe sections are assumed to 
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Figure 9.4.1 Example Water Distribution Network 
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behave independently and all have the same probability of failure of 5 
percent. Using the various methods described, the service reliability of the 
entire system is shown in Table 9.4.1. As can be seen, the five methods 
considered yield practically the same system service reliability. Results 
obtained from the fault-tree analysis and event-tree analysis can be regar- 
ded as the true reliability. Results from the cut-set analysis is obtained by 
first-order approximation in that the system reliability is approximated by 
using only the first term of the right-hand side of equation (9.3.3). How- 
ever, the result is very close to the true one. Computationally, first-order 
approximation of the cut-set analysis is much simpler than the other four 
methods considered. 

Table 9.4.1 Comparison of Total System Service Reliability 
by Different Methods 

Method Reliability 

Cu t-se t 0.9341 
Tie-set 0.9352 
Conditional Probability 0.9319 
Event tree 0.9355 
Fault tree 0.9354 
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