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CHAPTER 8 

RELIABKITY ANALYSIS USING LOAD-RESISTANCE ANALYSIS 

Y. K. Tung and Larry W. Mays 

The resistance or strength of a component is defined as the ability of 
.the component to accomplish its required mission satisfactorily without a 
failure when subjected to an external stress. Stress is the loading of the 
component, which may be a mechanical load, an environmental expo- 
sure, a flow rate, temperature fluctuation, etc. The stress or loading tends 
to cause failure of the component. When the strength of the component 
is less than the stress imposed on it, the failure occurs. This type of analy- 
sis can be applied to the reliability analysis of components of water 
distribution systems. 

8.1 STATIC RELIABILITY ANALYSIS 

The reliability of a hydraulic system is defined as the probability of 
the resistance Y to exceed the loading X, i.e., the probability of survival. 
The terms "stress" and "strength are more meaningful to structural 
engineers, whereas the terms "loading" and resistance" are more descrip- 
tive to water resources engineers. The risk of a hydraulic component, 
subsystem, or system is defined as the probability of the loading exceeding 
the resistance, i.e., the probability of failure. The mathematical 
representation of the reliability R can be expressed as 

R=P(Y > X) = P(Y - X > 0) (8.1.1) 
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where P( )refers to probability, Y is the resistance, and X is the load. The 
relationship between reliability and risk is 

R = l - R  (8.1.2) 

The resistance of a hydraulic system is essentially the flow carrying 
capaaty of the system, and the loading is essentially the magnitude of 
flows through or pressure imposed on the system by demands. Since the 
loading and resistance are random variables due to the various hydraulic 
and demand uncertainties, a knowledge of the probability distributions of 
Y and X is required to develop reliability models. The computation of risk 
and reliability can be referred to as "loading-resistance interference." 
Probability distributions for load and resistance are illustrated in Fig. 8.1.1. 
The reliability is the probability that the resistance is greater than the load- 
ing for all possible values of the loading. 

The word "static," from the reliability computation point of view, 
represents the worst single stress, or load, applied. Actually, the loading 
applied to many hydraulic systems is.a random variable. Also, the num- 
ber of times a loading is imposed is random. 

8.1.1 Reliabilitv Computation Bv Direct Integration 

Following the reliability definition given in equation (8.1.1), the 
reliability and risk of a hydraulic structure can be expressed as 

r 1 

(8.1.3) 

in which fy( ) and fx( ) represent the probability density functions of resis- 
tance and loading, respectively. The reliability computations for a 
hydraulic structure require the knowledge of the probability distributions 
of loading and resistance. A schematic diagram of the reliability computa- 
tion by equation (8.1.3) is shown in Fig. 8.1.2. 

To illustrate the computation procedure involved, we consider that 
the loading X and the resistance Y are exponentially distributed, i.e., 

-AxX 

fx(x) = Axe , x 2 0 
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f x ( x )  (Loading) f, ( y )  (Resistance) 

Figure 8.1.1 Load-Resistance Interference 
R e l i a b i l i t y  AnalySi8 
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Figure 8.1.2 Graphical Illustration of the Steps Involved in 
Reliabiii ty Computation by Equation (8.1.3) 
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Then the static reliability can be derived by applying equation (8.1.3) in a 
straight forward manner as 

L X  

Ax + hy 
=- (8.1.6) 

For some special combinations of load and resistance distributions, 
the static reliability can be derived analytically in the closed-form. In cases 
in which both the loading X and resistance Y are log-normally distributed, 
the reliability can be computed as (Kapur and Lamberson, 1977) 

(8.1.7) 

where $(z) and @(z) are the probability density function and the cumula- 
tive distribution function, respectively, for the standard normal deviate z 
given as 

(8.1.8) 

where x’ = lnx and y’ = lny. The table of values of the cumulative distri- 
bution function @(z) for the standard normal deviate is availabie in any 
standard statistics textbook. 
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In cases in which the loading X is exponentially distributed and the 
resistance is normally distributed, the reliability can be expressed as (Kapur 
and Lamberson, 1977) 

(8.1.9) 

Examule 

Consider a water distribution system (see Fig. 8.1.3) consisting of a 
storage tank serving as the source, and a 2-ft diameter cast-iron pipe 1 mile 
long, leading to a user. The head elevation at the source is maintained at a 
constant height of 100 feet above the user. It is also known that, at the user 
end, the required pressure head is fixed at 20 psi with variable demand on 
flow rate. Assume that the demand in flow rate is random, having a log- 
normal distribution with the mean 1 cfs and standard deviation 0.3 ds. 
Because of the uncertainty in pipe roughness, the supply to the user is not 
certain. We know that the pipe has been installed for about 3 years. 
Therefore, our estimation of the pipe roughness in the Hazen-Williams 
equation is about 130, with some errors f 20. Again, we further assume 
that the Hazen-William's C coefficient has a lognormal distribution with a 
mean of 130 and a standard deviation of 20. It is required to estimate the 
reliability that the water demand by the user will be satisfied. 

In this example, the resistance of the system is the water supply 
from the source, while the load is the water demand by the user. Both 
supply and demand are random variables. By Hazen-William's equation, 
the supply is calculated as 

where A h  is the head difference (in ft) between the source and the user, D 
is the pipe diameter in feet, and L is the pipe length in feet. Because 
roughness coefficient C is a random variable, so is the supply. Due to the 
mu1 tiplicative form of the Hazen-Williams equation, the logarithmic 
transformation leads to a linear relation among variables, i.e. 
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100' 

J 
(2 ft diameter - 1 mile long) 

Figure 8.1.3 Example System 



In Y = In C - In (149.2) + 0.54 In 

= In C - 5.659 

Assume that the roughness coefficient C is lognormally distributed, then 
1nC is normally distributed, as is the log-transformed water supply 
(resistance). From the moment relations given in Table 6.1.2 for lognor- 
mal distribution, the mean and the standard deviation of In C are 4.856 
and 0.153, respectively. From these, the mean and standard deviation of 
In Y are 0.337 and 0.153, respectively. 

Because the water demand (loading) has a lognormal distribution, 
the mean and standard deviation of its log-transformed scale can be calcu- 
lated, in the same manner as for roughness coefficient C, as -0.0431 and 
0.294, respectively. 

Knowing the distributions and statistical properties of the load 
(water demand) and resistance (water supply), both log-normal in this 
example, the reliability of the system can be calculated by equation (8.1.7) as 

0.337 - (-0.0431) 
R =  (P [ = 4 m ]  

= [Z = 1.147) 

= 0.873 

This means that the water demanded by the user will be met 87.3% of the 
time. 

8.1.2 Reliabilitv Comuutation UsinP Safetv MareidSafetv Factor 

Safetv Marpin. The safety margin is defined as the difference 
between the project capacity (resistance) and the value calculated for the 
design loading SM = Y - X. The reliability is equal to the probability that Y 
> X, or equivalently, 

R = P(Y - X > 0) = P(SM > 0) (8.1.10) 
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If Y and X are independent random variables, then the mean value of S M  
is given by ~ S M  = py - px and its variance by O*SM = a2y + o*x. If the safety 
margin is normally distributed, then z = (SM - ~ S M ) / O S M  is a standard 
normal variate z. By subtracting p s ~  from both sides of the inequality in 
equation (8.1.10) and dividing both sides by OSM, it can be seen that 

(8.1.11) 

The key assumption of this analysis is that it considers that the 
safety margin is normally distributed but does not specify what the distri- 
butions of loading and capacity must be. Ang (1973) indicates that 
provided R > 0.001, R is not greatly influenced by the choice of distribution 
for Y and X and the assumption of a normal distribution for SM is satis- 
factory. For lower risk than this (e.g., R = 0.00001), the shape of the tails of 
the distributions for Y and X becomes critical in which case accurate 
assessment of the distribution of SM or direct integration procedure 
should be used to evaluate the risk or probability of failure. 

Applying the safety-margin approach to evaluate the reliability of 
the simple water distribution system described in the previous subsection, 
we can calculate the mean and standard deviation of the resistance (i.e., 
water supply) as 

0.337 + y (0.153) = 1.417 cfs 'I 
and 

From the problem statement, we know that the mean and standard devia- 
tion of the load (water demand) are px = 1 cfs and ax  = 0.3 cfs, respectiveIy. 
Therefore, the mean and variance of the safety margin can be calculated as 
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bM = py - px = 1.417 - 1.0 = 0.417 and 

2 dSM = 0; + 0: = (0.218) + (0.3)2 = 0.138 

Now, the reliability of the system can be assessed by the safety margin 
approach, as 

r 0.417 1 
R = 0 1-1 = 0 (1.1241 = 0.869 

The reliability computed by the safety-margin method is not identical to 
that of direct integration; the difference is practically negligible. It should, 
however, be pointed out that the distribution of the safety-margin in this 
example is not exactly normal as assumed. Thus, the reliability obtained 
should be regarded as an approximation to the true reliability. 

Safetv Factor. The safety factor SF is given by the ratio of Y/X and 
the reliability can be specified by P(SF > I). Several safety factor measures 
and their usefulness in hydraulic engineering are discussed by Yen (1978). 
By taking logarithms of both sides of this inequality 

R = P(SF > I) = P[ln(SF) > 01 = P [In(Y/X) > 01 (8.1.12) 

If the resistance and loading are independent and log-normally distri- 
buted, then the risk can be expressed as 

(8.1.13) 

where CV are the coefficients of variations defined in Table 6.1.1. Apply- 
ing the safety-factor approach to the simpIe water distribution system 
would yield the same reliability as that of direct integration because the 
exact distribution of SF, in this example, is lognormal. 
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8.2 DYNAMIC RELIABILITY ANALYSES 

Dynamic or time-dependent reliability analyses consider repeated 
application of loading and, in addition, can consider the change of the 
resistance with time. The practical motivation behind considering time- 
dependent risk and reliability models is that, for hydraulic structures, 
there is uncertainty about the random loading and resistance variables 
with respect to time and loading cycles. 

Repeated loadings on a hydraulic structure are characterized by the 
frequency or time each load is applied and the distribution of time 
intervals between the loadings. For reliability analysis purposes, the 
uncertainty about the loading and resistance variables may be classified 
into three categories: deterministic, random-fixed, and random- 
independent (Kapur and Lamberson, 1977). For the deterministic case, the 
variables assume values that are exactly known a priori. For the random- 
fixed case, the randomness varies in time in a known manner. For the 
random-independent case, the variables are not only random but the suc- 
cessive values of the variables are statistically independent. 

The objective of the reliability computations for the dynamic 
models is to determine the reliability over n cycles or occurrences of load- 
ing R,,, i.e., the probability of not having a failure during any of the n 
cycles or loadings. 

Reliability computations for dynamic (time-dependent) analysis can 
be made for deterministic and random cycle times. The loading on water 
distribution systems can be deterministic under normal loading condi- 
tions and random under emergency loading conditions. The model for 
deterministic cycles will be developed which naturally leads to the model 
for random cycle times. For deterministically known cycle times, the reli- 
ability of the system after n cycles or occurrences of loading Rn can be 
expressed as 

Rn = P[( X1 < Y) n(X2  < Y) n . . . n (Xn < Y)] 

= P [ (max (xl, x2. . . x,, < Y 11 (8.2.1) 

By letting the maximum loading, XmX = max(X1, X2, ... Xd, the distribu- 
tion function of XmaW F,,(x), is 
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(8.2.2) 

provided that the loadings are independent and identically distributed, in 
which Fx(x) is the cumulative distribution of the loadings or hydrologic 
events. 

For the time-dependent reliability model with deterministic cycles, 
the reliability is expressed as 

(8.2.3) 
0 

Since the number of occurrences of loading is, in general, random, the 
reliability of the system under random loading cycles in the time interval 
[O,t] can be expressed as 

(8.2.4) 

where x,(t) = the probability of n loadings occurring in the time interval 
[O,t]. It is now evident that the case of deterministic cycle times is a special 
case of the preceding reliability equation for random cycle times. 

A Poisson distribution can be used to describe the probability of the 
number of events occurring in a given time interval, given as 

(8.2.5) 

in which a = the mean rate of occurrence of the loading which may be 
estimated from historical data. For example, if annual data are being used, 
a = l/Tr in which Tr is the return period. Other distributions may also be 
applicable but they lead to more complicated analysis. 

For the random independent loading and random fixed resistance, 
the time-dependent reliability can be expressed as 
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n 4  0 0 

For random-independen t loading and random-fixed resistance, R 
for one loading cycle is expressed by equation (8.1.3) and R(t) is expressed 
by equation (8.2.4). Thus, using the Poisson distribution, equation (8.2.5) 
the reliability is expressed as 

(8.2.7) 
rd) - -  

A computer program for computing risk-SF curves for the dynamic 
case has been developed by Tung and Mays (1980) which can consider var- 
ious distributions such as normal, log-normal, extremal type I, Pearson 
type 111, log-Pearson type III, and Weibull distribution loading. 
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