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MULTIPLE-OBJECTIVE STOCHASTIC WASTE LOAD ALLOCATION

by Yeou-Koung Tung', A.M. ASCE

ABSTRACT

The practice of waste load allocation 1in water quality
management involves a number of noncommensurate and conflicting
objectives. In particular, the objectives considered in this
multiobjective stochastic waste load allocation study were (1) the
maximization of total waste discharge, (2) the maximization of
instream dissolved oxygen concentration, (3) the minimization of
difference 1in equity measures, and (4) the maximization of

reliability of water quality compliance. The model was illustrated
through a hypothetical example involving six waste dischargers.

INTRODUCTION

The issues involved in many environmental problems facing
water quality professionals today are becoming more complex. The
necessity for improved environmental protection has not precluded
the problem of waste load allocation (WLA) from increasing
governmental and societal demanés on water quality assurance. As
society progresses with time, the demand placed on water quality
will continue to grow. 1In fact, the decision-making process in
most environmental problems is cultivated by the desire to
achieve several goals simultaneously. The problem of optima1 WLA
is without exception to these aspirations. Therefore, in the
course of searching for effective and effi?ient management

decision for protecting and preserving water quality in the WLA
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process, several management objectives or goals, which may very
possibly be conflicting, must be considered simultaneously. In
other words, the most prob1ehs in water quality management are
multiple-objective in nature.

In the‘past; majérity of the researches performed for
solving the optimal WLA problems have been centered around the
problem with a single goal or objective, i.e., the minimization
of treatment cost or the maximization of waste discharge. Due to
the multiobjective nature of the problem, an "optimum” solution
to a WLA problem can only be obtained by carefully deliberating
the tradeoff among the various physical, legal, and economic
aspects in the problem. It is unlikely that a "true” optimum
solution to suqh problems could be obtained by considering only a
single objective in the decision process. The use of a single
objective formulation to obtain an optimum solution to the WLA
problem is not necessary realisfic.

The 1importance of considering a multiobjective approach in
the area of water resources has been cited in a number of
‘previous works (Cohen and Marks, 1975; Taylor et al., 1976). By
incorporating multiobjective procedures in the decision-making
process, three major improvements are accomplished: (1) the role
of the analyst and decision-maker are more clearly defined, (2)
the results ffom the multiobjective approach provide a greater
number of alternatives to the decision-making process, and (3)
models utilizing such techniques are generally more realistic.

The use of multiobjective procedures possess the distinct
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advantage of allowing a variety of problems to be solved, while
simultaneously considering several noncommensurable and
conflicting objectives (Cohen, 1978).

It is the purpose of this paper to present an analysis for
multiobjective WLA problem in a stochastic stream environment in
which uncertainties in water quality parameters are explicitly
considered. Given the rising demands placed on water quality
assurance by government and society, the utilization of
multiobjective procedures can only lead to improved water quality

protection and control.

MULTIOBJECTIVE MODELING

In a multiobjective problem, it involves a number of scalar
objective functions. The problem is sometimes referred to as the
vector optimization. The general framework of a multiple-
objective model can be expressed as

Max  Z(X) = [ Z,(X), Z,(X), ..., Z(X) ] (1)
subject to

g(x) < 0 | (2)

where Z(X) is a K-dimensional vector of the objective functions,
X is an n-dimensional vector containing the decision variables,
and g(X) is an m-dimensional vector of constraints.

In the context of multiobjective modeling, the ideological
theme of “optimality"” that prevails in the single-objective
problems is no longer appropriate because there normally exists

several objectives which are noncommensurable and conflicting



each other. Without a prior knowledge of the preference function
among the different objectives, the solution to a multiobjective
problem would result in a set of points defining the tradeoff
among objectives. Consequently, the concept of "noninferior
solution” in the multiobjective analysis replaces the concept of
“optimum solution” in the single-objective framework. Cohen
(1978) defined the noninferiority in the following passage: "A
feasibility4so1ution to a multiobjective programming problem is
noninferior if there exists no other feasible solution that will
yield an improvement in one objective without causing a
degradation in at least one other objective."”

The noninferior solution set, in general, is defined by a
unique continuous curve or surface depicting the tradeoffs
between the various objectives. In theory, an infinite number
of noninferior solutions may exjst to a multiobjective problem.
It is not until the decision-maker provides the characterization
of preference émong objectives that a best compromising solution
can be identified. The "best-compromising” solution to the
multiobjective problems is then an alternative which possess the
property of maximum combined utility and are elements in both the
noninferior solutions set and indifference curve. Such an
alternative only exists at the point where the indifference curve

and noninferior solution set are tangent (Cohen, 1978).

SINGLE-OBJECTIVE STOCHASTIC WLA MODEL

In all fields of science and engineering, the outcomes



of a system on which decisions are based generally depend on a
number of parameters and/or variables. More often than not one
or more of these parameters cannot be assessed with certainty.
This is particularly true in decision-making for environmental
management problems. The environment in which decisions are to
be made concerning instream water quality management are
inherently subject to many uncertainties (Ward and Loftis, 1983).
The stream4system itself, through nature, is an animate
environment abundant with ever-changing processes, both
physically and biologically.

In this study, the natural inherent uncertainties of water
quality parameters in a stochastic stream system were
incorporated in-the WLA model through the chance-constrained
framework (Charnes and Cooper, 1963; Kolbin, 1977). There have
been several articles recently gti]izing chance-constrained model
for water quality management (Lohani and Thanh, 1979; Yaron,
1979; Burn and‘McBean, 1985; Fujiwara et al., 1986; Ellis, 1987).
In this study the single-objective stochastic WLA model, which
serves as the basic model for the multiobjective formulation, is

expressed as the followings.

Objective Function. - The objective function adopted was
N
. Maximize I (B. + D.) (3)
j=q 9 3

where B.j and D‘j are the biochemical oxygen demand (BOD)



concentration (mg/1) and dissolved oxygen (DO) deficit
concentration (mg/1) in the effluent at discharge location j,
respectively, and N is the total number of waste dischargers.
This objective function was chosen for its simplicity and its
economical equivalence to the minimization of treatment cost.
Both effluent waste discharge and DO deficit were chosen in
attempting to replicate actual design condition because they were
controllable. By reducing the DO deficit in the effluent through
an induced reaeration process, greater quantity of BOD waste
could be discharged without violating the minimum DO‘requirements
within the stream environment, hence, waste removal costs could
be reduced. Of course, a price must be paid in order to provide
this reaeration.

Constraints.- The constraints in an optimal stochastic WLA
model basically involve the following types.

(i) Constraints on Water Quality.~ The most common

requirement of a WLA problem has been the assurance pf minimum
concentrations of DO throughout the river system in an attempt to
maintain desired 1iving environment for aquatic biota. 1In
general, the constraint relating the response of DO to the
addition of effluent waste can be defined by the Streeter-Phelps
equation (Streeter and Phelps, 1925) or its variations (Dobbins,
1964; Krenkel and Novotny, 1980). 1In this study the original
St}eeter-Phelps equation was employed for deriving the water
quality constraints. The reason of adopting the Streeter-Phelps

equation herein is to demonstrate the proposed methodologies



without over complicating the algebraic manipulations.

To ensure the compliance of water quality standard, a number
of control points within each reach of the river system were
selected. Constraint equations in the WLA model were established
for each control location at which water quality condition was
checked. A typical water quality constraint without considering
uncertainties in water quality parameters could be expressed as

the following:

Q.. D. < poS@t_ postd

1 ij Dj j PR for i=1,2,...,M (4)

where ei and Qi are the technological transfer coefficients

J J
indicating the relative impact on DO concentrations at downstream
locations, i, resulting from a unit waste input at an upstream
location, j. The technological transfer coefficients are

functions of water quality parameters such as reaeration and

deoxygenation rates, flow velocity, etc.. Also in Eq.(4), n, is

the number of the waste dischargers upstream of the control

§td

point i; DO1

and DO?at represent the required DO standard and

saturated DO concentration at control point 1, respectively; ag;
is the transfer coefficient relating the DO deficit concentration
at control point i as affected by the initial waste load at the
upstream end of the entire stream system; M is the total number

of control points. Expressions for eij and Qij based on the

Streeter-Phelps equation can be found elsewhere (Hathhorn, 1986).



In reality, water quality parameters such as reaeration and
deoxygenation coefficients, flow velocity, initial DO and BOD
concentrations are random (Kothandaraman and Ewing, 1969; Esen
and Rathbun, 1976; Hornberger, 1980; Chadderton et al., 1982;
Ward and Loftis, 1983). Due to the existence of uncertainty
within the stream environment, the compliance of water quality
standard in the stream system cannot be assessed with certainty.
Therefore,rthe water quality constraints given by Eq.(4) should

be expressed probabilistically as

1 < sat _ std > :
1 ij Bj ; 191j Dj < DO; DO, z a, (5)

U
3
[
+
M3

where Pr{} represents the probability operator and a, is the
specified water quality compliance reliability at control point
i.

However, the probabilistic statement given by Eq.(5) is not
mathematically operational. It has to be transformed into its
deterministic equivalent. The corresponding deterministic

equivalent of Eq.(5) can be derived as

n. n.

1 1 ,
j§1E[91j]Bj+ ji1E[Qij]Dj+ Z.(a;) VQB,D§ c(e,,0,) (B,D) < R}(6)
in which R; = DO?at - DO?td - E[aOi]’ (B,D) is the column vector

of BOD and DO deficit concentrations in waste effluent, C(Bi,Qi)
is the covariance matrix associated with the technological
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coefficients in the i-th water quality constraint, including a

03’
Zi(ai) is the ai—th order quantile associated with the
standardized variable Zi
b . . .+ , . .
R! g B0 518, I L2, 10,
Zi = (7)

\V 0% ce. .0, (8,0)

As can be seen that the deterministic equivalent of chance-
constrained water quality is non]inear involving the squared root
of a quadratic function of Qaste load decision variables.

Note that in order to solve the stochastic WLA model with
chance constraints such as Eq.(6), the knowledge of covariance
matrix of technological coefficients in watef quality constraints
must be known or estimated. Because of the nonlinearity of water
quality model, the use of ana]yiica1 techniques to determine the
statistical properties of the random technological coefficients
would be an extremely formidable task, if not impossible. The
level of complexity increases rapidly as the control points at
which water quality constraints are set move toward downstream.
Furthermore, the existence of spatial correlation of water
quality parameters and cross-correlation amcngﬂthe parameters
makes such task even more difficult. Even if one is willing to
assume that water quality parameters were uncorrelated spatially,
thebfact that the technological coefficients in the water quality

constraints would not be uncorrelated because they are functions



of the same water quality parameters. As a practical
alternative, simulation procedures were used to estimate the mean
and covariance structure of the random technological coefficients
in a given water quality constraint. 1In particular,
unconditional simulation developed in geostatistics were applied
in this research to generate the random but spatially correlated
water quality parameters. Detailed descriptions of the use of
unconditional simulation for estimating statistical properties of
the technological transfer coefficients in stochastic water
qué]ity constraints were given by Tung et al. (1988).

(ii) Constraints on Treatment Equity.- In addition to the
constraints for complying water quality standard, constraints
were also employed to define equity between the various
dischargers along the river system. Without the inclusion of
equity considerations in the WLA model, any attempts to maximize
waste discharge (or to minimize treatment cost) would result in
the allocation of large quantities of waste to the upstream
users, while the downstream dischargers would be required to
treat their effluent at levels of maximum possible efficiency.
This is especially true for fast moving streams. There have been
several articles discussing the importance of equity
considerations in the WLA problem (Gross, 1965; Loucks et al.,
1967; Miller and Gill, 1976; Brill et al., 1976).

) Recognizing the importance of equity consideration in the
WLA process, the choice must then be made as to the type of

equity to be used. Based on the conclusion drawn by Chadderton
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et al. (1981), the type of equity measure considered in this
study was the equal percent removal which can be expressed

mathematically as

| (By/I5) - (B/I, ) | S E, , for j=3°  (8)

where Ij is the influent raw waste concentration (mg/1 BOD) at
discharge location jJ, EA is the specified allowable difference in

equity measure between any two waste dischargers.

Additionaliy, it éhou]d be noted that for any given stream
system, one or more of the waste dischargers considered might be
influent tributaries. The waste discharge from a tributary
should be exc]uded from the consideration of equity in order to
prevent an undue restriction being placed on the required
treatment levels assigned to other dischargers. Therefore,
provisions should be included to account for tributary flows and
their waste inputs in order to identify the entirety of potential
waste sources.

(ii1i1) Constraints on Treatment Efficiency.- This set of
constraints defined the acceptable range of the treatment
efficiency. A range between 35 and 90 percent removal of
incoming raw waste at each discharéé location was used in this
study. The minimum requirement of 35 percent removal was to
prevent floating solids from being discharged to the stream

environment. The discharge of solids of this type is both
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socially and environmentally objectionable. On the other hand,
the upper l1imit of 90 percent removal represents the maximum
efficiency (assumed) attainable by practical treatment
technology.

The treatment efficiency constraints for each discharge

location can be expreséed as
0.35 < Bj/I; £0.90 , for j =1,2,...,N (9)

Certainly, readers might argue that the limits set on
treatment efficiency were antiquated. Nonetheless, these limits
were selected solely to illustrate the use of the model presented
here. By changing these limits, only the size of the feasible
region in which the optimum solution is sought would be affected,
not the utility of the model.

Finally, non—-negativity constraints on the decision

variables should be included in the model.

MULTIOBJECTIVE STOCHASTIC WLA MODEL
In this paper model presentation and discussion are based on
a four-objective stochastic WLA problem formulation. The
objective functions considered are discussed in the followings.
As stated previously that it is incomplete in the WLA model
wi%hout incorporating the idea of "fairness” into the model
formulation. Without the consideration of equity among waste

dischargers, the attempt to maximize waste discharge would result
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in an allocation of large quantities of waste to the upstream
users while the downstream dischargers would be required to treat
their influents at levels of maximum possible efficiency. |
Therefore, as the requirement of fairness measure is raised, the
total waste load to the stream system would generally be reduced.
Furthermore, from the perspective of preserving stream water
quality, the higher the water quality standard is set the more
desirable the water quality would be maintained. However, it is
intuitively understandable that the waste treatment cost would be
increased as the instream water quality standard is raised.
Therefore, the objectives of preserving water quality and of
enhancing economic efficiency are conflicting each other.
Lastly, as the requirement of reliability for complying water
quality standard in a stochastic stream environment is raised,
the total waste load that can be discharged would be expected to
reduce.

A1l the above intuitive arguments of tradeoff among
objectives can be easily made for most of multiobjective
problems. However, the exact tradeoff behavior generally cannot
be made without going through the formalism of solving the
problem by appropriate techniques.

The four objective functions considered for the stochastic
WLA problem in this study are: (1) the maximization of the total
waéte load, (2) the minimization of the maximum difference in
equity measure between various dischargers in the stream

environment, (3) the maximization of the lowest allowable DO
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concentration level in the stream, and (4) the maximization of
the lowest water quality compliance reliability.
The first objective function considered is formulated as the

single-objective case as stated previously.
N
Maximize Z, = I (B. + Dj) (3)

For a stream system involving multiple dischargers, the
differences in equity measure would generally be varying. To
collapse different values of equity measure into one single
representative indicator, the worst case associated with the
largest difference was adopted in the study. Hence, the second

objective can be expressed as

L _ _ _ o
Minimize Z, = 8E _ = max |( BJ/IJ) (Bj,/Ij,)l, ¥ j#j (10)

where éEma is a new decision variable representing the largest

X

difference 1n‘equity measure between the various dischargers.

The third objective considered is the maximization of the
lowest allowable DO concentration level that should be maintained
in the stream environment. In the study, this third objective is

expressed as

std

.. Maximize Z, = DO_._

(11)

std

where the new decision variable Domin

is the minimum required DO
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standard in the stream.

Similar to the difference in equity measure, the water
quality compliance reliability at different control points will
not be uniform. To utilize a single representative measure of
compliance reliability for the entire system, a conservative view
of looking at the lTowest reliability was adopted. The objective

is to maximize this lowest compliance reliability, i.e.

Maximize Anin = min { a

in g0 Goy =+e 5 Gy } (12)

By the definition of a the chance constraints for water

min?
quality compliance, Eqg.(5), would satisfy the following relation.

n. n.
1 i std sat
Priay,+ JE;QU BJ +j>=:|Q"J' DJ. + DO . < DO; 2 a.., (13)
The corresponding deterministic equivalent of Eg.(13) can be
expressed as
n. n.
i 1 std
J=1 3=t
+2 (a.)\N®B,00F c(e.,2.) (B,D) £ R (14)
min ’ ) ’ =
, . w. _ sat _
in which Ri = DOi E{aoi].

Note that the original objective function in Eg.(12) was to

maximize Arin- However, under the assumption that the

standardized left-hand-sides of the water quality constraints,
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i.e. Zi’s, are continuous and unimodal random variables, the

decision variable a would have a strictly increasing relation

min

with Z(a ). Therefore, maximization of a is then equivalent

min min

to maximizing Z(a ). In the actual model solving, it is more

min
convenient to replace Eq.(12) by

Maximize Z4 = Z(amin) (14)

Note that, now, the substituting decision variable Z(amin) is
unrestricted-in-sign. The objective function of maximizing the
lowest compliance reliability is equivalent to minimizing the

largest water quality violation risk.

SOLUTION PROCEDURE TO MULTIOBJECTIVE STOCHASTIC WLA MODEL

There are various methods developed for solving
multiobjective problems (Cohon,'1978; Geocoichea et al. 1980;
Haimes, 1977).  In general, the solution techniques can be
categorized into one of the two types: (i) generating technigues
and (ii) techniques incorporating preference information (Cohon,
1978). 1In this study, one of the generating techniques called
the constraint method was employed.

jhe constraint method was first cited by Marglin in the book
by Maass et al. (1962) and again by Marglin (1967). This
approach enables an analyst to generate the noninferior solution
set in entirety without regards to convexity. The computational

simplicity is probably the most distinguished advantage of the
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constraint method. When using the constraint method, the
multiobjective problem is solved by adopting only one objective
in the objective function. The remaining objectives are simply
transformed into constraints in the problem formuiation.

Once the multiobjective problem has been formulated, the
constraint method provides a relatively effortless computational
methodology for generating the noninferior solution set.
Moreover, if the multiobjective formulation follows a LP format,
the constraint method can be solved by a parametric LP approaqh.
For a detailed analysis of the attributes of the constraint
method readers should consult Cohen and Marks (1975) and Cohen
(1978).

In summary, the multiobjective stochastic WLA problem
described above can be cast into the following format to be

solved by the constraint method.

Maximize 'Z(amin) (16)

Subject to

n. n.
1 i std
.. .+ . . .+ X
J_)L E[GU] BJ j>::1 E[QU]DJ DO, i n
V t "

+ Z (am.n) (8,D) 0(81.,91) (B,D) £ R (14)

0.35 < BJ./IJ. < 0.90 , for j=1,2,...,N (9)

| € By/T5 ) = (Bys/Ij, )| = 8B 0 for j# 3’ (17)
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N (o]

)3 (BJ. + DJ.) b z1 (18)
J=1

Do;‘;'g > zg, (19)
5E .. < zg (20)

and non—-negativity constraints for the decision variables except
for Z(amin)' In the above formulation, the right-hand-sides

o)

1 Zg, and z° are the values of objective functions 1, 2, and

z 3

3, respectively, which are to be varied parametrically.

MODEL SOLUTION TECHNIQUE

The deterministic equivalent transformation of chance-
constrained water quality constraints resulted in the presence of
nonlinearity as shown in Eq.(14i. The problem became one of
nonlinear optimization which could be solved by various nonlinear
programming techniques such as the generalized reduced gradient
technique (Lasdon and Warren, 1979) and others.

Alternatively, this study adopted a procedure to linearize
the nonlinear terms of the water quality constraints in the
stochastic WLA model and solved the linearized model by the LP
technique iteratively.

T Tung (1986) proposed an approach using the first-order
Taylor’s expansion to linearize a nonlinear terms involving the

squared root of the variance which is a quadratic function of
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waste load decision variables. The linearization procedure
required an initial guess of the solution to the optimization
problem which was not known. As a result, the linearized problem
had to be solved iteratively until the solution converges. Since
the linearization process utilized by Tung (1986) was a
cumbersome exercise in this case and the resulting linearized
model still had to be solved iteratively. In this study, the
assumed sofutions to the stochastic WLA model were used to
calculate the value of the squared root terms and were treated as

a constant associated with the decision variable Z(a ). The

min
resulting linearized water quality constraints in the stochastic

WLA model could then be written as

n. ' n

i 1 std
Z E[8;,1B4+ I E[Q;;1D4+ DO/ S\
J=1 J=1
+ z¢a_. ) N8,0)t c(e.,9.) (B,D) < R (21)
min ? 179 ’ =

in which é and'a are the assumed solution vectors to the
stochastic WLA model.

Consequently, the linearized stochastic WLA model can then
be solved by the LP technique iteratively, each time comparing
the values of the current solutions with those obtained in the
previous iteration. Then, the current solutions were used to
compute the covariance of the left-hand-sides (LHSi) in each of

the stochastic water quality constraints
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Q.. D. (22)

until convergence criteria were met between any two successive
iterations. A flow chart depicting the procedures is shown in
Figure 1. Of course, alternative stopping rules could be
incorporated in the algorithm to prevent excessive iteration
during the computation.

To solve the multiobjective stochastic WLA model as
formulated above requires no knowledge about the distribution of
random LHSi’s. However, 1in order to assess the minimum
compliance reliability of water quality constraints, the
probability distribution for the LHSi must be known or assumed.
Once such distributional assumption is made, the minimum
probability compliance can be made when the solution technigue
converges at which time the means and variances of LHSi can be
evaluated. |

It should be noted that the decision variable Z(amin) is not
without upper bound. The highest value possible for Zi(ai)’ as
can be observed form Eq.(14), could be achieved only when there
is no waste discharged into the stream system, i.e. B=0 and D=0,

R

. z¥ = L (23)

1 ‘V var( ag; )

where Var() is a variance operator. Therefore, the upper bound

20



x x

21 e As the

. x o %
of Z(amin) is equal to Zmin = min { 21, Z

solution jteration proceeds, the upper bound for Z(ami ) needs to

n
be updated accordingly.

Under the normality assumption for the LHSi's in Eqg.(22),
the highest minimum compliance reliability can be easily computed
by utilizing the standard normal distribution. However, when
lognormal distribution was assumed, the same value for Zi’s in
different water quality constraints does not necessarily indicate
the same compliance reliability because the higher moments may
not be the same. In this case, the procedure is, first, to
identify the binding water quality constraints and, then,
calculate the associated compliance reliability. The smallest
reliability from the binding constraints will be the largest
minimum compliance reliability achievable by the stream system.

Due to the nonlinear naturé of the stochastic WLA model, it
should also be pointed out that, in general, the optimum solution
obtained cannot be assured to be the global optimum. Thus, it
was suggested that a few runs of the solution procedure with
different initial solutions should be carried out to ensure that
model solution converges to the overall optimum. Other
suggestions such as how to select proper initial solutions for
the iterative procedure, particularly for the optimal WLA

préblems, can be found elsewhere (Tung et al., 1988).

21



EXAMPLE APPLICATION

The means and standard deviations for the stream water
quality parameters are shown in Tables 1 and 2. An illustration
of the six-reach example is given in Figure 2. To assess the
statistical properties (i.e. the mean and covariance matrix) of
the technological transfer coefficients in the water quality
constraints for this example, 200 sets of technological
coefficienﬁs were generated by the unconditional simulation
approach under the condition that all stream water quality
parameters are normally distributed. It was found numerically in
the previous study (Tung et al. 1988) that the statistical
properties of Bi

and 91 reached a very stable values based on

J J
200 sets of simulated parameters. The mean and covariance matrix
of the technological coefficients computed from the simulated
results were used in this four-gbjective stochastic WLA model.
However, for purpose of illustration, spatial independence of
water quality barameters was considered in estimating the means
and covariance matrices of the technological coefficients in
water quality constraints.

Based on the study by Tung and Hathhorn (1988), a two-
parameter lognormal distribution was found to be the best
parametric distribution for describing the DO deficit
concentration computed by the Streeter-Phelps equation regardless
ofﬁthe probability distribution of water quality parameters and

the correlation between reaeration coefficient and average flow

velocity. Therefore, an adoption of a lognormal distribution for
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the random left-hand-side, LHSi, given in Eq.(22) were made to
compute the minimum water quality compliance reliability once the
model is solved.

The tradeoff curves among the various objectives considered
with a given minimum DO standard concentration are shown in
Figures 3-5. As can be seen that, for a specified minimum DO
standard and total waste loading, the largest water quality
violation rﬁsk decreases as the largest difference in equity
measure increases. Increase in equity measure implies a larger
tolerance for the "unfairness"” among waste dischargers. As the
level of minimum required DO standard is raised, the set of
tradeoff curves move upward. To show the tradeoff for different
minimum DO standard, Tables 6 and 7 were plotted for risk of
water quality violation, equity measurement, and water quality
standard while the total waste 1pad were fixed at specified

levels.

SUMMARY AND CONCLUSIONS
Most environmental management problems, including waste load
allocation, are multiobjective by nature and should be treated
accordingly. Thus, the continued reliance upon a single-
objective optimization framework to manage a variety of
environmental systems seems unreasonable.
\'_In an attempt to improve river water quality management

practice, this paper presented a methodology to analyze a four-

objective stochastic WLA problem using the constraint method.
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The model developed considered explicitly the uncertainties in
water quality parameters. The multiobjective model presented
here was applied to a multiple-discharger river system in which
the goals of maximization of total waste discharge, minimization
of the largest differences in equity measure among waste
dischargers, maximization of minimum DO standard, and
maximization of lowest water quality compliance reliability were
considered. The relevance of this multiobjective approach to the
problem is that a more realistic solution to the problem of WLA
could be identified by specifying the tradeoffs (given by the
noninferior solution set) among the four objectives. This
information can then be passed on to the decision-making entity
where the ultimate responsibility of management policy lies. The
information provided by this approach will 1ikely enhance the
decision-maker’s ability to select a "best-compromising” solution
given the set of alternatives to the problem of optimal river

water quality management.
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Specify the initial

~ ~
Solutions Bj's and Dj's

1

Compute the squared

root terms in Eq.(21) }jea-

. S ANy
using Bj s and Dj S.

Replace the old solutions

by the new solutions.

Solve the multiobjective

WLA model using linear

programming technique.

Do the solutions

Optimum solution found

Figure 1. Flow Chart for Solving the Linear Multiobjective Stochastic
Waste Load Allocation Model.
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Background

Characteristics
LO=5.O mg/1
go:ilg ;fil Discharger No.6
o U ME ' I=410 mg/1
q=0.78 cfs
B Discharger No. 4 x=125.0 miles
Discharger No.2 I1=910 mg/1 -
(tributary) q=35.81 cfs
I=6.0 mg/1 x=75.0 miles
q=44.0 cfs

Discharger No.l

%¥=25.0 miles

1=1370 mg/1
q=0.15 cfs isch
x=0.0 miles Discharger No.3
1=665 mg/1
q=4.62 cfs Discharger No.5
x=50.0 miles I=1500 mg/1
g=3.2 cfs

x=100.0 miles

Figure 2 Schematic Sketch Of The Example System In WLA Problem
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