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ABSTRACT 

Tung, Y.K. and Hathhorn, W.E., 1988. Probability distribution for critical DO location in 
streams. Ecol. Modelling, 42: 45-60. 

Identifying the critical location in a stream environment system plays an important role in 
regulating and monitoring water quality. The critical location is defined as the point of 
maximum dissolved oxygen deficit within any reach of stream. It is at this location that the 
threat to the health of the aquatic biota is most severe. Unfortunately, due to the existence of 
random processes and parameter uncertainties within actual stream conditions, the critical 
location cannot always be determined with certainty. In recognizing the importance of 
identifying such a position, this paper attempts to assess the appropriateness of using some of 
the more common probability distributions to describe the random characteristics of the 
critical location in a stochastic stream environment. The results from such an assessment 
could enable one to estimate useful properties of the random critical location such as 
confidence interval information and the mode of its location. It is believed that this 
information would have important implications in managing and monitoring stream water 
quality. 

INTRODUCTION 

In water quality control and monitoring, focus is often placed on the 
critical location where the water quality condition is the most threatening. In 
an attempt to identify this location, water quality models are used to assist 
in estimating not only the critical location but also the condition of the 
water quality at that location. 

Water Pollution is not a random process, it is deliberate. However, it 
that the modeling of water quality conditions in a 
an extremely enigmatic task. Such complexities are 

A 

should be pointed out 
stream environment is 
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the result of inherent randomness and uncertainty ehbi ted  throughout the 
stream environment. Not only are the physical and biological processes not 
clearly understood, but an imposing number of uncertainties are also associ- 
ated with the various processes occurring withn the aquatic environment. 
Uncertainties in stream water quality modeling have been discussed by 
Hathhorn and Tung (1988). In this paper, the critical location in a stream 
environment is defined as the point, withn a reach, where the dissolved 
oxygen (DO) concentration is at its minimum. 

Recognizing the existence of such uncertainties, the prediction of the 
critical location within a given reach of stream is no longer deterministic. 
Rather, this critical location is a random variable associated with a probabil- 
ity distribution. However, the exact distribution of the critical location is not 
known, and the analytical derivation of such a distribution is generally 
impossible. Although there have been a number of investigations conducted 
to estimate the distributions of biochemical oxygen demand (BOD) and DO 
concentration (Loucks and Lynn, 1966; Thayer and Krutchkoff, 1967; 
Kothandaraman, 1970; Esen and Rathbun, 1976; Padget et al., 1977; Padget 
and Rao, 1979), the assessment of the probability distribution that describes 
the uncertain characteristics of the critical location has remained virtually 
unexplored. Although the analysis of the critical location in a stochastic 
stream environment remains relatively unaccounted for in the literature, this 
should not to be taken to mean that such information is of little significance. 
On the contrary, the identification of the critical location plays a major role 
in the regulatory process and monitoring of any stream system to which 
waste effluents are discharged. This location, from a monitoring viewpoint, 
has the greatest significance within any reach of the stream system. By 
knowing the distribution of the critical location and its statistical properties, 
such information as the confidence interval, the most likely value, and the 
like can be obtained. From ths, regulatory agencies would be provided with 
information identifying a point or region likely to contain the most severe 
water quality conditions. Hence, in a stream system filled with uncertainty, 
such information could possibly narrow the length of monitoring networks 
by excluding locations whch were unlikely to contain the actual critical 
point. This would obviously reduce the capital and operating costs of such a 
monitoring network. 

Due to the complexity of the formula commonly used to evaluate the 
critical location, the analytical derivation of the exact distribution is, to say 
the least, a formidable task. As an alternative, this paper examines the 
appropriateness of using some of the more common probability distributions 
in describing the random characteristics of the critical location. The statisti- 
cal properties of the critical location such as the mean, variance, and higher 
order moments are estimated using the first-order analysis. 
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BASIC WATER QUALITY MODEL 

Several mathematical models have been developed to describe the interac- 
tion between the physical and biologcal processes occurring withn the 
stream. The most well-known expression of this type is the Streeter-Phelps 
equation (Streeter and Phelps, 1925). In differential form, the coupled 
equation set is given as: 
dL/dt= -KdL 

dD/dt=KdL-  K,D (1) 
The solution to equation (l), replacing t by x / U ,  is: 

KdLo [eXp( -Kd/U) - exp( -K,x /U) ]  -I- Do exp( -K,x/U) (2) D x =  K,-Kd 

where K ,  is the deoxygenation coefficient (day-l), K ,  is the reaeration 
coefficient (day-l), x is the distance downstream from the source of BOD 
(miles *), U is the average stream velocity (miles day-'), D, is the DO 
deficit concentration (mg L-l) w i t h  a reach at a downstream distance x ,  
Do is the initial DO deficit (at distance x = 0), and Lo is the initial in-stream 
BOD concentration (both in mg L-'). 

The downstream location, Xc (miles), where the maximum DO deficit 
occurs can be found by differentiating equation (2) and solving for x: 

The point Xc will herein be referred to as the 'critical location'. 
The original Streeter-Phelps equation is limited to only two instream 

processes: deoxygenation of the water due to bacterial decomposition of 
carbonaceous organic matter, and reaeration directly proportional to the DO 
deficit. It should also be noted that several assumptions were made in the 
development of the Streeter-Phelps equation: (a) steady, uniform flow; (b) 
DO deficits predicted by equation (2) are one-dimensional (functions only 
of the position downstream from a discharge point); and (c) rate of 
biodegradation and reaeration, expressed by K ,  and K,, are described by 
first-order kinetics. A typical DO profile for a single reach is shown in Fig. 
1. 

Although, equation (2) describes the response of DO in a single reach of 
stream as a result of the addition of a 'point-source' loading of waste at the 
upstream end of the reach, this equation can be used to determine the DO 
concentration in several reaches by applying the deficit at the downstream 

* mile 4 6 0 9  m. 
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Fig. 1. Schematic diagram of the probability density function for the critical location. 

end of one reach as the initial deficit of the succeeding reach. Thus, equation 
(2) can be applied recursively to determine the DO profile of an entire 
stream system in a multiple-discharge setting (Liebman and LYM, 1966). 

Since its conception, the Streeter-Phelps equation has been modified to 
account for discrepancies between analytical estimations, computed from 
equation (2), and actual data collected in the field. These discrepancies have 
arisen as a result of the exclusion of a number of oxygen sources and sinks 
in the original equation. Dobbins (1964) pointed out eight other possible 
processes which could contribute to instream BOD and DO variations. 
There have been several studies conducted in which one or more of the 
processes have been included in the model formulation in an attempt to 
improve model predictability (Dobbins, 1964; Hornberger, 1980; Krenkel 
and Novotny, 1980). In general, these modification can be made by simply 
adding terms to equation (2) to account for the various additional factors. 
The expression for the critical location can then be derived accordingly. 
However, to simplify the algebraic manipulations, the critical location 
derived from the original Streeter-Phelps equation will be utilized herein. 

. 
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FIRST-ORDER ANALYSIS OF UNCERTAINTY 

The use of first-order uncertainty analysis is quite popular in all fields of 
engineering and science. Its application can be found in a wide array of 
problems. Detailed analysis and development of first-order uncertainty 
methods are given by Benjamin and Cornell (1970) and Cornell (1972). 
Burges and Lettenmaier (1975) have utilized the method to investigate the 
uncertainty in predictions of BOD and DO within the stochastic stream 
environment. 

Essential, first-order uncertainty analysis provides a methodology of 
obtaining an estimate for the moments of a single random variable or 
function of several random variables. The method estimates the uncertainty 
in a deterministic model formulation involving parameters whch are not 
known with certainty. By using first-order analysis, the combined effect of 
uncertainty in a model formulation, resulting from the use of uncertain 
parameters, can be estimated. 

First-order uncertainty analysis can be characterized by two major com- 
ponents: single moment (variance) treatment of the random variables, and 
the use of first-order approximation of any functional relationship (e.g., the 
use of Taylor’s series expansion). The first major component implies that the 
random element of any variable is defined exclusively by its first two 
moments. Thus, information pertaining to the character of a random varia- 
ble, Y, is provided solely by its mean ( y )  and variance (0;).  

The second component states that only the first-order terms in a Taylor’s 
series expansion will be utilized in the analysis of a functional relationship 
containing random variables or processes. With exception to the evaluation 
of the mean (in which second-order terms may be utilized), any attempt to 
retain terms higher than first-order in the expansion requires more informa- 
tion about the random variables than that provided by their first and second 
moments (Cornell, 1972). 

In order to illustrate the general methodology of first-order analysis, 
consider a random variable, Y, which is a function of n random variables 4. 
(multivariate case) will be considered. Mathematically, Y can be expressed 
as: 

where X = (XI, X, ..., Xn) .  Through the use of Taylor’s series expansion, the 
random variable Y can be approximated by: 

? 

- 

y= g(x> (4) 

* n 

ax, i = l  
n n  

a2g (Xi - Ti)( xj - Tj) +’ 2 .  r = l  c j = l  c [ axiax,lx 
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in which x = ( yl, F2, ..., zn), is a vector containing the means of n random 
variables, = represents equal in the sense of a second-order approximation. 

Then, the second-order approximation of the expected value of Y is: 

2 1 

whch Cov[ Xi, Xi] is the covariance between random variables Xi and Xi. 
It follows that the first-order approximation of the variance of Y is: 

the random variables are independent, equation (7) reduces to: 

1 A 

where = means equal in a first-order sense (Benjamin and Cornell, 1970; 
Burges and Lettenmaier, 1975); 0; is the variance corresponding to random 
variable Xi. 

STATISTICAL PROPERTIES OF THE CRITICAL LOCATION 

As a result of the uncertainty involved in the stochastic stream environ- 
ment, the critical location, computed by equation (3), is itself a random 
variable. Thus, to estimate the statistical properties of the critical location 
under such conditions, first-order analysis is employed. To illustrate the 
concept of the probability distribution associated with the critical location, a 
schematic diagram is provided in Fig. 1. 

Using first-order analysis Taylor’s series expansion of equation (3) leads 
to the following approximation: 

+FL( u- U )  + Fj,( Lo - Z0) + Fd,( Do - Do)  (9) 
where F/;= aXc/aX and F&= a2Xc/aX aY are evaluated at the mean 
values of the model parameters. The analytical expressions for each partial 
derivative term was presented by Hathhorn (1986). 

It follows that the first-order approximation of the expected critical 
location can be written as: 

* 

1 
E[XC] = xc(K,, K,, u, zo, 3 0 )  (10) 
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This is simply equation (3) evaluated at the means of the model parameters. 
The use of first-order analysis can be continued to obtain estimates for 

the variance, skewness, and kurtosis of Xc as follows: 

var[xc] = oic  = E[ ( Xc - X,)’] 

FifVar( K d )  + Fia2Var( K,) + Fi2Var( U) 

+ FLo2Var( Lo)  + FhtVar( Do)  
I . 21 

+ F;3y,[Var(U)]1.s + F’03yLo[Var(L,)]1~5 

+ FLO3yD0 [Var( Do)]’.s)[Var( xc)] -lm5 

K~~ = E[ ( Xc - Fc)‘]Var[ Xc] -’ 

+ F’4~,[var( u)]’ + FL‘K~, 0 [var( Lo)]2 

where yx and K~ are the skew coefficient and kurtosis of the random 
variable X, respectively. It should be pointed out that the expressions in 
(11)-(13) assume that all water quality parameters are independent. 

PROBABILITY DISTRIBUTION OF THE CRITICAL LOCATION 

By considering the stream system to be an inherently random environ- 
ment, the critical location Xc is itself a random variable. Thus, in order to 
evaluate the confidence interval or the location most likely to be critical, 
knowledge of the probability distribution associated with the Xc is required. 
Otherwise, the analysis of water quality conditions in a stream environment 
under uncertainty is, at best, simply conjecture. 

Although significant research has been conducted into the uncertainty 
analysis of stream dissolved oxygen, most of these studies have been 
concerned with variations in DO concentrations due to model parameter 
uncertainty (Kothandaraman and Ewing, 1969; Hornberger, 1980; 
Chadderton et al., 1982). However, there have been some attempts to derive 
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analytical expressions for the probability distribution associated with the 
DO deficit as cited previously. From a practical viewpoint, the main 
disadvantage to the aforementioned methods is that the resulting probability 
distributions derived for the DO deficit are too complicated for most 
engineers to readily assess the probability of violating a given water quality 
standard. Moreover, for the case of assessing the probability distribution of 
the critical location, the analytical approaches developed for the DO and 
BOD studies cited above are no longer applicable. 

Thus, the present study attempts to examine the utility of some com- 
monly used parametric probability distributions to describe the random 
characteristics of the critical location computed by (3). Four parametric 
probability distribution are considered herein for their relative ease in use 
and versatile shape. These include the normal, lognormal, gamma, and 
Weibull distributions. When using these four probability models, only the 
mean and variance of Xc are needed and can be estimated by first-order 
analysis using (10) and (11). The parameters in each of the candidate 
probability distribution models can be obtained through moment-parameter 
relationshps found in most statistics textbooks. Relations of the skew 
coefficient and kurtosis to the parameters in the candidate probability 
models can be found elsewhere Hastings and Peacock (1974) and Pate1 et al. 
(1976). 

Instead of making such a strong assumption about the probability density 
function of a specific form for Xc,  an approach of using Fisher-Cornish 
asymptotic expansion is also applied (Fisher, 1950; Fisher and Cornish, 
1960; Kendall and Stuart, 1977). This method relates the quantile of any 
standardized distribution to the standard normal quantile and higher order 
moments. In this case, the quantile or order p for Xc can be approximated 
without making an assumption about its distribution as follows: 

A 

- -  

in whch Xc( p )  is the pth-order quantile of standardized critical location. 
Because only the first four moments of Xc are approximated through 
first-order analysis in this study, i.e., (10)-(13), Fisher-Cornish asymptotic 
expansion for 5, can be expressed as: 

in which zp is pth-order quantile from standard normal distribution, HI( z p ) ,  
H2(zp) and H3(zp) are Hermit polynomials which can be computed by 
(Abramowitz and Stegun, 1970): 
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PERFORMANCE EVALUATION CRITERIA OF THE DISTRIBUTIONS FOR THE 
CRITICAL LOCATION 

The idea of applying first-order analysis for estimating the statistical 
moments of the critical location, along with an adoption of the probability 
density function for Xc,  is straightforward and practical. However, among 
the various probability distribution models that are commonly used, a 
question to be raised is “Which probability distribution model (or models) 
best describe the random behavior of the critical location X ,  in a stream?” 

To evaluate the relative performance of each of the candidate probability 
distribution considered, three performance criteria are adopted herein: bias- 
ness (BIAS), mean absolute error (MAE), and root mean square error (FWSE). 
Each for the three criteria are used simultaneously in an attempt to identify 
the best probability model for describing the random characteristics of X, at 
a given location. 

These criteria are mathematically defined as: 
- biasness 

BIAS = l ( 2 p , f  - x p >  d p  

- mean absolute error 

- root mean square error 
0.5 

= [ [ ( Z P , f  - XP)’ dP] 

where x p  and 2p,f are, respectively, the 
p th-order quantile determined from the 
should be noticed that the true value of 

true value and the estimate of the 
assumed probability model, f .  It 
the quantile for the Xc cannot be 

determined exactly due to the complexity of (3). As an alternative, Monte 
Carlo simulation (Rubinstein, 1981) is applied for obtaining the ‘true’ 
quantile for X,. The Monte Carlo simulation for this task is described in the 
following section. 

DERIVATION OF THE ‘TRUE DISTRIBUTION OF DO BY MONTE CARL0 SIMU- 
LATION 

t 

To determine the probability distribution of Xc at a given location, 
Monte Carlo simulation techniques were employed, allowing each of the 
model parameters (K,, K,, U, Lo, and Do) to be assigned one of four 
distributions: normal, lognormal, gamma, and Weibull. In addition, the 

J 
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TABLE 1 

Statistical properties of the model parameters used to investigate the distribution of the 
critical location for a hypothetical stream 

Model parameters 
~~~ 

Mean Standard units 
deviation 

Kd 

Ka 

LO 
DO 

U 

0.35 0.10 
0.70 0.20 

10.00 3 .OO 
18 .OO 5 .OO 
1 .oo 0.30 

day-' 
day-' 
miles day-' 
mg L-' 
mg L-' 

statistical properties of the model parameters for the hypothetical stream 
used in this paper are listed in Table 1. Simulation procedures were 
performed such that ten groups of 999 critical locations were generated 
using equation (3) and assigning one of the four distributions mentioned 
above to each of the model parameters. For example, during the first 
simulation run, ten groups of 999 critical locations were generated (using 
equation 3) under an independent and all normal assumption for all the 
water quality parameters. Then, in successive runs, different distributions 
were assigned to each of the model parameters, resulting in another set 
containing ten groups of 999 different critical locations. 

It should also be pointed out that provisions for considering a positive 
correlation ( p  = 0.8) between model parameters K ,  and U, were also in- 
cluded in this simulation exercise. Extensive discussion of the correlation 
between water quality parameters is gven by Hathhorn (1986). Noting that 
when such a correlation is considered, a bivariate normal distribution is 
utilized. Values of the statistical properties shown in Table 1 and the 
correlation coefficient of 0.8 were based on values adopted from various 
published articles. 

During the simulation runs, each of the ten groups of 999 critical 
locations were ranked in ascending order. Specifically, the minimum value 
of the DO deficit generated is assigned to position 1 and the maximum value 
to position 999. Then, quantities of the critical location Xc are computed for 
several probability levels p by simply locating the value of Xc in position 
(999 + 1 ) p .  In order to reduce sampling errors, each of the respective 
quantiles obtained for the ten groups were arithmetically averaged. 

RESULTS AND DISCUSSIONS 

t 

Values of the performance criteria, i.e. BIAS, MAE, RMSE, under various 
conditions are given in Table 2-4. In examining Tables 3 and 4, the majority 
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TABLE 2 

Biasness for the critical location between simulation results and various assumed distributions 
* 

Distribution assumed 
for model par meters 4 Biasness (in miles) 

Kd K a  u LO DO LN G W FC 
U) 

~ ~~ ~~ 

N N N N N 0.0 - 0.782 - 0.848 - 0.808 - 0.800 - 0.782 
N N N N N 0.8 0.0342 0.010 0.039 0.041 0.028 
LN LN LN LN LN 0.0 - 0.703 - 0.768 - 0.728 - 0.720 - 0.726 
LN LN LN LN LN 0.8 0.011 -0.014 0.015 0.017 -0.059 
G G G G G 0.0 - 0.795 - 0.861 - 0.820 - 0.813 - 0.811 
w w w w w 0.0 - 0.703 - 0.769 - 0.728 - 0.721 - 0.670 
G LN N G W 0.0 - 0.645 - 0.711 - 0.670 - 0.663 - 0.638 
~ ~~ 

N, normal; LN, lognormal; G, gamma; W. Weibull; FC, Fisher-Cornish. 

of the results reveal that the two-parameter gamma distribution appears to 
best describe the randomness of Xc according to the minimum MAE and 
MSE criteria even though it has a slightly higher biasness than other 
distributions in some of the cases. In general, the overall performances of all 
five distributions are to be considered somewhat less than desirable when 
one examines the magnitude of the error criteria, especially for the 
Fisher-Cornish asymptotic expansion. These results place serious question 
on the estimation ability of first-order analysis in conditions where the 
functional relationship of interest, i.e., equation (3) is highly nonlinear. It 
appears that the ability of first-order analysis to accurately estimate higher 
order moments (such as skewness and kurtosis) of a functional relationship 
diminishes as the degree of nonlinearity of the function increases. 

TABLE 3 

Mean absolute error (MAE) for the critical location between simulation results and various 
assumed distributions 

~~ 

Distributions assumed for model parameters 
Kd K a  u Lo Do P W , ,  u) N LN G W FC 

Mean absolute error (in miles) 

N N N N N 0 . 0  0.831 1.085 0.889 0.834 0.831 
N N N N N 0.8 0.219 0.346 0.240 0.301 4.269 

4 LN LN LN LN LN 0.0 0.985 0.768 0.728 0.934 0.735 
LN LN LN LN LN 0.8 0.354 0.077 0.126 0.574 4.798 
G G G G G O . O  0.955 0.922 0.820 0.941 0.823 
w w w w w 0 . 0  0.713 0.940 0.751 0.721 1.858 
G LN N G W 0.0 0.645 0.954 0.751 0.664 0.699 

> 

N, Normal; LN, Lognormal; G, Gamman; W. Weibull; FC, Fisher-Cornish. 
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TABLE 4 
A 

Root mean square error (RMSE) for the critical location between simulation results and 
various assumed distributions 

Distributions assumed for model parameters . 

Kci Ka u Lo Do p(Ka,U)  N LN G W FC 

Root mean square error (in miles) 

N N N N N 0 . 0  1.697 1.306 1.124 1.890 1.697 
N N N N N 0.8 0.364 0.571 0.444 0.462 5.099 
LN LN LN LN LN 0.0 1.672 0.892 0.857 1.708 1.240 
LN LN LN LN LN 0.8 0.464 0.113 0.167 0.739 5.787 
G G G G G 0.0 1.653 1.129 1.004 1.765 1.402 
w w w w w 0.0 1.374 1.012 0.821 1.497 2.506 
G LN N G W 0.0 1.098 1.066 0.821 1.253 1.211 

N, Normal; LN, Lognormal; G, Gamma; W, Weibull; FC, Fisher-Cornish. 

There is an interesting result that can be observed from Tables 2-4. That 
is, when p(K, ,  U )  = 0.8, all candidate distributions considered except 
Fisher-Cornish asymptotical expansion result in slightly positive biasness 
while, in the case of p (  K,, U) = 0, a significantly negative biasness is 
observed. Furthermore, the values of RMSE and MAE are much smaller in the 
case of p(K , ,  U )  = 0.8 than that of p ( K , ,  U) = 0 for the four parametric 
probability distributions considered while it is totally opposite for 
Fisher-Cornish asymptotic expansion. 

Before a final decision is made as to the type of distribution that can be 
considered most appropriate for the critical location amongst those con- 
sidered here, the results given in Tables 5a and 5b should be examined. In 
these tables, the 90-percent confidence intervals of Xc for each of the 
assumed distributions are reported, along with the confidence intervals 
derived from Monte Car10 simulation and the Fisher-Cornish asymptotic 
expansion. It should be pointed out that the 90-percent confidence intervals 
reported for the assumed distributions in Table 5a are independent of the 
type of distribution assumed for the model parameters. This is due to the 
fact that each of the common distributions utilized here can be completely 
characterized by the mean and variance of Xc,  which is in turn computed 
solely by the mean and variance of the model parameters. The mean and 
variance of the model parameters do not change as the distributions as- 
sumed for these parameters are varied. However, the value of variance is 
affected by the correlation between K ,  and U. Separate values are reported 
for a zero and positive correlation between model parameters K ,  and U. 

When actually comparing the numerical values presented in Tables 5a 
and 5b, it is obvious that the range of values presented are quite extended. 
For example, Table 5b reports the 90-percent confidence interval for Xc,  
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TABLE 5 
90-percent confidence intervals (miles) for the critical location 

(a) under various distribution assumptions 

. 

p(Ka, u)  Normal Lognormal Gamma Weibull 

0.0 (7.24, 29.1) (9.53, 30.6) (8.80, 30.6) (8.10, 28.4) 
0.8 (11.5,24.8) (12.3, 25.5) (12.1, 25.5) (10.9, 24.6) 

(b) using monte car10 simulation and the Fisher-Cornish asymptotic expansion 

p ( K a ,  U )  Distribution 90-percent 
assumed for confidence interval 
model parameters 
K ,  K2 u Lo Do Simulation Fisher-Cornish 

0.0 N N N N N (8.57, 32.9) (7.24, 29.1) 
LN LN LN Ln Ln (9.78, 32.3) (8.10, 29.7) 
G G G G G (9.24, 32.8) (7.76,29.5) 
W W W W W (10.6, 31.7) (6.73, 27.4) 
G LN N G W (8.55, 31.6) (7.04, 28.9) 

0.8 N N N N N (11.1, 25.5) (13.0, 23.3) 
LN LN LN LN LN (12.3, 25.2) (15.7, 24.6) 

Note: N, normal; LN, lognormal; G, gamma; W, Weibull. 

using the simulation procedures, lies between 8.57 and 32.9 miles (13.8 and 
53 km) under all normal and uncorrelated assumptions for the model 
parameters. It is also interesting to observe that, when the correlation 
coefficient of 0.8 between K ,  and U exists, the resulting 90-percent confi- 
dence interval length for Xc is reduced by nearly half. This could be related 
to the observation of smaller errors in Tables 2-4 associated with p ( K , ,  
U >  = 0.8. 

Finally, the percentage of overlap between the confidence intervals com- 
puted under each of the assumed distributions (normal, lognormal, gamma, 
Weibull, and Fisher-Cornish) and that obtained through simulation proce- 
dures are reported in Table 6. Again, the assumption of a gamma distribu- 
tion for the critical location results in the closest characterization of the 
' true' confidence intervals obtained through simulation. This provides an 
additional piece of evidence supporting the use of a gamma distribution to 
model the unknown behavior of the critical location with respect to the data 
set considered here. 

Unfortunately, from a practical viewpoint, the results obtained for the 
confidence intervals, in Tables 5a and 5b, provide little, if any, significant 
information in identifying an exact or narrow range containing the critical 
location in a stochastic stream system. The results from t h s  approach are 
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TABLE 6 

Percentage of overlapping for 90% confidence intervals with that of simulation under various 
distributional assumptions 

Distributions assumed for model parameters Percentage of overlapping for 90% C.I. 
P W , ,  u> K1 K ,  u Lo Do N LN G W FC 

a 

0.0 N N N N N 84.4 86.6 89.6 81.5 84.4 
LN LN LN LN LN 85.8 92.4 92.4 82.7 88.4 
G G G G G 94.3 89.4 90.7 81.3 86.0 
W W W W W 87.7 94.8 94.8 94.4 79.6 
G LN N G W 89.2 91.4 94.6 86.1 88.3 

0.8 N N N N N 96.9 100.0 100.0 95.3 69.0 

simply too widespread to be of any use in improving the monitoring or 
sampling process. The wide range of values reported can again be explained 
by the hgh nonlinearity associated with equation (3). 

On the other hand, the results of this study have revealed that the gamma 
distribution best describes the random character of the critical location in a 
stochastic stream setting. Knowing this information, one is able to determine 
the most likely point to be the critical location by computing the mode of 
the resulting gamma distribution. This information may in fact lead those 
responsible for monitoring water quality to a location which is at or near the 
actual critical location in a stochastic stream environment. Consequently, a 
more effective water quality monitoring program could be established. 
Recall that the dissolved oxygen sag curve in a specific reach is unimodel. 
Hence, the true critical location is unique within each reach. By assertaining 
the approximate position of the critical through the use of determining the 
mode of the distribution given for the critical location, monitoring networks 
could be centralized in a more narrow range of stream length around this 
position, resulting in reduced expenditures for such monitoring. 

SUMMARY AND CONCLUSIONS 

Because the critical location defines a point where the threat to the health 
of aquatic biota is the most vulnerable, it often becomes the focus of 
attention in regulating and monitoring the quality of a stream environment. 
Moreover, due to the existence of uncertainties in the various related 
physical and biological processes, the critical location, in general, cannot be 
predicted with certainty. To estimate the whereabouts of the critical location 
in a stochastic stream environment, it is necessary to have knowledge about 
the probability distribution of the critical location itself. Information pro- 
vided by such a statistical analysis could direct water quality regulatory 
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agencies in establishing a monitoring network centered in a narrow region 
which hkely contained the most severe water quality conditions in any reach. 
As noted earlier, this could ultimately lead to reduced costs, both in capital 
set-up and operation, of such a monitoring network. 

T h ~ s  paper presents the results of study which assesses the appropriate- 
ness of using several common parametric probability distributions, along 
with a nonparametric Fisher-Cornish asymptotic expansion to describe the 
probability distribution of the critical location based on the statistical 
moments of Xc estimated using first-order analysis. Preliminarily, based on 
the three curve fitting criteria, i.e., BIAS, MAS, and RMSE, it was found that the 
two-parameter gamma distribution best describes the unknown character of 
the critical location in the majority of the cases examined here. Readers, 
however, should be cautioned that the gamma distribution found in this 
study for best describing the distribution of Xc may not be entirely valid if 
different water quality models and statistical properties of water quality 
parameters are considered. The design and execution of experiments from 
which the results can be made in general remains a challenging task for 
future research. 

Although the 90-percent confidence interval for Xc was found to be too 
wide to have any practical usefulness, knowing the distribution of Xc would 
enable one to find the location that is most likely to be the critical point 
which in turn could be used as the basis for setting up an effective water 
quality monitoring network. Another interesting observation from the study 
is that the inclusion of a positive correlation between K ,  and U, which 
exists in reality, shortens the length of confidence interval for the critical 
location. Unfortunately, the length of the confidence interval obtained under 
these assumptions remains too extended to provide any useful information 
for identifying the range of location containing the actual critical location. 
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