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CHAPTER 1

INTRODUCTION

PURPOSE

The purpose of this thesis is to examine the evidence
for groundwater recharge to the Paleozoic aquifer along the

east - flank of the Laramie Range, Laramie County, Wyoming.

STATEMENT OF THE PROBLEM

The city of Cheyenne, in Laramie County, Wyoming, is
anticipating a greater need for water in the near future due
to the expansion of F. E. Warren Air Force Base. The
Paleozoic aquifer has been identified as a potential water
resource in Laramie County by several reconnaissance level
studies including Eisen and others (1980), U.S. Forest
Service (1981), and Western Water Consultants, Inc. (1982).
Little has been done to examine, in detail, the production
potential of this aquifer. This thesis attempts to further
what is known about the Paleozoic aquifer by examining the

evidence for recharge to it.



GEOLOGIC AND GEOGRAPHIC SETTING:

The Denver-Julesburg Basin, shown on Figure 1, is a
structural basin which extends south to the Apishapa and Las
Animas Arches in Colorado, and north to the Chadron-
Cambridge Arch and the Hartville Uplift in Nebraska and
Wyoming, respectively. The western perimeter of the basin
in Wyoming is delimited by west dipping thrust faults which
bound the Laramie Range (Huntoon,1985).

The project area, shown also on Figure 1, is located in
the northwest part of the Denver-Julesburg Basin. - It
includes the western part of Laramie County from R66W to
R70W and from T13N to T2IN. A smaller area, shown on
Figure 2, is defined within the project area for detailed
mapping of tectonic structures along the east flank of the
Laramie Range.

The Paleozoic aquifer is defined in this paper as the
saturated and permeable parts of the Casper Formation
(Richter, 1984). The Casper Formation crops out within the
study area in the foot wall of the thrust faults which bound
the Laramie Range and as imbricate slices within the thrust
zone. Mesa and Table Mountains, located in the southern

part of the mapping area, are the exceptions. The sections
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of the Casper Formation capping these mountains are not
saturated and are part of the hanging wall.

At its deepest in the region the aquifer lies
approximately 10,000 feet below the land surface. This
deepest part is located along the synclinal axis of the
Denver-Julesburg Basin in the vicinity of Cheyenne, Wyoming.
In contrast, several perennial and intermittent streams
which flow from the Laramie Range cross exposures of the
Casper Formation at the western edge of the basin. These
streams are a potential source for recharge to the basin

aquifers and the focus of this study.

PHILOSOPHY OF APPROACH:

Two questions must be addressed when examining evidence
for recharge to an aquifer. First, how much water, if any,
is entering outcrops of rocks which comprise the aquifer?
Second, can water entering the outcrops circulate to the
basin interior where production is to occur? Water which
enters an outcrop and which is discharged before reaching
the basin interior, for example along a fault, does not
replace water withdrawn during production and should be
excluded from recharge estimates.

A detailed water budget analysis was conducted on the
North Fork of Horse Creek to address the first question.

The water budget was used to quantify the amount of recharge
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entering Paleozoic rocks from the North Fork of Horse Creek
which is one of several perennial streams in the area which
flow across outcrops of the Paleozoic rocks. The amount of
recharge to the Paleozoic section along this stream is
considered representative of all streams along the east
flank of the Laramie Range which cross Paleozoic rocks under
similar circumstances, that is, similar tectonic settings.

An understanding of the patterns by which recharge
circulates within, between and around the three major
components of the groundwater system was obtained through
the detailed examination of: 1. the geologic framework
through which groundwater flows, and; 2. the shape of the
potentiometric surface. The three major components include:
the recharge area; the hydraulically interconnected parts
of the aquifer; and, the hydraulically isolated
compartments within the aquifer.

Examination of the geologic framework involved the
identification of tectonic structures which deform the
aquifer and an understanding of how these structures
influence permeability. For example, an impermeable barrier
will exist where motion along a thrust fault has completely
Jjuxtaposed aquifer strata against impermeable rocks.
Conversely, extensional fractures in the axis of an
anticline will act as highly permeable conduits in many
environments. Examination of the geological framework also

involves the identification of hydraulically isolated



compartments within the aquifer. These compartments are
sealed off from the rest of the aquifer by impermeable, or
semipermeable boundaries which act as barriers around which
groundwater must flow.

Further information concerning the patterns by which
recharge circulates to the production area is obtained from
the shape of the potentiometric surface. The slope of the
potentiometric surface is the hydraulic gradient which

drives groundwater flow. Circulation patterns are deduced
by considering these gradients in conjunction with the

permeability distribution.



CHAPTER 2

METHODOLOGY

WATER BUDGET ANALYSIS

The water budget analysis conducted on the North Fork
of Horse Creek was an accounting of all inflow to and
outflow from the reach which flows across outcrops of the
Casper Formation. The water budget can be summarized as

Qin + P + GWin = Qout + E + ET + GWout (1)

where:

Qin and Qout are stream flow into and out of the
study reach, respectively,

P is the water gained by the study reach due to
precipitation,

E and ET are water lost by evaporation from the
stream and from evapotranspiration from the
phreatophyte zone, respectively;

GWin and GWout are discharge from the aquifer to
the stream and recharge to the aquifer form

the stream, respectively.
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For the purposes of this study, GWin and GWout were combined
into a single term, net GW flux, for which equation (1) was
then solved:
net GW flux = Qin + P - Qout - E - ET. (2)

Net groundwater flux is positive if the aquifer is being
recharged. The net groundwater flux was computed for each
month based on estimates for the five remaining variables:
Qin, Qout, P, E, ET.

Approximations of Qin and Qout were based on stream

flow data collected from the east and west stream gauging
stations, respectively. These two stations were established
at each end of the study reach as shown on Figure 3.
Continuous records of stream stage were obtained with a U.S.
Geological Survey type bubble gage servo-manometer. The
average stage for each day was estimated from these records.
Standard staff gages and Parshall flumes were used to
obtain weekly paired observations of stage and discharge at
the east and west stream gaging sites. fhese paired
observations were used to develop a log-log regression
between stage and discharge for each site. The regression
was then used to convert daily average stage to daily
average discharge. The total volume of stream flow which
passed each gaging station was then computed on a daily
basis and summed to obtain the monthly totals of inflow to

and outflow from the study reach.
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P was estimated by applying the local monthly accumulation
of precipitation over the surface area of the stream.
Precipitation was measured by a Belfort, weighing-bucket
type recording gage which was located on a hill near the
east stream gaging station. The gage had an alter type
windshield around the collector orifice.

Contributions to the gauged reach resulting from runoff
associated with precipitation events were not considered for
two reasons. First, no evidence of overland flow entering
the stream was observed even during large precipitation or
snowmelt events. Second, it was believed that any
significant runoff reaching the phreatophyte zone would
infiltrate and be accounted for by the groundwater flux
tern.

Estimates of E and ET rates for the North Platte
River drainage basin were obtained from Lewis (1978) and Van
Klaveren (1975), respectively, for each month. Volumes were
computed by applying the evaporation rate over the surface
area of the stream and by applying the evapotranspiration
rate over the area of the phreatophyte zone along the
stream. The rate of evapotranspiration is zero for the non

growing season months of October through April.
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In order to understand where the recharge and discharge
is occurring and to further isolate the part of the gauged
reach which flows over the limestones of the Casper Fm., the
study reach was divided into three segments by two three-
inch Parshall flumes. Stream flow losses for each of the
three segments were calculated by subtracting the weekly
flow rate at the downstream flume from the flow rate at the
upstream flume. Precipitation, evaporation and
evapotranspiration were considered negligible for this
analysis.

Gauging of additional streams in the region, to verify
that the results of the North Fork of Horse Creek study are
applicable to all streams along the east flank of the
Laramie Range, was considered unnecessary because these
streams flow across outcrops of the Casper Formation which
are hydraulically severed from the rest of the basin by
thrust faults. These faults are impermeable boundaries
which effectively prohibit any recharge occurring along
these streams from reaching the basin interior. The two
streams which do flow through parts of the recharge area
which may be in hydraulic communication with the rest of the
aquifer are the North Fork of Horse Creek and Mill Creek.
The North Fork of Horse Creek was gaged in detail for the
water budget analysis. Mill Creek, which is the next stream
to the south of the North Fork of Horse Creek, flows over

Paleozoic rocks which were heavily disrupted by the



13

limestone mine on the adjacent hogback. Mining practices

have altered the hydrologic characteristics of these rocks
to such an extent as to render the results of any gauging of
this stream unique to this one circumstance and therefore,

of limited interest to this study.

EXAMINATION OF THE GEOLOGIC FRAMEWORK

The geologic framework through which recharge must flow
was examined by identifying any variations in permeability
which could impact groundwater circulation patterns. These
features included tectonic structures which deform the
aquifer and hydrologically isolated compartments which are

isolated within the aquifer by zones of small permeability.

TECTONIC MAPS. Tectonic structures were identified on

two different scales. A structure contour map of the Muddy
Sandstone was prepared on a scale of 1:125,000 and is
presented on Plate I. Tectonic structures along the east
flank of the Laramie Range, where the Paleozoic and Mesozoic
rocks crop out, were mapped on a 1:24,000 scale and are
presented on Plates II, III and IV. Lithologic descriptions
of the geologic units present in this area are listed in

Table 1.
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Lithologic Descriptions of the Geologic Units

Present Along the East Flank of the Laramie Range, Laramie

County, Wyoming,

(from Grey,

1947).

GEOLOGIC AGE

NAME OF UNIT

DESCRIPTION OF UNIT

Quaternary

UNCONFORMITY
Oligocene

UNCONFORMITY
Cretaceous

UNCONFORMITY

Quaternary
Alluvium

White River
Group

Fox Hills
Fm.

Pierre Fm.

Niobrara Fm.

Frontier Fm.

Mowry Shale

Thermopolis

Fm.

Cloverly
Group

Floodplain alluvial
deposite.

Brule Fm.:
tough sandy clay, 200 ft.

Chadron Fm.,:

Interbedded red and green
sandy clay, with arkosic
gravel and light brown,
poorly cemented, arkosic
conglomerates, 20 to 200 ft.

light brown to grey sandstone,
with tan and dark grey shales,
360 ft.

Succession of shales and
sandstones, 3000 ft.

Calcareous shales and
sandstones, 420 ft.

Black sandy shales, with
some sandstones, 165 ft.

Black siliceous shales which
weathers to silver-grey, 150
ft.

Upper: dark ferruginous
shale, 50 to 60 ft.

Muddy Sandstone: siliceous
sandstone, 50 to 75 ft.

Lower: black shale, 100 ft.
Fall River Sandstone, 25 ft.
Fuson Shale, 50 ft.

Lakota Sandstone, 27' ft.
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GEOLOGIC AGE

NAME OF UNIT

DESCRIPTION OF UNIT

Jurassic

UNCONFORMITY
Triassic
Permian

Pennsylvanian

UNCONFORMITY
Precambrian

Morrison Fm.

Sundance Fm.

Chugwater Fm.

Opeche-
Minnekahta
Succession

Fountain-
Casper

Sherman
Granite

Variegated shales, 200 ft.
Grey to buff, fine to medium
grained sandstone, with orange
poorly indurated sandstones at
the base, 100 to 165 ft.

Red shales and sandy shales
with, two thin limestones at
the base, 600-700 ft.

Minnekahta Limestone:

Pink to purple interbedded
limestones and siltstones,
22 ft.

Opeche Shale:
Red shales and sandstones,
89 ft.

Casper Fm.:

Upper: red shales and
sandstones, 400 ft.
Middle: interbedded shales

limestones and sandstones,
660 ft.

coarse-grained
200 ft.

Lower: red,
arkosic sandstones,

Fountain Fm.: red coarse
grained, arkosic sandstones
and conglomerates, 30 ft.
Pink, coarse grained, arkosic
granite.
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A structure contour map of the Muddy Sandstone, Plate
I, was made by contouring depth-to-formation data obtained
from library files which are open to the public at the
Wyoming 0il and Gas Commission and from Petroleum
Information Cards at the Wyoming Geological Survey. Depth-
to-formation data were based on well logs including both mud
logs and geophysical logs obtained during oil and gas
exploration. Among the geophysical logs used were
conductivity, resistivity, spontaneous potential and gamma
ray logs. This map was then used to identify tectonic
structures which could potentially enhance or inhibit
groundwater flow in the basin. Depth to formation data is
listed in Appendix B and the spacial distribution of these
data points is shown on Plate V.

Tectonic structures which deform the Paleozoic and
Mesozoic rocks along the east flank of the Laramie Range
were identified and mapped using previously published maps
by Gray (1946) and Brady (1949), stereo aerial photographs,
and field observations, where access was permitted. The
purpose of these maps was to identify any tectonic features
which impede or enhance-the flow of groundwater from the

recharge area to the basin interior.
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It was not possible to map the structure of the basin
interior in as much detail as was possible along the east
flank of the Laramie Range. Paleozoic rocks in the basin
interior and the structures which deform them are
unconformably buried by the 0Oligocene White River Group.

Use of the Muddy Sandstone. Although the Muddy
Sandstone is not part of the Paleozoic aquifer, it was
necessary to use it as the source of data for much of the
analysis done for this thesis because there is virtually no
data available for the Paleozoic aquifer in this area.

The Muddy Sandstone was chosen because the circulation
patterns which describe groundwater flow through the Muddy
Sandstone closely mimic the patterns which describe
groundwater flow through the Paleozoic aquifer. This occurs
because the basic geologic framework for both formations is
the same including common basin boundaries, common tectonic
deformation of the strata and common overall basin geometry.
Copeland (1984), Gray (1946), Brady (1949) and I have shown
through our mapping that all of the stratigraphic units from
the Pennsylvanian Fountain Formation to the Late Cretaceous
Fox Hills Formation are involved in the same major geologic
structures. There are no angular unconformities in the
stratigraphic sequence from the Pennsylvanian Fountain
Formation to the Late-Cretaceous Fox Hills Formation that
would indicate any deformation of the Paleozoic aquifer

which did not also involve the Muddy Sandstone.
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The premise that the groundwater circulation patterns
will be the same in the Paleozoic aquifer as they are in the
Muddy Sandstone, because the geologic framework is the same,
is substantiated in work done by Belitz (1985). This work
shows structure contour and potentiometric maps for several
stratigraphic levels from pre-Cambrian to late Cretaceous in
the Denver-Julesburg Basin. Comparison of these maps shows
that the Middle Cretaceous units, including the Muddy
Sandstone, and the Paleozoic units, including the Casper
Formation have the same geologic framework and the same
groundwater circulation patterns.

Unlike data for the Paleozoic aquifer, data for the
Muddy Sandstone is readily available because, locally, it is
- a major target for petroleum exploration and development.

In fact, there are two fields in the study area which are
currently producing from the Muddy: the Horse Creek and the

Borie fields.
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Hydraulically Isolated Compartments. Hydrologically

isolated compartments within the aquifer were identified by
locating zones of anomalous fluid pressure within the basin.
A zone has anomalous fluid pressure if the fluid level, or
hydraulic head,in a well completed in that zone is not
within a few hundred feet of the land surface (Belitz,
1985). Zones in which the hydraulic head is significantly
below the land surface, that is, not within a few hundred
feet, are under pressured. Zones in which the hydraulic
head is significantly above the land surface are over
pressured.

Zones of anomalous fluid pressure were located by
plotting the greatest recorded shut-in pressure against
depth of measurement for all of the drill stem test (DST)
data available for the area. This plot is presented as
Figure 4 and the DST data is listed in Appendix A. DST data
was obtained from library files at the Wyoming 0il and Gas
Commission and from Petroleum Information Cards at the

Wyoming Geological Survey.
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There is a linear increase of pressure with depth in
hydraulically connected zones of an aquifer that follows the
equation
P = gd, (3)
where:
P = pressure,

= density of formation fluids

g gravitational acceleration, and

d = depth below the water in the saturated zone.
This relationship appears as a line on pressure-depth plots
such as Figure 4, where the slope depends on the density of
the fluid. Slopes are steeper for less dense fluids and,
gentler for more dense fluids.

This line is called the normal pressure line for a
fluid of a given density. The line shown on Figure 4 is the
normal pressure line for fresh water. Abnormally pressured
parts of the basin produce data points which plot
significantly to the left (underpressured) or to the right
(overpressured) of this line. Data from several depths
within a given abnormally pressured zone produce clusters of
points which fall on a line that lies roughly parallel to

the normal pressure line.
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Hydraulic head is expressed in the Bernoulli equation
as
h =P/ g + z, (4)
where:
h = hydraulic head,

g = gravitational acceleration

in

density of formation fluids

z = elevation of the point of measurement.
If equation (3) is substituted into equation (4),

h=4d + z. (5)
It follows that h is a constant for normally pressured parts
of a basin which is fully saturated, and which has a
reasonably flat land surface. Similarly, the heads within
an abnormally pressured zone will also be a constant, but
that value will be greater than (overpressured) or less than
(underpressured) the value obtained for the normally
pressured parts of the basin. Obviously, under- and
overpressuring implies that the zone in question is not in
good hydraulic connection with the normally pressured parts

of the basin.

POTENTIOMETRIC SURFACE

The potentiometric surface was mapped by contouring
hydraulic head data obtained from drill stem tests preformed

by the petroleum industry throughout the basin. DST’'s are
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transient formation pressure tests which are used by the
petroleum industry to evaluate the production potential of a
specific stratigraphic interval (Jarvis, 1986). The test is
performed by isolating a specific stratigraphic interval and
allowing the fluids in that interval to flow into the well
and then allowing pressure to build up. The changes in
pressure are recorded for two or four alternating periods
during which the well is either shut-in or open. The shut
in periods are intended to allow the measured pressure to
equilibrate with formation pressure as closely as possible
{Bair and others, 1985).

Complete DST records include a continuous record of the
fluid pressure changes during the entire test, the volume of
fluid recovered during the shut-in periods, a chemical and
thermal analysis of the fluids recovered, the reference
elevation, and the gauge depth (Jarvis, 1986). The complete
pressure record can be used to extrapolate the undisturbed
formation pressure as demonstrated by Bredehoeft (1965).
These calculations involve a curve matching technique for
radial fluid flow to a producing well which was adopted from
Theis (1935).

Complete DST records were not readily available for the
project area because they are proprietary. Incomplete DST
records are, however, routinely filed with state agencies
such as the Wyoming 0il and Gas Commission. These

incomplete records were used to compute the hydraulic head
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values listed in Appendix A and used to map the
potentiometric surface on Plate I. The spatial distribution
of these data points is shown on Plate V. The incomplete
DST records most often included the reference elevation, the
interval tested, the gauge depth, the volume and type of
fluid recovered during the shut-in periods, discrete
measurements of hydrostatic and shut-in pressures, and the
length of time which elapsed during each shut in and flow
period.

Numerous hydrogeologic studies have made use of
incomplete DST data including: Miller (1976) in the Madison
Group in Montana; Bair and others (1985) in the Palo Duro
Basin of Texas and New Mexico; and Jarvis (1986) and
Doremus (1986) in the Big Horn Basin of Wyoming.

Murphy (1965) developed the following equation to
compute hydraulic head from DST data:

PE

RE - GD + (2.319 * Ps) (6)
where:
PE = elevation of the potentiometric surface;
RE = reference elevation, usually derrick floor,
rotary bushing, or ground level;
GD = gauge depth, as measured from RE;

Ps extrapolated static pressure, highest shut-in

it

pressure is often substituted for this value;
2.319 = constant for converting pounds per square

inch to feet of head.
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The assumptions built into this equation include: (1)
the density of formation fluids is equal to that of fresh
water, (2) the temperature of the fluid is approximately 35
degrees celsius, and (3) the shut-in period which is used to
measure shut-in pressure (SIP) is long enough to closely
approximate the stabilized formation pressure.

Extrapolated static pressure refers to approximation of
the undisturbed formation pressure made from continuous
pressure data recorded during a DST (Bredehoeft 1965). For
this thesis, the greatest shut-in pressure reported in the
incomplete DST record was used instead of the extrapolated
static pressure because of the lack of complete DST data.
Bair and others (1985) preformed an analysis of the
differences which result from substituting greatest SIP for
extrapolated formation pressure and concluded that
computations using these two values should not be mapped
together, because the use of SIP resulted in significantly
lower head values than did the use of the extrapolated
formation pressure. Bair and others further concluded that
the consistency of this error allowed for reasonable
accuracy in a potentiometric map which was constructed from
SIP’s exclusively. The value of the greater number of data
points available if the SIP's are used was considered to

outweigh the value of greater accuracy for a few points.
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Inconsistencies in the quality of data reported by
incomplete DST records prompted Jarvis (1986) to develop a
data quality ranking system. This system ranked each
calculated hydraulic head according to the number of data
quality criteria met by the DST record. The data quality
criteria include (1) 10%, or less, difference between the
hydrostatic pressures measured at the beginning and at the
end of the test, (2) 25%, or less, difference between the
shut-in pressures measured at the beginning and at the end
of the test, (3) one of the shut-in periods lasted 30
minutes or longer, and (4) two of the shut-in periods lasted
30 minutes or longer.

The hydraulic head data computed for this thesis was
ranked accordng to this system and the potentiometric
surface (Plate I) was then mapped by contouring all of the
hydraulic head data, giving weight to the head values with
higher data quality rank. The resulting potentiometric map
was overlaid onto the structure contour map so that the
direction of groundwater flow could be deduced assuming
increases or decreases in permeability parallel to the

strike of folds and faults.



CHAPTER 3

RECHARGE FROM THE NORTH FORK OF HORSE CREEK

‘The results of the water budget analysis, shown in
Figure 5, indicate that both recharge and discharge occur
along the North Fork of Horse Creek between the east and
west stream gauging sites. Annual recharge estimates for
the entire gauged reach were 5.3 and 0.2 million cubic feet
per year for 1986 and 1987, respectively. These amounts are
insignificant and only represent water lost from the gauged
reach, not how much of that water actually reaches the basin
interior. Estimates of recharge to the basin interior are
even less. The conclusion must be drawn that streams which
flow across outcrops of the Casper Formation do not
contribute a significant amount of recharge to the Paleozoic
aquifer.

The stream flow losses measured within each of the
three subdivisions of the gauged stream reach are shown on
Figure 6. The locations of these three subdivisions, called
the upper, the middle and the lower segments of the gauged
reach, are shown on Figure 3.

The upper segment of the stream shows consistent gains

throughout the year. These gains are most likely the result
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of groundwater flowing from the Laramie Range through open
fractures in the Sherman Granite. These fractures are
intersected by a west dipping thrust fault in the vicinity
of the upper segment of the gauged reach.

The middle segment of the gauged reach was located in
order to isolate the segment of stream which flows over the
Casper Formation. The data indicate that this segment of
the gauged reach looses water consistently throughout the
year. These losses must be either entering fractures in the
Casper Formation or evaporating because there is very little
alluvium in this part of the canyon. Of these
possibilities, I favor loss by evaporation. I observed
that negligible quantities of water are recharging through
the limestone. Fractures in the Casper Formation which are
open enough to transmit appreciable amounts of water are
widely spaced and show little evidence of water flowing
through them. Where fractures are exposed the walls are
rough and angular, indicating that little dissolution has
occurred along them. Groundwater staining of the rocks next
to the exposed fractures is also limited. In addition,
there is not enough water present in them to support much
vegetation. Two paleokarst cavities were observed in the
area. These are filled with sand and gravel and do not
appear to be extensive. Neither the observed fractures nor
the paleokarst cavities intersect the gauged reach of the

stream.
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The most likely explanation for these losses is the
wind. The middle segment of the stream flows through a very
narrow part of the canyon. Wind blasts through this part of
the canyon at terrific speeds. Spray picked up by these
gusts was regularly observed which accounts for the
unusually high evaporation rates as well as wholesale
transport of water droplets. I believe these processes are
sufficient to account for the small but consistent losses

along this segment of the gauged reach.

The lower segment of the gauged reach shows consistent
stream flow losses throughout the year. These losses are
best explained as recharge to the alluvium because this
segment of the stream flows entirely over alluvial fill
which is at least 40 feet thick at the east stream gauging
site. Five wells were drilled in the vicinity, four of
which were completed in the alluvium. Excellent hydraulic
connection between the stream and the alluvium is
demonstrated by immediate potentiometric response in the
wells to stream flow fluctuations. Potentiometric levels
measured in the four alluvial wells reveal flow from the

stream to the alluvium consistently throughout the year.



CHAPTER 4

TECTONIC STRUCTURE

The structure of the east flank of the Laramie Range is
characterized by varying degrees of crustal shortening
brought about by generally east-west directed compressive
stresses (Gries, 1983). It will be shown that Berg’s (1962)
fold-thrust style of Laramide deformation characterizes the
tectonic structures found in the project area. Next, the
impact of this type of structure on groundwater circulation
will be discussed.

Berg’s (1962) model, shown on Figure 7, is an
asymmetric anticline-syncline pair cored by a thrust fault
in the basement under the anticlinal hinge. Increasing
displacement along the fault results in increased asymmetry
within the overlying anticline as well as the development of
a new reverse fault parallel to the original fault, but
nearer to the synclinal hinge. The steep limb of the
structure is increasingly rotated and tectonically thinned
between the two faults until the entire folded section
becomes severed and the hanging wall is thrust over the

overturned, younger sediments (Brown, 1983).
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Seven locations were chosen within the project area to
demonstrate the applicability of Berg's model.

(1) The hogbacks on either side of the North Fork of
Horse Creek, shown on Plate II and Figure 8, are in the
initial-intermediate stages of Berg’s fold-thrust
development. There is a well developed anticlinal fault
directly west of and parallel to the hogbacks. The units
which form the hogbacks dip steeply eastward and are not
overturned. The synclinal fault does not appear to be
present.

(2) The hogback to the south of Mill Creek, shown on
Plate II, where a limestone quarry was once located, is more
advanced than those on either side of the North Fork of
Horse Creek but is still in the intermediate stage of
development. The anticlinal fault is mapped just west of,
and parallel to, the hogback. A synclinal fault emerges
from the south side of the hogback, just north of Horse
Creek. Units in the footwall are overturned.

(3) The limestone ridges on either side of Fisher
Canyon, shown on Plates II and III, are in the late stage of
development. The anticlinal fault is located to the west
of, and parallel to, the limestone ridge. The units which
form these ridges are part of imbricate blocks which have
been rotated to an overturned position. The synclinal
fault, is located parallel to strike within the Chugwater

Formation. The Chugwater shows marked loss of stratigraphic
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thickness in this area and the younger units in the footwall
are overturned. It is evident that dip slip along the
synclinal fault is small because the Chugwater Formation is
present on either side of the fault plane.

(4) The series of hogbacks south of Fisher Canyon,
shown on PLate IV, are in the intermediate stage of
development. The anticlinal fault is located west of the
hogbacks. The hogbacks themselves are within an imbricate
block. The beds of the‘hogback are nearly vertical at their
base and curl to the west near the top of the hogback. This
curl represents the crest of the anticline. The synclinal
fault is believed to penetrate all the way through the
Paleozoic section, however, the rotational distortion of the
imbricate block is limited, leaving the block very much
intact. The trace of the synclinal fault is located further
to the east and is covered by the White River Group.

(5) The tight folds located north of Mesa Mountain,
shown on Plate IV, are an anomaly in the pattern described
thus far. This area appears to be in a very advanced stage
of development. The crustal shortening which was elsewhere
taken up almost entirely by thrust faulting, is, here, being
accommodated by tight folding as well.

(6) Table and Mesa mountains, shown on PLates IV and V
and Figure 9, are also in a very advanced stage of
development. The units which crop out as Mesa and Table

mountains form a gentle syncline in the hanging wall of the
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thrust zone. An anticline and its associated anticlinal
fault is traced through the Precambrian core located east of
the two mountains. The synclinal thrust is located further
east where it is covered by the White River Group. The
trace of an imbricate of the anticlinal fault is delineated
by a line of springs which paréllels the mountain front.

The imbricate slice is mostly covered by the White River
Group, and is expected to be smeared out.

(7) The hogbacks south of Table Mountain and north of
Happy Jack Road, shown on Plate V, are in the intermediate
stage of development as were the curled hogbacks south of
Fisher Canyon.

Most of the recharge area for the Paleozoic aquifer is
hydrologically isolated from the rest of the basin by the
thrust faults which delineate the eastern boundary of the
Laramie Range. These thrust faults act as impermeable
barriers to recharge. Water which reaches these fault
planes is forced through joints and fractures in the
overlying strata onto the surface. The springs along the
trace of the eastern most thrust shown on Plate III, and the
water gained by the reach of the North Fork of Horse Creek
which flows over the fault located west of the hogbacks in

Plate II are a result of these barriers.

The only place in the project area where the recharge area

may not be isolated from the rest of the aquifer in the
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Denver-Julesburg Basin is located north of Horse Creek where
the Paleozoic rocks crop out to the west of the anticlinal
fault and where there may not be a well developed synclinal
fault. It is conceivable for recharge entering the
Paleozoic rocks in this area to flow to the basin interior.

Extensiénal fractures were found along the axis of
anticlines located in the series of tight folds north of
Mesa and Table Mountains. These fractures do not provide
high permeability pathways into the basin interior because

they trend north-south.



CHAPTER 5

HYDROLOGICALLY ISOLATED COMPARTMENTS

Hydraulic communication is somehow limited between
abnormally pressurized and normally pressurized parts of the
Paleozoic aquifer because abnormally pressurized
compartments have hydraulic heads which, by definition,
differ from normally pressured zones by more than a few
hundred feet. Such head differences should equilibrate with
the rest of the system if good hydraulic communication
exists.

Petroleum exploration geologists have observed a close
association between natural gas zones and abnormally
pressured compartments. The potential that this association
has for petroleum exploration has motivated the development
of many theories explaining the nature and origin of these
compartments and whatever it is that isolates them from the
rest of the aquifer. These theories are too numerous and
too involved to be discussed adequately in this paper.
However, Table 2 provides a summary of the literature
pertaining to abnormally pressured reservoirs reviewed for

this thesis.
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Table 2. Trapping Theories for Abnormally Pressured
Reservoirs.

I. DIAGENETIC TRAP

A. Quartz overgrowthes
*Law and Dickinson, 1985.

B. Crushing of sedimentary rock fragments
*Cant, 1983, SW Alberta.

C. Cementation by carbonates and clay
*Powley,

II. HYDRODYNAMIC TRAP
A. Berg, 1985, NE Powder River Basin, WY.
B. Moore, 1984, SW Powder River Basin, WY.
C. Lin, 1981, Powder River Basin, WY.

III. WATER TRAP (water on top of gas)
A. Gies, 1984, SW alberta, Canada.
B. Davis, 1984.
C. Masters, 1979, Deep Basin, Western Canada.

IV. EXPULSION OF INSITU NATURAL GAS
A. Silver, 1968, San Juan Basin, NM and CO.

V. STRATIGRAPHIC TRAP
A. Stone and Hoeger, 1973, Big Muddy - S. Glenrock
area.
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Under pressurized compartments existing along the axis
of the Denver-Julesburg basin are documented by Belitz
(1984) and Matuszczak (1973). The Wattenberg field, which
produces natural gas from a large under pressured reservoir
in the Muddy Sandstone, is located along the synclinal axis
of the Denver-Julesburg basin northeast of Denver. There is
a large area in the Wattenberg field which continues to
produce gas with out producing water. This demonstrates the
lack of hydraulic communication between the under pressured
and the normally pressured parts of the Muddy Sandstone
(Matuszczak,1973).

The mechanism which traps the gas in these compartments
is, presumably, the same mechanism which keeps the water
out. According to Matuszczak (1973), the trap on the south
and west sides of the Wattenberg field is formed by the
pinchout of the reservoir sandstone into a thin, tight
siltstone and silty sandstone. On the northeast and east
sides of the field the gas is trapped by a loss of
permeability resulting from an increase in the presence of
siliceous cement and clay (Matuszczak, 1973).

Petrographic work reported by Dickinson and Guatier
(1983) indicates that the loss of permeability at the
abnormally pressurized compartment boundary is caused by one
or more of the following: (1) precipitation of calcite
and/or silica cements early in the burial history, (2) grain

deformation and compaction, and (3) filling and coating of
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primary and secondary pores with illite, chlorite,
microcrystalline quartz or ferroan carbonates.

Figure 4 indicates the presence of one or more under
pressured compartments in the Muddy Sandstone which extend
the full length of the project area from north to south.
Evidence for compartmentalization is revealed on the
potentiometric map as an abnormally low potentiometric
surface throughout the study area, especially on either side
of the synclinal axis. Potentiometric contours were drawn
through the low pressure compartments even though they are
hydraulically isolated from the rest of the aquifer because
there was not enough data to define their boundaries.

Evidence supporting the presence of under pressured
compartments in the Paleozoic aquifer is limited by the
complete lack of potentiometric data available for the
Paleozoic aquifer in the interior of the basin. Hoeger
(1968) reports, in a general discussion of the
hydrostratigraphic units of the Denver-Julesburg basin, that
the formations beneath the Permian Lyons Sandstone are under
pressured, although to a lesser extent than the Lyons
Sandstone, which is a stratigraphic equivalent to the
Satanka Shale of southeast Wyoming. No potentidmetric data
could be found to either support or to disclaim this
statement for my area.

If the Paleozoic aquifer does have under pressured

compartments like the Muddy Sandstone then recharge is
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probably blocked from reaching the synclinal axis of the
basin by these compartments. Without more conclusive
evidence, however, it is impossible to say what influence
hydrologically isolated compartments have on the circulation

patterns in the Paleozoic aquifer.



CHAPTER 6

POTENTIOMETRIC SURFACE

Groundwater flow through a porus medium is governed by

the Darcy Equation:

Q = -K * dh/dl * A (7)
where:

Q = discharge L3/T ,

K = hydraulic conductivity L/T ,

dh/dl = hydraulic gradient dimensionless ,
A = cross sectional area L2 ’

1

length in the direction of flow L ,

h

hydraulic head L .

The hydraulic gradient is a measure of the slope of the
potentiometric surface. Groundwater flows from a higher
hydraulic head to a lower hydraulic head.

The potentiometric surface of the Muddy Sandstone
slopes to the east-southeast in the Denver-Julesburg basin,
as shown on Plate 1I. Thé general direction of groundwater
flow is, therefore, to the east-southeast from the Laramie
Range. If recharge does flow past the fault severed
boundary along the flank of the range, then the potential

does exist for that recharge to flow towards the basin
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interior.

The possibility that significant recharge flows past
the fault severed boundary is remote because the fault plane
is impermeable. Effects of the impermeable fault plane
documented in the study area include stream flow gains along
the upper segment of the gauged reach of the North Fork of
Horse Creek and the line of springs along the eastern most

thrust fault on Plate IV, located east of Table Mountain.



CHAPTER 7

SUMMARY AND CONCLUSIONS

This thesis has examined the evidence for recharge to
the Paleozoic aquifer along the east flank of the Laramie
Range in Laramie County, Wyoming.

The amount of water entering outcrops of rocks which
comprise the Paleozoic aquifer was estimated by a water
budget analysis conducted on the North Fork of Horse Creek.
This study showed that no significant recharge to the
Paleozoic rocks occurred during the two years of record.
The results from this stream are considered representative
of other streams which flow across outcrops of Paleozoic

rocks in the area in a similar structural environment.

The geologic framework was examined in conjunction with
the shape of the potentiometric surface in order to learn if
recharge to the Paleozoic aquifer can circulate from the
recharge area to the basin interior. The recharge area,
from Horse Creek to the southern boarder of the study area
is hydrologically isolated from the rest of the aquifer by
an impermeable thrust zone. This thrust zone effectively

prohibits recharge from circulating into the basin interior.
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The recharge area to the north of Horse Creek does not
appear to be separated from the rest of the aquifer.
Conceivably, recharge could circulate to the basin interior

under the influence of a east-southeast hydraulic gradient.
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