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CHAPTER6 

METHODS FOR COMPONENT RELIABILITY ANALYSIS 

by 

Larry W. Mays, Y. K. Tung and M. John Cullinane, Jr. 

6.1 PROBABILITY CONCEPTS 

6.1.1 Random Variable 

A random variable, X, is a variable described by a probability distri- 
bution. The distribution specifies the chance that an observation, x, of the 
variable will fall in a speafied range of X 

A set of observations, xi, XL ..., x, of the random variable, X, is called 
a sample. It i s  assumed that samples are drawn'from a population (gen- 
erally unknown) possessing constant statistical properties while the 
properties of a sample may vary from one sample to another. The possible 
range of variation of all of the samples which could be drawn from the 
population is called the sample space, and an event is a subset of the 
sample space. 

The probability of an event, P(A), is the chance that it will occur 
when an observation of the random variable is made. Probabilities of 
events can be estimated. If a sample of n observations has nA values in 
the range of event A, then the relative frequency of the occurrence of A is 
nA/n and, as the sample size is increased, the relative frequency becomes a 
progressively better estimate of the probability of the event, i.e., 

(6.1.1) 
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Such probabilities are called objective or posterior probabilities because 
they depend completely on observations of random variable. People are 
accustomed to estimating the chance that a future event will occur based 
on their judgement and experience. Such estimates are called subjective 
or prior probabilities. 

In case that there exists more than one interrelated event, joint 
probability and conditional probability may be used. Consider, for exam- 
ple, that a process involves two interdependent events, A and B. The 
probability of joint Occurrence of both events is denoted, P(A,B), and the 
probability of occurrence of event A conditioned on the occurrence of 
event B is denoted, P(A/B). The relation between joint probability and 
conditional probability is 

P(A,B) = P(A/B) * P(B) (6.1.2) 

Random variables can, in general, be discrete or continuous. The 
sample space of a discrete random variable can be finite or countably infi- 
nite. For a discrete random variable, the probability occurs discretely only 
at all elements in the sample space. While, for a continuous random 
variable, the probability Occurs continuously over the sample space. A 
listing of probability values or a mathematical relation that describe how 
probability is distributed over the different values of the random variable 
is called the probability density function (pdf). For a continuous random 
variable X, the probability distribution function value F(x) is tKe curnula- 
tive probability of occurrence of x, P(X S x), and it is given by the integral of 
the pdf, f(x), over the range X S x, i.e., 

X 

F(x) = P(X S X) = I f (h) dh 
-0 

where h is a dummy variable of integration. 

(6.1.3) 

Similar to that of joint probability and conditional probability, the 
terms joint pdf and conditional pdf are employed for cases when more 
than one random variable is involved. If there are two continuous ran- 
dom variables X and Y, the relation between joint pdf and conditional pdf 
ofXandYis 

(6.1.4) 
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where f(x/y) is the conditional pdf of X on Y, f(x,y) is the joint pdf of X and 
Y, and f(y) is the marginal pdf of Y obtained by integrating f(x,y) over the 
entire sample space of X. 

6.1.2 statistical ProDerties of a Random Variable 

A common way to characterize the statistical properties of a random 
variable is by examining its statistical moments. The r-th moment of a 
continuous random variable X about any point X = x, is defined as 

(6.1.5) 

In practice, the first three moments are used to describe the central ten- 
dency, variability, and asymmetry of the distribution of a random variable, 
The common descriptors for statistical properties of a random variable are 
the following. 

For measuring the central tendency, the expectation of a random 
variable X is defined as 

is frequently used. This expectation is known as the mean of a random 
variable. Other descriptors for central tendency of a random variable are 
shown in Table 6.1.1. 

For measuring the variability, the variance of a random variable 

(6.1.7) 

is frequently used. As can be seen, the variance is the second moment 
about the mean. The positive square root of variance is called the stan- 
dard deviation which is often used as the measure of the degree of 
uncertainty associated with a random variable. 
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T a b l e  6 . 1 . 1  Commonly U s e d  S t a t i e t i c a l  Properties o f  a 
Random Variablo w i t h  Thrir Sample E8thMtOr8 

Statistical Properties Sample Statistic 

1. Central Tendency 
Arithmetic Mean 

00 

P = E ( X )  = I x  f ( x )  dx 
-00 

Median 
x such that F(x) = 0.5 

Geometric mean 
Antilog E [log (X) ] 

2. Variability 
Variance 

2 2 
0 = E ( X - p )  

Standard Deviation 

Coefficient of Variation 

cv - a / p  

3. Symmetry 
Coefficient of Skewness 

E ( X - I d  
Y =  - 

0 3  

50th percentile value 
of data 

1 /n 

i= 1 

c v = s / x  

n 

i=1 

- 3  

C =  
-s 3 

(n-1) (11-2)s 
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The standard deviation has the same units as the random variable. 
To compare the degree of uncertainty of two random variables of different 
units and values, a nondimensionalized measure o/p, called the coeffi- 
cient of variation, is useful. 

To measure the asymmetry of the distribution function of a random 
variable, skew coefficient, y, defined as 

(6.1.8) 

is used. The skew coefficient is dimensionless and is related to the third 
central moment. The sign of the skew coefficient indicates the extent of 
symmetry of the probability distribution about its mean. If y = 0, the distri- 
bution is symmetric about its mean; y > 0, the distribution has a long tail to 
the right; y c 0, the distribution has a long tail to the left. 

In practice, statistical moments higher than three are rarely used 
because their accuracy decreases rapidly when estimated from the limited 
sample. Equations used to compute the sample estimates of the above sta- 
tistical properties are shown in Table 6.1.1. 

6.1.3 Fittinp a Probability Distribution 

A probability distribution is a function representing the frequency of 
occurrence of the value of a random variable. By fitting a distribution to a 
set of data, a great deal of the probabilistic information in the sample can 
be compactly summarized in the function and its associated parameters. 
Fitting distributions can be accomplished by the method of moments or 
the method of maximum likelihood. 

Between the two methods, the method of moments is more widely 
used primarily for its computational simplicity. The method relates the 
parameters in a probability distribution model to the statistical moments 
to which the parameter-moment relationships for commonly used distri- 
butions in reliability analysis are immediately available (see Table 6.1.2). 
In practice, the true mechanism that generates the observed random pro- 
cess is not entirely known. Therefore, to estimate the parameter values in 
a probability distribution model by the method of moments, sample 
moments are used. 
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6.2 RELIABILITY CONCEPTS 

The analysis of reliability and availability requires an understanding 
of some basic terms, which are defined in this section. The concepts 
represented by these terms will be used in later sections to quantify relia- 
bility and availability. 

6.2.1 Failure Densitv Functions 

The common thread in the analysis of reliability and availability is 
the selection of an appropriate failure density function. Failure density 
functions are used to model a variety of reliability-associated events 
including time to failure and time,to repair. Somh of the more common 
failure density functions used in reliability analysis and their associated 
unreliability, failure rate, and mean time to failure functions are presented 
in Table 6.1.2. 

6.2.2 Reliability 

The reliability R(t) of a component is defined as the probability that 
the component experiences no failures during the time interval (o,t) from 
time zero to time t, given that it is new or repaired at time zero. In other 
words, the reliability is the probability that the time to failure T exceeds t, 
or 

Q 

R(t) = f (t) dt 
t 

(6.2.1) 

where f(t) is the probability density function of the time to failure. Values 
for R(t) range between 0 and 1. The probability density function f(t) may be 
developed from equipment failure data, using various statistical methods. 
In many cases, a simple exponential distribution is found appropriate. 
Using the exponential distribution as an example, the reliability of a com- 
ponent in interval (o,t) is the area under the failure density curve to the 
right of point t (see Fig. 6.2.1). 

6.2.3 Unreliabilitv 

The unreliability F(t) of a component is defined as the probability 
that the component will fail by time t. Unreliability can be defined math- 
ematically as 
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Table 6.1.2 Probability Distributions Commonly Used 
In Reliability Analysis 

Probability Range Parameter-Moment 
Distribution Density Function Relations 

x p J 2 x  
where y - log 

Exponential 
- x x  

f ( x )  = X e  

x 

x 2 0  

x 2 0  

where r = Gamma function 

Weibull f(x) - a [y] t x 2 0  e 

E x t r e m e  1 - ( x - f J ) / a  - c- rx-b,la 
- - < x < -  Value f ( x )  = - e 

T y p e  I a 
B=CI,- 0 . 5 7 7 2 a  

82= ln ( l+Cf )  

1 1 - - 
V X  

a=fi q ~ x  E x t r e m e  1 - ( x - f J ) / a  - c- rx-b,la 
- - < x < -  Value f ( x )  = - e 

T y p e  I a 
B=CI,- 0 . 5 7 7 2 a  
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0 t 

Time 

Figurr 6 . 2 . 1  Exponential r e l i a b i l i t y  dmnsity function6 
with area8 rhowing F ( t )  and R ( t )  
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t 

F(t) = I f (t)dt = 1 - R(t) 
0 

(6.2.2) 

Graphically, the unreliability function F(t) is the area under the failure. 
density function to the left of point t (see Fig. 6.2.1) 

6.2.4 Failure Rate 

The failure rate m(t) is the probability that a component experiences 
a failure per unit of time t given that the component was operating at time 
zero and has survived to time t. Note that the failure rate m(t) is a condi- 
tional probability. The relationship of m(t) to f(t) and F(t) is given as 

(6.2.3) 

Sometimes, the failure rate is called hazard function. The quantity m(t)dt 
is the probability that a component fails during time (t, t + dt). Values for 
m(t)dt range from 0 to 1. Given the failure rate, the failure density func- 
tion and the component reliability can be obtained as equations (6.2.4) and 
(6.2.5), respectively (Kapur and Lamberson, 1977). 

r t  1 
(6.2.4) 

(6.2.5) 

6.3 TIME TO FAILURE ANALYSIS 

Since the time to failure of a component is not certain, it is always 
desirable to have some idea of the expected life of the component under 
investigation. Furthermore, for a repairable component, the time 
required to repair the failed component might also be uncertain. This sec- 
tion briefly describes and defines some of the useful terminology in the 
field of reliability theory that is relevant in the reliability assessment of 
water distribution systems. 
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6.3.1 Mean Time to Failure 

The mean time to failure (MTTF) is the expected value of the time 
to failure, stated mathematically as 

a 

= J tf(t)dt 
0 

which is expressed in hours. 

(6.3.1) 

6.3.2 Repa ir Densitv Function and Probabilitv of Repait 

Similar to the failure density function, the repair density function, 
g(t), describes the random characteristics of the time required to repair a 
failed component when failure occurs at time zero. The probability of 
repair, G(t), is the probability that the component repair is completed 
before time t, given that the component failed at time zero. Note that the 
repair process starts with a failure at time zero and ends at the completion 
of the repair at time t. 

6.3.3 Repair Rate 

Similar to the failure rate, the repair rate r(t) is the probability that 
the component is repaired per unit time t given that the component failed 
at time zero and is still not repaired at time t. The quantity r(t)dt is the 
probability that a component is repaired during time (t, t + dt) given that 
the components failure occurred at time t. The relation between repair 
rate, repair density and repair probability function is 

(6.3.2) 

Given a repair rate function r(t), the repair density function and the 
repair probability are, respectively, 

(6.3.3) 
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(6.3.4) 

6.3.4 Mean T ime to ReDair 

The mean time to repair (MITR) is the expected value of the time 
to repair a failed component. The MTTR is defined mathematically as 

(6.3.5) 

where g(t) is the probability density function for the repair time. The 
MTTR is expressed in hours. 

6.3.5 Mean Time Between Failures 

The mean time between failures (MTBF) is the expected value of 
the time between two consecutive failures. For a repairable component, 
the MTBF is defined mathematically as 

MTBF = MTI'F i- MTTR (6.3.6) 

6.3.6 Mean Time Between Repairs 

The mean time between repairs (MTBR) is the expected value of the 
time between two consecutive repairs and equals the MTBF. 

6.4 AVAILABILITY AND UNAVAILABILITY CONCEPTS 

The reliability of a component is a measure of the probability that 
the component would be continuously functional without interruption 
through the entire period,(o,t). This measure is appropriate if a compo- 
nent is nonrepairable and has to be discarded when the component fails. 
However, many of the components in a water distribution system are 
generally repairable and can be put back in service again. In that situation, 
a measure that has a broader meaning than that of the reliability is needed. 
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6.4.1 Availability 

The availability A(t) of a component is the probability that the com- 
ponent is in operating condition at time t, given that the component was 
as good as new at time zero. The reliability generally differs from the 
availability because reliability requires the continuation of the operational 
state over the whole interval (0,t). Subcomponents contribute to the 
availability A(t) but not to the reliability R(t) if the subcomponent that 
failed before time t is repaired and is then operational at time t. As a 
result, the availability A(t) is always larger than or equal to the reliability 
R(t), i.e., A(t) 2 R(t). For a nonrepairable component, it is operational at 
time t, if and only if, it has been operational to time t, i.e., A(t) = R(t). As 
shown in Fig. 6.4.1, the availability of a nonrepairable component 
decreases to zero as t becomes larger, whereas the availability of a repair- 
able component converges to a nonzero positive number. 

6.4.2 Unavailabilitv 

The unavailability U(t) at time t is the probability that a component 
is in the failed state at time t, given that it started in the operational state at 
time zero. In general, the U(t) is less than or equal to the unreliability F(t), 
and for nonrepairable components they are equal. Because a component is 
either in the operational state or in the failed state at time t; therefore, 

(6.4.1) 

6.4.3 Conditional Failure Intensity 

Conditional failure intensity, h(t), is the probability that a compo- 
nent fails per unit time at time t, given that it is in the operational state at 
time zero and is operational at time t. The quantity X(t)dt is the probability . 
that a component fails during a small time interval (t, t + dt) given that 
the component was as good as new at time zero and operational at time t. 
The quantity m(t)dt is the probability that a component fails during the 
time interval given that the component was repaired at time zero and has 
been operational to time t. The quantities h(t)dt and m(t)dt differ because 
m(t)dt assumes the continuation of the operational state to time t or that 
no failure occurred in the interval (O,t), whereas h(t)dt only assumes that 
the component is operational at time t, i.e., intermediate failures between 
time zero and time t are not important to the calculation. 
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TIME - 
Figure 6.4.1 Availability for Repairable and Nomepairable Components 
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k(t) # m(t) general case 

X(t) = m(t) nonrepairable component 

X(t) = m constant failure rate r 

(6.4.2) 

6.4.4 Unconditional Failure Intensitv 

The unconditional failure intensity, w(t), is the probability that a 
component fails per unit time at time t, given that it started in the opera- 
tional state at time zero. The unconditional failure intensity is obtained 
from the analysis of equipment failure data (Henley and Kumamoto, 
1981). 

6.4.5 Extxcted Number of Failures 

The expected number of failures W(t, t + dt), given that the compo- 
nent started in the operational state at time zero, is defined as 

t+dt 

W (t,t + dt) = I w(h)dh 
t 

(6.4.3) 

For a nonrepairable component, W(0,t) = F(t) and approa&es unity as t 
gets larger. For a repairable component, W(0,t) diverges to infinity as t 
becomes larger. Typical curves of W(0,t) are shown in Fig. 6.4.2. 

6.4.6 Conditional Repair Intensitv 

The conditional repair intensity, u(t), is the probability that a com- 
ponent is repaired per unit time at time t, given that it started in the 
operational state at time zero and failed at time t. The repair rate, r(t), and 
u(t) differ in a manner similar to the relation between Ut) and m(t). 

u(t) = r(t) = 0 

u(t) = r 

nonrepairable component 

constant repair rate r 

6.4.7 Ynconditional Repair Intensity 

(6.4.4) 

An unconditional repair intensity, v(t), is the probability that a 
component is repaired per unit time t, given that it started in the opera- 
tional state at time zero. 
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6.4.8 Expected Number of Repairs 

The expected number of repairs during (t, t + dt) given that the 
component started in the operational state at time zero is 

t+dt 

V(t,t + dt) = J v(t)dt 
t 

(6.4.5) 

For a nonrepairable component V(0,t) = 0 and for a repairable component, 
V(0,t) + - as t gets larger. Henley and Kumamoto (1981) developed a 
number of relationships between the various reliability (availability) 
parameters. The more significant of these are summarized in Table 6.4.1. 

6.5 EXAMPLE CALCUJATIOI'*5 OF AVAILABILITY AND 
UNAVAILABILITY 

Because of its relative simplicity for performing reliability compu- 
tations, the exponential distribution is probably the most widely used 
failure density function. Suppose the time to failure of a pump in a water 
distribution system is assumed to follow an exponential distribution with 
the parameter X = 0.0008/hr (7.0/yr). The failure density function of the 
pump can be expressed as 

f(t) = hekt t 2 0, X = 0.0008/hr (6.5.1) 

The parameter X in equation (6.5.1) is the failure rate m [refer to equation 
(6.2.3)J. The reliability of the pump at any time t > 0 is calculated, according 
to equation (6.2.1), as 

. 

m m 3 t  R(t) = IXe-"dt = e 
0 

(6.5.2) 

The reliability of the pump in the period of (0,100 hours) is R(t = 100) = 
exp (-0.08) = 0.9231, and the associated unreliability is F(t = 100 hrs) = 1 - R(t 
= 100 hrs) = 0.0769. 
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Table 6.4.1 Relations Among Probabilistic Parameters. , 

Repairable Non-rep aha ble 

v ( t )  = 0 

I 

* Adapted from R e l i a b i l i t y  E n g i n e e r i n g  and Risk Assessment, 

Pren t ice-Wal l r  Inc . ,  Englewood Cliffs, N. J., 1901, p. 187. 
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The MTTF of the pump , by equation (6.3.0, is 

oo 

= 1250hrs (6.5.3) 
1 

0.0008/hr MTI'F = I tke-"dt = 
0 

From equation (6.5.31, the M'ITF of a component having an exponential 
failure distribution of the form as shown by equation (6.5.1) is simply the 
inverse of the parameter X. 

Similarly, the mean time to repair of the pump can also be calcu- 
lated assuming an exponential repair density function with the parameter 
q = o.o2/hr as 

g(t) = qemqt, t > 0, q = 0.02/hr. 

so that 

(6.5.4) 

The MTlX can be estimated using an arithmetical mean of the time to 
repair data for various types of components. 

Using exponential failure and repair density functions, the resulting 
failure rate and repair rate, according to the definitions given previously, 
are constants equal to their respective parameters. For a constant failure 
rate and a constant repair rate the analysis of the whole process can be 
simplified to analytical solutions. Henley and Kumamoto (1981) use 
Laplace transforms to derive the unavailability as 

and the availability 

(6.5.6) 

(6.5.7) 



Substituting h = 0.0008 and q = 0.02 into equations (6.5.6) and (6.5.7), 
the corresponding unavailability and availability of the pump at time t = 
100 hrs are 0.0336 and 0.9667, respectively. 

3 

The steady state or stationary unavailability U(-) and the stationary 
availability A(-) for t approaches - are, respectively, 

MTTR - h U(00) = - - 
h + q  MTTF +MTTR 

and 
MTTF A(-) = = 

h + q  MTTF+M'ITR 

(6.5.8) 

(6.5.9) 

As time gets larger, the steady state (or stationary) unavailability and 
availability for the pump can be calculated, using M'ITF = 1250 hrs and 
M'ITR = 50 hrs, as U(-) = 0.03846 and A(-) = 0.96154, respectively. The 
following relation is also true 

6.6 TIME TO FAILURE ANALYSIS FOR PUMPS 

Time to failure analysis can be applied to the evaluation of pump- 
ing systems. For the sake of simplicity, the exponential distribution is 
used to illustrate a procedure for the time to failure analysis of a pump in 
which the pump failure data are lumped, i.e., failure data for the pump's 
individual subsystems are lumped into one parameter. A more detailed 
analysis in which the reliability and availability of the individual subsys- 
tem is presented in the following section. 

* 

Damelin, Shamir and Arad (1972) presented data for a pump indi- 
cating an M'ITF of 1,200 hr and a MTI'R of 50 hr for a 100-m3/hr-capacity 
pump. Using the exponential distribution for time to failure and time to 
repair, the values for failure rate X and repair rate q of 0.00083/hr (7.3/yr) 
and 0.02/hr (1 75.2/yr), respectively. Table 6.6.1 presents reliability, unreli- 
ability, and availability values for these values of X and q. 

The reliability of a system is the probability that the system experi- 
ences no failures during the time interval (0,t). The reliability curve for X 

181 , 



Table 6.6.1 

Reliabilitv, Unreliabilitv, Availability, and Unavailabilitv 
Data for h = 0.000833/hr and q = 0.02/hr 

Time Reliability Unreliabili ty Availability Unavailability 
(hr) 

0 

10 

20 

30 

40 

50 

100 

200 

300 

400 

500 

1000 

2000 

3000 

4000 

5000 

10000 

1. 

0.991 7 

0.9834 

0.9753 

0.9672 

0.9592 

0.9200 

0.8465 

0.7788 

0.7165 

0.6592 

0.4346 

0.1 889 

0.0821 

0.0357 

0.0155 

0.0002 

, 

0. 

0.0083 

0.0166 

0.0247 

0.0328 

0.0408 

0.0800 

0.1535 

0.2212 

0,2835 

0.3408 

0.5654 

0.81 11 

0.9179 

0.9643 

0.9845 

0.9998 

1. 

0.9925 

0.9637 

0.9814 

0.9774 

0.9741 

0.9650 

0.9606 

0.9601 

0.9600* 

0.9600 

0.9600 

0.9600 

0.9600 

0.9600 

0.9600 

0.9600 

0. 

0.0075 

0.0363 

0.0186 

0.0226 

0.0259 

0.0350 

0.0394 

0.0399 

0.0400* 

0.0400 

0.0400 

0.0400 

0.0400 

0.0400 

0.0400 

0.0400 

*Point of stationary availability and unavailability. 
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= 0.00083 is shown in Fig. 6.6.1. The availability of a system is the proba- 
bility that the system is operational at time t. For repairable systems, 
availability is a more appropriate measure of the probability that a system 
will be operational. Availability is affected by both the MTTF and M"lTR. 
Figure 6.6.2 presents availability curves for h = 0.00083/hr and q = 0.02, 
0.01, and 0.005/hr. 

For repairable systems, the availability is always greater than or 
equal to the reliability. This concept is illustrated graphically in Fig. 6.6.3 
for h = 0.0008/hr and q = O.Ol/hr. For repairable systems, as t approaches 
infinity, the availability approaches a constant value greater than 0 
(stationary availability). A comparison is of the effect of both q and h on 
the stationary availability and unavailability (Fig. 6.6.4). 

6.7 TIME TO FAILURE ANALYSIS FOR WATER DISTRIBUTION 
PIPING 

Regression equations can be developed for the break rates of water 
mains using data from specific water distribution systems. As an example, 
Walski and Pelliccia (1982) developed break rate regression equations (Fig. 
6.7.1) for the Binghamton, New York system. These equations are 

Pit Cast Iron: 0.0270 t N(t) = 0.02577 e 

0.0137t Sandspun Cast Iron: N(t) = 0.0627 e 

(6.7.1 a) 

(6.7.1 b) 

where N(t) = break rate in breaks/mile/year and t = age of pipe years. 

Walski and Pelliccia (1982) also developed a regression equation for 
the time required to repair pipe breaks, 

0.285 tr = 65d 

where tr= time to repair, hr, and d = pipe diameter, in. 

(6.7.2) 

Techniques for evaluating the reliability and availability of water 
mains can best be illustrated through use of a simple example. Consider a 
5-mile water main of sandspun cast iron pipe. The break rate per year 
(failure rate) can be calculated as follows 
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(6.7.3) 0.0137 t r (t) = 5 miles x N (t) = 5 x 0.0627 e = 0.3185e 

The reliability for the newly installed 5-mile water main can be 
computed using equations (6.7.3) and (6.2.5) as follows 

R(t) = exp 

0 1 

R(t) = exp [ 23.25 , ( 1 - e  0.0137t)l 

(6.7.4) 

(6.7.5) 

The failure density f(t) can be calculated, using equation (6.2.4), as 

f(t) = 0.3185e 0*0137t .“p[ 23.25 (1 - eo*0137t)] (6.7.6) 

In a similar manner, the reliability based on the failure rate per mile can 
be calculated to be 

R(t) = e x p [  4.577( 1 - e0*0317t)] (6.7.7) 

Reliability curves for various mission times for equations (6.7.5) and (6.7.7) 
are plotted in Fig. 6.7.2. 

Determining the availability of a water main is substantially more . 
difficult because the failure rate increases as pipe age increases. Numerical 
integration or Laplace transform methods may be used to compute avail- 
ability. However, a simplified procedure can be used to evaluate water 
main availability if a constant failure rate is assumed. For example, the 
average failure rate for the above 5-mile pipe link can be estimated from 
Fig. 6.7.3 to be 0.48. Assuming an M’ITR of 16.460 hr (0.69 days or 0.0019 
yrs), the availability can be calculated as follows 

= 0.999 2.08 - MTTF 
MTTF + MTTR - 2.08 + 0.0019 A(-) = (6.7.8) 

An availability of 0.999 indicates that, on average, the main will be out of 
service approximately 9 hrs. per year. 
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Figure 6.7.2 Reliability Curves for Pipe Evaluation Example 
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Figure 6.7.3 Failure Rate Curve for Sandspun Cast Iron Pipe 
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