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V= vertical flow velocity through liner flaw;
Yy = Jdistance from middle planc;
' = gamma function;

= absolute viscosity of liquid;

6 = angular coordinate;
v = Kinematic viscosity of liquid;
= density of liquid; and

T = viscuous shear at plane at distancc y from middle planc.
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ASSESSMENT OF PROBABILITY DISTRIBUTION
OF DissoLVED OXYGEN DEFICIT

By Yeou-Koung Tung,' Associate Member, ASCE,
and Wade E. Hathhorn,? Student Member, ASCE

ABSTRACT: Water quality modeling and prediction in a stream environment is
complicated by the occurrence of a number of random processes. Due to the com-
plexity of water quality model, the analytical derivation of the exact probability
distribution of the dissolved oxygen (DO) deficit is difficult. This paper proposes
an approximate but practical method by using first-order analysis of uncentainty in
estimating the statistical moments of the DO deficit. The statistical moments es-
timated were then used in an appropriate probability distribution for the DO deficit
concentration. Practical issues involved are: (1) Which is the appropriate proba-
bility distribution for the DO deficit concentration? and (2) is this appropriate dis-
tribution function sensitive to the distribution of water quality parameters? This
paper examines a number of commonly used probability distributions for their ap-
propriateness in describing the random characteristics of the DO deficit concen-
tration under various conditions. Of the distributions considered in the investiga-
tion, lognormal distribution proved 10 be the best model.

INTRODUCTION

A major portion of the complexity associated with water quality modeling
and prediction is the inherent randomness exhibited throughout the stream
environment. Not only are the physical and biological processcs not clearly
defined, but an imposing number of uncertainties arc associated with the
various processes occurring within the stream environment. Several research-
ers have already attempted to analyze these uncertainties. For example, Loucks
and Lynn (1966) investigated the effect of inherent uncertainty due to the
natural variations in streamflow and waste flow on the probability distri-
bution of dissolved oxygen (DO); Padgett and Rao (1979) presented a joint
probability distribution for biochemical oxygen demand (BOD) and DO; and
Kothandaraman and Ewing (1969) and Chadderton et al. (1982) have in-
vestigated the stochastic nature of the model parameters in the Streeter-Phelps
equation (Streeter and Phelps 1925).

Realizing the existence of such uncertainties in water quality modeling,
the prediction of DO ‘deficit or DO concentration within a given reach of
stream is no longer a deterministic exercise. Rather, the DO deficit must be
treated as a random variable. Fig. 1 is a schematic sketch illustrating the
probability distribution for the DO deficit due to the presence of inherent
randomness of water quality parameters. In probabilistic water quality anal-
ysis, it is typical to deal with the problem of assessing thc probability of
water quality violation. To perform such probability computations, knowi-
edge about the statistical properties and the distribution of water quality in-
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dex muwst be known. However, in most cases, the exact distribution of the
DO deficit is not known and is often assumed without any basis.

.Alth~ough significant research has been conducted in the unccertainty anal-
ysis of strcam DO, most of these studies have been concerned with the vari-
ability of DO concentrations due to model parameter uncertainty (Kothan-
daraman and Ewing 1969; Homberger 1980; Chadderton et al. 1982). However,
there h.avc been some attempts to derive analytical expressions for the exac;
probability distribution associated with the DO deficit. Thayer and Krutch-
k.off(l‘)67) utilized a stochastic birth and death process to obtain an expres-
sion for lhg probability distribution of DO concentration without considering
the unccrl;z;ntics of the model parameters. Esen and Rathbun (1976) assumed
the reacration and deoxygenation rates to be normally distributed and in-
vestigated the probability distribution for DO and BOD using a random walk
upprquch. Notably, Padgett et al. (1977) developed a joint probability den-
sity ulnglion for the BOD and DO concentrations by solving a stochastic
dltfcrcnn.al equation, and Padgett and Rao (1979) later developed a non-
paramctric probability density function of the BOD and DO.
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From a practical viewpoint, the main disadvantage of each of the afore-
mentioned methods is that the resulting probability distributions derived for
the DO deficit are very complicated. The required mathematical skills needed
for such sophisticated approaches would make it difficult for most engineers
to apply. Furthermore, all these analytically derived probability distribution
functions for the DO can only be obtained by using very simple distributions
for the model parameters such as uniform or mormal. When distributions
other than those simple ones are used to describe the randomness of water
quality parameters (which could well be the case in reality), the analytical
derivation of a probability distribution for the DO would be extremely dif-
ficult, if not impossible.

Another approach that is frequently applied by engineers is the Monte
Carlo simulation. The method has recently been incorporated into the en-
hanced QUAL2 model, called QUAL2-UNCAS, by Brown and Bamwell
(1987). This brutal force enumeration scheme requires a large number of
repetitions, which could be comnputationally expensive. Of course, with the
advent of computing power and efficiency of computers, the weight of such
concern will be gradually diminishing. However, at the present time, the

‘computation efficiency and cost remain an important concern in practical -
:» engineering problem solving.

In support of a more tractable methodology, this paper examines an ap-
proximate approach to probabilistic water quality analysis in that the statis-
tical moments of the DO deficit are estimated by the first-order analysis.
The statistical moments estimated are then incorporated with an appropriate
probability distribution model for the DO deficit. However, practical issues
that can be raised are: (1) Which is an appropriate probability model for'the”
DO deficit? and (2) if there is one such probability modcl, how sensitive is
it to the distribution of water quality parameters? Theoretically, the exact
probability distribution of the DO deficit should change if the distribution
of water quality parameters is changed. However, from a practical view-
point, it is worthwhile to investigate the appropriateness of some commonly
used probability models in describing the random characteristics of the DO
deficit computed by the Streeter-Phelps equation. Because the distribution
of the DO deficit may in theory be dependent on the statistical properties of
the water quality parameters themselves, this paper also examines the sen-
sitivity of these parameters on the selection of the appropriate probability
model for the DO deficit. The candidate probability distributions included
in the study were normal, two-parameter lognormal, two-parameter gamma,
and Weibull distributions. To characterize these distributions completely,
various statistical parameters must be known. To do this, the mean and vari-
ance of the DO deficit were estimated using first-order uncertainty analysis.
This information was then used to compute the appropriate statistical param-
eters for each of the candidate probability models using the moment-param-
cter relationships that can be found in Hastings and Peacock (1974) and Patel
ct al. (1976).

In addition, rather than making such a strong assumption about the prob-
ability density function of any specific form for the DO deficit, an approach
of using Fisher-Cornish asymptotic expansion of any continuous distribution
(Fisher 1950; Fisher and Comnish 1960; Stuart and Ord 1987) was also ap-
plied as an alternative for comparison. This method relates the quantiles of
standardized distribution of the DO deficit to the standard normal quantiles
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and higher order moments such as skew coefficient and kurtosis of the DO
deficit. As will be shown later, the results of numerical investigations in-
dicated that the Fisher-Comish asymptotic expansion does not yield any su-
perior performance over its parametric probability distribution competitors
considered herein. Furthermore, the approach requires the evaluation of higher
statistical moments, which makes it computationally cumbersome in engi-
necering analysis, especially when one deals with highly nonlinear equations
involving uncertain parameters such as those encountered in water quality
modeling. Nevertheless, it is important to note these results for the Fisher-
Cornish asymptotic expansion so that others may become aware of the dis-
advantages of its use under similar circumstances.

FIrsT-ORDER ANALYSIS OF UNCERTAINTY

The use of first-order uncertainty analysis is popular in all fields of en-
gincering because of its relative ease in application to a wide array of prob-
lems. The detailed theory and mathematics of first-order uncertainty analysis
can be found in Benjamin and Cornell (1970) and Cornell (1972). As an
example of such use in the water quality field, Burges and Lettenmaier (1975)
have utilized the method to investigate the uncertainty in predictions of BOD
and DO within a stochastic strcam environment.

Essentially, first-order analysis provides a methodology for obtaining an
estimate for the moments of a random variable which is a function of one
or several random variables. It estimates the uncertainty in a mathematical
model involving parameters which are not known with certainty. By using
first-order analysis, the combined effect of uncertainty in a model formu-
lation, as well as the use of uncertain parameters, can be assessed.

First-order uncertainty analysis is characterized by two major components:
(1) Single moment (variance) treatment of the random variables; and (2) the
use of first-order approximation of any functional relationship (e.g., the use
of Taylor’s series expansion). The first component implies that the random
clement of any variable is defined exclusively by its first nonzero moment
or simply the variance of thc random variable itself. Thus, information per-
taining to the character of a "andom variable is provided solely by its mean
and variance.

The second component states that only the first-order terms in a Taylor’s
expansion will be utilized in the analysis of a functional relationship con-
taining random variables or processes. With exception of the evaluation of

the mean (in which second-order terms may be included for the purpose of
accounting for correlation among variables), any attempt to retain terms higher
than first-order in the expansion requires more information about the random
variables than those provided by their first and second moments (Cornell
1972).

To present the general methodology of first-order analysis, consider a ran-
dom variable, Y, which is a function of N random variables (multivariate
case). Mathematically, Y can be expressed as

where X = (X, X,, ..., Xy), a vector containing N random variables X,.
Through the usc of Taylor’s expansion, the random variable ¥ can be ap-
proximated by
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in which cov [X;,X/] is the covariance between random variables X, and X

It s!n)uld be noted that the second térm in Eq. 3 can be dropped if‘ttl]c' raxyll(;rjr;

variables X; are uncorrelated. In such a case, the resulting cquation is the

same as the first-order approximation. ‘ S
It follows that the first-order approximation of the variable of Y is
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If the Xs are uncorrelated, Eq. 4 reduces to

N og 2 ‘
2 1 ‘
ol = E [ ] T 5)
2 \axl, T (5)
]
where = means equal in a first-order ; ; i
: - sense; and o; = the variance corre-
sponding to random variable X;. ‘ e cone

Basic WATER QuaLiTy MoDEL

To better understand the stream environment, several mathematical mod :1s
hfive b'ccn developed to describe the interaction between the physical aLnd
blologlc.al processes occurring within the stream. The most wc‘ll—l»‘:nown
expression qf this type is the Streeter-Phelps equation (Streeter and Phel
1925). In differential form, the equation is given as: cps

dD*KL
o K ~K,D

The solution to Eq. 6, replacing r by x/U, is:

KL, Kx K Y
D, =22 247 .l Ko
K. - K, [cxp( U) exp( p )}+Docxp (-— U) ...... (7)

wh_ere K, = the deoxygenation coefficient (1 /day); K, = the reaeration cocf-
ﬁc1.ent (1/day); x = the distance downstream from the beginning of the reach
(mi or km); U = the average stream velocity (mi/day or km/day); D, =
the DO deficit concentration (mg/L) within the reach at a downstrc;;m Zns-
¥ance x; Do = the initial DO deficit (at distance x = 0); and L, = the init':]
mn-stream' BOD concentration (both in mg/L). , ’ N

Before the discussion proceeds, it is worthwhile to briefly describe the
nature of the water quality model used here. It should be p()inlc;t out that
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Eq. 6 is limited to only two in-stream processes: (1) Deoxygenation of the
water due to bacterial decomposition of carbonaccous organic matter; and
(2) atmospheric rcaration directly proportional to the DO deficit. Moreover,
several assumptions have been made in the devclopment of this model: (1)
Steady, uniform flow with constant temperature; (2) DO deficits predicted
by Eq. 7 are one-dimensional, i.e., a function only of the position down-
stream from a discharge point; and (3) the rate of biodegradation and reaer-
ation, expressed by K, and K, are described by first-order kinetics.

Since its conception, the original Streeter-Phelps equation has been mod-
ificd to account for discrepancies between analytical estimations, computed
from Eq. 7, and actual data collected in the field. These discrepancies have
arisen as a result of the exclusion of a number of oxygen sources and sinks
in the original equation. Dobbins (1964) pointed out eight other possible
factors that could contribute to instream BOD and DO variations.

There have been several studies conducted in which one or more of these
additional processes have been included in the model formulation in an at-
tempt to improve model predictability (Dobbins 1964; Hornberger 1980;
Krenkel and Novotny 1980). In general, these modifications can be made
by simply adding terms to Eq. 7 to account for the various additional factors.
Although aware of the additional oxygen source and sink terms, the writers
of this paper have selected, without loss of generality, the use of the original
Streeter-Phelps equation in order to simplify the algebraic manipulation.

UNCERTAINTY ANALYSIS OF THE WATER QuALITY MODEL

A detailed discussion was given by Hathhomn (1986) as to the type of
uncertainties encountered in the modeling of the water quality process, in-
cluding inherent, model, and parameter uncertaintics. Knowing the existence
of these uncertainties in the aquatic environment, such conditions should be
incorporated into the modeling process in order to improve model account-
ability. In this study, first-order uncertainty analysis was utilized in which
water quality parameters Ky, K, U, Lo, and D,, as well as D, in Eq. 7, are
treated as random variables. ; »

Based on the first-order analysis described in the previous section, the
expected value of the DO deficit given by Eq. 7 at any location can be

expressed as:

- - - < 1 1
EID.) 2 D,(Ru. R, U,L,, Do) + - var [KaPix, + 3 var (KalPiox,

1 1 1
+ Evar [UIPLu + E var [LolPl 1, + -2- var [Do]Ph,p, + cov K., Uk, v .. .. (8)

in which var [ ] and cov [ ] represent the variance and covariance operators,
respectively; Py = dD,/aX; and Pxy = 8D, /08X aY evaluated at the mean of
the model parameters (K,, K., U, L,, and D). Detailed expression of P’ and
P" of D, were given by Hathhomn (1986). It should also be noted that pro-
visions for a positive corrclation between parameters K, and U were included
in Eq. 8. Some investigators have considered a positive correlation between
K, and K, (Esen and Rathbun 1976; Padgett 1978). Although statistical anal-
ysis of a given data set may reveal a correlation between these parameters,
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it docs not.necessarily imply such a correlation has any meaningful physical
representation of the system behavior. It has been known that &, is a function
of the ~phyS|cal characteristic of the stream, while K is charilc;cx:izcd by the
‘bl()l()glCle c'or.nposilion of the waste discharge and stream environment. It
was‘thc opinion of the writers that the correlation between K, and K. is
spurious and, thus, was not considered in the study. Similarly, by E 4.,"“:
variance of the DO deficit can be approximated as , v

2 i ’
Op, = var [D,] = (Py)’ var [K,] + (P)? var [K,] + (P})? var [U]
132 ’
P var (Lol + (Pp) var (Do) + 2Py Py cov (K, Ul ................ (9)

l;";xprgssmns for the higher-order moments such as the skewness and kur-
tosis of .(hc I)Q deficit can be derived with these same proccdurc; under the
assumption of independency between the various water quality ;;aralxlctcrs
The cxistence of correlation among water quality parameters, however m‘xkcs.
the ev:'nluuu()n of the higher-order moments difficult due t'o the lacl; ofk in
formation about the cross-product moments of various orders in rcal—worh;
prob!cms._ Fortunately, the skewness and kurtosis of the DO deficit are not
re(gln;c(l for the four parametric probability models considered in lhc‘sl‘ud;
‘ dnrthf: ()ttlcr hand, the FlShC[’-COT'niSl’.l appro_ach requires such information
0 define the shape of the DO deficit distribution. However, in the analysis
that follows,. the Fisher-Cornish method, with its moments es,limatcd b . fi):';t-
ordcr analysns,_ produced results that were no more superior than mhc: vah-
metric competitors. Therefore, the expressions for the skewness and kuxl1’;)s‘is
of the DO deficit (available from Hathhorn 1986) are not prcécmcd here

PERFORMANCE EVALUATION OF THE DISTRIBUTIONS FOR DO DericiT

' Thc idea of applying first-order analysis for estimating the first two stu-
tistical ‘moments of the DO deficit, along with a sclection ot an :;p m.) n:i‘:ll‘*
probability model for the DO deficit, is straightforward and pr;zctic’lll ;[u‘w‘:
ever, among the various probability models that are commonly usu; a ruc-
tical question to be raised is, “Which probability mode! (or modéls‘)pbcst
desgnbgs lhc.random behavior of the DO deficit in a stream?” In lhc fol-
low_mg investigation, four parametric (i.e., normal, lognormal gamma, and
W‘?‘b"l!) u'nd one other (i.e., Fisher-Comish asymptotic cxpu,nsion) )I'x;h' -
bility distributions have been selected as candidates such that z; wid o ’J
tru';‘n of shapes are represented. c e

To cv‘alu‘ate 'the relative performance of each of the five candid:
abxhty. distributions considered, three performance criteria arc d(ﬂiﬁ‘:;chrrrgz
(1) Biasness (BIAS); (2) mean absolute error (MAE); and (3) root mcwr;
squared error (RMSE). These criteria are used simultaneously in an altcm‘pl

to identify the bes ili iteri i
e y the best probability model. These criteria are mathematically de-

1. Biasness:

i
BIAS = | (2, —
fo Cof = XAP oo (10)

2. Mean absolute error:
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3. Root mean squared error,

1 0.3
RMSE = [ f £, x,,)zdp] .................................... (12)
0 .

in which x, = the true value of the pth order quantile of the DO deficit; aqd f.,, s
= the estimate of x, determined from the assumed probability model, £, with its
mean and variance estimated by the first-order analysis.

EsTiMATION OF THE TRUE DISTRIBUTION OF D
8Y MoONTE CARLO SIMULATION

It was assumed in this study that the DO deficit at any downstream lo-
cation x can be computed using Eq. 7. Moreover, when examining Eq. 7
to a strcam environment under uncertainty, the model parameters (Kd,.K,,,
U, Ly, and Dy) were to be treated as random variables, eac.h characterized
by their own probability distribution. In turn, the DO deficit f:orpput.cd by
Eq. 7 was itself a random variable characterized by its own dlsmbl}lxon.

To determine the probability distribution of the DO deficit at a given lo-
cation, Monte Carlo simulation technique (Rubinstein 1981) was employed,
allowing cach of the model parameters to be assigned one 9f four distri-
butions: normal, lognormal, gamma, and Weibull. In conducting thc Monte
Carlo procedure, the statistical properties of the model parameter used
throughout this study are listed in Table 1. This data set represents a stream
environment described as a low velocity system according to the classifi-
cation made by Chadderton et al. (1982). The difference of the data set' u§ed
here and that of Chadderton et al. (1982) is that the coefficient of variation
for the water quality parameters is increased from 0.2 to 0.3.

Simulation procedures were performed such that 10 groups of .999 DO
deficits were generated using Eq. 7 with one of the four distributions pre-
viously mentioned for each of the model parameters. For example, dun{lg
the first simulation (first row of Table 2), 10 groups of 999 DO deficits
(using Eq. 7) were generated under the conditions .of indcpcl}denge and.nor-
mality for all the water quality parameters. Then, in successive simulations,

TABLE 1. Statistical Properties of Mode! Parameters Used to Investigate Distri-
bution of Dissolved Oxygen Deficit and Critical Location

Model parameters Mean Standard deviation Units
(1 (2 (3) ()
£, 03| 0.10 days™!
X, 0.70 0.20 days™*
U 10.00 3.00 mi/day
Ly 18.00 5.00 mg/L
D, 1.00 0.30 mg/L

Note: 1 mi = 1.6 km.
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TABLE 2. List of Cases Using Various Distributions for Water Quality Parame-
ters in Monte Carlo Simulation

Case Distributions Assumed for Model Parameters
number K, K, U Ly D, oK, U
(1) @ @) (4) (5) ® (7)
1 N N N N N 0.0
2 N N N N N 0.8
3 LN LN LN LN LN 0.0
4 LN LN LN LN LN 0.8
5 G G G G G 0.0
6 w w w W W 0.0
7 LN N G w LN 0.0
8 G LN w N G 0.0
9 LN N N w G 0.8
10 N LN LN G W 0.8

Note: N = normal; LN = lognormal; G = gamma; W = Weibull.

&

different distributions were assigned to each of model parameters. In the
Monte Carlo simulation, a positive correlation (p = 0.8) between model
parameters K, and U was used in this study. When such a correlation was
considered in the simulation, a bivariate normal or lognormal distribution
was utilized for both parameters K, and U.

During the simulations, cach of the 10 groups of 999 DO deficits were
ranked in ascending order. Specifically, the minimum value of the DO def-
Icit generated was assigned to position ! and the maximum value to pusition
999. Then, quantiles of the DO deficit were computed for scveral probability
levels p by simply locating the value of the deficit in position (999 + Hp.
In order to reduce the sampling errors, each of the respective quantiles ob-

. tained for the 10 groups were then arithmetically averaged.

In the cvaluation of the three performance criteria given in Egs. 10, 11,
and 12, ‘numerical integration was performed at p = 0.01, 0.025, 0.05, 0.1,
0.15, 0.2(0.1)0.7, 0.75(0.05)0.95, 0.975, and 0.99, where the estimated
quantities, £,,, were computed from the assumed distribution models.

+ RESULTS

The analysis of the goodness-of-{it performance criteria as described for
the probability model of the DO deficit was conducted at downstream lo-
cations of 5 and 10 mi (8 and 16 km). These points represent locations on

each side of the critical point found using the mean water quality parzmiciors
of Table 1.
Tz varmous cases comsidered in this study are shown in Tebie 2. In cases

1-6, the tvpe of probability distributions assigned (o the water quulity pa-
rameters remained unchanged within each case. By contrast, these distri-
butions were arbitrarily assigned in cases 7-10. The reason for considering
this number of cases (although not exhaustively enumerated) was to examine
the sensitivity of the selection of a probability distribution for the water qual-
ity paramcters on the best-fit distribution obtained for the DO deticit. The
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TABLE 3. Blasness for DO Deficlt between Simulation Results and Varlous As-

sumed Distributions at Downstream Locatlons

TABLE 4. Mean Absolute Error (MAE) for DO Deficit between Simutation Resuits

and Various Assumed Distributions at Downstream Locations

Case Biasness (in mg/L)
number N LN G w FC
(1) (2) (3) (4) (5) (6)
(a) At 5 mi (8 km)
1 0.416 0.407 0.413 0.415 0.416
2 0.389 0.379 0.385 0.387 0.389
3 0.421 0.412 0.417 0.420 0.417
4 0.421 0.412 0.418 0.420 0.419
5 0.413 0.405 0.410 0.412 0.411
6 0.411 0.403 0.408 0.410 0.417
7 0.392 0.383 0.389 0.391 0.394
8 0.415 0.406 0.411 0.414 0.412
9 0.383 0.374 0.380 0.382 0.385
10 0.418 0.409 0.415 0.417 0.418
(b) At 10 mi (16 km)
1 0.593 0.580 0.587 0.591 0.593
2 0.561 0.547 0.557 0.558 0.561
3 0.560 0.547 0.554 0.557 0.554
4 0.568 0.554 0.564 0.565 0.563
5 0.560 0.547 0.554 0.558 0.556
6 0.571 0.558 0.565 0.568 0.580
7 0.537 0.524 0.531 0.535 0.541
8 0.583 0.570 0.577 0.580 0.581
9 0.543 0.529 0.539 0.540 0.547
10 0.567 0.553 0.563 0.564 0.565

Note: N = normal; LN = lognormal; G = gamma; W = Weibull; and FC = Fisher-
Cornish.

results of a number of these experiments are given in Tables 3—‘5.

When examining the biasness presented for each of the cases in Tz-lblc 3,
it was observed that the use of a two-parameter Jognormal dlstnbuuon. for
the DO deficit consistently yielded the lowest reported value. All probability
distributions considered herein yielded positive biasness. Furthermore, upon
review of Tables 4 and 5 in which the MAE and RMSE were tabulated, the
two-parameter lognormal distribution was again consistently the lowest re-
ported value for all combinations of distributiop and co_rrelauon assumed for
the model parameters. Combining the information provided by th‘e three per-
formance criteria, it was determined that among the five candidate distri-
butions investigated the two parameter lognormal distribution presented t!le
“best” fit to the simulated values for the DO deficit regardless of the dis-
tribution of water quality paramecters. If one were to select a second-best
distribution according to Tables 3-5, a selection of the two-parameter gamma
distribution would be made. _

Depending on the probability distribution assumed for the parameters in
the water quality model, Eq. 7, the relative perf(_)rrnal?cc. ac_cm"dm.g to the
three performance criteria—the normal distribution, Weibull distribution, and
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Caso Mean Absolute Error (in mg/L)
number N LN G w FC
(1) (2) (3) (4) (5) (6)
) (a) At S mi (8 km)
1 0.434 0.407 0.413 0.455 0.434
2 0.478 0.409 0.415 0.500 0.477
3 0.455 0.412 0.417 0.467 0.428
4 0.471 0.414 0.420 0.486 0.447
5 0.443 0.405 0.410 0.461 0.427
6 0.421 0.403 0.408 0.432 0.476
7 0.416 0.383 0.389 0.435 0.4
8 0.443 0.406 0.411 0.462 0.426
9 0.466 0.395 0.401 0.456 0..189
10 0.455 0.409 0.415 0.477 0.452
(b) At 10 mi (16 km)
a1 0.597 0.580 0.587 0.610 0.597
, "2 0.607 0.547 0.557 0.633 0.612
3 0.596 0.547 0.554 0.600 0.558
4 0.624 0.554 0.564 0.628 0.582
5 0.583 0.547 0.554 0.591 0.559
6 0.576 0.558 0.565 0.573 0.056
7 0.548 0.524 0.531 0.559 0.598
8 0.590 0.570 0.577 0.600 0.581
9 0.594 0.529 0.539 0.611 0.044
10 0.605 0.553 0.563 0.626 0.596

Note: N = normal; LN = lognormal; G = gamma; W = Weibull; and FC = Fisher-
Cornish.

the Fisher-Comish asymptotic expansion—varies. Of the majority of the cases
considered, the Fisher-Cornish asymptotic expansion for the distribution of
the DO deficit performs better or equally as well when compared with the
results for the normal and Weibull distribution. However, after examining
its marginal performance and knowing the relative complexity of this method,
the use of the Fisher-Cornish method is seen as an impractical approach for
obtaining the desired distribution for the DO deficit using the methods out-
lined in this paper.

Since the Fisher-Comish asymptotic expansion is dependent on knowing
of the higher-order moments to approximate the quantiles of standardized
random DO deficit, the accuracy of approximating the distribution of the
DO dcficit using this method relies heavily on the accurate estimation of the
skew cocfficient and kurtosis, which are in turn estimated by the use of first-
order analysis of uncertainty. Recognizing this fact, examinations werc made
to compare the values of the statistical moments of the DO deficit calculated
by first-order analysis with those from the Monte Carlo simulation. From
Table 6, significant discrepancies of the skewness and kurtosis between the
first-order approximations and sample statistics from the Monte Carlo sim-

1431




B R O i

TABLE 5. Root Mean Squared Error (RMSE) for DO Deficit between Simulation
Results and Various Assumed Distributions at Downstream Locations

c Root Mean Squared Error (in mg/L)
ase
number N LN G w Fg
(1) (2) (3) (4) (5) (6)
" (@ At5Smi(8km)
1 0.457 0.415 0.418 0.478 0.457
2 0.514- - 0.427 0.431 0.548 0.521
3 0.485 0.418 . 0.429 0.501 , 0.452
4 0.506 0.423 0.434 0.523 0.477
5 0.473 0.412 0.420 0.493 0.451
6 0.446 0.405 0.411 0.459 0.531
7 0.443 0.388 0.394 0.462 0.481
8 0.469 0.413 0.419 0.490 0.446
9 0.503 0.408 0.417 0.532 0.528
10 0.486 0.420 0.426 0.509 0.485
(b) At 10 mi (16 km)
1 - 0.623 0.590 0.592 " 0.635 0.623
2 0.644 0.562 0.567 0.669 0.654
3 0.638 0.551 0.566 0.644 0.584
4 0.669 0.558 0.577 0.676 0.623
- S 0.622 0.551 0.561 ) 0.633 0.589
6 0.601 0.574 0.579 0.600 0.740
7 0.585 0.530 0.538 0.593 0.666
8 0.623 0.578 0.583 0.630 0.609
9 0.634 0.535 0.548 0.650 0.693
10 0.643 0.562 0.570 0.662 0.632

Note: N = normal; LN = lognormal; G = gamma; W = Weibull; and FC = Fisher-
Comish.

ulation could be observed. The results of this investigation revca!eq that such
discrepancies become more pronounced as the _(_)r_dcr of moment is increased.
This obscrvation indicated that the skew coefticient and kurtosis _of the DO
deficit estimated by first-order analysis was not_satlsfactog'y. Its inaccuracy
was likely attributed to the nonlinearity involve_d in computing the DQ deﬁcnt
by Eq. 7, making the usc of first-order analysis less desirable for estimating
the high order moments. This phenomenon was also observed by other re-
searchers (Gardner et al. 1981; Homberger 19§0). Thcrefpre, from bo.th the
practical and computational viewpoints, the Elsher-Comlsh asymptotic ex-
pansion, in conjunction with ﬁrsl-order' anz.\lysm of uncertainty, is not _a‘dc~
sirable approach for describing the distribution (.)f .thc DO deﬁFlt. In addmonCi
by comparing the mean values of the DO deficit in Table Q, it was observe
that the mean DO deficit estimated by first-order analysis was sorpewha_lt
higher than that based on Monte Carlo simulatior} for all the cases 1nv‘estl-
gated. This is the main reason for the positive biasness ob§ervcd in Table
3. In other words, first-order analysis yields an overestimation of the mean
DO deficit. The difference in standard deviation between first-order analysis
and simulation for the DO deficit is less significant.

1432

TABLE 6. Comparison of Statistical Moments of DO Deficit between First-Order
Analysis and Simulation at x = 10 mi (16 km)

Standard
Case Mean - Deviation Skewness Kurtosis

number | FOA* | SIMU® | FOA SIMU FOA SIMU FOA SIMU

(1) (2) (3) (4) (5) (6) (7) (8) (9)
1 4.774 4.186 1.50S8 1.514 0 0.644 | 3.000 | 3.811
2 4.902 4.351 1.607 1.731 0 1.003 | 2.305 | 5.038
3 4.774 4.223 1.505 1.486 0.408 | 1.102 3.486 | 5.196
4 4.902 4.345 1.607 1.629 0.335 ] 1.166 | 2.678 | 5.362
S 4.774 4.219 1.505 1.507 0.265 | 0.873 | 3.169 | 3104

4} 4.774 4.207 1.505 1.432 ~0.739 | 0.594 | 6.312 3.661
7 4.774 4.242 1.505 1.482 ~0.377 | 0.801 5403 | 4.216

8 4.774 4.198 1.505 1.490 0.124 {1 0.733 | 3.127 3.981
9 4.902 4.367 1.607 1.672 -0.298 1.123 | 4.148 | 5679
10 4.902 4.342 1.607 1.683 0.111 | 0.910 | 2.404 | 4.374

‘FOA = first-order analysis.
*SIMU = Monte Carlo simulation.

SuMmMmaRrY AND CONCLUSIONS

It has been recognized that processes in natural stream environments are
inhcrently random. The ability to quantify the probabilistic status of stream
environments is of vital importance in water quality management decision
making. This paper presented a methodology to assess the probability dis-
tribution of dissolved oxygen deficit based on the simple Strecter-Phelps
cquation. The methodology involves the use of first-order analysis of un-
certainty of the DO deficit equation. Mathematical operation in the excrcisc
includes only taking the first- and second-derivatives that all engincers are
capable of doing. Furthermore, the statistical analysis involves mercly cle-
mentary operations of finding expectation and variance. The methodological
framework is general enough to be applied to more sophisticated versions
of the Streeter-Phelps equation which incorporate various sources and sinks
affecting the DO levels in strecam.

Various commonly used statistical probability distribution models were
considered as the candidates for describing random characteristics of the DO
deficit. Results of numerical experiments indicated that the use of o two-
paramcter lognormal distribution, along with the statistical mean and vari-
ance cstimated by the first-order analysis, appears to be the best miodel with
respect to the three goodness-of-fit performance criteria used 1egindloss of
the distributional properties of random water quality paramcters nvolved in
calculating the DO deficit. The practical implication of this obscrvation is
that, in probabilistic water quality analysis, one can relax the accuracy re-
quirement on the probability distribution for the water quality paramecters
because the best-fit distribution for the DO deficit would be insensitive to
the form of the parameter’s distribution. The sccond-best parametric distri-
bution model for describing the DO deficit is the two-parameter gamma dis-
tribution. Although the normal distribution has been used frequently in the
past (mainly for its ease in use), it was found less suitable, in this study, in
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describing the random behavior of the DO deficit. The nonparametric dis-
tribution model using Fisher-Cornish asymptotic expansion was also in-
cluded in the study for the purpose of comparison. The model did not yicld
any better results than its parametric competitors and was substantially poorer
than the lognormal distribution for most of the cases investigated. This is
probably because the estimations of higher-order moments for random DO
deficit by first-order analysis are not accurate enough due to the highly non-
linear nature of the DO deficit equation. This same reason may be applied
to explain the observation in the study that first-order analysis produces a
positively biased estimation of DO deficit when compared with the simulated

values.
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Appenpix Il. NoTaTiON

The following symbols are used in this paper:

BIAS = biasness defined in Eq. 10;
cov[ ] = covariance operator; '
gu = inittal DO deficit;
. (l?ii)c::rgzltp{(;?;femrauon at location x mi (or 1.6 X km) from
E[ ] = expectation operator;
g() = general representation of function;
L, = initial BOD concentration;
MSE = mean absolute error defined in Eq. 11;
RMSE = root mean squared error defined in Eq. 12
K, = reaeration coefficient; '
K;, = deoxygenation coefficient;
f’x = first-order partial derivative of D, with respect to parameter .\’
Pxy = sccond-order partial derivative of D, with respect to X and ‘)"‘
U = average flow velocity; .
var[ ] = variance operator;
)_E = vector of random parameter in first-order analysis;
X = vector of mean value of random paramecter X; ‘
X; = ith random parameter; "
X = true pth quantile of DO deficit concentration;
L, = plthjguantile of DO deficit estimated by using probability mod-
e, S5
Y = dependent random variable in first-order analysis;
K = mean value; and .
o = standard deviation.
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