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ASSESSMENT OF PROBABILITY DISTRIBUTION 
OF DISSOLVED OXYGEN DEFICIT 

By Yeou-Koung Tung,’ Associate hlernher, ASCE, 
and Wade E. Hathhorn,’ Student Member, ASCE 

ABSTRACT: Water quality modeling and prediction in a stream environment is 
complicated by the Occurrence of a number of random processes. Due to the com- 
plexity of water quality model, the analytical derivation of the exact probability 
distribution of the dissolved oxygen (DO) deficit is difficult. This paper proposes 
an approximate but practical method by using first-order analysis of uncertainty in 
estimating the statistical moments of the DO deficit. The statistical moments cs- 
timated were then used in an appropriate probability distribution for the DO deficit 
concentration. Practical issues involved are: ( I )  Which is the appropriate pruba- 
bility distribution for the DO deficit concentration? and ( 2 )  is this appropriate dis- 
tribution function sensitive to the distribution of water quality pariimeters? This 
paper examines a number of commonly used probability distributions for their ap- 
propriateness in describing the random characteristics of the DO deficit concen- 
tration under various conditions. Of the distributions considered in the investiga- 
tion, lognormal distribution proved 10 be the best model. 

lNTR0DUCTlON 

A major portion of the complexity associated with water quality modeling 
and prediction is the inherent randomness exhibited throughout the stream 
environment. Not only are the physical and biological processes not clearly 
defincd, but an imposing number of uncertainties are associated with the 
various processes occurring within the stream environment. Several research- 
ers have h d y  attempted to analyze these uncertainties. For example, Loucks 
and Lynn (1966) investigated the effect of inherent uncertainty due to the 
natural variations in streamflow and waste flow on the probability distri- 
bution of dissolved oxygen (DO); Padgett and Rao (1979) presented a joirit 
probability distribution for biochemical oxygen dctiiand (BOD) and DO; ac;i 
Kothandaraman and Ewing (1969) and Chadderton et al. (1982) have ir;- 
vestigated the stochastic nature of the m d e l  parameters in the Stmeter-Phelp 
equation (Streeter and Phelps 1925). 

Realizing the existence of such uncertainties in water quality modeling, 
the prediction of DO deficit or DO concentration within a given reach of 
stream is no longer a deterministic exercise. Rather, the DO deficit must be 
treated as a random variable. Fig. I is a schematic sketch illustrating the 
probability distribution for the DO deficit due to the presence of inherent 
randomness of water quality parameters. In probabilistic water quality anal 
ysis, it is typical to deal with the problem of assessing thc probability of 
water quality violation. To perform such probability cotnputations, knowl- 
edge about the statistical properties and thc distribution of watcr quality in- 
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FIG. 1 .  Schcmatlc Sketch of Probablllty Denslty Functlon (HBR) for DO Deflclt 
Concentratlon 

dex must be known. Howevcr, in most cases, the exact distribution of the 
DO deficit is not known and is often assumed without any basis. 

Although significant research has been conducted in the uncertainty anal- 
ysis o f  stream DO, most of these studies have been conccmed with the vari- 
ability o f  DO conccntrations due to model parameter uncertainty (Kothan- 
daranirtn and Ewing 1969; Hornbcrger 1980; Chaddcrton et al. 1982). However, 
there have bccn some attempts to derive analytical exprcssions for the exact 
probability distribution associated with the DO deficit. Thayer and Krutch- 
koff (1967) utilized a stochastic birth and death process to obtain an expres- 
sion for thc probability distribution of DO concentration without considering 
thc uiiccrtaintics o f  the model paramcters. Escn and Rathbun (1976) assuincd 
the rc;icration itrid dcoxygenation rates to be nortnally distributcd and in- 
vestigated tlic probability distribution for DO and BOD using a raiidom walk 
approach. Notably, Padgctt et at. (1977) developed a joint probability den- 
sity fitnction for the BOD and DO concentrations by solving a stochastic 
diffkrcntial cquation, and Padgett and Rao (1979) later developed a non- 
parariictric probability density function of the BOD and DO. 
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From a practical viewpoint, the main disadvantage of each of the afore- 
mentioned methods is that the resulting probability distributions derived for 
the DO deficit are very complicated. The required mathematical skills needed 
for such sophisticated approaches would make it difficult for most engineers 
to apply. Furthermore, all thcse analytically derived probability distribution 
functions for the DO can only be obtained by using very simple distributions 
for the model parameters such as uniform or nonnal. When distributions 
other than those simple ones are used to describe the randomness of water 
quality parameters (which could well be the case in reality), the analytical 
derivation of a probability distribution for the DO would be extremely dif- 
ficult, if not impossible. 

Another approach that is frequently applied by engineers is the Monte 
Carlo simulation. The method has recently been incorporated into the en- 
hanced QUAL2 model, called QUAL2-UNCAS, by Brown and Barnwell 
(1987). This brutal force enumeration scheme requires a large number of 
repetitions, which could be cornputationally expensive. Of course, with the 
advent of computing power and efficiency of computers, the weight of such 
concern will be gradually diminishing. However, at the present time, the 

,'computation efficiency and cost remain an important concern in practical . 
: engineering problem solving. 

in support of a more tractable methodology, this paper examines an ap- 
proximate approach to probabilistic water quality analysis in that the statis- 
tical moments of the DO deficit are estimated by the first-order analysis. 
The statistical moments estimated are then incorporated with an appropriate 
probability distribution model for the DO deficit. However, practical issues 
that can be raised are: (1) Which is an appropriate probability model for-the 
DO deficit? and (2) if there is one such probability model, how sensitive is 
it to the distribution of water quality parameters'? Theoretically, the exact 
probability distribution of the DO deficit should change if the distribution 
of water quality parameters is changed. However, from a practical view- 
point, it is worthwhile to investigate the appropriateness of some commonly 
used probability models in describing the random charactcristics of the DO 
deficit computed by the Streeter-Phelps equstion. Because the distribution 
of the DO deficit may in theory be dependent on the statistical properties of 
the water quality paramcters themselves, this paper also examines the sen- 
sitivity of these parameters on the selection of the appropriate probability 
model for the DO deficit. The candidate probability distributions included 
in the study were normal, two-parameter lognormal, two-parameter gamma, 
and Weibull distributions. To characterize these distributions completely, 
various statistical parameters must be known. To do this, the mean and vari- 
ance of the DO deficit were estimated using first-order uncertainty analysis. 
This information was then used to compute the appropriate statistical p m m -  
eters for each of the candidate probability models using the momen:-param- 
etcr relationships that can be found in Hastings and Peacock (1  974) and Pate1 
ct a]. (1976). 

In addition, rather than making such a strong assumption about the prob- 
ability density function of any specific form for the DO deficit, an approach 
of using Fisher-Cornish asymptotic expansion of any continuous distribution 
(Fisher 1950; Fisher and Cornish 1960; Stuart and Ord 1987) was also ap- 
plied as an alternative for comparison. This method relates the quantiles of 
standardized distribution of the DO deficit to the standard normal quantiles 
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i -  
$nd higher order rnoments such as skew coefficient and kurtosis of thc DO 
dcficit. As will be shown later, the results of numerical investigations in- 
dicated that the Fisher-Cornish asymptotic expansion does not yield any su- 
perior performance over its parametric probability distribution competitors 
considered herein. Furthcrmorc, the approach requires the evaluation of higher 
statistical moments, which makes it computationally cumbersome in engi- 
neering analysis, especially when one deals with highly nonlinear equations 
involving uncertain paranieters such as those encountered in water quality 
modeling. Nevertheless, it is important to note these results for the Fishcr- 
Cornish asymptotic expansion so that others may become aware of thc dis- 
advantages of its use under similar circumstances. 

FIRST-ORDER ANALYSIS OF UNCERTAINN 

The use of first-order uncertainty analysis is popular in all fields of en- 
gineering because of its relative ease in application to a wide array of prob- 
lems. The detailed theory and mathematics of first-order uncertainty analysis 
can be found in Bcnjamin and Cornell (1970) and Cornell (1972). As an 
example of such use in the water quality field, Burges and Lettenmaier (1975) 
have utilized the method to investigate the uncertainty in predictions of BOD 
and DO within a stochastic stream environment. 

Essentially, first-order analysis provides a methodology for obtaining an 
estimate for the moments of a random variable which is a function of one 
or several random variables. It estimates the uncertainty in a mathematical 
model involving parameters which are not known with certainty. By using 
first-ordcr analysis, the combined effect of uncertainty in a model fonnu- 
lation, as well as the use of uncertain parameters, can be assessed. 

First-order uncertainty analysis is characterized by two major components: 
(1) Single moment (variance) treatment of the random variables; and (2) thc 
iisc of first-order approximation of any fiinctional relationship (e.g., the use 
of Taylor's series expansion). The first component implies that the random 
clement of any variable is defined exclusively by its first nonzero moment 
or simply the variance of the random variable itself. Thus, information per- 
taining to the character of a -andom variable is provided solely by its mean 
and variance. 

The second component states that only the first-order terms in a Taylor's 
expansion will be utilized in the analysis of a functional relationship con- 
taining random variables or processes. With exception of the evaluation of 
the mean (in which second-order terms may be included for the purpose of 
accounting for correlation among variables), any attempt to retain terms higher 
than first-order in the expansion requires more information about thc random 
variables than those provided by their first and second moments (Cornell 
1972). 

To present the general methodology of first-order analysis, consider a ran- 
dom variable, Y, which is a function of N random variables (multivariate 
case). Mathematically, Y can be expressed as 
Y = g(X) ....................................................... (1 1 

where X = (XI,  X2. . .  ., XN), a vector containing N random variables X i .  
Through the usc of Taylor's expansion, the random variable Y can be ap- 
prox i 111;i tcd by 
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in which R = (XI, X2,2.. .. and X,), a vector containing tlie r i m n  01. A' 
random variables; and = represents equal in the sense of a scconcl-ordcr 
approximation. 

To consider the correlation among random variables Xs, thc second-ordcr 
lapproxinmion of the mean (the expected value) of random variablc Y is 

. N  N r - 9  7 

cov IXI.Xj] 1 1 pv = Elk+ g(X) + - 2 c - 1 
. . . . . . . . . . . . . . . . . . . .  2 j - l  axiaxj (3) 

in which cov [X, ,X, ]  is the covariance between random variablcs S, anti ,U,. 
It should be noted that the second term in Eq. 3 can be dropped if the random 
variables X, are uncorrelated. In such a case, the resultin& c 'q ualion i s  the 
same as the first-order approximation. 

It follows that the first-order approximation of the variable of Y is 

If the X1s are uncorrehted, Eq. 4 reduces to 
N r -  1 2  

0; A yj2 a; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
where A means equal in a first-order sense; and a: = thc variancc corrc- 
sponding to random variable Xi. 

BASIC WATER QUALITY MODEL 

To bettcr understand the stream environmcnt, several mathcrn;iticd nioclcls 
have been developed to describe the interaction between thc physical and 
biological pracesses occurring within the stream. The most well-known 
expression of this type is the Streeter-Phelps equation (Streetcr and Phclps 
1925). In differential form, the equation is given as: 

(lD 
-=  KdL - K,D ................................................ 
dt 

The solution to EQ. 6, replacing f by x / U ,  is: 

. . . . . .  ( 7 )  
D, = - KdL" [erp (-%) - exp (-?)I + Do cxp (-s) 

KO - Kd 

where & = the deoxygenation coefficient ( 1 /day); KO = the reaeration cocf- 
ficient ( 1  /day); x = the distance downstream from the beginning of thc rcach 
(mi or km); U = the average stream velocity (mi/day or km/drty); LI, = 
the DO deficit concentration (rng/L) within the reach at a downstrean1 dis- 
tance x ;  Do = the initial DO deficit (at distance x = 0); and Lo = thc initial 
in-stream1 BOD concentration (both in mg/L). 

Before the discussion proceeds, it is worthwhile to briefly describc the 
nature of the water quality model used here. It should be pointctl o u t  that  
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Eq. 6 is limited to only two in-stream processes: (1) Deoxygenation of the 
water due to bacterial decomposition of carbonaceous organic matter; and 
(2) atmospheric rcarat ion directly proportional to the DO deficit. Moreover, 
several assumptions have been made in the development of this model: (1) 
Steady, uniforni flow with constant temperature; (2) DO deficits predicted 
by Eq. 7 are one-dimensional, i.e., a function only of the position down- 
stream from a discharge point; and (3) the rate of biodegradation and reaer- 
ation, expressed by K d  and K,, are described by first-order kinetics. 

Since its conception, the original Sweeter-Phelps equation has been mod- 
ified to account for discrepancies between analytical estimations, computed 
from Eq. 7, and actual data collected in the field. These discrepancies have 
arisen as a result of the exclusion of a numbcr of oxygcn sources and sinks 
in the original equation. Dobbins (1964) pointed out cight other possible 
factors that could contribute to instream BOD and DO variations. 

There have bcen several studies conducted in which one or more of these 
additional processes have been included in the model formulation in an at- 
tempt to improve model predictability (Dobbins 1964; Hornberger 1980; 
Krcnkel and Novotny 1980). In general, these modifications can be made 
by simply adding terms to Eq. 7 to account for the various additional factors. 
Although aware of the additional oxygen source and sink terms, the writers 
of this paper have selected, without loss of generality, the use of the original 
Strecter-Phelps equation in order to simplify the algebraic manipulation. 

UNCERTAINTY ANALYSIS OF THE WATER QUALITY MODEL 

A detailed discussion was given by Hathhorn (1986) as to the type of 
uncertaintics encountered in the modeling of the water quality process, in- 
cluding inherent, rnodcl, and parameter uncertairltics. Knowing the existcnce 
of these uncertainties in the aquatic environment, such conditions should be 
incorporated into the modeling process in order to improve model account- 
ability. In  this study, first-order uncertainty analysis was utilized in which 
water quality parameters K,, KO, U, Lo, and Do, as well as D, in Eq. 7, are 
treated as random variables. 1 

Based on the first-ordcr analysis described in the previous section, the 
expected valuc of thc DO deficit given by Eq. 7 at any location can be 
expressed as: 

I 

in which var [ J and cov [ J represent the variance and covariance operators, 
respectively; P i  = dD,/dX, and P i , y  = d2Dx/dXdY evaluated at the mean of 
the model parameters (Kd,  K,, U, Lo, and Do). Detailed expression of P' and 
P" of D, were given by Hathhorn (1986). It should also be noted that pro- 
visions for a positive correlation between parameters K, and U were included 
in Eq. 8. Some investigators have considered a positive correlation between 
Kd and K, (Esen and Rathbun 1976; Padgett 1978). Although statistical anal- 
ysis of a given data set may reveal a correlation between these parameters, 
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it docs not necessarily imply such a correlation has any meaningful physical 
representation of the system behavior. It has been known that A:, i h  a furiction 
of the physical characteristic of the stream, while Kd is characterized by thc 
biological composition of the waste discharge and stream cnvironnicnt. I t  

' was the opinion of the writers that the correlation bctwctn A'., and A'" is 
spurious and, thus, was not considered in the study. Similarly, by Eq. 4 the 
variance of the DO deficit can be approximated as 

Uix = V W  [UXJ (Pkd)' V U  [Kd] (Pi")' V U  IK,] (P;)* V a r  [u] 

Exprcssions for the highcr-order moments such as thc skewness and kur- 
tosis of' thc 110 deficit can bc derived with these sarnc procedures under the 
assumption of independency between the various water quality pararwtcrs. 
The existowe of correlation runong watcr quality pararncters, tionwcr, iiiakes 
the ev;iluation of the higher-order moments difficult due to  ,the lack o f  in- 
forniation about the cross-product nioments of various orders in real-world 
problcms. Fortunately, the skewness and kurtosis of the DO deficit ;ire riot 
requircd for the four parametric probability models considcrcd in  the study. 

On the othcr hand, the Fisher-Cornish approach requires such information 
to definc the  shape of the DO deficit distribution. However, in the analysis 
that follows, the Fisher-Cornish method, with its moments estimatcd by first- 
order analysis, produced results that were no more superior t h a n  othcr p x i -  
metric competitors. Thcrcfore, the expressions for the skewness and kurtosis 
of the DO deficit (available from Hathhorn 1986) are not presented here. 

PERFORMANCE EVALUATION OF THE DlSTRlBUTlONS FOR Do DEFICIT 

The idca of  applying first-order analysis for estimating thc tirst it*:{) ~ I , I -  

tistical iiioiilciits of the DO deficit, along with a sclcction of ;in :ippropl;ire 
probability rnodel for the DO deficit, is straightforward and practic:d, I low- 
ever, among the various probability models that arc commonly u x d .  a pr,tc- 
tical question to be raised is, "Which probability model (or models) best 
describcs ttic random behavior of thc DO deficit in a stream?" I n  thc fol- 
lowing investigation, four parametric (i.e., nomial, lognonal ,  gaiiinia. anti 
Weibull) IIIKI OIIC other (i.e., Fisher-Cornish asymptotic expiinsion) piwtx~- 
b h y  distributions have been selected as candidates such that a wide spcc- 
hum of shapes are represented. 

To evaluate the relative performance of each of the five candidate prob- 
ability distributions considered, three performance criteria itre adoptcd hcrcin: 
(1) Biasiiess (BIAS); (2) mean absolute error (MAE); and (3) root 11iCiln 

squared error (RMSE). These criteria are used simultaneously in an attempt 
to identify the best probability model. These criteria are mathcmatically tlc- 
fined as 

1. Biasncss: 

0 0  BIAS = I' (.$, - x,)dp . . . . . . . . . . * .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.' Mean absolute error: 
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. 
M A E F ~ l p p J - x p l d p  ............. (11) 

RMSE = [I' (RpJ  - x,)~~,D . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . (12) 

3. Root mean squared error, 

in  which xp = the true value of the pth prder quantile of the DO deficit; and iPJ 
= the estimate of x,, determined from the assumed probability model,& with its 
mean and variance estimated by the first-order analysis. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

ESTIMATION OF THE TRUE DISTRIBUT~ON OF D 
BY MONTE CARLO SIMULATION 

N N N N N 0 0 
N N N N N 0 . 8  

LN LN LN 1," LN 0 0 
LN 1, N LN LN LN 0.8 
ci G G C G 0.0 
W W W W w 0.0 
LN N G W 1.N 0.0 
G LN w N G 0.0 

LN N N W G 0 x 
N LN LN G w 0. H 

It was assumed in this study that the DO deficit at any downstream lo- 
cation x can be computed using Eq. 7. Moreover, when examining Eq. 7 
to a stream environment under uncertainty, the model parameters (Kd, K,, 
U, Lo, and Do) were to be treated as random variables, each characterized 
by their own probability distribution. In turn, the DO deficit computed by 
Eq. 7 was itself a random variable characterized by its own distribution. 

To determine the probability distribution of the DO deficit at a given lo- 
cation, Monte Carlo simulation technique (Rubinstein 198 1) was employed, 
allowing each of the model parameters to be assigned one of four distri- 
butions: normal, lognormal, gamma, and Weibull. In conducting the Monte 
Carlo procedure, the statistical properties of the model parameter used 
throughout this study are listed in Table 1. This data set represents a stream 
environment described as a low velocity system according to the classifi- 
cation made by Chadderton et aI. (1982). The difference of the data set used 
here and that of Chadderton et al. (1982) is that the coefficient of variation 
for the water quality parameters is increased from 0.2 to 0.3 .  

Simulation procedures were performed such that 10 groups of 999 DO 
deficits were generated using Eq. 7 with one of the four distributions pre- 
viously mentioned for each of the model parameters. For example, during 
the first simulation (first row of Table 2), 10 groups of 999 DO deficits 
(using Eq. 7) were generated under the conditions of independence and nor- 
mality for all the water quality parameters. Then, in successive simulations, 

Model parameters Mean Standard deviation 
(2) (3) (1 1 

Units 
(4 1 
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' - d  h -  i 0 3 5  0.10 

U 10.00 3.00 
A; 0. i 0  0.20 

Lo 18.00 5.00 
D, 1 .oo 0.30 

- . - I -  * 

&.+-I 

& ) S - '  

mg/L 
mg/L 

mi/day 

TABLE 2. List of Cases Using Various Dlstrfbutlons for Water Quality Parame- 
ters in Monte Carlo Simulatfon 

I I 

Distributions Assumed for Model Parameters Case 

different distributions were assigned to each of model parrmctcr\. In thc 
Monte Carlo simulation, a positive correlation (p = 0.8) txmvccn ~nodcl 
parameters KO and U was used in this study. When such a corrclrttion n ~ i s  
considered in the simulation, a bivariatc nomial or lognormal di\tri butiori 
was utilixd for both parameters K ,  and U. 

During the simulations, each of the 10 groups of 999 DO dc!ic.i[\ ikc'rc 
ranked i n  ascending order. Specifically, the minimum value of (tic 110 cici- 
icit gcnerated was assigned to position 1 and the maximum valuc t o  po4t ion 
999. Then, quantiles of the DO deficit were computed for scvcral probability 
levels p by simply locating the value of the deficit in position (999 + 1)p. 
In order to reduce the sampling errors, each of the respcctivc yuantilcs oh- 

In tlic evaluation of the three performance criteria given in ELI\. 10. 1 1 ,  
and 12, numerical integration was performed at p = 0.01, 0.025,  0 . 0 5 ,  0.1 , 
0.15, 0.2(0.1)0.7, 0.75(0.05)0.95, 0.975, and 0.99, where the csliinated 
quantities, JpJ, were computed from the assumed distribution niodcls. 

I 

, taincd for the 10 groups were then arithmetically averaged. , 

, 
t 

1 I 

i 
f 1 RESULTS 

The analysis of the goodness-of-fit performance criteria as dcccrihed for 
the probability model of the DO deficit was conducted at downstrcaln I o -  
cations of 5 and 10 mi (8 and 16 km). These points represent IcKaficm5 an 
each sidc of the critical point found usin; the msm u'zifer q u d l r )  ~ L - L ?  -::rj 
of TsMs 1 .  

; ; r :s . is  c s 5  cucsi2srrld m this 5r-dk ~2 s h u n  in T L ; ~ ; :  2 .  Ir. 
1-6, rhs o i  probzbrlity disrnbutions dssigned to the v.;Itcr q u ~ l i ~  p-l- 
m c l c r b  remained unchanged within each case. By contrast, these cli\tri- 
butions wcrc arbitrarily assigned in cases 7- 10. The reason lor consiclcring 
this number of cases (although not exhaustively enumerated) was to cuaniinc 
the sensitivity of the seleytion of a probability distribution for thc ivatcr quai- 
ity parnmctcrs on the best-fit distribution obtained for the DO deficit. 'The 
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Case 
number 

(1) 

i 

--- 
Mean Absolute Error (in mg/L) 

N LN G W FC 
(2) (3) (4) (5) (6) 

Case 
number 

(1 1 

Biasness (in rng/L) 

N LN G W FC 
(2) (3) (4) (5) (6) 

1 0.416 0.407 0.4 13 0.415 
2 0.389 , 0.379 0.385 0.387 
3 0.421 0.412 0.417 0.420 
4 0.42 1 0.4 I2 0.4 I8 0.420 

0.4 13 0.405 0.410 0.4 12 5 
6 0.41 1 0.403 0.408 0.410 
7 0.392 0.383 0.389 0.391 
8 0.415 0.406 0.41 1 0.414 
9 0.383 0.374 0.380 0.382 

0.4 18 0.409 0.415 0.417 10 
I 

0.593 
0.561 
0.554 
0.563 
0.556 
0.580 
0.541 
0.58 1 
0.547 
0.565 

0.416 
0.389 
0.417 
0.4 19 
0.41 I 
0.417 
0.394 
0.4 12 
0.385 
0.4 18 

results of a number of these experiments are given in Tables 3-5. 
When examining the biasness presented for each of the cases in Table 3, 

it was observed that the use of a two-parameter lognormal distribution for 
the DO deficit consistently yielded the lowest reported value. All probability 
distributions considered herein yielded positive biasness. Furthermore, upon 
review of Tables 4 and 5 in which the MAE and RMSE were tabulated, thc 
two-parameter lognormal distribution was again consistently the lowest re- 
ported value for all combinations of distribution and correlation assbmed for 
the model parameters. Combining the information provided by the three per- 
formance criteria, it was determined that among the five candidate distri- 
butions investigated the two parameter lognormal distribution presented the 
'best" fit to the simulated values for the DO deficit regardless of the dis- 
tribution of water quality parameters. If one were to select a second-best 
distribution according to Tables 3-5, a selection of the two-parametcr gamma 
distribution would be made. 

Depending on the probability distribution assumed for the parameters in 
the water quality model, Eq. 7, the relative pcrformance, according to the 
threc performance criteria-the normal distribution, Weibull distribution, and 
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1 
2 
3 
4 ' 

5 
6 
7 
8 
9 

10 

0.434 0.407 0.4 13 0.455 0 .434  
0.478 0.409 0.4 15 0.500 0.477 
0.455 0.412 0.4 17 0.467 0.J'H 
0.471 0.414 0.420 0.486 0.417 
0.443 0.405 0.410 0.46 1 0 .427 

0.408 0.432 0.4 7 6  
0.416 0.383 0.389 0.435 O:!JJ 
0.443 0.406 0.41 I 0.462 0 . 4 2 6  
0.466 0.395 0.401 0.486 0. . I  X Y  

0.455 0.409 0.415 0.477 0.452 

0.421 , 0.403 

' (b)  At 10 mi (16 km) 
I I 

0.580 0.587 
0.547 0.557 
0.547 ' 0.554 
0.553 0.564 
0.547 0.554 
0.558 ' 0.565 
0.524 0.531 
0.570 0.577 
0.529 0.539 
0.553 0.563 

r l  
I '. 2 

3 
4 
5 
6 
7 
8 
9 

10 

0.59 I 
0.558 
0.557 
0.565 
0.558 
0.568 
0.535 
0.580 
0.540 
0.564 

0.597 
0.607 
0.596 
0.624 
0.583 
0.576 
0.548 
0.590 
0.594 
0.605 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.580 
0.547 
0.547 
0.554 
0.547 
0.558 
0.524 
0.570 
0.529 
0.553 

0.593 
0.561 
0.560 
0.568 
0.560 
0.57 1 
0.537 
0.583 
0.543 
0.567 

0.587 
0.557 
'0.554 
0.564 
0.554 
0.565 
0.531 
0.577 
0.539 
0.563 

0.610 
0.633 
0.600 
0.628 
0.591 
0.573 
0.559 
0.600 
0.61 I 
0.626 

Notc: N = normal; LN = lognormal; G = gamma; W = Weibull; and I T  = Fisher- 
Cornish. 

the Fishcr-Cornish asymptotic expansion-varies. Of the majority of tlic cases 
considered, the Fisher-Cornish asymptotic expansion for thc distribution of 
the DO deficit performs better or equally as well when compared with the 
results for the normal and Weibull distribution. However, after examining 
its marginal performance and knowing the relative complexity of this method, 
the use of the Fisher-Cornish method is seen as an impractical approach for 
obtaining the desired distribution for the DO deficit using thc nicthotls o u t -  
lined in this paper. 

Since the Fisher-Cornish asymptotic expansion is dependent on knmving 
of the highcr-order moments to approximate the quantiles of standardized 
random DO deficit, the accuracy of approximating the distribution of the 
DO dcficit using this method relies heavily on  the accurate estimation o f  the 
skew cocfficicnt and kurtosis, which are in turn estimated by the use o f  first- 
order analysis of uncertainty. Recognizing this fact, examinations were made 
to compare the values of the statistical moments of the DO deficit ~ a l ~ ~ l i ~ t e d  
by first-order analysis with those from the Monte Car10 simulation. From 
Table 6, significant discrepancies of the skewness and kurtosis between the 
first-order approximations and sample statistics from the Monte Carlo sin]- 
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rl 
' Case 

number 
(1) 

TABLE 5. Root Mean Squared Error (RMSE) for DO Deficit between Simulation 

Root Mean Squared Error (in mg/L) 
N LN G W FC 
(2) (3) (4) (5) (6) 

Mean I 

FOA' SIMUb 
(2) (3) 

4.774 4.186 
'4.902 4.351 
4.774 4.223 
4.902 4.345 
4.774 4.219 

(a) At 5 mi (8 km) : 

1 I 0.457 I 0.415 I 0.418 I 0.478 I 0.457 

Deviation Skewness 

FOA SlMU FOA SlMU 

1.505 1.514 0 0.64 
1.003 1.607 1.731 

1.505 1.486 0.408 1.102 
1.607 1.629 0.335 1.166 
1.505 1.507 0.265 0 .873  

( 5) (6) ( 7) (4) 

0 -. - -  - 

0.514. 
0.485 
0.506 
0.473 

0.43 I 
0.429 
0.434 
0.420 

1 0.427 
0.4 I8 
0.423 
0.412 

0.548 

0.523 
0.493 

0.501 , 

6 
7 
8 
9 

10 

0.52 1 
0.452 
0.477 
0.45 1 

4.774 4.207 1.505 1.432 -0.739 0.594 6.312 3.061 
4.774 4.242 1.505 1.482 -0.377 O.UJ1  5.403 4.216 
4.774 4.198 1.505 1.490 0.124 0.733 3.127 3.981 
4.902 4.367 1.607 1.672 -0.298 1.123 4.148 5.679 
4.902 4.342 1.607 1.683 0.1 I 1  0.910 2.40-1 -1.374 

0.405 0.41 1 0.459 0.531 
0.388 0.394 0.462 0.48 1 

0.469 0.413 0.4 19 0.490 0.446 
0.408 0.417 0.532 0.528 

0.485 

6 0.446 
7 0.443 
8 
9 0.503 

I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-- 

0.623 
0.644 
0.638 
0.669 
0.622 
0.601 
0.585 
0.623 
0.633 
0.643 

(b) At 10 mi (16 km) . .  

0.590 
0.562 
0.55 I 
0.558 
0.551 
0.574 
0.530 
0.578 

0.562 
0.535 

0.592 
0.567 
0.566 
0.577 
0.561 
0.579 
0.538 
0.583 
0.548 
0.570 

0.635 
0.669 
0.644 
0.676 
0.633 
0.600 
0.593 
0.630 
0.650 
0.662 

0.623 
0.654 
0.584 
0.623 
0.589 
0.740 
0.666 
0.60 
0.693 
0.632 

- Note: N = normal; LN = lognormal; G = gamma; W = Weibull; and FC = Fisher- 
Corn is h . 

ulation could kc obscrvcd. The results of this investigation revealed that such 
discrcpilncics liccoiiw inorc pronounced as thc ordcr of moment is incrcnsed. 
This observation indicated that the skew coefficient and kurtosis of thc DO 
deficit estimated by first-order analysis was not satisfactory. Its inaccuracy 
was likely attributed to the nonlinearity involved in computing the DO deficit 
by Eq. 7, making the use of first-order analysis less desirable for estimating 
the high order moments. This phenomenon was also observed by other re- 
searchers (Gardner ct al. 1981; Homberger 1980). Therefore, from both the 
practical and computational viewpoints, the Fisher-Cornish asymptotic ex- 
pansion, in conjunction with first-order analysis of uncertainty, is not a dc- 
sirable approach for describing the distribution of the DO deficit. In addition, 
by comparing the mean values of the DO deficit in Table 6, it was observed 
that the mean DO deficit estimated by first-order analysis was somewhat 
higher than that based on Monte Carlo simulation for all the cases investi- 
gated. This is the main reason for the positive biasness observed in Table 
3. In other words, first-order analysis yields an overestimation of the mean 
DO deficit. The difference in standard deviation between first-order analysis 
and simulation for the DO deficit is less significant. 

I 
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TABLE 6. Comparison of Statistical Moments of DO Deficit between First-Order 
Analysis and Simulation at x = 10 mi (16 km) 

I 
-- -- - - ~  

I I I 
- 

Standard 
Case 

numbor 
(1) 

1 
2 
3 
4 
5 

Kurtosis 

FOA SlMU 

3.000 3.811 
2.305 3.038 
3.486 5.196 
2. h7X 5.362 i 3 . 1 0 ' ~  .l l o x  

SUMMARY AND CoNcLusloNs 

It has been recognized that' processcs in  natural strclirii ciivirx)nrilcrits xi-c 
inhcrcntly random. The ability to quantify the probabilistic status ot' mcaIiI  
environincnts is of vital importancc in water quality man:iz 'Tciiwnt Jcci i o n  
making. This paper presented a niethodology to asscss the prcjbahiliry dis- 
tribution of' dissolved oxygen deficit based on the simple Stl-cercr-I'hclp~ 
equation. The methodology involves the use of first-orclci- analysis of un- 
certainty of the DO deficit equation. Mathematical operation in thc cxcrcisc 
includes only taking the first- and second-derivatives that all snginccr.~ arc 
capable of doing. Furthennore, the statistical analysis involves ~ i~crc ly  ele- 
mentary operations of finding expectation and variance. The mcthodc)logical 
framework is general enough to be applied to more sophisticatcd versions 
of thc Srrccter-Phelps equation which incorporate various sources and \ i n k 5  
affcctiiig tlic DO levels in strcarn. 

Various conimoniy used statistical probability distribution rnodcl:, ivcrc' 
considcrcd as the candidatcs for describing random characteristics ot' thc DO 
dcficit. Rcsults of numerical experiments iridicatcd that tlic UYC 01' ;I ttc'o- 

paraiiiutcr lugnormal distribution, along with the statislic;tl I I ~ L % : I I I  ; I I I ~  tear;- 
ancc: cstiiiiatcd by the first-order analysis, appears to hc thc I>c*\i li~o,lL-l t v i t h  
respcct 10 the three goodness-of-fit pcrforniar1c.c critcrilt 1isL.d !c;,:ld Ic'hs ot 
the distl ihutional propcrties of random water quality parai~icicr!, i i i i . c  ) I  \,cd iri 

calculating the DO deficit. The practical iriiplication o !  t h i s  ol>scr.\'ation i \  
that, i n  probabilistic water quality analysis, onc can relax tlic accur-ilcy re- 
quireriiciit o n  the probability distribution for the water quality pavarncters 
bccause the best-fit distribution for the DO deficit would be inscrisitivc to 
the fonn o f  thc parameter's distribution. The second-hcst piranic'tric tlistri- 
butioii rtiodel for describing thc DO deficit i s  the two-par;i~iictcr gaiiiiiia dis- 
tribution. Although the nonnal distribution has been used frcqucntly in thc 
past (mainly for its ease in use), it was found less suitable, in this study, i n  
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describing the random behavior of the DO deficit. The nonparametric dis- 
tribution model using Fisher-Cornish asymptotic expansion was also in- 
cluded in the study for the purpose of comparison. The model did not yield 
any better results than its parametric competitors and was substantially poorer 
than the lognormal distribution for most of the cases investigated. This is 
probably because thc estimations of higher-order moments for random DO 
deficit by first-order analysis are not accurate enough due to the highly non- 
linear nature of the DO deficit equation. This same reason may be applied 
to explain the observation in the study that first-order analysis produces a 
positively biased estimation of DO deficit when compared with the simulated 
values. 
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APPENDIX It. NOTATION 

The following symbols are used in this paper: 

BIAS = 
cov[ ] = 

Do = 
D, = 

E[  1 = 
g( 1 = 

L, = 
MSE = 

RMSE = 
K ,  = 
K,, = 
P; = 
p!.y = 

u =  
var ] = 

x =  x =  
xi = 
xp = 

%, = 

Y =  
P =  
u =  

biasness defined in Eq. 10; 
covariance opcrator; 
initial DO deficit; 
DO deficit concentration at location x mi (or 1.6 x km) fro111 
discharge point; 
expectation operator; 
general representation of function; 
initial BOD concentration; 
mean absolute error defined in Eq. 11; 
root mean squared error defined in Eq. 12; 
reaeration coefficient; 
deoxygenation coefficient; 
first-orger partial derivative of 0, with respect to parameter ,Y; 
second-order partial derivative of D, with respect to .Y and )'. 

average flow velocity; 
variance operator; 
vector of random parameter in first-order analysis; 
vector of mean value of random parameter X,; 
ith random parameter; 
true pth quantile of DO deficit concentration; 
pth quantile of DO deficit estimated by using probability mocl- 

dependent random variable in first-order analysis; 
mean value; and 
standard deviation. 
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