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ABSTRACT 

Tung, Y.K. and Hathhom, W.E., 1989. Determination of the critical locations in a stochastic 
stream environment. Ecol. Modelling, 45: 43-61. 

Due to the existence of many uncertainties in a stream environment, the determination of 
the critical location is not a trivial task. The problem is further complicated by the lack of 
universally acceptable definition for the critical location in a stochastic stream environment. 
T h s  paper discusses four potentially usable criteria for defining the critical location in a 
stochastic stream environment. Furthermore, techniques are developed to find these critical 
locations. A numerical experimentation is performed to investigate their differences. 

INTRODUCTION 

In a deterministic stream system with dissolved oxygen (DO) problems, 
the critical point represents a unique location at which the DO concentra- 
tion is at its minimum. From a regulatory viewpoint, it is this critical 
location which would present the greatest threat to violate the water quality 
standards. Therefore, to appropriately protect the stream environment from 
excessive DO depletion, the ability to determine the critical location de- 
serves great attention. 

Moreover, great potential savings in water quality monitoring costs can be 
achieved if the critical location can be identified or somehow established 
within a narrow section of the stream system. Knowing the whereabout of 
the critical location within stream reach, a more intensive monitoring effort 
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could be given to locations within this region rather than to those outside 
the region which present a lesser threat to violate water quality standards. 
Consequently, more effective monitoring programs and cost saving would be 
possible. 

Finding the critical location within a reach for stream system describable 
by deterministic water quality models is generally straight forward. How- 
ever, the task to identify the critical location in a stochastic stream environ- 
ment is no longer a simple deterministic calculation. There have been some 
researches made in attempting to estimate the uncertainty in calculating the 
DO concentration and to derive the probability distribution for the DO 
concentration. However, to the author’s knowledge, no article has been 
published addressing the issue on how one could locate the critical point in a 
stochastic stream environment. This is perhaps because no definition is 
given to what consititutes a critical location in a stochastic stream environ- 
ment. The intent of this paper is to discuss four potentially usable forms of 
the critical location in a stochastic stream environment and to present 
methodologies by which such locations can be determined. The four critical 
locations examined in this study are: 
(1) the location with the lowest expected DO concentration; 
(2) the location at which the variance of deficit is the largest; 
(3) the location with the highest probability of violating the water quality 
standards; and 
(4) the location most likely to be critical. 

Detailed discussions of the significance and rationale of these four critical 
locations will be given later. 

BASIC WATER QUALITY MODEL 

In determining the critical location, some types of water quality model 
describing the interaction between the physical and biological processes 
occurring within the stream are generally employed. To demonstrate the 
main theme of this paper, the well-known Streeter-Phelps equation (Streeter 
and Phelps, 1925) is adopted herein. The following mathematics of 
Streeter-Phelps model can be found in many water quality textbook (e.g. 
Rich, 1973; Peavy et al., 1985). They are briefly presented to preserve the 
continuity of the papeI 

In differential form, 
given as: 

and to define notations. 
the mass balance equation for the DO deficit, D, is 

d D  
d t  - = KdL - K,D 
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The steady-state solution to equation (l), replacing t by x / U ,  with ap- 
propriate initial condition is: 

where Kd is the deoxygenation coefficient (day-'), K ,  is the 
coefficient (day-'), x is the distance downstream from the 

reaera tion 
source of 

biochemical oxygen demand (BOD) in miles (1 mile = 1609 m), U is the 
average stream velocity in miles per day, D, is the DO deficit concentration 
(mg/L) at a distance x downstream of discharge point, Do and Lo are the 
initial DO deficit and instream BOD concentrations (both in mg/L), respec- 
tively. 

The concentration of DO at any downstream location is computed as: 

C, = C, - D, (3) 

in whch C, is the saturated DO concentration. The downstream location, Xc 
(miles), where the maximum DO deficit occurs can be found by differentiat- 

DO Saturation 

x c 

X 

Fig. 1. Typical dissolved oxygen sag curve. 
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ing equation (2) with respect to x and solving for the value of x where the 
derivative is equal to zero: 

The point Xc herein is referred to as the ‘critical location’. 
Since its conception, the Streeter-Phelps equation has been modified to 

account for discrepancies between analytical estimations, computed from 
equation (2), and actual data collected in the field. These discrepancies have 
arises as a result of the exclusion of a number of possible oxygen sources 
and sinks in the original equation. Dobbins (1964) pointed out that there are 
eight other possible factors which could contribute to in-stream BOD and 
DO variations. Several studies have been conducted in which one or more of 
the processes have been included in the model formulation in attempting to 
improve model predictability (Camp, 1963; Dobbins, 1964; Hornberger, 

I I 

‘1. Distance *2 

Fig. 2. Schematic diagram of the probability density function for the DO deficit. 
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1980; Krenkel and Novotny, 1980). However, to simplify the algebraic 
manipulations, the original Streeter-Phelps equation will be utilized 
throughout this paper. A typical DO profile for a single reach under a given 
set of stream water quality parameters is shown in Fig. 1. 

UNCERTAINTY IN THE WATER QUALITY MODEL 

The basic water quality model presented previously is a function of 
several stream parameters, such as the reaeration and deoxygenation coeffi- 
cients, the average stream velocity, etc. In reality, the stream environment to 
which this model is applied is extremely variable, both spatially and tempor- 
ally. The stream system represents a dynamic environment in which the 
physical and biological characteristics are constantly changing. Given such 
facts, it is quite obvious that the parameters utilized in the water quality 
model cannot be quantified or measured with exact certainty. The inherent 
random nature of the system leads to uncertainties in estimating model 
parameters . 

Possible DO 

Dos 1 

Distance 
Fig. 3. Schematic diagram of the probability density function for the cntical location. 
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The uncertainty associated with equations (2) and (4), can basically be 
divided into three categories: inherent, parameter, and model uncertainties. 
Inherent uncertainties are associated with the natural randomness exhibited 
by the physical and biological processes. This inherent uncertainty is the 
product of temporal and spatial variations, for example, in-stream biological 
composition (Church11 et al., 1962; Bansal, 1973; Wright and McDonnell, 
1979). In addition, the availability of limited sample data describing the 
characteristics of the stream system results in insufficient information to 
estimate the model parameters with accuracy. The model uncertainty araises 
from the use of a simplified and idealized model in describing a rather 
complicated real-life system behavior. 

In light of the existence of uncertainties, the stochastic nature of the 
stream system should be included in the model formulation if accurate 
assessment of DO characteristics at any location in the stream and other 
related questions are to be attained. The general approach for describing 
these uncertainties has been to appropriately assign statistical properties, 
probability distributions, and correlations to each of the parameters in 
equations (2) and (4). Schematic diagrams for illustrating uncertainty fea- 
tures of DO deficit and the critical location are shown, respectively, in Figs. 
2 and 3. 

CRITICAL LOCATION IN A STOCHASTIC STREAM ENVIRONMENT 

As discussed above, the stream environment may be regarded as inher- 
ently random by nature, and as such, it should be treated accordingly in the 
modeling of its components. That is, the model parameters in equation (2) 
for computing the DO deficit and in equation (4) for computing the critical 
location should be treated as random variables. It has been shown by Tung 
and Hathhorn (1988a) that the uncertainty associated with the critical 
location computer by equation (4) under such stochastic conditions is quite 
significant. 

In order to provide an effective means of monitoring the effects of waste 
discharge on the DO profile within any reach, the critical location in a 
stochastic stream environment must be defined. In t h s  paper, the potentially 
useful critical locations are defined according to the following four criteria: 
(1) the location determined by equation (4) using the mean values of water 
quality parameters, x:’); 
(2) the location at which the variance of the DO deficit is the largest, X,(’); 
(3) the location where the probability of violating a specified DO standard 
is maximum, Xd3); and 
(4) the location ‘most likely’ to be critical, XF), according to the probability 
distribution assumed for the critical location computed by equation (4). 
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The significance and rationales of each of these criteria in defining the 
critical location in a stochastic stream environment are discussed in the 
following subsections : 

Critical location determined by using the mean-valued water quality parame- 
ters. Basically, this is a deterministic approach for finding the critical 
location in which the mean values of the water quality parameters are 
utilized in (4). The critical location so determined can be regarded, ap- 
proximately, as the averaged critical location. 

Critical location associated with the maximum variance of do deficit. Refer- 
ring to the DO profile shown in Fig. 1, one should realize that such a figure 
exists only when a stream environment behaves deterministically. In a 
stochastic system, however, the DO deficit at any point in the stream system 
is no longer a fixed, unique value (see Fig. 2). The value of the DO deficit at 
any location is uncertain. 

The location with a maximum variance of the DO deficit is where the 
uncertainty of DO deficit is the largest. The rationale for considering such a 
location as the critical point is based on the argument that this point may 
possess significant potential for violating a specified DO standard. Although 
the point of minimum expected DO might be estimated, it may not neces- 
sarily represent a point posing the greatest threat to water quality violation 
in terms of its frequency. For instance, consider a point upstream and 
downstream of the location with the minimum expected DO. If the variance 
of the DO deficit at either of these points is larger than that at the point of 
the minimum expected DO, these other points may pose a greater threat for 
possible violations of DO standard. 

Several researches have already attempted to analyze the variance associ- 
ated with the DO profile in a stochastic stream environment. In review of 
those articles, conflicting results have been reported. Thayer and Krutchkoff 
(1967) and Padgett (1978) have reported that the location of the maximum 
DO variance coincides with the point of minimum expected DO. On the 
other hand, Burges and Lettenmaier (1975) and Esen and Rathbun (1976) 
have contradicted such finding and have reported that the point of the 
maximum variance is located at a downstream distance approximately twice 
that of the location with the minimum expected DO. 

Although its true location remains unresolved, the significance of know- 
ing the point with the largest variance in DO deficit prediction is clear. This 
point represents the location in the stream system where the uncertainty in 
DO prediction is the largest. 
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Critical location associated with the maximum probability of violating water 
quality standard. The location associated with the maximum probability of 
violating a specified DO standard represents the point having the hghest 
frequency causing water quality transgression. If one assumes the notion 
that damage to aquatic biota would occur when the DO standard is violated. 
It is this location, amongst all others in the stream environment, at which 
the potential for damaging aquatic biota is the greatest. Therefore; the 
knowledge of the location associated with the maximum probability of 
violating a specifying DO standard can play an important role in the overall 
management of stream water quality. 

Location most likely to be critical. Acknowledging the existence of uncer- 
tainties in the stream environment, the computation of the critical location, 
using equation (4), is no longer a deterministic exercise. Instead, the critical 
location associated with the maximum DO deficit is a random variable 
characterized by its associated probability distribution (see Fig. 3). 

Based on the recent study, Tung and Hathhorn (1988b) have examined 
the appropriatenes of some commonly used univariate distributions includ- 
ing normal, lognormal, gamma, and Weibull for the critical location com- 
puted by equation (4). It was observed that a two-parameter gamma 
distribution provides the best fit to the simulated results in the majority of 
the cases investigated in which water quality parameters were assigned with 
various combinations of unimodal distributions. 

As with any unimodal distribution, the value most likely to occur is 
commonly known as the mode. Thus, when considering the distribution of 
the critical location, it is this point, amongst all others, that the maximum 
DO deficit occurs most frequently. 

DETERMINATION OF THE CRITICAL LOCATIONS 

With the exception of finding the critical location using the mean values 
of the water quality parameters, each of the remaining criteria seeks to find 
the location (the sole decision variable) associated with the maximum value 
of their respective functions (i.e., the variance of the DO deficit, the 
probability of violating a specified DO standards, and the ordinate of 
probability density function of the critical location). In theory, each of these 
locations could be determined analytically by the principle of calculus of 
extremes. However, this would require the specification of the corresponding 
objective functions and their first derivatives. For the problem considered 
herein, such procedures are analytically formidable and impractical. Fur- 
thermore, the nature of the problem is a univariate optimization problem 
with the location as the only decision variable. As an alternative to the 
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analytical approach for solving the maximization of these criteria, the 
Fibonacci search technique (Beveridge and Schechter, 1970; Sivazlian and 
Stanfel, 1974) which requires no information about the derivatives was 
chosen to perform the tasks of maximization. Naturally, other sequential 
optimum seeking algorithms such as the golden section method can be 
applied. 

Finding the critical location associated with the maximum variance of DO 
deficit. To compute this location, an expression for the variance of the DO 
deficit as function of the distance from the discharge point must be derived. 
Approximation of the variance of the DO deficit can be made by using 
first-order analysis (Benjamin and Cornell, 1970). Considering the correla- 
tion between the water quality parameters K, and U, the expression 
approximating the variance of DO deficit can be obtained as: 

in which Var[X] represents statistical variance of random variable X, 
Cov[ X, Y ]  denotes the covariance between two correlated random variables 
X and Y, and P; represents the first-order partial derivative of the DO 
deficit with respect to water quality parameter Y which is a function of the 
decision variable x .  Expressions for the partial derivatives P; based on 
equation (2) can be found in Chadderton et al. (1982) and Hathhom and 
Tung (1987). For this case, equation ( 5 )  is a univariate function of the 
downstream location, x ,  with the values of the statistical properties of the 
stream parameters (K,,  K,, U, Lo, Do) being known. Thus, the essence of 
this approach is to find a critical location such that the variance of the DO 
deficit, given by equation (5 ) ,  is maximized. Applying the Fibonacci search 
technique with equation ( 5 )  as the objective function, the location at which 
the variance of the DO deficit is maximum can be found. 

Some investigators have considered a positive correlation between K ,  and 
K, in their statistical analysis of water quality modeling (Esen and Rathbun, 
1976; Padgett, 1978). Although statistical analysis of a given field data set 
may reveal a correlation between these parameters, it does not necessarily 
imply such a correlation has any meaningful physical representation of the 
system behavior. It is known that K ,  is a function of the physical character- 
istics of stream, while & is characterized by the biological composition of 
the waste discharge and stream environment. It  is the opinion of the authors 
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that the correlation between K, and K ,  is spurious and, thus, is not 
considered in the study. 

Finding the location associated with the maximum probability of violating DO 
standard . Although the results obtained in the recent Monte Carlo simula- 
tion study (Tung and Hathhorn, 1988'0) support the use of a two-parameter 
log-normal distribution to describe the random DO deficit at any down- 
stream location, several probability distributions were used in this study for 
the purpose of examining the sensitivity of the critical location of this kind 
the various distribution utilized. Specifically, the DO deficit was assumed to 
follow one of the four distributions: normal, lognormal, gamma, and Edge- 
worth asymptotic expansion. 

Evaluating the probability of violating a specified DO standard at any 
downstream location x by using normal, lognormal, or gamma probability 
models is straightforward given that the first two statistical moments of D, 
are known or estimated. In t h s  study, statistical moments of D, are 
estimated by first order analysis (Benjamin and Cornell, 1970). In addition, 
Edgeworth asymptotic expansion was also employed to provide a means for 
computing the probability of a given quantile without having to assume or 
adopt any parametric distribution of any specific form (Abramowitz and 
Stegun, 1972; Kendall et al., 1987). This, however, requires the knowledge of 
higher order moments of the random variable under investigation. By 
estimating the moments of the DO deficit up to the fourth order using 
first-order analysis (Hathhorn and Tung, 1987), Edgeworth asymptotic 
expansion was truncated to give the following approximation: 

F(  W )  @( W )  - [ Tx (P'2'( ~ ) / 6 ]  + [ 17; 9'3'( ~ ) / 2 4 ]  + [ 2': 4(5)( ~ ) / 7 2 ]  

where F( w ) is the cumulative probability for the standardized random 
variable W, @( w )  is the cumulative standard normal probability; Tx and 77: 
are the skewness and coefficient of excess (kurtosis minus 3) of the random 
variable X ,  respectively; and & ) ( w )  is the r th  derivative of the standard 
normal probability density function, +( w ) ,  whose expression can be found 
in Abramowitz and Stegun (1972, p. 934). 

In the present study the random variable under study is the DO deficit at 
any downstream location x from the discharge point. The standardized Do 
deficit, W, can be obtained as: 

in which Var( D,) is the variance of the DO deficit at any downstream 
location x from the discharge point which can be estimated by equation (5). 
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E(Dx)  is the expectation of DO deficit which, similarly by the first-order 
analysis, can be estimated as: 

+ + ~ a r [  U ]  P;‘,~ 

in whch Pgy = a2Dx/aX aY, a second-order partial derivative of Dy with 
respect to water quality parameters X and Y. The probability of violating 
DO standard at any location x can be found as: 

in which 

where Dstd is the allowable DO deficit. 
Based on t h s  criterion the task is to determine the critical location, Xi3) ,  

at which the probability of violating the required DO standard, Cstd, is 
maximum. To do this, appropriate probability distributions for the DO 
deficit at the downstream location x must be assumed along with the 
statistical properties of the stream parameters (K, ,  K,, U,  Lo, and Do). 
With equation (11) as the objective function, the critical location, Xi3) ,  for 
each of the distribution assumed for the DO deficit was found using the 
Fibonacci search technique. 

Finding the location most likely to be critical. Again, several distributions 
were assumed for the critical location computed by equation (4): normal, 
lognormal, gamma, and Edgeworth asymptotic expansion. Although the 
recent study (Tung and Hathhorn, 1988a) found that a two-parameter 
gamma distribution best describes the random behavior of the critical 
location associated with the maximum DO deficit, other probability models 
were considered with the intent to examine the sensitivity of its determina- 
tion with respect to the use of different distributions. 

As pointed out earlier, the most likely point to be critical, Xi4’, is the 
mode of the distribution assumed for the critical location computed by 
equation (4). Thus to find the mode for each of the parametric distributions 
considered, formula relating the mode and the first two statistical moments 
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from Pate1 et al. (1976) and Haan (1977) can be utilized. The mean and 
variance of X ,  can be estimated by first-order analysis as: 

- -  
E ( x , )  =xC(K,, K , ,  u, LO, 50) (11) 

Var( X )  = FifVar( K d )  + Fia2Var( K,) + Fi2Var( U )  

+ FL,:Var( Lo)  + FLo2Var( Do) (12) 

in which F; = 3 XJaY. Expression for the first-order partial derivatives of 
X, with respect to water quality parameter were derived by Hathhorn and 
Tung (1987). 

Finally, the mode using Edgeworth asymptotic expansion can be found by 
locating the point at which the ordinate of the density function of Xc is 
maximum. This can be done using Fibonacci search technique with the 
following objective function: 

where f( y )  is the probability density function for the standardized critical 
location using Edgeworth expansion (Abramowitz and Stegun, 1972), Tx 
and & are skew and excess coefficients of X,, respectively, and thei; 
expressions approximated by first-order analysis were derived by Hathhorn 
and Tung (1987); Y is the standardized X ,  defined as: 

NUMERICAL EXAMPLE AND DISCUSSIONS OF RESULTS 

In order to compute the critical locations based on each of the four 
criteria, knowledge of the mean, standard deviation (or variance), skewness, 
and kurtosis of the stream water parameters ( K d ,  K,, U, Lo, Do) is 
required. The mean and standard deviation of the model parameters used in 
the numerical study based on data from published articles Burges and 
Lettermair, 1975; Hornberger, 1980; Chadderton et al., 1982) are shown in 
Table 1. To examine the sensitivity of the statistical moments on the critical 
location determination, 15 cases of various skewness, Kurtosis, and correla- 
tion (between K a  and U) listed in Table 2, along with the mean and 
standard deviation in Table 1, were considered. The critical locations in a 
stochastic stream environment using each of the four criteria are computed 
for all the 15 cases. The results of the numerical computations displayed in 
Tables 3 through 6. 
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TABLE 1 
Mean and standard deviation of water quality parameters used 

, 
Model parameter Mean Standard unit 

deviation 
K d  0.35 0.10 day-’ 
Ka 0.70 0.20 day-’ 
U 10.00 3.00 miles/day 
LO 18.00 5 .00 mg/L 
DO 1 .oo 0.30 mg/L 

In addition to finding the critical locations, X;’)(i = 1, 2, 3, 4) using each 
of the four criteria, the probabilities of violating the minimum DO standard 
of 4 mg/l at the four types of critical locations were calculated based on the 
assumption of a normal, log-normal, and gamma distribution as well as the 
Edgeworth approximation for the DO deficit. This information is important 
in assessing the risk of potential damaging effects to be suffered by the 
stream environment under various distribution assumptions for the DO 
deficit. 

It should be pointed out that the probability evaluation using the Edge- 
worth expansion is dependent on the skewness and kurtosis of the DO 
deficit, which in turn are dependent on the skewness of kurtosis of each 
water quality parameter. Thus, a unique value for the critical locations 
defined by the maximum probability and the most likely criteria (see Tables 
5 and 6)  was obtained for each of the 15 cases presented in Table 1. Also, 
the probability of violation computed by the Edgeworth expansion would be 
different for all 15 cases. While using the three parametric distributions, the 
resulting critical locations and the associated probability of violation would 
depend only on the first two statistical moments, i.e. the mean and variance, 
whtch, in turn, was dependend on the inclusion of the correlation between 
K, and U in the first-order analysis. To shorten the tables, the critical 
locations and associated probability of violating the minimum DO standard 
using Edgeworth expansion for the distribution of DO deficit were grouped 
according to those cases which consider correlation between K, and U and 
those which do not. The range of values for each case computed by 
Edgeworth expansion is presented in the last columns of Tables 3-6. 

Examining the results obtained for the critical locations, it is not that the 
calculation of the critical location using the first criteria is independent of 
the correlation between parameters K, and U. This is because, when 
analyzing equation (4), only the mean values of water quality parameters 
were used in the computation. Correlations between model parameters were 
not used. The same reason can be applied to explain the results shown in 



TABLE 2 

Combinations of skew, kurtosis, and correlations considered 

Case P W a ,  U )  K d  Ki3 U Lo DO 
Y K Y K Y K Y K Y K No. 

1 0.0 0.0 3.0 0.0 3.0 0.0 3 -0 0.0 3.0 0.0 3 .O 
2 0.8 0.0 3 .O 0.0 3 .O 0.0 3.0 0.0 3.0 0.0 3.0 
3 0.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0 
4 0.0 0.0 4.0 0.0 4.0 0.0 4.0 0.0 4.0 0.0 4.0 
6 0.0 - 0.5 2.0 - 0.5 2.0 - 0.5 2.0 - 0.5 2.0 - 0.5 2.0 
6 0.0 - 0.5 3.0 - 0.5 3 -0 - 0.5 3.0 - 0.5 3 .O - 0.5 3.0 
7 0.0 - 0.5 4.0 - 0.5 4.0 - 0.5 4.0 - 0.5 4.0 - 0.5 4.0 
8 0,8 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2 .o 
9 0.8 0.0 4.0 0.0 4.0 0.0 4.0 0.0 4.0 0.0 4.0 

10 0.8 0.5 2.0 0.5 2.0 0.5 0.2 0.5 2.0 0.5 2.0 
11 0.8 0.5 3.0 0.5 3.0 0.5 3 .O 0.5 3 -0 0.5 3 .O 
12 0.8 0.5 4.0 0.5 4.0 0.5 4.0 0.5 4.0 0.5 4.0 
13 0.8 - 0.5 2 .o - 0.5 2.0 - 0.5 2.0 - 0.5 2.0 - 0.5 2.0 
14 0.8 - 0.5 3.0 - 0.5 3.0 - 0.5 3.0 - 0.5 2 .o - 0.5 3.0 
15 0.8 - 0.5 4.0 - 0.5 4.0 - 0.5 4.0 - 0.5 4.0 - 0.5 4.0 

y, skew coefficient. 
K ,  kurtosis. 
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TABLE 3 
Critical locations found using mean valued water quality parameters 

p(Ka, u> Xi1) Probability of violating 4 mg/L DO standard 
Normal Lognormal Gamma Edgeworth a 

0.0 18.2 0.284 0.242 0.258 0.284-0.301 
0.8 18.2 0.317 0.269 0.278 0.302-0.335 . 

These values represent the range of probabilities for all cases in Table 2. 

TABLE 4 
Critical locations associated with maximum variance of DO deficit 

p(Ka,  u> xi2’ Probability of violating 4 mg/L DO standard 

Normal Lognormal Gamma Edgeworth a 

0.0 31.9 0.106 0.105 0.112 0.106-0.111 
0.8 15.5 0.333 0.283 0.301 0.325-0.357 

~ ~~ 

These values represent the range of probabilities for all cases in Table 2. 

TABLE 5 

Critical locations associated with the maximum probability of violating the minimum do 
standard (4 mg/L) 

P W , ,  U) Critical location, x,(~) (miles) 
Normal Log-Normal Gamma Edgeworth 

0.0 15.81 a 15.65 15.71 15.67-1 5.81 
(0.294) (0.2 5 0) (0.267) (0.294-0.312) 

0.8 15.42 15.42 15.42 14.97-15.07 
(0.3 3 3) (0.283) (0.301) (0.326-0.358) 

a Critical location (miles). 
Probability of violation associated with XA3). 

TABLE 6 

Locations most likely to be critical 

P ( K a ,  u )  Critical location, x C ( ~ )  (miles) 
Normal Log-Normal Gamma Edgeworth 

0.0 18.17 a 15.05 15.74 18.17-19.1 1 
(0.26 7) (0.275-0.293) (0.284) (0.250) 

0.8 18.17 15.05 15.74 17.23-19.11 
(0.317) (0.282) (0.301) (0.309-0.328) 

* Critical location (miles). 
Probability of violation association with Xi3).  
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Table 6 for the critical location determined on the basis of the most likely 
criterion using normal, lognormal, and gamma distributions. 

Interestingly, the critical locations associated with the maximum variance 
of the DO deficit, when K ,  and U were assumed independent (see Table 4), 
are about twice as large as the critical locations computed using the 
remaining criteria. These results agree closely with those obtained by Burges 
and Lettenmaier (1975) and Esen and Rathbun (1976). However, when 
p(  K,, U) = 0.8, the critical location associated with maximum variance is 
close to those critical locations computed by the other criteria. This result is 
consistent with those obtained by Thayer and Krutchkoff (1967) and Padgett 
(1978). 

In Table 5, the values of the critical location, XL3), associated with the 
maximum probability of violating the minimum DO standard based on the 
various probability distribution are presented. One can see that the dif- 
ferences in critical locations computed under the various distributional 
assumptions for the DO deficit concentration and the various combinations 
of skewness and kurtosis in Edgeworth expansion seem relatively small for a 
given correlation coefficient between K ,  and U. However, it should be 
noted that these distances are in terms of miles; small changes, such as two- 
or three-tenths, actually represent several hundreds, possible thousands of 
feet difference between these values. This might, in fact, become a signifi- 
cant factor in establishing an adequate monitoring system to control water 
quality conditions at the critical location, while attempting to simulta- 
neously reduce the cost of the instrumentation and labor required to 
accomplish these tasks. 

In Table 6 ,  the critical locations based on most likely criterion, Xi4), are 
displayed. Since the correlation between K ,  and U is not considered in 
first-order uncertainty analysis of equation (4), and hence, it has no effect on 
the outcome in computing the most likely critical point ‘for the three 
parametric distributions considered. In contrast, the critical locations found 
using Edgeworth expansion showed larger differences for the variety of the 
combinations of skewness and kurtosis selected. Among the distributions 
considered, the resulting critical locations Xi4) also differ quite significantly. 

However, the associated probabilities of violation are relatively insensitive 
to the distribution of XL4) as well as the skewness and kurtosis of the water 
quality parameters. 

It is observed from Tables 3-6 that the probability of violation increases 
when a positive correlation of 0.8 between K, and U is considered. To 
explain these results, refer to equations (6)  and (9) for computing the 
expectation and variance of the DO deficit, respectively. When considering a 
positive correlation between K ,  and U, the expectation and variance for the 
DO deficit at a given location are increased. Thus, the magnitude of 
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standardized DO deficit 
probability of violation 
locations X,(2) and Xi3)  

computed by equation (10) is reduced. Hence, the 
is increased. It is also observed that the critical 
shown in Tables 4 and 5 are closer to the waste 

discharge point for the case when a positive correlation between K, and U 
is considered. 

From Tables 3-6, it is revealed that, for a given critical location criterion, 
the probability of violation is relatively insensitive to changes in the skew- 
ness (-0.5 to 0.5) and kurtosis (2.0 to 4.0) used for the water quality 
parameter in this study. Furthermore, the probability of violation is also 
relatively insensitive to change in probability distributions assumed for the 
DO deficit concentration. However, the consideration of a positive correla- 
tion between model parameters K, and U has a more pronounced impact 
on evaluating the probability of violation. 

CONCLUSION 

This paper has indicated four potentially useable criteria for determining 
the critical locations in a stochastic stream environment. Amongst the four, 
it would seem that the critical location determined by the criteria of the 
maximum probability of violating a minimum water quality standard or the 
most likely point to be critical would be the most appealing from a practical 
viewpoint. Observing that the critical locations determined by the most 
likely criterion were quite sensitive to the distribution of Xc computed by 
equation (4), more effort should be given in attempting to identify an 
accurate distribution for X,  if such a criterion is to be used. It should be 
pointed out that in a limited study made by Tung and Hathhorn (1988a), a 
two-parameter gamma distribution, in a majority of the cases considered 
therein, best described the random characteristics of X,. 

Although Xi1) differs from XL3) by more than 2 miles, its simplicity in 
computation as compared with other criteria would make its use competitive 
in comparison with the other criteria presented here. Besides, the probability 
of violation at Xi1) is less than the maximum probability by only about one 
percent in the cases considered. The location with maximum variance, when 
correlation between K, and U is considered, is very close to X,‘3). However, 
without considering p(  K, ,  U), the result is much less desirable. 

It is the authors’ opinion that the method of determining the critical 
locations, Xi3) ,  associated with the maximum probability of violating a 
minimum water quality standard would be the best criteria both in the 
theory and practicality. It is this point, Xi3) ,  which poses the greatest threat 
to water quality violation, by definition, in stream environments under 
uncertainty . 
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