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Abstract. Like any other resources planning and management, groundwater management is performed in 
a stochastic environment in which the system itself involves a number of random elements. Consequences 
as a result of decisions made based on analyses are not certain. This paper presents a management model 
using the chance-constrained framework which explicitly considers the random nature of aquifer proper- 
ties. The model enables the derivation of an optimal groundwater management policy that would satisfy 
required operation performance reliability. Furthermore, the chance-constrained model is extended to the 
multi-objective optimization framework in which a tradeoff between total water supply pumpag and 
system performance reliability is explicitly considered. The models are applied to a hypothetical example 
of 3 steady. nonuniform. homogeneous confined aquifer. 

Key words. Groundwater management, optimization, uncertainty analysis, reliability. multiple-objective 
analysis. 

1. Introduction 
As the result of improper planning and management of groundwater aquifers, 
undesirable consequences have occurred including, among others, depletion and 
contamination of aquifers, and land subsidence. Enhanced t y  the advancement of 
computing capability and the development of efficient numerical techniques, many 
groundwater (simulation and/or optimization) models have been developed to assist 
water-resource managers in making effective decisions. 

Literature on optimal groundwater management has been extensive. Previous 
publications have reported that the development of models has a wide spectrum of 
complexi ty and sophistication. Basically, the methodologies employed in ground- 
water management can be divided into two categories: simulation and optimization. 
The simulation approach employs numerical groundwater models in which the 
analyst successively adjusts management policy until the responses of the aquifer 
system under study becomes both feasible and acceptable. A typical example of using 
the simulation approach in groundwater management can be found in Bredehoeft and 
Young ( 1970). 

As an alternative to simulation. solutions to groundwater management have also 
been derived by direct optimization. Depending on the details o f  the system behavior 
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to be considered, the models can further be classified 
distributed-parameter models. Lumped-system models are 

into lumped-system and 
primarily concerned with 

the temporal allocation of water and ignore the spatial variation of system states. 
However. lumped-system models are, generally, computationally simpler, thus 
serving the purpose of analysis in the early stages of planning and development. 
Examples of using lumped-system models for optimal groundwater and conjunctive 
use managements can be found elsewhere (Buras, 1963; Domenico et al., 1968). 

If groundwater management decisions are concerned with both temporal and 
spatial aspects of aquifer responses, a distributed-parameter model should be employed. 
Optimal groundwater management models with distributed-parameter capability are 
commonly approached either by the embedding technique or the response matrix 
technique. The embedding technique directly and explicitly incorporates the govern- 
ing groundwater flow equation as a constraint in the optimization framework. The 
technique is general, but it suffers severe computational difficulties due mainly to its 
requirement of tremendous computer storage and to computational instability (Tung 
and Koltermann, 1985). As an alternative, the response matrix technique, which 
utilizes the concept of influence function and linear system theory, becomes a practical 
tool for real-world groundwater management practice (Atwood and Gorelick, 1985; 
Gorelick and Remson, 1982; Heidari, 1982; Morel-Seytoux, 1978). The so-called 
alsebraic technologic function developed by Maddock (1972) and the discrete kernel 
function developed by Morel-Seytoux and Daly (1975) are of this type. However, the 
response matrix technique is not without its disadvantages. Recently, Wanakule et al. 
(1986) linked a groundwater simulation model with an optimization algorithm for 
determining the optimal management policy of regional groundwater systems. Their 
work, thus far. can be considered to be the most advanced state-of-the-art technique 
in distributed-parameter groundwater management optimization. 

Like any other resources management. groundwater management is performed 
under the stochastic environment. There exist many elements, such as aquifer proper- 
ties. boundary conditions, etc., which are random and/or uncertain in nature. 
Therefore, the response of a stochastic aquifer system to the external stresses cannot 
be predicted with certainty. In addition to the inherently natural variability of 
subsurface flow systems, data on most groundwater basins are generally lacking and. 
possibly, contaminated by error (Gelhar, 1974; Freeze, 1975). This is especially true 
during the early stages of the planning process for aquifer development. Thus. i t  is 
argued that the random and uncertain features of subsurface flow systems. if possible. 
shouid be taken into account in deriving the optimal management solution. 

Although the capabilities of sophisticated distributed-parameter subsurface flow 
models are well understood, meaningful results can only be generated if there are 
sufficient amounts of good, quality data available. In light of the stochastic environ- 
ment in groundwater. the effects of  uncertainty and random features of subsurface 
flow systems on management decisions have been examined through sensitivity 
anaiysis when distributed-parameter simulation models are employed (Young and 
Bredehoeft. 1973; Maddock. 1974). To explicitly incorporate the random nature of 
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system parameters into a distributed-parameter optimization model remains a 
challenging task. 

Direct incorporation of the random characteristics of an aquifer system. so far, has 
only been made to lumped-system models (Flores et al., 1978; Tung, 1986). Lumped- 
system models are appropriate for use in the early stages of planning because they are 
computationally simpler, thus providing decision-makers with quick and reasonable 
solutions. Besides, they do not demand extensive data information, which is very 
likely to be lacking. Several sensitivity analyses made by researchers (Maddock, 1974; 
McElwee and Yukler, 1975; Young and Bredehoeft, 1972) have indicated that 'the 
sophistication of a groundwater model is not a very crucial element in management 
problems and suggested that a simpler model would be adequate. 

In groundwater resource management under uncertainty, the decision-makers 
concern not only the attainment of an optimal management strategy but also the 
associated risk of violating the specified system performance criteria, because the 
state of the system cannot be predicted with certainty. As a result, stochastic ground- 
-water management is multiple-objective in nature. This paper basically consists of 
three parts. The first part describes the concept of influence function and its utility 
in formulating groundwater management models. The second part describes the 
derivation of a stochastic groundwater management model in chance-constrained 
format (Loucks et al., 1981) and the analysis of uncertainties. Application of the 
chance-constrained model is made to a hypothetical homogeneous but nonuniform 
aquifer in a single-objective framework. The last part extends the previous model 
formulation to bi-objective groundwater management where the trade-off between 
constraint compliance reliability and water supply is considered. A general discussion 
of the stochastic programming as applied to groundwater management is given by 
Willis and Yeh (1987). 

2. Influence Function 

The influence function of a system, generally speaking, is a function that relates the 
response of the system to an imposed stimulus or stress. In the groundwater manage- 
ment models considered herein, the responses are the drawdowns at various control 
points and the stimuli are the pumpages at various potential production wells. 
Sometimes. the influence function is also called the unit response function. Heidari 
(1  982) presents a procedure for generating the influence function for management 
models by numerical groundwater simulation. Under certain idealized assumptions, 
the influence function can also be derived from an analyticd or semi-analytical 
solution to the groundwater flow problems. 

For purposes of illustrating the concept, a simplified system of confined and 
homogeneous aquifers is adopted. Further assumptions of the aquifer system are: 
( 1 )  the aquifer is infinite in horizontal extent; (2) a radial flow pattern; (3) wells fully 
penetrate the entire aquifer thickness: (4) the aquifer is nonleaky: and ( 5 )  the piezometric 
head is uniform throughout the entire aquifer prior to pumping. Incorporating these 
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assumptions, the drawdown equation of steady radial flow for a confined aquifer can 
be expressed as 

in which si, = drawdown at control point i resulting from a pumpage of Qj at 
the potential production wellj; roj = radius of influence of potential production well 
j ;  rr, = distance between control point i and production well j ;  T = aquifer trans- 
missivity. Equation (1) is the well-known Thiem equation. 

Referring to Equation ( l ) ,  we notice that the aquifer response, i.e., drawdown, is 
linearly related to the stimulus, i.e., pumpage, imposed on the system. From the 
characteristics of the influence function stated previously, the influence function (C,.) 
for a steady confined radial flow aquifer system can be immediately identified as 

If more than one well is operating in a field, the overall effect of aquifer drawdown 
at any control point i can be obtained, by the principle of linear superposition, as the 
sum of responses caused by all production wells in the field (Viessman et a/., 1977), 

where N = total number of potential production wells under consideration. 

3. Deterministic Groundwater Management Model 

Consider the management problem where the objective is to obtain the optimal 
pumpage and a pumping pattern subject to the constraint that undesirable conse- 
quences are not created. The adverse consequences are generally avoided by con- 
trolling the drawdowns or hydraulic responses in the aquifer system. 

Since the influence function characterizes the relationship between aquifer and 
pumpage, groundwater management models can be formulated very easily once the 
influence function is defined. Without considering the random nature of aquifer 
properties, a deterministic groundwater management model for a steady-state 
confined aquifer can be formulated as follows 

Maximize 

f Q j .  
j = 1  

(4) 

Subject to 
V 

C C,Q, < s:, for all i = I . .  . . , K, 
/ = I  
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(6) 

(7) 

where Ql = pumpage at production well j ,  a nonnegative decision variable, s: = 
specified maximum allowable drawdown at control point i resulting from pumping 
operations over the entire well field, K = total number of control points, D = 
demand. and Q:' and 0:- are the upper and lower bounds of pumpage for production 
wellj, respectively. The first constraint, Equation ( 5 ) ,  ensures that the total drawdown 
at all control points do not exceed the allowable limits. The second constraint, 
Equation (6). ensures that demand is satisfied. The last constraint, Equation (7), limits 
the pumpage within the individual well capacity. 

The groundwater management model described above is deterministic if aquifer 
properties, i.e., transmissivity. are treated as deterministic. The model formulation is 
simple and follows the well-known linear programming (LP) format which can be 
easily solved by the simplex algorithm. The problem size basically depends on the 
number of production wells (decision variables) and the number of control points 
(constraints). 

4. Derivation of Stochastic Groundwater Management Model 
In general, the value of transmissivity is derived from a pump well test. This test 
provides in-situ values of aquifer parameters averaged over a large and representative 
aquifer volume (Freeze and Cherry, 1979). Hence, transmissivity should be treated as 
a random variable instead of being deterministic. For such a circumstance. the 
influence functions, C, 's in constraint equation ( 5 ) .  become random variables because 
they are functions of the aquifer transmissivity. which is now considered as a random 
variable. Consequently, the left-hand side of the aquifer response constraints, leading 
to the calculation of drawdowns in the groundwater management model, also become 
random variables. This implies that the compliance of the constraints at each control 
point cannot be assured with certainty. Under such circumstances, it is more appro- 
priate and realistic to examine the constraint performance probabilistically. 

In a stochastic environment, it is operationally feasible to specify limitations on 
allowable risk or required reliability of the constraint performance. For a confined 
aquifer, if we imposed a restriction that the total drawdown at any control point 
i cannot exceed a predetermined value s,* with a reliability requirement z,, the 
constraints can then be expressed as 

in which Pr { 1 represents the probability. 
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After replacing Equation ( 5 )  in the management model by Equation (S), a stochastic 
management model in ;I chance-constrained format is developed. However. it should 
be noted that the current chance-constrained formulation, in the form of Equation (8), 
is not mathematically operational. I t  requires further modifications. To transform the 
probabilistic statement in the form of the chance-constrained equation into its deter- 
ministic equivalent for mathematical tractibility, it is necessary to assess the statistical 
properties of the overall drawdown at the various control points. 

5. Analysis of Uncertainty 

The statistical properties of a random variable commonly used are the mean and 
variance. To quantify or estimate the statistical properties of an overall drawdown at 
each control point, both the approximated solution or exact solution approaches can 
be employed. The'exact solution approach requires the probability distribution of the 
overall drawdown at each control point be known or analytically obtainable which, 
in general, is a rare situation. In most situations, the response of an aquifer system 
is a complex function of the random aquifer parameters. Even though the probability 
distribution of the individual aquifer parameter can be assessed, the distribution of 
the combined effect is generally difficult to estimate. In general, a practical way to 
approach the problem is to estimate the statistical moments of a function involving 
random variables and then to make an assumption about the distribution of such a 
function. One method that is commonly applied is the first-order analysis (Cornell, 
1972) in which the function involving random variables is expanded in Taylor series 
about the mean values of random variables as 

in whichf(x) is a function involving P random variables, is a vector of mean values 
of P random variables, and E is the higher-order terms in the Taylor expansion. 
Neglecting the higher-order terms in Equation (9) and assuming independency of the 
random variables involved, the mean and variance of the function f ( x )  can be 

>? a; 
x=,, 

in which E[ 3 and Var[ 3 represent the expectation and variance, respectively, and o:,, 
is the variance of the mth random variable. Application of first-order analysis to 
stochastic aquifer management using the Cooper-Jacob equation, where the trans- 
missivity and storage coefficient are considered random. has been made by Tung 
( 1986). 
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In the problem considered herein. the only random variable is the aquifer trans- 
rnissivi ty. There have been numerous field investigations (cited in Freeze, 1975) 
indicating that the hydraulic conductivity has a log-normal distribution. From this, 
it is reasonable to assume that the transrnissivity also has a log-normal distribution 
because transmissivity is the product of the aquifer thickness and hydraulic conduc- 
tivity. As a result. the exact distribution of the aquifer drawdown under steady-state 
conditions can be assessed. This exact solution approach is adopted for the model 
development in this paper. 

The random variable, i.e., transmissivity, in Equation ( 3 )  can be factored out and 
the drawdown equation can be rewritten as 

MULTI-OBJECTIVE STOCHASTIC GROUNDWATER MANAGEMENT 

where A, = ln(roj/rjj)/?. The term in the parenthesis of Equation (12) is a constant. 
Therefore, the random variable s; = ln(s,) has a normal distribution with the mean 

and the variance &-, in which ,uT, and c$. are the mean and variance, respectively, of 
the log-transformed transmissivity, T’ = ln(T). Since T has a log-normal distri- 
bution, the mean and variance of T’ can be obtained as (Haan, 1977) 

a$. = In(CV+ + I )  

in which Cr/, is the coefficient of variation of the transmissivity, i.e.. c T / p T .  

6. Resulting Stochastic Groundwater Management Model 
The stochastic groundwater management model formulated previously contains 
chance-constraints which are not mathematically operational. After the analysis of 
uncertainty, the statistical properties of the random terms in the chance-constraints 
can be quantified. This further enhances the transformation of the chance-constrained 
equations into their deterministic equivalents which would become mathematically 
operational. Under the log-normal assumption of aquifer transmissivity, the statistical 
characteristics of aquifer responses can be derived. The original chance-constrained 
statement. Equation (8), is equivalent to . 

(16) 

Since s,! has a normal distribution with the mean as given in Equation (13) and 
variance o;., Equation (16) can be written as 

Pr{s: 6 Ins,*) 2 x f ,  for all i = 1 ,  2, . . . , K. 
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in which cO[ ] is the cumulative normal probability. As a result, the deterministic 
equivalent of Equation (8) using the exact solution approach can be easily derived as 

4 

1 AijQj 6 exp[(ln S: + pT) - cTe@-'(a,)],  for all i 
j - l  

where exp [ 3 is an exponential operator. Equation (18) can be used to substitute 
Equation ( 5 )  in the deterministic management model described previously. and the 
resulting stochastic management model is formulated. Note that Equation (18) is 
linear, the resulting stochastic model can again be solved by the LP technique. 

7. Application No. 1 

7. I .  EXAMPLE AQUIFER 

The stochastic groundwater management model developed is applied to a hypothetical 
aquifer containing three production wells and five control points. The locations of the 
production wells and control points are shown in Figure 1. The radius of influence of 
all pumping wells is assumed to be 2 13 m. The maximum allowable drawdown at each 
control point is also shown in Figure 1. The lower and upper bounds of pumpage for 
each production well are 0 and 0.008762 cubic meters per second (CMS), respectively. 
The mean transmissivity is 0.0007187 CMS/m. The distances between pumping wells 
and control of points are given in Table I. 

Srr (2. 
0 0 

113 

Fig. I .  Locations of wells and control points for the hypothetical example. 
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Table I.  Distance (in meters) between potential pumping wells and control point in hypothetic example 

. . - _ .  .. . 

. . .  . .  . .  . . .  

Control points 
Pump 
well 1 2 3 4 5 

7.2. SOLUTIONS 

48.16 116.13 48.16 77.72 131.06 
156.97 77.72 89.00 144.48 48.16 
136.25 136.25 60.96 60.96 60.96 

To examine the effects of reliability levels and aquifer property uncertainties on the 
optimal solutions, problems with different reliability requirements and various levels 
of uncertainty in aquifer parameters are solved. The results including pumping 
pattern and total pumpage are shown in Table 11. The degree of uncertainty of aquifer 
transmissivity is expressed in terms of its coefficient of variation (CV,). In all cases, 
the maximum total allowable pumpage, as expected, decreases as reliability require- 
ments increase when the level of uncertainty in the aquifer is fixed. For a given 
reliability requirement, the maximum total pumpage from the aquifer decreases as the 
value of CV, gets larger. Logically, this can be explained by the fact that pumping 
rates would be less from the aquifer to meet reliability constraints when the variability 
of the aquifer properties is large or less information is available about the system. 

The 'use of mean values of the system parameters is not an uncommon practice in 
water resources planning and analysis. It should be recognized that the deficiency of 
such use is that the mean values are unable to consider the dezree of uncertainty of 
the system parameters. When the mean values of the aquifer parameters are used, this 
roughly corresponds to a 50% performance reliability as required to meet the 
specified operation constraints. However, if the distribution of system responses is 
known to be nonnormal and positively skewed, such as log-normal distribution, 
the use of mean aquifer parameter values would lead to less than 50% system 
performance reliability. 

Table 11. Optimal pumping pattern and maximum total allowable pumpase (in CMS) for different 
uncertainty levels of transmissivity and reliability requirements for steady confined flow (mean 
transmissivity = 0.0007 I87 CMSim) 

Reliability = 0.975 Reliability = 0.950 Rcliabdity = 0.900 

c V! c V f  C v, 
Well 0.7 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

1 6.816 5.769 4.473 3.244 9.398 8.099 6.460 4.873 13.336 11.936 9.830 7.727 

3 3.715 3.135 2.439 1.774 5.123 4.415 3.531 2.656 7.393 6.519 5.358 4.211 

Total 13.776 11.660 9.032 6.579 19.000 16.370 13.056 9.849 27.421 24.133 19.867 15.618 

7 - 3.945 2.746 3.130 1.550 4.474 3.856 3.075 2.320 6.453 5.682 4.679 3.679 
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In addition to the examination of the effects of the reliability requirements and levels 
of parameter uncertainty on model results, it is also interesting to examine how close 
themodel outputs comply with the required system reliability at various locations. To 
do that, a post-optimality simulation study can be conducted. One thousand log- 
normally distributed random samples for transmissivity were generated based on its 
statistical properties used in the hypothetical example. Optimal pumpages deter- 
mined from the chance-constrained model with various reliability requirements and 
uncertainty levels were input to the simulation study. It was found that no violation 
of drawdown constraints were observed in the simulation study for all conditions 
except that about 0.8% of violation for control points 1. 4, and 5 under reliability 
requirement of 90% with CV, = 0.8. This implies that the solutions determined from 
the chance-constrained model are conservative with respect to the performance 
reliability specified. That is. the actual performance reliability is higher than the 
specified performance reliability. 

8. Multiple-Objective Stochastic Groundwater Management Model 

In groundwater management under uncertainty, decision-makers are basically 
concerned with two aspects: (1) water supply from the aquifer system and (2) the 
risk of violating specified performance criteria at various control points. From the 
example study presented, it is realized that water supply and system performance 
reliability are noncommensurable and mutually conflict wirh each other. The problem 
is a bicriterion optimization problem in which the decision-maker(s) would like to 
maximize the total pumpage for water supply while, at the same time, minimize the 
risk of violating specified performance criteria. 

The general formulation of multiple-objective (vector optimization) problem can be 
expressed as 

wheref; (x) is thej  th objective function,j = I ,  . . . , n; Xis rhe set of feasible solutions 
defined by the set of constraint equations, Equation (20): and x is the vector of decision 
variables. Several optimization (Haimes, 1977; Cohen. 1978). The method to be 
applied herein is the E-constraint method which generates ;1 noninferior solution set 
for the problem. 

Once the drawdown limitations are specified for each control point, i t  is general 
that the probability of violating (or complying) the specified drawdown constraint at 
each control point will not be identical under a given pumping pattern. That is, the 
actual values of the right-hand side of chance constraints. 2,'s in Equation (8) are 
different. One commdn measure of  the different risks ( o r  reliabilities) is that of the 
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largest risk (or the smallest reliability) which is to be minimized (or maximized). 
Hence. adopting this common measure, 

or 

a,,, = min{z,, a,, . . . , aK} 

where pi = 1 - x i  = the risk of violating the specified drawdown at control point i. 
Under the assumption oflog-normal distribution for the transmissivity, the chance- 

constrained formulation using Pmax as a risk measure for the system performance can 
be written as 

in which Pmax currently is a decision variable to be minimized. The deterministic 
equivalent of Equation (23) can be derived as 

Since is a monotonically increasing function of Pmax and gT > 0, the 
term exp[a,.@-' (Pmax)] is a monotonically increasing function of Pman. Therefore, 
minimization of exp[o,.Q,-l(~max)] would also lead to the minimization of Pmax. We 
now let W = exp[oTa@-'(Pm,,)] and Equation (24) becomes 

where A.  = exp[ln s* + pT.] = a constant. 
To solve this two-objective optimization problem, the &-constraint method is used 

to generate noninferior solutions. The model to be solved is summarized as follows 

Min W, (26) 
V 

s.t. 1 A,Q, - A o W 6  0, for i = 1. . . .., K. 

1 Q, 3 D*, 

j = l  

v 

/ = I  

p/" < Q, < Q,", f o r a l l j =  1. 2 . .  . . , N ( 7 )  

where D* is the demanded quantity of pumpage to be varied parametrically. 

9. Application No. 2 

The &-constraint method is applied for solving the above two-objective groundwater 
management model. The same hypothetical aquifer system used previously is again 
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Fig. 2. 
uncertainty levels of transmissivity. 

Noninferior solution set between the total pumpage and maximum performance risk for various 

considered. The resulting noninferior solutions for various levels of uncertainty of the 
transmissivity are shown in Figure 2. The tradeoffs between total water pumpage and 
risk of violating the specified drawdown limits can be obtained by computing the 
slope of noninferior solution curves. The decision-makers can incorporate the non- 
inferior solution information generated by the model, along with their preferences, to 
reach a best compromised solution for the management model. 

10. Summary and Conclusions 

The concept of a stochastic groundwater management using the chance-constrained 
formulation is presented. The model is developed utilizing the concept of the influence 
function based on the well-known Thiem equation for steady, homogeneous, but non- 
uniform, confined aquifers. The model later is extended to multiple-objective optimiz- 
ation framework in which the tradeoff between the total aquifer pumpage and risk of 
violating the specified drawdown limitations is considered. In the derivation of the 
model, the aquifer transmissivity is assumed to have a log-normal distribution accord- 
ing to the observations from many field experiments. The chance-constrained model 
and its multiple-objective version are applied to a hypothetical aquifer for examining 
model behavior. 

As expected. the total maximum allowable pumpage increases as the performance 
reliability requirement decreases under a given uncertainty level. The decreasing 
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performance reliability requirement of the system is equivalent to an increase in the 
decisionmaker's tolerance on the frequency of violating the system performance 
criteria. A n  increase in the level of uncertainty of the aquifer parameters results in a 
decrease in maximum total allowable pumpage at a given reliability level. The results 
are intuitive, noting that decision-making tends to be more cautious and conservative 
in cases when less knowledge is available about the system behavior. Results from 
the multiple-objective optimization model reveal these same facts. The noninferior 
solution curve generated clearly demonstrates that more pumpage can only be made 
at the expense of increasing the risk of violating the system's specified drawdown 
limitations. 

The stochastic groundwater management models developed are illustrated through 
an application to steady confined aquifers of nonuniform, homogeneous medium. 
Their applications seem quite restricted in the sense that real groundwater aquifer 
systems are heterogeneous. However, because information on most aquifers is lack- 
ing, especially for undeveloped groundwater basins, it does not warrant the use of 
sophisticated distributed-parameter models. Under such circumstances, the use of 
simple analytical formula would be valid and justifiable in order to provide quick 
solutions to assist decision-making in the early stages of planning. Prickett (198 1) 
advocated the development of groundwater models of various levels of sophistication 
as management tools for different situations. He also warned (1979) that. "In any 
event. choosing an overly sophisticated model which doesn't fit the problem is a case 
of applying the wrong model." Of course. after an aquifer is developed and more data 
are collected. the use of more sophisticated models would be appropriate. Of course, 
the concept of formulation illustrated in this paper can also be applied to steady or 
unsteady management of confined or unconfined aquifer systems. 

Finally, readers are reminded of the practical limitations of the chance-constrained 
models. As pointed out by Loucks et al. (1981), as well as by Willis and Yeh (1987), 
that the chance-constrained formulation neither explicitly accounts for the conse- 
quences of constraint violations nor provides recourse action to correct such violations. 
The performance reliabilities have to be specified prior to model solution and it is 
rarely obvious what they should be. 
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