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For many years, managing agencies have enacted and enforced water quality 
standards based on a deterministic evaluation of the stream environments under 
their control. Given the random nature of the processes occurring within a 
stream system, the deterministic approach to water quality regulation is subject 
to obvious shortcomings. In an attempt to improve water quality regulation, a 
method is presented for quantifying the joint risk associated with dissolved 
oxygen deficits exceeding a specified standard and the length of such violations 
within a stream environment. Techniques are employed utilizing the 
Streeter-Phelps equation in conjunction with Monte Carlo simulation. In 
addition, flexibility is provided in the formulation by allowing several 
probability distributions to be assigned to each parameter in the model. A 
sensitivity analysis is also performed on the joint risk for the various probability 
distributions and statistical properties assumed for each parameter. Implied in 
the methods and results presented is the development of improved water quality 
standards incorporating the inherent stochastic nature of stream environments. 

Keywords: dissolved oxygen, biochemical oxygen demand, S treeter-Phelps 
equation, Monte Carlo simulation, risk assessment, probability distributions, 
uncertainty, water quality standards. 

1. Introduction 

Although technology has greatly improved our ability to treat industrial and municipal 
wastes, it is still a common practice to discharge allowable quantities of pollution from 
these effluents into various watercourses. This practice is based on the principle that the 
receiving waters possess a natural ability to assimilate a specific quantity of pollutant. 
Given these conditions, the allowable waste concentrations and natural biota coexist 
within the dynamic environment of the stream system. Consequently, water quality 
officials have been given the arduous task of determining the socioeconomic tradeoffs 
between allowable waste load allocations and maintaining desired levels of aquatic life 
within the stream environment. In answer to these problems, water quality agencies have 
enacted regulations allowing the continuation of waste discharge to streams subject to a 
variety of water quality standards. 
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In contrast to the fact that each stream is highly variable by nature, the basis for the 
development of water quality standards continues to be a deterministic evaluation of the 
stream environment. As a result, many of the present water quality standards neglect the 
inherent stochastic nature of the system (i.e. rivers and streams) which they are supposed 
to protect. Several authors, noting the shortcomings associated with present water 
quality standards, have criticized the ability of deterministic standards to provide 
adequate protection of the stream environment (Loucks and Lynn, 1966; Adams and 
Gemmel, 1975; Burn and McBean, 1985). Knowing the reality of the inherent random 
nature of these systems, deterministic standards should be amended to account for the 
stochastic processes present in the stream environment. In addition, most of the current 
standards do not differentiate between the various levels of exceedance or the lengths of 
violation in the stream system. Given the deterministic structure of present water quality 
regulations, it is implied that all water quality violations are considered equal, regardless 
of the effects on the stream environment. Presently, no emphasis is placed on the relative 
severity of the individual violations. For example, a small exceedance, resulting in minor 
damage, is treated in the same manner as a large exceedance, possibly resulting in 
significant damage. Both conditions are simply defined as “violations”, thus neglecting 
the relative effects created by the specific violation conditions. 

In an attempt to incorporate the random nature of the stream environment and the 
level of severity for various violation conditions into the water quality decision-making 
process, it is the objective of this paper to present a methodology for evaluating the joint 
risk associated with a maximum dissolved oxygen deficit (beyond a specified standard) 
and the length of such violation within any given stream system. This study utilizes the 
simplified Streeter-Phelps equation and Monte Carlo simulation techniques to evaluate 
the risk, based on several assumptions for the probability distributions assigned to each 
parameter in the model formulation. In addition, a sensitivity analysis is performed to 
evaluate the effects of changes in the statistical characteristics of the model parameters 
on the risk. By evaluating the risks associated with water quality violatiohs, it is believed 
a more realistic decision can be made between the economic and environmental 
questions facing water quality management agencies in the future. 

2. Water quality model 

Within an aquatic environment, dissolved oxygen is present in conjunction with a certain 
quantity of waste. A common measure of the amount of waste present and relative 
aquatic health in a stream system is the biochemical oxygen demand (BOD) and 
concentration of dissolved oxygen (DO), respectively. Through the processes of biode- 
gradation and re-aeration, the stream exhibits a natural ability to assimilate a given 
quantity of BOD. The biological processes result in DO deficits which are replenished by 
the natural re-aeration of the stream. Several mathematical models have been developed 
to describe the physical, biological processes occurring within the stream environment. 
The most common expression is known as the Streeter-Phelps equations (Streeter and 
Phelps, 1925). In differential form, the equation is given as: 

dD/dt = K ,  L - K2D. (1) 

The solution to equation (l), replacing t by X / U ,  is: 
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where KI is the deoxygenation coefficient, K, is the re-aeration coefficient, X is the 
distance downstream from the source of BOD, U is the average stream velocity, D(X) is 
the DO deficit concentration at a downstream distance X ,  Do is the initial DO deficit (at 
distance X=O), and Lo is the initial in-stream BOD concentration. 

The concentration of DO at any downstream location is given as: 

C(X)  = c, - D ( X )  (3) 

in which C, is the saturated DO concentration. The downstream location, Xc, where the 
maximum DO deficit occurs can be found by: 

The point Xc will herein be referred to as the “critical location”. The associated 
maximum DO deficit is determined by: 

Additionally, several assumptions should be noted in the development of the 
Streeter-Phelps equation: (a) steady, uniform flow; (b) DO deficits predicted by equation 
(2) are one-dimensional (functions only of the position downstream from a discharge 
point); and (c) rates of biodegradation and re-aeration, expressed by K, and K2,  are 
described by first-order kinetics. A typical DO profile for a single reach is shown in 
Figure 1. 

Figure 1. Typical dissolved oxygen sag curve. 

Equation (2) describes the response of DO in a single reach of stream as a result of 
the addition of a “point-source” loading of waste at the upstream end of the reach. This 
equation can be used to determine the DO concentration in several successive reaches by 
applying the deficit at the downstream end of one reach as the initial deficit of the 
succeeding reach. Thus, equation (2) can be applied iteratively to determine the DO 
profile of an entire stream system (Liebman and Lynn, 1966). 
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Since its conception, the Streeter-Phelps equation has been modified to account for 
discrepancies between analytical estimations, given by equation (2), and actual data 
collected in the field. These discrepancies have arisen as a result of the exclusion of a 
number of oxygen sources and sinks in the original equation. For example, the processes 
of sedimentation, benthic demand, photosynthesis, and algal respiration have been 
included to improve model predictability (Dobbins, 1964; Hornberger, 1980; Krenkel 
and Novotny, 1980). Modifications can be made by simply adding terms to equation (2) 
to account for these factors. However, in order to simplify the algebraic manipulations, 
the original Skeeter-Phelps equation is utilized in this study. It is simply the authors’ 
intention at this point to note the improvements made to the original equation by 
various other researchers, though by no means do the citations presented represent, in 
entirety, the wealth of information on this subject. 

3. Uncertainty in the water quality model 

The uncertainty associated with equation (2), for predicting DO level in stream systems, 
can be divided into three categories: inherent, parameter, and model uncertainties. 
Inherent uncertainties are the result of the natural randomness exhibited by the physical, 
biological processes described by equation (2). This inherent uncertainty is the product 
of temporal and spatial variations, for example, in streamflow, effluent waste concentra- 
tion, temperature, and in-stream biological composition (Churchill et al., 1962; Bansal, 
1973; Wright and McDonnell, 1979). In addition, the absence of unlimited data 
describing the characteristics of the stream system results in insufficient information to 
estimate the parameters of the model with absolute certainty. The combined effects of 
inherent randomness and imperfect data collection result in parameter uncertainty in the 
model formulation. 

As previously mentioned, several researchers have modified the original Streeter- 
Phelps equation to account for discrepancies between DO deficits predicted by the model 
and collected field data. Such discrepancies were the result of the original model’s 
exclusion of a number of oxygen sources and sinks. The inability of the model to predict 
accurately the DO deficits is known as model uncertainty. To account for this 
inadequacy, additional terms may be added to the model formulation to include the 
effects of the various oxygen sources and sinks. Alteratively, adjustment of the model 
may be accomplished by multiplying the original equation by a “model correction 
factor”. This correction factor would simply be determined from an analysis of the 
differences between the predicted and field data collected. The model correction factor 
can also be treated as a random variable in the model formulation. Although this 
approach is not used in this study, it is again simply the authors’ intention to point out 
deficiencies in the original model formulation [refer to equation (2)]. 

Given the fact that inherent, model, and parameter uncertainties exist, the stochastic 
nature of the stream system must be included in the model formulation if accurate DO 
predictability is to be attained. The general approach for describing these uncertainties 
has been to assign appropriate statistical properties, probability distributions, and 
correlations to each of the parameters in equation (2). 

3.1. SELECTION OF STATISTICAL PROPERTIES FOR THE MODEL PARAMETERS 

The selection of statistical properties include the appropriate determination of the mean, 
standard deviation, and possibly other higher moments for each of the model para- 
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meters. In order to quantify the statistical properties accurately, existing physical, 
chemical, and biological data are analyzed according to standard statistical procedures. 
Data used in the analysis should be obtained from the specific site under investigation in 
order to preserve the uniqueness associated with various stream environments. Once the 
analysis has been performed, the resulting statistical properties become eligible for 
model applications. 

3.2. SELECTION OF PROBABILITY DISTRIBUTIONS FOR THE MODEL PARAMETERS 

Though several probability distributions are possible, the most common assumption is 
that each of the parameters in equation (2) follow a normal distribution (Kothandara- 
mann and Ewing, 1969; Burges and Lettenmaier, 1975; Esen and Rathbun, 1976). 
However, some investigators have utilized a variety of distributions to describe the 
random behavior of the parameters in equation (2) (Kothandaramann, 1970; Brutsaert, 
1975). Clearly, a universal agreement as to the type of distribution to use for each 
parameter does not exist. Given the uniqueness of each site under investigation, there is 
no reason to expect all the parameters to follow a given distribution for every location. 
Thus, it would seem reasonable to develop a procedure that will allow the model to be 
flexible with regard to the selection of the probability distribution for each parameter. 
Following this approach, each parameter in the model of this study can by assigned one 
of five probability distributions: normal, log-normal, beta, gamma, and Weibull. By 
analyzing the recorded data describing the random nature of the stream environment for 
each site, an appropriate probability distribution can be selected for each parameter in 
the model. 

3.3. CORRELATION BETWEEN MODEL. PARAMETERS 

With exception to K2 and U ,  the model parameters in equation (2) are considered to be 
independent. There has been extensive research in the development of mathematical 
functions directly relating the re-aeration rate, K,,  to the physical characteristics of the 
stream such as average velocity, U (Bansal, 1973). These research results demonstrate 
clearly that a positive correlation exists between the model parameters K2 and U. Hence, 
procedures are provided in the model formulation of this study which allow for the 
inclusion of such a correlation. 

Additionally, some investigators have proposed a positive correlation between K ,  
and K2 (Esen and Rathbun, 1976; Padgett, 1978). Though statistical analysis of a given 
data set may reveal a correlation between these parameters, it is the opinion of the 
authors of this study that the significance of this determination has no meaningful 
physical representation in the model formulation. The authors’ reasonings are based on 
the fact that K2 is solely a function of the physical characteristics of the stream, while Kl 
is characterized by the biological composition of the waste discharge and stream 
environment. It is assumed that these processes act independently within the stream 
system. Consequently, the authors feel that the correlation between K,  and K2 is spurious 
and, as such, it is not considered in this study. 

4. Measurement of water quality conditions 

Presently, water quality standards are developed on the basis of maximum contaminant 
levels or minimum required concentrations, both of which are never to be violated. The 
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concept of a deterministic basis is plausible and feasible, if the system has very little or no 
uncertainty involved. However, as previously mentioned, it seems unreasonable to 
continue the enforcement of water quality requirements that neglect the probability of 
violating these standards when the system involves many elements subject to significant 
uncertainty. Hence, in order to improve the basis for regulatory standards in the 
stochastic environment of the stream system, a measure of the probability associated 
with the violation of water quality regulations should be developed. 

As it has been in the past, the most commonly used measure to indicate water quality 
conditions in a stream system is the extent to which BOD and/or DO concentrations 
exceed current water quality standards. The severity of these violations are related to the 
tolerance level of the stream’s biota to a given pollution concentration and length of 
stream (or time) the system is subjected to such Conditions. For example, the stream 
system may not be able to tolerate relatively large DO deficits for short lengths of 
violation or, conversely, small DO deficits for much longer violation distances. In 
actuality, a tradeoff exists between the allowable level of DO deficit and length of stream 
subject to these violation conditions. Thus, in order to provide a more complete analysis 
of the stream environment under violation conditions, both the DO deficit and the 
length of violation should be considered. 

The measure adopted in this study to indicate the water quality condition of a 
stochastic stream system is the joint probability of simultaneously violating a specified 
DO concentration and tolerable length of violation. Both maximum and average DO 
violation conditions, in conjunction with actual violation distance, are considered as 
follows : 

or 

Risk = Pr(b’ 2 D1ol and XD 2 Xt0J 

in which Pr( ) is the probability, 06, and B‘ are the maximum and average DO deficits 
exceeding water quality standards, respectively, XD is the actual length of violation, and 
DI,l and Xto, are the specified tolerances for DO deficit beyond the standard, and the 
length of violation in the stream system, respectively (refer to Figure 2). 

From this information, water quality management agencies could introduce regula- 
tory measures that limit the maximum probability of violating the minimum dissolved 
oxygen standards. For example, an amended DO standard might read as follows: “the 
maximum probability of violating a minimum DO concentration by 1 mg/l or less for a 
distance of 2 miles shall not exceed 0.05”. Once the allowable risk level associated with 
various violation conditions is quantified, water quality officials can proceed with the 
determination of allowable waste load allocations for the various users of the stream 
environment. 

5. Quantification of the risk of violation 

5.1. DETERMINING THE DO DEFICIT AND LENGTH OF VIOLATION 

In reference to Figure 2, the length of violation is defined as the distance within the 
stream system where the DO profile is below a specified minimum concentration. A 
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Figure 2. Diagram of violation conditions. 
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standard minimum DO concentration of 4.0 mg/l was used throughout this study. 
Because of the non-linearity presented in equation (2), an analytical solution to 
determine the length of violation is infeasible. To circumvent this problem, the Newton- 
Raphson numerical approximation technique was employed to solve the beginning and 
ending points of violation. By taking the difference between these two end points, the 
length of violation was determined. 

The maximum DO deficit was calculated using equation (5). The corresponding 
maximum level exceeding a specified concentration was defined as the maximum DO 
deficit beyond such a standard. In addition, the average DO deficit (within the length of 
violation) was calculated by integrating equation (2) over the length of violation. Then, 
dividing this expression by the same length to obtain: 

where X,, and Xe are the beginning and end points of violation, respectively, XD is the 
length of violation (XD = Xc - X,,). 

5.2. MONTE CARLO SIMULATION 

Monte Carlo simulation can be simply described as a sampling method used to 
approximate, through simulation, the solution of non-linear formulation which would 
otherwise be extremely tedious to solve by direct analytical methods. The foundation for 
such an application lies in the large number of trials or iterations that are performed on 
the proposed model. By performing these iterations, a sufficiently large sample size can 
be generated, from which a relatively accurate solution to the model can be predicted. 

Monte Carlo simulation techniques have found many applications in the modeling of 
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stochastic processes. The essence of the technique is to develop a model that satisfactor- 
ily represents the random process to be analyzed. Then, through the use of a digital 
computer and random number generator, a large number of iterations are performed on 
the model formulation. During these iterations, input data are generated randomly 
according to selected probability distributions for each parameter in the model. Once the 
iterations are complete, the generated isolation set can be analyzed entirely to determine 
its stochastic properties or the individual values may be used in further analysis 
(Brutsaert, 1975). The application of Monte Carlo simulation in quantifying the 
violation risk will be shown in succeeding sections. 

5.3. QUANTIFYING THE RISK ASSOCIATED WITH VARIOUS VIOLATION CONDITIONS 

As previously noted, the joint risk is defined as the probability of occurrence for a given 
pair of violation conditions (i.e. a maximum or average exceeding DO deficit and length 
of violiation). Again, direct analytical methods were infeasible as solution techniques to 
quantify these risks, so Monte Carlo simulation techniques were applied. 

Various pairs of violation conditions were generated using equations (2), (4), (5) and 
(7). In order to describe the random characteristics of the input data, each parameter in 
the water quality model was assigned one of the five probability distributions utilized in 
this study (normal, log-normal, gamma, beta, and Weibull), along with their associated 
statistical properties. Through the use of Monte Carlo simulation and Newton- 
Raphson’s numerical technique, N pairs of violation conditions were generated for 
various DO deficits and lengths of violation. The risk was then calculated by simply 
computing the ratio of the number of simulation pairs that jointly exceeded a specified 
deficit and length of violation, n, to the total sample size, N ,  generated: 

n 
N +  1 * risk=- 

In order to choose an appropriate sample size, it was found that the joint probability 
of violating a specified pair of maximum deficit and length of violation differed only 
slightly for various sample sizes, N ,  between 500 and 2000. Thus, an intermediate 
number of N=999 was adopted as the satisfactory sample size in this study. 

When applying Monte Carlo simulation to equations (2) and (3), it is possible to 
generate negative DO concentrations. Though the number of occurrences of such 
unrealistic values is low, methods should be included in the simulation procedures which 
constrain the DO concentrations to be greater than or equal to zero (Hornberger, 1980). 
In the methods utilized in this study, negative DO concentrations generated by 
simulation are simply ignored and replaced by another iteration until N (= 999) realistic 
conditions are established. 

6. Example of application 

To illustrate the approach, an example has been formulated using hypothetical data for 
each parameter in equation (2). The selection of the mean of the water quality model 
parameters was based on a general stream classification described as “low velocity” 
(Fair et al., 1968; Chadderton et al., 1982). In addition, the standard deviations for each 
of the model parameters were selected in accordance with the data presented by 
Chadderton et al. (1982). To complete the data set, a correlation coefficient, between K2 
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and U, of 0.8 was adopted on the basis of the experimental data tabulated in the article 
by Isaacs et al. (1969). It should be noted that, when the correlation between K, and U is 
specified, a bivariate normal or log-normal distribution is used. A summary of the model 
input data for the parameters of this study is given in Table 1. 

The joint probability of violation was evaluated for a combination of 15 maximum 
DO deficits, beyond the standard of 4.0 mg/l (ranging from 0.0 to 1.5 mgjl) and 15 
lengths of violation (ranging from 0.0 to 30.0 miles). The resulting 225 pairs of violation 
conditions were used to construct a contour map of the joint risk associated with the 
given combinations of maximum DO deficits and length of violation (see Figure 3 as an 
example). In order to illustrate the sensitivity of the risk to varying statistical characteris- 
tics, the procedure was iterated by assigning a variety of probability distributions to each 
of the parameters in the model. Finally, the entire process was repeated to develop risk 
contour maps based on various combinations of average exceeding deficits and lengths 
of violation. 

TABLE 1 .  Summary of data for model parameters 

Standard 
Parameter Units Mean deviation Remarks 

7. Discussion of results 

Figures 3-9 illustrate the contours of risk associated with the various assumptions for 
the probability distributions assigned to each parameter in equation (2) and the 
correlation between K2 and U. Each Figure is documented with a heading providing 
information about the type of distribution, mean, standard deviation, and correlation 
coefficient @) assumed for the parameters in the risk assessment. Several combinations 
were explored for the various types of distribution utilized in this study. However, for 
the purpose of illustrating the general results, only a sample of the contour maps are 
presented in this paper. In order to analyze the results of this study, the discussion will 
focus on the sensitivity of the risk to variations, with respect to the following factors: (a) 
the probability distribution assigned to the model parameters; (b) the correlation 
between K2 and U; and (c) the statistical properties assigned to each parameter. In the 
following discussion, Figure 3 will be used as a basis for the comparison of other figures 
given the number of previous studies which have utilized the assumptions of normal 
distribution and independency for all the model parameters. Though the sensitivity of 
DO response to changes in water quality parameters has been investigated by many 
researchers (Burges and Lettenmaier, 1975; Esen and Rathbun, 1976; Hornberger, 1980; 
Chadderton et al., 1982), this study provides an attempt to evaluate the effects of the 
uncertainty of model parameters on the risk of violating water quality standards. 

7.1. SENSITIVITY OF THE RISK TO VARIATIONS IN PROBABILITY DISTRIBUTIONS 

Initially, it is obvious from visual inspection of the Figures presented that the type of 
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Figure 3. Contour of joint risk associated with maximum deficits and length of violation. 

distribution adopted for each model parameter has a significant impact on the resulting 
joint risk for both the maximum (see Figures 3-5) and average (see Figures 6-8) DO 
deficits. Using Figure 3 as a basis for comparison, closer examination of the results for 
the maximum deficits, presented in Figures 3 and 5,  shows an average increase of about 
30% in the risk for the variety of distributions selected in Figure 5 .  Conversely, a 20% 
average decrease is observed in the comparison between Figures 3 and 4. From these 
Figures, it is evident that the risk is significantly affected by the distributions assumed for 
each parameter. Therefore, in order to assess accurately the risk associated with specific 
violation conditions, the results of this portion of the study show that .care should be 
given to the appropriate selection of the probability distribution for each parameter in 
the water quality model. 
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Figure 4. Contour of joint risk associated with maximum deficits and length of violation. 
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KI : Normal (0.35,O.IO) Lo : Weibul (18.0, 1.00) 
K, : Lgnorm (0.70,0-20) Do : Beta (1.00,0.30) 
U :  Gamma (10.0,300) p (Kz,U):O.OO 
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Figure 5. Contour of joint risk associated with maximum deficits and length of violation. 

A comparison of the risk contour maps for the average deficits (Figures 6-8) with 
those of the maximum deficits (Figures 3-5) shows an overall reduction in the risk 
associated with the average violation conditions. Intuitively, this result would be 
expected as the average DO deficit beyond the specified standard over the length of 
violation is lower than that of the maximum deficit. In addition, a comparison of the 
results from the average deficit conditions reveals the same general trends as those 
presented for the maximum deficits, thus reconfirming the sensitivity of the risk of 
violating water quality standards to the type of distribution assumed for each parameter 
in the water quality model. 

Ki : Normal (0-35,O.IO) Lo : Normal (18.0, 1.00) 
K2  : Normal (0.70,0-20) DO : Normal ( 1.00, 0.30) 
U:Narmal (10.0, 3.00) p (K2,U) :0.00 
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0 5 10 15 20 25 30 
Violation distance, miles 

Figure 6. Contour of joint risk associated with average deficits and length of violation. 
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Figure 7. Contour of joint risk associated with average deficits and length of violation. 

7.2. SENSITIVITY OF RISK TO THE CORRELATION BETWEEN K2 AND U 
Figure 9 illustrates a risk contour map when a positive correlation between K2 and U is 
considered in risk assessment. The sensitivity of the risk to changes in the assumption of 
the correlation between K2 and U can be examined by comparing Figures 3 and 9. It can 
be seen from these Figures that the inclusion of a positive correlation, between K2 and U, 
results in a significant reduction in the risk at large violation distances. A comparison of 
the results in these Figures shows an average reduction of about 20% in the overall risk, 
and a reduction as high as 70% for large violation distances. 

/ 
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Figure 8. Contour of joint risk associated with average deficits and length of violation. 
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Figure 9. Contour of joint risk associated with maximum deficits and length of violation. 

In order to explain this observation, reference must be made to the articles previously 
citing the direct relationship between K2 and U (Bansal, 1973). It has been shown that an 
increase in the average stream velocity, U, results in an increase in the re-aeration 
coefficient, K2. By definition, an increase in K2 will lead to greater re-aeration rates and 
reduced DO deficits at downstream locations. The overall effect can be seen in the 
reduction of the risk violation at downstream locations. A positive correlation between 
these parameters should be included in the model formulation in order to describe the 
physical characteristics of the stream environment accurately. 

7.3. SENSITIVITY OF RISK TO UNCERTAINTIES IN STATISTICAL PROPERTIES 

Given imperfect data collection, uncertainties arise in quantifying the statistical proper- 
ties of the parameters in equation (2). The sensitivity of the risk to these uncertainties 
was analyzed for changes in the mean and standard deviation associated with each 
parameter in the model. The results of this investigation are presented in Figures 1&15. 
As a basis for comparison, normal distributions were assigned to each parameter in this 
investigation, together with a positive correlation coefficient between K2 and U. The 
mean and standard deviation of each parameter were allowed to vary f 15%. In order to 
illustrate the sensitivity of the risk to these changes, figures were constructed showing the 
variations in a single contour of risk at 6%. 

Figures 10 and 11 show that the variation of risk is more sensitive to equal 
percentage changes in the mean of K, than that of equal changes in the standard 
deviation. This result was observed for all the parameters used in this study. Thus, two 
Figures are presented to illustrate these facts. These results imply that the accuracy in 
estimating the mean of the model parameters has a greater impact on the risk assessment 
than estimates for the standard deviations. 

In comparing the remaining Figures (10 and 12-1 5) ,  the results reveal that the risk is 
most sensitive to changes in the mean values of K2 and Lo, followed by K , ,  U, and Do, 
respectively. It is clear from these results that special attention should be given to the 
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Figure 10. Sensitivity of 6% risk with respect to the mean of K,. 
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Figure 1 I .  Sensitivity of 6% risk with respect to the standard deviation of K,. 

determination of the mean values for K,, K,, and Lo, if accurate DO predictability is to 
be attained. It is evident from this portion of the study that proper selection of the 
statistical properties is crucial in order to quantify accurately the risk associated with the 
various violation conditions. 



W. E. Hathhorn and Yeou-Koung Tung 335 

I 1 I I 

1.25 - 

coo - 

F 

a 

c .- 
c 

'O 0.25- 

.- 
I I I I 

5 I0 I5 20 25 
Vidation distance, miles 

Figure 12. Sensitivity of 6% risk with respect to the mean of K2. 
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Figure 13. Sensitivity of 6% risk with respect to the mean of U. 

8. Summary and implications 

This paper has presented a methodology for assessing the joint risk associated with 
maximum and average DO deficits exceeding specified standards and the length of such 
violations in stream systems receiving waste effluents. Moreover, this method allows this 
risk to be calculated on the basis of several assumptions about the type of probability 
distributions assigned to each parameter in the Streeter-Phelps equation. The flexibility 
provided by this type of model formulation permits a unique analysis of each site under 
investigation. 
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Figure 15. Sensitivity of 6% risk with respect to the mean of Do. 

The results of this study show that the evaluation of the joint risk is highly sensitive 
to the type of distribution assumed for each parameter in the water quality model. In 
addition, a sensitivity analysis revealed that prediction of these risks is greatly influenced 
by variations in the mean values of each parameter in the model, especially K, ,  K2,  and 
Lo. It is clear from the results of this study that an accurate assessment of the risk 
associated with various water quality violation conditions is based on the proper 
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evaluation of the statistical properties and type of distribution assumed for each 
parameter in the model. 

In conclusion, water quality regulations have failed to include the inherent stochastic 
nature of the stream environment under their control. Unrealistic standards which are 
based on a deterministic evaluation of the stream environment have been enacted and 
remain enforced. Implied in the method and results presented in this study is the 
development of improved water quality regulations incorporating the risks associated 
with various DO violations. It is believed that the quantification of these risks will aid 
the decision-making processes employed by water quality management agencies and 
promote further investigations into the development of more realistic water quality 
standards incorporating the natural random behavior of aquatic environments. 

The authors wish to express their gratitude to the Wyoming Research Center for the support of the 
study. Thanks are extended to Mrs Ruth Daniels for her preparation of the manuscript. 
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Appendix. Nomenclature 

Stream water quality standards 

saturated concentration of dissolved oxygen, mg/l 
dissolved oxygen concentration, mg/l 
dissolved oxygen deficit at any location, mg/l 
initial in-stream dissolved oxygen deficit, mg/l 
maximum dissolved oxygen deficit, mg/l 
deoxygenation rate coefficient (base e), days' I 

re-aeration rate coefficient (base e), days-' 
initial in-stream biochemical oxygen demand, mg/l 
average stream velocity, mileslday 
distance downstream from source of pollution, miles 
distance downstream to point of maximum deficit, miles 
length of violation, miles 
downstream location where violation begins, miles 
downstream location where violation ends, miles 
specified tolerance for length of violation, miles 
specified tolerance for dissolved oxygen deficit beyond water quality standard, 

maximum dissolved oxygen deficit beyond a specified standard, mg/l 
average dissolved oxygen deficit beyond a specified standard, mg/l 

mg/l 


