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ABSTRACT

The waste load allocation (WLA) process is an important but complex
part of decision-making in regional water quality management. The
results of WLA have profound implications on regional environmental
protection. It requires a sound understanding of the physical, chemical
and biological processes of the aquatic environment and an appreciation
for the legal, social, and environmental impacts of such decisions.

Most WLA processes are performed using either pollutant transport
simulation models or deterministic optimization models. Only a few
stochastic WLA models have been developed which treat either streamflow
or background pollution as random variables to avoid nonlinearity in the
model formulation so as to simplify the solution procedures.

This research is directed toward the development of an optimal
stochastic waste load allocation model considering the uncertainty
associated with physical, chemical and biological parameters in the
transport equation for a complex multiple discharge setting. A general
solution technique for solving the nonlinear WLA model, as a result of
considering the overall uncertainty, will be developed. The result of
this investigation is to expand the capability of performing WLA in a
stochastic environment and to enhance the understanding of the tradeoffs
between risk and ecanomics, ultimately in order to develop a more

effective and realistic decision-making process for the future.
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CHAPTER 1

INTRODUCTION

1.1 UNDERSTANDING THE SIGNIFICANCE OF WASTE LOAD ALLOCATION

Water is the fundamental element, either directly or indirectly,
in all human activity. Thriving species, especially "man", can neither
progress nor survive without water resources of various quantities and
qualities. Our needs for water range from drinking water supplies and
hydroelectric power production to irrigation of crop lands and recrea-
tional uses. Although more than two-thirds of the surface of the earth
is covered with water, less than one percent is fresh water on land
(Krenkel and Novotny, 1980). These figures reveal that such important
sources of water are, in‘fact, limited. Unfortunately, only in rela-
tively recent historical times has the development of society begun to
recognize the importance of preserving the quality of this inyaluable
resource,

No country has seen growth, either exploitative or planned, of
the magnitude of that experienced by the United States in the past
century. Such growth, in terms of economics, industry, and cultural
activities, has left this country with a standard of living higher than
all others. However, the prosperity enjoyed by this country has not
materialized exempt from its own i1l side effects. Specifically, the
uncontrolled plight of this country into the future has had serious
effects on its surrounding environment. This fact could not have been

more apparent than that experienced by the quality of this nation's



rivers in the 1960's. For after World War II, the technological growth
of this country was phenomenal, however, its rivers were naively left
to suffer the brunt of the industrial and municipal wastewater disposal
resulting from such growth.

As a result of the severe water quality conditions in many of
the rivers in the United States during that time, the recognition of
problems concerning surface water quality could no longer be avoided.
Such factors led legislators to introduce several regulatory water
pollution control measures, including the Water Pollution Control Act
Amendments of 1961, the Water Quality Act of 1965, and the Clean Water
Restoration Act of 1966. Legislation of this type culminated in 1972
with the introduction of the Water Pollution Control Act Amendments,
more commonly referred to as Public Law (PL) 92-500.

PL 92-500 provided impetus for three essential tasks: (1)
regulation of waste discharge from point sources (i.e., industrial
plants, municipal sewage treatment facilities, and livestock feedlots);
(2) regulation of oil spills and hazardous substances; and (3) assis-
tance, in the form of financial aid, for the construction of wastewater
treatment facilities (Ispen and Raisch, 1974; Krenkel and Novotny,
1980). This Act, in particular, set deadlines and goals specifying
effluent limitations based on the "best practical control technology
(BPT)" currently available and future guidelines for discharges from
point sources that were to meet effluent standards based on the "best
available technology (BAT)." Moreover, the 1972 Amendments established

a national goal of eliminating all waste discharges by 1985. However,



although technologically achievable, the goal of zero waste discharge,
subdued by various economic and political pressures, has yet‘to be met
as of the end of 1986.

More importantly, the intent of this legislation was to require
treatment levels which technology could achieve rather than those
simply required for acceptable water quality. This was done, in
effect, to force dischargers to install or upgrade treatment facilities
which were commensurate with current technology. In theory, such
plants would then be capable of producing effluents with a quality
significantly better than the existing quality of the water body to
which these effluents were to be discharged.

On the other hand, if the water assimilative capacity for a
particular stream segment is below the total waste discharge authorized
by the 1972 Amendments, more stringent controls may be required to
ensure the protection of the natural instream biota. Stream segments
in which these conditions éxist are referred to as "water quality
limited."

It is this type of stream segment to which WLA is most appli-
cable under current law in the United States. For streams under water
quality limited conditions or where effluent standards are not imple-
mented, the question then becomes "how to effectively allocate the
existing assimilative capacity of the receiving stream amongst several
wastewater dischargers without detrimental effects to the aquatic
environment?" This question, in essence, defines the role of WLA

methodologies in preserving the quality of various water resources.



However, the procedures of WLA, combined with the water quality laws of
this country, can become a relatively complicated task. Figure 1.1
provides some insight into the overall WLA process.

In reference to Figure 1.1, it shouldAbe noted that a major
component of the total waste load is that of nonpoint source pollution
such as that from agricultural and erosion runoff. This factor plays a
significant role in the overall WLA process, however, accurate quanti-
fication of this variable can be a difficult task (Miller and Gill,
1976) . Thus, given the nature of nonpoint source pollution and the
need to limit the scope of this study, such factors are excluded in any
subsequent discussions presented here. However if the entire WLA
process is to be analyzed properly, the existence and importance of
estimating nonpoint source pollution should not be ignored.

As an overview, with the passage of Public Law 92-500 and its
subsequent implementation, the methodologies of WLA procedures is among
the forerunners in current water quality management interest. Through
such interests, research in this field has and will continue to play an
important part in protecting the quality of water resources in this
country for future generationms.

1.2 STREAM ASSIMILATIVE CAPACITY AND ITS EFFECT ON INSTREAM

DISSOLVED OXYGEN

The stream environment itself is ﬁome for a number of plant and
animal species; to support much of this life, required levels of

dissolved oxygen (DO) must be present. However, through the addition
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of waste discharge, the ability of the stream to maintain these levels
of DO is threatened.

Moreover, surface waters, in general, contain a variety of
microorganisms. When organic waste is discharged into these waters,
the organic matter is utilized for heterotrophic microorganism growth
at the expense of a certain quantity of instream DO. This process can
be better understood through the following equation (Tchobanoglons and

Schroeder, 1985):

microorganims
L

Organic Matter + 02 + nutrients

002 + H2 + new cells + nutrients + energy (1.1)

The amount of oxygen utilized in the metabolism of the organic matter
is called biochemical oxygen demand (BOD).

In measuring the relative organic pollution in surface waters,
it is a common practice to identify the rate at which oxygen is con-
sumed in the metabolism (biological decomposition) of instream organic
matter. Upon the introduction of organic waste to the stream environ-
ment, dissolved oxygen is utilized in a two-stage process: (1) first-
stage BOD resulting from the decomposition of organic carbon matter
(carbonaceous BOD) and (2) second-stage BOD resulting from the oxida-
tion of nitrogén compounds (nitrogeneous BOD). Standard procedures,
based on a five-day test, to determine the BOD of waste discharges have
been developed and utilized for a number of years. However, in gen-
eral, due to the length of time lapsed before the onset of nitrifica-

tion, second-stage BOD in many cases is considered to have little



practical significance in the standard test and is simply ignored
(Rich, 1973).

Based on these arguments, the rate of oxygen uptake for the
metabolism of waste can be expressed by the following first-order rate

reaction

dL
it - -KdL 1.2)

where L is the concentration of first-stage BOD (mg/l) and Kd is the
deoxygenation coefficient (generally expressed as 1l/days).

To index the water quality of surface waters, the concentration
of DO is often used. The basis for such an index lies in the fact that
biota within the stream are quite sensitive to the amount of DO pres-
ent, which is seldom in excess of 10 mg/l. On the other hand, it is
generally accepted that at least 4 mg/l of DO are required to maintain
a balance of desirable aquatic species. As conditions fall belowﬁthis
minimum, the existence of many aquatic species is threatened. More-
over, at a DO concentration below 1.0 mg/l, aneorobic conditions are
established resulting in the productioﬁ of hydrogen sulfide, discolora-
tion of the water, and the destruction of fish and other aquatic
organisms (Rich, 1973).

As the concentration of dissolved oxygen falls below its natural
saturation concentration, Cs’ the equilibrium (between the atmosphere
and the stream) is left unbalanced. From this, a driving force to

transfer atmospheric oxygen to the stream is established. Water

undersaturated with respect to DO is said to undergo atmospheric



reaeration. The time rate of exchange of DO through the process of

reaeration is based on Henry's Law and can be expressed as

ac
36 - K¢, - O (1.3)

where C is the instream DO concentration (mg/l) and Ké is the reaera-
tion coefficient (generally expressed as 1/days). It should also be
noted that the term (Cs - C) represents that portion of the stream
which is undersatura;ed with respect to DO. This term is more commonly
referred to as the DO deficit, D.

More importantly, when combined, as in nature, the processes of
biological decomposition and natural reaeration allow the stream to
treat a certain quantity of waste discharge. This combined effort is
more commonly referred to as the assimilative capacity of the stream.

The concept of an assimilative capacity for the stream environ-
ment has been utilized by industries and municipalities for a number of
years. By taking advantage of this process, waste dischargers have
been able to treat less of their influents, relying on the stream to do
some of the work. This was done, obviously, in an attempt to reduce
overall treatment costs. Unfortunately, if unregulated, such a process
can be exploited by the users, resulting in large quantitigs of waste
being discharged to the stream environment. Unable to treat these
quantities, the biological consumption of DO with the stream surpasses
the natural reaeration rate, ultimately leading to an anaerobic
environment in which stream biota cannot survive. This process, like

many in nature, is a delicately balanced operation. Thus, regulatory



management plays an important role in protecting the stream environment

from unwarranted and needless waste discharge.

1.2.1 The Basic Water Quality Model

To better understand the aquatic environment, several mathemati-
cal models have been developed to describe the interaction between the
physical and biological processes occurring within the stream. The
most well known expression of this type is the Streeter-Phelps equation
(Streeter and Phelps, 1925). In differential form, the equation is

given as:

dD/dt = KL - KD (1.4)
d a

The solution to Eq. (1.4), replacing t by x/U, is:

K.L
o

D = ~do_ e-KdX/U - e_KaX/U +D e-Kax/U (1.5)
b4 Ka - Kd o]

where Kd is the deoxygenation coefficient (1/days), Ka is the reaera-
tion coefficient (1/days), x is the distance downstream from the source
of BOD (miles), U is the average stream velocity (miles/day), Dx is the
DO deficit concentration (mg/l) within a unique reach at a downstream
distance x, Do is the initial DO deficit (at distance x = 0), and Lo is
the initial in-stream BOD concentration (both in mg/1).

From Eq. (1.5), it is evident that the Streeter-Phelps equation

is limited to only two instream processes: (1) deoxygenation of the
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water due to bacterial decomposition of carbonaceous organic matter,
and (2) reaeration directly proportional to the DO deficit.

The concentration of DO at any downstream location is given as:
C.=C -D (1.6)

in which CS is the saturated DO concentration. The downstream
location, Xc (miles), where the maximum DO deficit occurs can be found

by differentiating Eq. (1.5) and solving for x:

x = U 1n Ka 1 - (K, = KD, (1.7)
c K - K K KL,

The point Xc will herein be referred to as the "critical location".

The resulting maximum DO deficit is computed using Xc and Eq. (1.5):

Dmax = (LoKd/Ka) exp (—Kch/U) (1.8)

It should also be noted that several assumptions have been made
in the development of the "Streeter-Phelps" equation: (a) steady,
uniform flow; (b) DO deficits predicted by Eq. (1.5) are one-
dimensional (functions only of the position downstream from a discharée
point); and (c) rate of biodegradation and reaeration, expressed by Kd
and Ka’ are described by first-order kinetics. A typical DO‘profile
for a single reach is shown in Figure 1.2.

Moreover, Eq. (1.5) describes the response of DO in a single

reach of stream as a result of the addition of a "point-source" loading

of waste at the upstream end of the reach. This equation can be used
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to determine the DO concentration in several successive reaches by
applying the deficit at the downstream end of one reach as the initial
deficit of the succeeding reach. Thus, Eq. (1.5) can be applied
iteratively to determine the DO profile of an entire stream system

(Liebman and Lynn, 1966).

1.2.2 Modification of the Original Streeter-Phelps Equation

Since its conception, the "Streeter-Phelps" equation has been
modified to account for discrepancies between analytical estimationms,
computed from Eq. (1.5), and actual data collected in the field. These
discrepancies have arisen as a result of the exclusion of a number of
oxygen sources and sinks in the original equation. Dobbins (1964)
pointed out several other possible factors which could contribute to
instream BOD and DO variations: (1) removal of BOD by sedimentation or
absorption; (2) addition of BOD along the stretch by the scour of
bottom deposits or by the diffusion of partly decomposed organic
products from the benthal layer into the water above; (3) addition of
BOD along the stretch by local runoff; (4) removal of oxygen from the
water by diffusion into the benthal layer to satisfy the oxygen demand
in the aerobic zone of this layer; (5) removal of oxygen from the water
by purging action of gases rising from»the benthal layer; (6) addition
of oxygen by photosynthetic action of plankton and fixed plants; (7)
removal of oxygen by the respiration of plankton and attached plants
and (8) continuous redistribution of both BOD and oxygen by longitu-

dinal dispersion.
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There have been several studies conducted in which one or more
of the processes have been included in the model formulation in an
attempt to improve model predictability (Dobbins 1964; Hormberger,
1980; Krenkel and Novotny, 1980). In general, these modifications can
be made by simply adding terms to Egq. (1.5) to account for the various
additional factors listed above. However, in order to simplify the
algebraic manipulations, the original Streeter-Phelps equation will be
utilized in this and all remaining chapters where appropriate. It is
simply the author's intention at this point to note the improvements

made to the original formulation by various other researchers.

1.3 APPROACHES TO WASTE LOAD ALLOCATION

As was pointed out in earlier sections of this chapter, the
process of WLA can become quite complex. In attempts to optimize the
stream's waste assimilative capacity and beneficial use, several
methodologies have been developed which utilize a variety of
approaches: ad hoc procedures, mathematical programming, and simula-
tion. Each of these procedures is discussed in the following sub-

sections.

1.3.1 Ad Hoc Procedures

Although sophisticated models which attempt to optimize the
allocation of the waste assimilative capacity of streams are quite
rational, their complexities, in many instances, lead some regulatory
agencies to incorporate much simpler approaches to the problem. For

example, the total allowable waste discharge may be determined by
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simply dividing it among several users in some arbitrary fashion, or
each discharger may be required to treat their effluents based on a
proportion of the raw wastewater characteristics.

These procedures may afford the regulatory agency relief from
obvious computational burdens and/or allow a greater flexibility in the
decision-making process. However, such an approach is neither scienti-
fically nor economically justifiable. From this viewpoint, such
procedures would be virtually impossible to defend, and as such, would
most likely be discarded in a legal sense if implemented. Hence, the

ability to enforce such regulations would be essentially nonexistent.

1.3.2 Water Quality Simulation

The achievement of various water quality goals often requires
substantial capital investment and cooperation with public interests.
Within this day and age, water quality control measures are, in gen-
eral, costly. The brunt of these costs are incurred by the citizens of
this country. Such costs, either direct through taxes or indirect
through increased manufacturing costs passed along to the consumer,
include the price of treatment facilities designed to reduce the
discharge of contaminants, or to improve existing instream water
quality. Those responsible for the formulation and adoption of water
quality policies must have an appropriate means of evaluating the
economic, environmental, and ecological impacts of these policies.
Such a need has stimulated the development of a wide range of mathema-
tical modeling techniques to investigate the impacts of various water

quality plans (Loucks et al., 1981).
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One approach of this type is that of "simulation". In fact,
with the advent of high—speeé computers, simulation has become a widely
used technique in many areas of water resources planning and manage-
ment. Simulation is not an optimization procedure; rather, simulation
merely provides a means for evaluating the performance of the system
under investigation.

In essence, simulation procedures can be characterized in two
basic steps: (1) define and develop a model (most commonly a computer
model) which best describes the physical, biological, and economic
responses associated with the system under investigation (e.g., the
stream environment itself); and (2) then specify desired input charac-
teristics and iterate the model for a sufficient number of trials to
obtain information which indicates the performance of the system
subject to a variety of modeling parameter conditionms.

There have been a number of simulation models developed solely
for the purpose of water quality prediction. A list of commonly used
water quality simulation models is given in Table 1.1. For an in-depth
review of simulation approaches and their application to water re-
sources planning and management (which include water quality applica-
tions), the reader is :eferred to Krenkel and Novotny (1980) and Loucks

et al. (1981).

1.3.3 Water Quality Optimization Procedures

Another approach to mathematical modeling is that of constrained
optimization. Unlike simulation, constrained optimization provides

information revealing the "best" alternative amongst all those



TABLE 1.1 OVERVIEW OF SELECTED STREAM

WATER QUALITY MODELS

MODEL DEVELOPER AND/ MODEL PARAMETERS INPUT DATA
OR SOURCE CHARACTERIZATION MODELED AND COMPUTER
REQUIREMENTS
DOSAG Texas W. Dev,. Board3 steady DO, nitrogen small
state
QUAL-II EPA semi~-dynamic DO, temperature, medium
most of water quality
parameters
SWMM-RECEIV Wat. Res. Eng., EPA2 dynaﬁic DO, nitrogen, large
conservative pollutants
HSP-IT CHANNEL Hydrocomp dynamic DO, nitrogen, large
International conservative pollutant
transport
MIT Network MIT dynamic b0, nitrogen, large
International conservative pollutant
temperature
;Hydrocomp International, Palo Alto, CA.
Water Resources Engineers, Walnut Creek, CA.
Texas Water Development Board, Austin, TX. —
(@)

Massachusetts Institute of Technology, Dept. of Civil Engineering, Cambridge, MA.



17

available which conform to the requirements specified by the model
formulation. However, in general, optimization procedures are seldom
able to deal with all the complexities and nonlinearities incorporated
by the simulation model. On the other hand, when a constrained optimi-
zation model is developed properly, it provides an adequate approxima-
tion of the real problem. Moreover, optimization models can provide
the decision maker with information pertaining to, for example, the
overall least cost or most beneficial alternative amongst those
possible.

The term "constrained optimization" is related to a general
class of modeling techniques more commonly referred to as mathematical
programming. A number of mathematical programming techniques have been
developed: Lagrange multipliers, linear programming, dynamic program-
ming, quadratic programming, and geometric programming. At one time or
another, practically all these methods have been applied to the problem
of WLA. For example, Loucks et al. (1967) and ReVelle et al. (1968)
utilized linear programming techniques; Liebman and Lynn (1966) and
Shih (1970) applied dynamic programming; and Ecker (1975) incorporated
the use of geometric programmiﬁg.

Although several techniques exist for solving the WLA problem,
this study will concentrate the solution procedures based solely on
those of linear programming. As will be shown in subsequent chapters,
the type of objective function and constraints that will be utiliéed
throughout this study (i.e., linear functions of the decision vari-

ables) make the use of linear programming the most appropriate solution
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technique. 1In addition, linear programming is probably the most widely
used mathematical programming technique. Linear programming packages
are available at most scientific computing facilities worldwide. In
fact, its popularity has led to such a vast array of available computer
algorithms that one need only know how to use the computer programs
available and to interpret their results to effectively apply the
linear programming technique. However, this author feels that a short
review of linear programming methodology is necessary before a true

appreciation for its application can be understood.

1.4 BRIEF REVIEW OF THE LINEAR PROGRAMMING TECHNIQUE

The general linear programming (LP) model is expressed in terms
of two major components: (1) a linear objective function expressing
the goal of the model formulation which is to be optimized (i.e.,
maximized or minimized); and (2) the model constraints, also linear -
functions, describing the physical, legal, and economic behavior of the
system under investigation. LP provides a means of comparing all
ﬁossible solutions in order to identify the solution which optimizes
the objective function, while simultaneously satisfying all the con-

straints. All LP problems can be expressed in standard form as

Maximize QTE (1.9)
subject to
AX<B (1.10)
and
X>0 (1.11)
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where g? is a K-dimensional row vector; A is a J x K matrix; X is a
K-dimensional column vector; and B is a J-dimensional column vector.
For further information concerning the development of linear program-

ming models, the reader is referred to Taha (1982).

1.5 UNCERTAINTIES IN WASTE LOAD ALLOCATION

Having acknowledged the necessity of incorporating mathematical
modeling into the WLA process, the proper management of the quality of
various water resources depends on an understanding of the system to be
modeled. 1In the case of stream water quality management, the system to
be modeled is that of the stream itself. The processes occurring
within such a system are dictated by nature, and as such, are in many
instances, inherently random. The stream itself is an agglomeration of
many physical, biological, and ecological processes which, in general,
cannot be predicted with certainty.

If water quality management is to develop a methodology to
manage the stream environment, techniques must be developed which
accurately reflect the stochasticity of the stream environment. Ward
and Loftis (1983) have recently summarized the importance of uncer-
tainty considerations in water quality management:

"In terms of the current scientific understanding,

water quality is a mix of deterministic and stochastic

components, and its management can only be truly effective

when both components are properly balanced."

From a regulatory perspective, in order to properly acknowledge

the inherent stochastic nature of the stream environment, some means



20

within the management process must by provided to account for the
concept of risk. Risk, in a water quality sense, defines the prob-
ability that a given stream standard will be violated. One of the
earliest works to recognize the concept of risk in water quality
management was that of Loucks and Lynn (1966). Quoting from the
conclusion of their paper, Loucks and Lynn state:

"Thus a more realistic approach for establishing

dissolved oxygen standards would be to introduce the

concept of a maximum allowable probability of the dis-

solved oxygen concentrations dropping below a specified

concentration for a given number of consecutive days."

The risk of violating a standard would be exactly known if the
probability distribution of water qualitv were known. However,
uncertainty is the result of one's inability to determine the exact
properties of the population for the various water quality parameters.
To add to the problem, data which is often deficient or aliased is
commonly used to estimate these properties in models which do not
exactly reflect the character of the system being modeled. This leads
to errors and loss of information that causes one to be uncertain with
respect to the true population properties. Thus, uncertainty can be
thought of as the difference between population properties and their
respective estimates computed from sample data (Ward and Loftis, 1983).

From Eqs. (1.5) through (1.8), it is evident that the mathemati-
cal modeling of the WLA process is dependent on knowing the value of

several water quality parameters (i.e., K

q’ Ka’ U, Lo and Do). To do

this, either experimental and/or stream sampling data are utilized in
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an attempt to estimate these parameters. It is quite obvious that such
a process is subject to a number of inherent uncertainties as the
result of sampling errors and the inherent random nature of the stream
environment itself. Thus, in order to accurately develop an effective
management policy based upon modeling techniques, the uncertainty
associated with the WLA should be incorporated into the mathematical

model.

1.6 NATURE, SCOPE, AND OBJECTIVES OF RESEARCH

The significance of WLA and its role in managing the quality of
various water resources has already been presented at the outset of
this chapter. In this discussion, the complexities of such procedures,
arising from legal, economic, and bureaucratic barriers, are pointed
out. Moreover, such a task is further .complicated by the multiobjec-
tive and interdiéciplinary nature of the problem, the lack of suffi-
cient information about the system (i.e., physical and chemical data of
the stream itself), and the existence of inherent random components of
the physical and biological processes involved.

By acknowledging the existence of various uncertainties within
the stream environment and the modeling process of this system, the
prediction of water quality responses to effluent waste discharges is
no longer a simple deterministic calculation as that given by the
Streeter-Phelps equation. Specifically, the WLA modeling process is
dependent upon knowing or estimating the assimilative capacity of the

stream which, in turn, is a function of water quality standards, flow
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rates, reaction coefficients, and modeling techniques; all of which are
subject to a variety of uncertainties.

Unfortunately, to date, the conventional approach to WLA anal-
ysis is performed by considering the most critical environmental
conditions (where the streamflow is low and the temperature is high) in
a deterministic model formulation. This generally leads to a highly
conservative result which, many times, requires increased levels of
treatment and concomitant higher costs.

Like any other resources planning and management, regional water
quality control and management involves risk. Decision-making in WLA
requires knowledge and understanding of the processes occurring when
pollutants are discharged into receiving waters. Modeling activities
play an important role in the process in as much as they reflect our
knowledge of the phenomena occurring. However, the problem becomes
complicated because of the existence of uncertainties mainly due to the
lack of sufficient information(e.g., inadequacy or incompleteness of
the models) and the inherent randomness of the processes involved
(e.g., variations of streamflow, temperature, channel geometry,
reaction rates, etc.). As a result, the WLA is a decision-making
process to be performed in the stochastic environment. It would be
ideal and realistic to develop WLA models which explicitly incorporate
the random and uncertain features of the processes involved.

The decision-making process in WLA is affected by many factors.
For example, the system configuration and physical characteristics,

the legal, social, economical, and environmental setting, and the type
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of pollutant. Moreover, a number of uncertainties exist within the
chemical and biological processes involved. However, all these factors
cannot be reasonably investigated within a single study. Hence, the
scope of the proposed study is as follows: (1) only the effects of
uncertainties in physical, chemical and biological processes on the WLA
decision-making are considered; (2) the system includes stream channels
with multiple dischargers in which convective transport in the longitu-
dinal direction prevails; (3) carbonaceous biochemical oxygen demand is
the pollutant to be modeled; (4) steady state pollutant transport
models will be employed in deriving optimal stochastic WLA models.

A number of pollutant transport models have been developed with
various levels of sophistication (Krenkel and Novotny, 1980). The
selection of the model to be used depends on the quality and avail-
ability of data, the accuracy of results desired, and the level of
analysis, etc. It is not the intention of the proposed research to
develop a new pollutant transport model. Instead, various existing
transport models will be evaluated and the most appropriate one
selected for constructing the stochastic optimal WLA models.

To date, the number of research articles in which the risk of
water quality violations and/or the uncertain nature of the stream
environment is incorporated into the management of the quality of water
resources is limited. Furthermore, among the articles already pub-
lished, many of the results and methodologies are contradictory.

Hence, the need for improvements in this area of research are virtually

unbounded at this point in time.
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Thus the main objectives of this study are as follows: (1) to
develop improved deterministic linear programming methodologies for
solving the problem of effective WLA by updating existing approaches
and investigating the multiobjective nature of the problem; (2) to
develop a systematic and consistent approach for evaluating the effects
of uncertainty levels associated with system parameters on model
results. (Specifically, consideration will be given to the analysis of
the risk of various water quality violations and the probability
distributions of dissolved oxygen and critical locations within a given
reach of stream); (3) to develop a stochastic WLA model considering
explicitly the model parameters with uncertainty. (The model will be
specifically directed toward the consideration of complex multiple
discharge situations, including various concepts of economic and equity
measures between dischargers); (4) to devise a solution technique for
the optimal stochastic WLA model; and (5) to study the sensitivity of
various outputs from all model formulations, regarding varying levels
of model parameter uncertainty and different management objectives.

This, like many other research studies, cannot begin to answer
or address all the questions pertaining to the problem of effective
WLA. Some of the notable limitations of this study are: (1) spatial
correlation of the stream parameters (i.e., between successive reaches)
in the WLA models presented here are not considered; (2) a simplified
transport model (i.e., the original Streeter-Phelps equation) is
utilized throughout this study in which a number of oxygen sources and

sinks, proven to exist, are excluded; (3) the costs of treatment are
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not directly considered in the WLA model formulation. However,
indirect measures of various related economic considerations are

discussed throughout this study.

1.7 ORGANIZATION OF STUDY

There are eight chapters presented in this text; the first is an
introduction and the last is an overall summary and conclusion of study
results. Each of the remaining chapters are essentially unique investi-
gations into a separate aspect of water quality management and/or
uncertainty analysis of the stream environment. It should be pointed
out that a separate literature review is not provided within this text.
Instead, review of important articles pertaining to each topic are
cited in the introductions and text of each of the chapters where
appropriate. The organization of this study and a brief description of
the content of each chapter are given in the following paragraphs.

In Chapter 2, a unique property of the typical dissolved oxygen
sag curve is utilized in developing an improved deterministic WLA
model, whereby, the number of water quality constraints are signifi-
cantly reduced. Such an approach will be shown to reveal considerable
savings in computer storage and exact solutions to the WLA problem.

Chapter 3 presents a deterministic multiobjective approach to
WLA using two methodologies: (1) constraint methods and (2) fuzzy
linear programming. From this, it is believed that a more realistic
approach to WLA is bresented.

Chapter 4 presents methodologies for evaluating the risk of

violating various assumed water quality standards using Monte Carlo
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simulation in conjunction with the dissolved oxygen deficit computed by
the original Streeter-Phelps equation. In this chapter, plots of
contours of equal risk are presented for a variety of water quality
conditions. Such results are believed to provide important information
in the water quality regulatory process.

In Chapter 5, attention is placed on the uncertainty analysis of
stream dissolved oxygen and the critical location. By incorporating
Monte Carlo simulation and first-order uncertainty analysis, a "best"
estimate for the probability distribution of dissolved oxygen at any
location and the critical location within any reach are determined.
Additionally, confidence intervals for this informapion are investi-
gated.

Acknowledging the importance of estimating the location of the
critical point, from both an economic and monitoring viewpoint, several
methods are developed in Chapter 6 for estimating its position in a
stream environment under uncertainty using Monte Carlo simulation and
Fibonacci seérch techniques. These methods are based on locating the
critical point associated with: (1) average water quality model
parameters, (2) maximum variance in predicted dissolved oxygen concen-
tration, (3) maximum probability of violating a given water quality
standard, and (4) the point most likely to be critical (i.e., the mode
of the distribution assumed for the critical location.)

Finally, in Chapter 7, having accepted the existence of uncer-
tainty in the WLA process, an optimal stochastic WLA model is developed

using chance-constrained optimization techniques. In addition,
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estimates of the uncertainty in the technological coefficients (i.e.,
the mean and variance) are computed using Monte Carlo simulation proce-
dures. A sensitivity analysis of this approach for computing the

technological coefficients is also conducted.



CHAPTER 2
DETERMINISTIC OPTIMAL WASTE LOAD ALLOCATION MODELS:
A SINGLE OBJECTIVE FRAMEWORK
2.1 INTRODUCTION

Realizing the importance of water quality management, the need
for developing a methodology allowing the environmental decision-maker,
for example a governmental regulatory agency, to, optimally, solve the
waste load allocation (WLA) problem is in order. The ultimate goal of
such an analysis is the implementation of a policy which simultaneously
seeks to maximize the benefits while ensuring that the utilization of
natural resources does not exceed allowable levels mandated by law.
Given these objectives, the utilization of mathematical programming
techniques to solve the WLA problem become quite attractive. In fact,
mathematical programming techniques have been used quite extensively to
solve problems concerning optimum water quality management (Rich, 1973;
Loucks et al., 1981).

Moreover, the broad use of linear programming (LP) techniques,
both commercially and academically, have resulted in the availability of
a large number of computer codes to solve this type of model formula-
tion. As a consequence, there have been several previous research
studies utilizing LP techniques in attempts to solve the problem of
effective WLA (Thomann and Soble, 1964; Loucks et al., 1967; ReVelle et
al., 1968). The most common approach has been that of using a determin-

istic LP model formulation in which the random effects of system
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behavior are ignored and a single, fixed value is assigned to the
physical parameters describing the stream environment (Sobel, 1964;
Converse, 1972; Graves et al., 1972). Although the use of such proce-
dures has been criticized for its oversimplification of the system
behavior, the development of a deterministic LP model to solve various
optimization problems offers the analyst the advantages of reduced
complexities in both computational analysis and problem formulation.
Hence, the use of LP techniques to solve problems of optimal environ-
mental water quality management has been and will continue to be quite
popular.

As an alternative to the use of LP, several other types of mathe-
matical programming techniques have been applied to the problem of
optimal WLA. The first of these approaches is that of dynamic program-
ming. Dynamic programming is a very useful tool for optimizing both
linear and nonlinear problems, especially those involving sequencing and
scheduling. The inherent qualities of dynamic programming makes it an
attractive technique to solve the sequential format of the optimal WLA
problem. Several researchers have already employed dynamic programming
in attempts to solve this problem (Liebman and Lynn, 1966; Shih, 1970).
Other techniques which have been utilized include both integer program-
ming and geometric programming (Liebman and Marks, 1968; Ecker, 1975).
In each approach, the analysts have taken advantage of the identity of
the individual methodologies and model characteristics in attempts to
uncover improved computational methods and model predictability.

Although several techniques have been developed to solve the problem of
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optimal WLA, this and all remaining chapters will be confined to use LP
procedures where appropriate.

In order to control water quality in the WLA model formulation,
past research studies have utilized a method in which several control
points are selected within each reach of the river system. Hérein, a
reach is simply defined as the river segment between two successive
point discharge locations. In the LP model, a constraint is formulated
for each control point defining the DO concentration at that location,
while ensuring that the utilization of this limited resource does not
exceed a minimum specified level. Thus, a number of control points are
required within each reach to ensure minimum DO concentrations through-
out the entire river system. By increasing the number of control points
per reach, the possibility of violating the water quality standards at
any location is reduced. Theoretically, this approach would require an
infinite number of control points per reach to reduce the possibility of
such violations to zero.

When using LP techniques, it is generally known that computa-
tional efforts to solve an optimization problem increase exponentially
as the number of constraints are increased. Thus, for the approach
incorporating a number of fixed control points in the LP model, a
trade-off exists between the number of constraints to be used to ensure
the overall compliance of minimum water quality standards and the
computational effort required to solve the WLA problem.

Alternatively, a methddology will be presented in this chapter to

solve the optimal WLA problem utilizing a unique property of the DO
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profile within each reach. This new technique utilizes a single control
point per reach while simultaneously ensuring that the possibility of
water quality violations at any location does not exist. The essence of
this new approach is based on a procedure in which the LP formulation is
solved iteratively, each time updating a new, single control point
defined by the "critical location" within each reach. The results from
this new approach will be shown to be both computationally efficient and
more exact in its solution of the optimal WLA problem when compared

against the fixed control point approach commonly used in the past.

2,2 OBJECTIVE FUNCTION

There are two major components of any LP formulation: (1) the
objective function and (2) the model constraints. To begin, the first
such component to be examined is that of the objective function. Given
the general discussion in Chapter 1, one should remember that the most
important characteristic of LP formulation is that both the objective
function and constraints are linear functions of the decision variables

in the problem. In general, the objective function can be expressed as

T
Minimize C'X (2.1)

Where g? is an n-dimensional row vector containing the values of the
unit costs associated with a given level of treatment, X is an n-
dimensional decision vector containing the specified level of treatment
for each discharger, and n is the number of dischargers within the

stream system.
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The most common application of LP to the optimal WLA problem has
been ome in which the objective function and decision variables are
defined as the minimization of treatment cost and the effluent waste
concentration at each discharge location, respectively (Loucks et al.,
1967; ReVelle et al., 1968). The values contained in vector C of an
objective function can be regarded as weighting factors in the overall
outcome of the LP problem. By defining the objective function as the
minimization of treatment cost in which vector C contains the unit cost
of treating each of the elements of vector X, the solution algorithm
(most commonly the simplex method) will be inclined to use less units of
Xl’ compared to those of XZ’ given C

is the greater than C Thus, by

1 2°
simply manipulating the cost values specified in vector C, the optimal
solution of the LP problem can be greatly varied.

In order to avoid the manipulation of cost values in the objec-
tive function and the effects of such procedures on the optimal solu-
tion, an objective function is defined in this study as the maximization
of total waste discharge. In addition, the decision variables are
selected as the effluent waste concentration and DO deficit at each
discharge location. In using this approach, each of the decision
variables in the problem are assigned an equal weight in the objective
function as follows:

N

Maximize § (L, + D)) (2.2)
j=1 1 3
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where Lj and Dj are the waste concentration (mg/l BOD) and DO deficit
(mg/1) in the effluent at each discharge location j, and N is the total
number of discharge locatioms.

The decision variables, effluent waste discharge and DO deficit
at each point source location are chosen in an attempt to replicate
actual design conditions. In the design and operation of industrial and
municipal treatment plants, both waste concentration and DO deficit in
the effluent are controllable. Obviously, various levels of treatment
can be incorporated into the design of most industrial plants, whereby,
the quality of the effluent discharged from these plants can be con-
trolled. Furthermore, the DO deficit in the effluent can also be varied
by incorporating a reaeration system at the end of the treatment process
train. Thus, by utilizing both the DO deficit and waste concentration
in the effluent as the decision variables, a more realistic setting to
the problem of WLA is constructed.

In review of treatment plant operations, a trade-off exists
between the allowable waste discharge and the DO deficit in each plant
effluent. By reducing the DO deficit in the effluent through an induced
reaeration process, greater quantities of waste can be discharged
without violating the minimum DO requirements within the stream environ-
ment, hence, waste removal costs are reduced. Of course, a price must
be paid in order to provide this reaeration. Given this formulation, an
analogy can be drawn between the maximization of waste discharge and
minimization of treatment cost, in fact, both goals are economically

quite similar. By maximizing waste output, the associated overall
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treatment costs are generally reduced. Though not identical, the eco-
nomic parallelism between these objectives is evident. It should also
be noted that by using the objective function of maximized waste dis-
charge, the optimal values of the decision variables will not be identi-
cal to the optimal solutions when minimizing total cost, unless uniform

cost coefficients are assigned to each of the decision variables.

2.3 CONSTRAINTS

The second component of the LP formulation is the set of con-
straints which define the physical, biological, legal, and economic
limitations of the system itself. The constraints are simply a set of
mathematical relationships describing both the system behavior and
availability of limited resources as functions of the decision variables
in the problem formulation. The purpose of the constraints is to
provide a restriction on the use of limited resources when‘attempting to
optimize a given objective. For example, when maximizing profits from
the sale of a product, the constraints would describe both the utiliza-
tion of material for the production of this product, while simultan-
eously ensuring that the allocation of raw materials does not exceed
some available limit.

In this study, the objective of the WLA problem is to maximize
waste discharge, however, this action is not without its own
limitations. Obviously, unrestricted waste discharge to a stream
environment will pose detrimental effects to the aquatic biota,
eventually producing an anaerobic enviromment in which all forms of

desired life cease to exist. Hence, the inclusion of constraints which
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properly defined and protect the use of limited resources within the

stream environment are essential in the WLA problem formulation.

2.3.1 Constraints on Water Quality

The most common requirement of the WLA problem has been the assur-
ance of minimum concentrations of DO throughout the river system in an
attempt to maintain desired levels of aquatic biota. Specifically, the
constraint relating the response of DO to the addition of in-stream
waste is generally defined by the Streeter-Phelps equation or a
variation‘of this equation (ReVelle, et al., 1968; Bathala et al.,
1979). 1In the past, attempts to incorporate water quality constraints
into the model formulation, researchers have placed a number of control
points within each reach of the river system under investigation. By
utilizing the Streeter-Phelps equation, each control point and discharge
location becomes a constraint in the LP model providing a check on water
quality at that location. In a generalized framework, a typical water

quality constraint would be as follows:

n, n
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b = exp [— K& x /U ] (2.9)
ni,ni+1 ni ni,ni+l ni

M is the total number of control points, n, is the number of the

dischargers upstream of the control point i, K: and Ki , are
i i
the reareation and deoxygenation coefficient (days- ) in reach, Lo’ Qo’

and Do are the upstream waste concentrations (mg/l BOD), flow rate

(cfs), and DO deficit (mg/l), respectively; Dn , Ln , and q, are the
i i i
DO deficit (mg/l), waste concentration (mg/l BOD), and effluent flow

rate (cfs) from each discharge location, respectively; Xy is the
i!

distance (miles) between discharge location and control point i, and Un
i
is the average stream velocity (miles/day) in reach ni; Ri represents

the allowable DO deficit at the control point i, available for the
utilization of waste discharge (mg/1l). It should also be noted that, in
addition to each control point i, water quality is also checked at each

discharge location n Thus the total number of control points, M, and,

g

hence, the total number of water quality constraints are
M=N+ I nc (2.10)

where ne, are the number of control points in each reach i; and N is the
total number of dischargers. Lastly, in Eq. (2.6), values of 4 and 10

mg/l were used throughout this chapter as the required minimum level of

std s

in-stream DO (DOi ) and DO saturation concentration (DOiat) at each
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control point i. The latter concentration is selected based on its
general acceptance as the lower limit required to support various levels

of aquatic biota within the stream environment.

2.3.2 Constraints on Treatment Equity

In addition to the constraints satisfying water quality,
constraints are also required which define equity between the various
dischargers along the river system. Without the inclusion of equity
considerations in the WLA modél, any attempts to maximize waste
discharge would result in the allocation of large quantities of waste to
the upstream users, while the downstream dischargers would be required
to treat their effluents at levels of maximum possible efficiency.
There have been several articles citing the importance of equity
considerations in the WLA problem (Gross, 1965; Loucks et al., 1967;
Miller and Gill, 1976).

From a decision making viewpoint, the objective of the WLA
problem is to obtain an optimum solution from a model formulation which
has incorporated as many factors as possible concerning actual system
behavior. By doing so, the execution of such a model will result in an
optimum solution attaining the highest degree of consciousness. Hence,
any attempts by a legislative body to mandate the compliance of a WLA
policy where large equitable differences existed between the various
dischargers would unquestionably be tried in both social and legal
arenas. The implementation or regulatory enforcement of an optimum
policy derived from the solution of any WLA model, in which equity is

not considered, is neither acceptable nor justifiable.
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Recognizing the importance of such consideration in the WLA
process, the choice must then be made as to the type of equity to be
selected. Based on the conclusions drawn by Chadderton et al. (1981),
two types of equity were considered in this study: (1) equal percent
removal and (2) equal effluent concentrations. In mathematical form,

constraints for equity can be generally expressed as

<E,, for j #j' (2.11)

E, - E_,
i i

where Ej represents the equity considered for discharge j, EA is the
allowable difference in equity between the two dischargers j and j'. 1In
order to incorporate these constraints into an LP model, they must be
expressed as linear functions of the decision variables (i.e., effluent
waste concentration at each discharge location, Lj). In doing so, the

constraints for equity when considering equal percent removal between

the dischargers can be written as

. L.,
- T%T
J

< EA, for j # 3' (2.12)

e T

and when considering equal effluent concentrations

< E,, for J # 3' (2.13)

where Ij is the influent raw waste concentration (mg/l1 BOD) at discharge

location j.
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Additionally, it should be noted that for any given stream system,
one or more the discharges considered may be an influent tributary.
Special provisions should be included in the model formulation to
exclude any tributary inflows from treatment and equity considerations.
In general, the water quality of the discharge associated with a
tributary is much less polluted (in terms of BOD) than the effluents
from a normal industrial user of the stream environment. Therefore, the
discharge from a tributary should be excluded from the consideration of
equity in order to prevent the occurrence of undue restrictions being
placed on the required treatment levels assigned to other dischargers.
Furthermore, provision to exclude tributary flows from treatment should
also be included because such a task is both practically and

economically unrealistic.

2.3.3 Constraints on Treatment Efficiency

The final set of constraints to consider are those defining the
acceptable range of the treatment level efficiencies. Specifically, a
range between 35 and 90 percent removal of raw waste at each discharge
location is considered in this study. The minimum requirement of 35
percent removal is to prevent floating solids from being discharged to
the stream environment. The discharge of solids of this type is
socially and environmentally objectionable. On the other hand, the
upper limit of 90 percent removal represents the maximum efficiency
(assumed) attainable by practical treatment technology (Loucks, et al.,

1967). The constraints on treatment efficiency may be expressed as
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(2.14)

Having comprehensively examined each of the components of the LP

model, this section summarizes the formulation of the entire WLA problem

utilized in this study. In LP format, the optimal WLA model can be

expressed as

Max § (L, +D,)
= 3 3
J
subject to
n n,
i i
z + Iy i=1,2,...,M
9 Giij i i'D' < Ri’ for all i=1

for all j%j' j'=2,...,N

o

ry

0.35 < Tl < 0.90, for all j=1,2,...,N

.

J
and non-negativity constraints

Lj > 0, Dj > 0, for all j=1,2,...,N

(2.2)

(2.3)

(2.11)

(2.14)

where M is the total number of dischargers and control point locations.
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2.5 MODEL SOLUTION TECHNIQUES

2.5.1 Fixed Control Point Approach

The use of a fixed control point (FCP) approach to control water
quality in the WLA problem is based on the preselection of several
control points within each reach. Then, by utilizing the Streeter-
Phelps equation, the water quality requirement at each control point
location is transformed into a constraint in the model formulation. 1In
order to ensure minimum DO concentrations for the entire system, the
number of control points and, hence, the number of constraints can
become quite large, even for a moderately sized WLA problem considering
six to ten dischargers and ten control points per reach. Such a problem
would require 60 to 100 constraints on water quality alome. Further-~
more, there is no guarantee that any of the control points selected
will, in fact, ensure the compliance of water quality standards at the
worst or "critical" location within each reach. Because prior knowledge
of such a location is not known, the selection of control points is
essentially a random process. Thus, in an attempt to minimize the
chance of violating the water quality standards, the most common
approach is to select a sufficiently large number of control points
(generally with equal spacing) throughout the entire stream system.

It is obvious that this type of an approach is both computa-
tionally and reliably inefficient. As noted earlier, a trade-off exists
between the number of constraints required to ensure water quality and

the computational effort required to solve the WLA problem.
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Theoretically, an infinite number of control points would be required by
the FCP approach to ensure ubiquitous compliance of the water quality
standards throughout the river system. Obviously, the inclusion of an
infinite number of control points in the model is impossible and
impractical. Therefore, the possibility of water quality violations
will always exist when a WLA model is formulated utilizing the FCP

approach.

2.5.2 Moving Control Point Approach

To by-pass the shortcomings of the FCP approach, a simple
property of the general DO profile in each reach can be utilized.
Specifically, the typical DO profile is convex with a single point
defining the critical location within each reach (refer to Figure 1.2).
This implies that only one or few constraints in the FCP model formula-
tion are active. The remaining constraints are simply redundant.

Unlike the FCP approach utilizing a large number of control points and
solving the WLA model once, a refined approach based on an iterative
procedure can be implemented in such a way that only one control point
per reach is required during each iteration of the WLA model. This new
methodology will herein be referred to as the moving control point
(MCP) approach.

The essence of this approach is to define a single moving control
point using the critical location within each reach of the river system.
Then, by utilizing the Streeter-Phelps equation, a constraint on the
water quality is provided for each reach in the WLA problem formulation.

The problem is solved iteratively until the critical locations and
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optimum solution set between successive iterations converge. The WLA
problem is then solved iteratively, each time updating the position of
the single control point within each reach. The procedures are
terminated when convergence criteria for the critical locations and
optimum solutions between two successive iterations are met. The
procedures of this new approach are discussed in greater detail in the
paragraphs below.

During the first iteration of the MCP model formulation, a single
control point in each reach is arbitrarily selected. The WLA model is
then solved using water quality constraints defined for each control
point and discharge location. The solutions of the current iteration
are stored, and the critical locations within each reach are computed
using Eq. (1.7) according to the current "optimal" solutions.

Once this information is obtained, the control point within each
reach is updated to the current critical location, unless the computed
Xc is beyond the geographical bounds defining the beginning and ending
points of the respective reach. If so, the control points are simply
moved to the reach boundary nearest the computed Xc. A schematic

diagram of the MCP approach is shown in Figure 2.1.

2.6 APPLICATION OF MODELS

To illustrate the use of both the FCP and MCP approaches for
solving a WLA problem, data describing the physical characteristics of
an actual stream system containing six reaches were selected from a
previous study conducted by Chadderton et al. (1981). A schematic

diagram of the example system is shown in Figure 2.2. Note that
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discharger 2 is a tributary for which no treatment will be provided. It
should be pointed out that slight modifications were made on the origi-
nal data set in order to enhance the results obtained in the solution of
the LP problem presented in this study. A complete tabulation of the
data used in this study is listed in Tables 2.1(a) and 2.1(b).

To execute the LP models developed in this study, computing
services were obtained from a Control Data Corporation Cyber 760 digital
computer and a mathematical programming solution package called XMP.

XMP is a master library of computer subroutines containing algorithms
for solving a variety of LP problems utilizing the simplex solution
methodology. When coupled with a driving program, XMP becomes an
effective and efficient technique for solving various types of mathe-
matical programming problems (Marsten, 1981). In addition to generating
the solution to the LP problem, XMP also provides information describing
the relative computer storage required in the solution of each problem.

To compare the sensitivity of the solution of the WLA problem to
variations in the number of control points selected in each reach, the
model is solved by the FCP approach using a total of 1,3,5, and 7
equally spaced control points per reach. The MCP approach is also
applied to provide a basis for comparison of the solutions and storage
requirements between the two types of approaches. The execution of each
of the models is performed using the equity consideration of equal
percent removal, where the maximum allowable equity difference between
each discharger was set at five percent. Furthermore, investigations of

the sensitivity of the model results to changes in the measure of equity
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TABLE 2.1 DATA OF PHYSICAL STREAM CHARACTERISTICS
USED IN THE EXAMPLE OF WLA MODELS

(a) Stream Characteristics for Each Reach

Reach Deoxygenation  Reareation Average Raw Effluent
Coefficient Coefficient Stream Waste Flow
Velocity Concentration Rate
i d a
&) &) ) (1) (a;)
1 0.6 1.84 16.4 1370 0.15
2 0.6 2.13 16.4 6.0 44,0
3 0.6 1.98 16.4 665 4.62
4 0.6 1.64 16.4 910 35.81
5 0.6 1.64 16.4 1500 3.2
6 0.6 1.48 16.4 410 0.78
UNITS 1/days 1/days miles/day mg/l BOD ft3/sec

(b) Background Characteristics

Upstream Upstream Upstream
Waste Flow Rate DO Deficit
Concentration
L Q D
o o o
5.0 115.0 1.0

mg/1 BOD ft3/sec mg/1
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were also made. Each of the procedures were reexecuted using a second
type of equity, equal effluent concentrations, where the allowable

equity difference between each of the discharger was set at 20 mg/1l BOD.

2.7 DISCUSSION OF MODEL PERFORMANCE

Tables 2.2 and 2.3 show the execution time, computer storage
requirements, and solutions obtained by the FCP approach to the hypo-
thetical WLA problem using the equity considerations of equal percent
removal and equal effluent concentrations, respectively. The results
from these two tables show that the effluent waste concentrations at
each discharge location and the total waste discharged to the system
decrease as the number of control points in each reach increases. By
increasing the number of control points per reach, greater restrictions
and controls are placed on the system to ensure that the 4 mg/l minimum
DO requirement is not violated at any location, thus, the allowable
waste discharge for each user and the entire system is reduced.
Furthermore, these two tables reveal that the difference in the model
solutions obtained by using one or three control points is negligible
and that changes in the amount of allowable waste discharge do not occur
until at least five control points per reach are specified. This can be
explained by the fact that, given any significant length of reach or
stream system, there exist a lower limit on the number of control points
which effectively control water quality within each reach. By selecting
the number of control points per reach below this lower limit, checks on
water quality, provided by the constraints, are simply "too few and far

between."



TABLE 2,2 RESULTS FROM THE EXECUTION OF EXAMPLE WLA PROBLEM FORMULATED BY THE FCP APPROACH WITH
EQUITY CONSIDERATION OF EQUAL PERCENT REMOVAL

Effluent Waste Concentrations (mg/1 BOD)

No. of Computer Computer Discharger Total

Control Points  Execution Storage #1 #2 #3 #4 #5 #6 Waste
Per Reach Time Requirements Discharge
(Seconds) (Words) (mg/1 BOD)

1 1.52 1882 301.2 6.0 145.5 153.5 328.1 89.7 1024.0

3 2.01 3694 301.2 6.0 145.5 153.5 328.1 89.7 1024.0

5 2,97 6082 298.2 6.0 144.0 151.6 324.8 88.8 1013.4

7 3.40 9064 297.5 6.0 143.7 151.1 324.0 88.6 1010.9

0s



TABLE 2.3 RESULTS FROM THE EXECUTION OF EXAMPLE WLA PROBLEM FORMULATED BY THE FCP APPROACH WITH EQUITY
CONSIDERATION OF EQUAL EFFLUENT CONCENTRATION

Effluent Waste Concentrations (mg/l BOD)

No. of Computer Computer Discharger Total
Control Points  Execution Storage #1 i#2 #3 #4 #5 i#6 Waste
Per Reach Time Requirements Discharge
(Seconds) (Words) (mg/1 BOD)
1 1.61 1882 171.5 6.0 171.5 151.5 171.5 171.5 843.5
3 2.10 3964 171.5 6.0 171.5 151.5 171.5 171.5 843.5
5 3.05 6082 169.8 6.0 169.8 149.8 169.8 169.8 835.0
7 3.41 9046 169.3 6.0 169.3 149.3 169.3 169.3 832.5

1<
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Additionally, Tables 2.2 and 2.3 provide an interesting comparison
for the computer storage requirements utilized as the number of control
points in each reach are increased. Both tables reveal rapid consump-
tion of computer storage as the number of control points are increased.
Interestingly, when executing the WLA model formulated by the FCP
approach on the CDC Cyber 760, the maximum number of control points per
reach that could be specified for this six reach example was seven. Any
attempts to increase the number of control points per reach to nine or
ten resulted in computer storage requirements exceeding the maximum
available limit on the CDC Cyber 760 computing system. From this, it is
obvious that severe computer storage requirements can be imposed on a
computing system when implementing the FCP approach with only a moderate
number of control points selected per reach.

The use of the FCP approach cannot ensure that the DO standard
can be met at every point within the stream environment. To illustrate
this fact, DO profiles based on each of the solutions for the WLA model
formulated by the FCP approach using 1,3,5, and 7 control points per
reach are plotted and shown in Figures 2.3 through 2.10. Figures
2.,3-2,6 correspond to the equity consideration of equal percent removal
and Figure 2.7-2.10 correspond to equal effluent concentrations.
Examining these figures, it is evident that noticeable violations of the
water quality standard exist in reach 4, especially for those solutions
in which a smaller number of control points per reach were used. By
implementing the FCP approach in attempts to solve the WLA problem,

there is no guarantee that the requirements of minimum DO will be
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satisfied at every location in the stream environment. Remember that
water quality checks are only provided at each control point and
discharge location when using the FCP approach.

Recalling the generalized DO profile (éee Figure 1.2), there
exists a unique point, the critical location, where the DO concentration
is at a minimum. However, to compute the critical locations in each
reach, the solution to the WLA must be obtained first. Information
pertaining to the location of the critical points cannot be obtained
prior to solving the WLA model. Therefore, there is no effective means,
unless by chance, to select a control point in each reach prior to model
execution that will coincide with or be near the critical point location
in the river system. This leads to the possibility of water quality
violations within the river system at one or several locations as can be
seen in Figures 2.3, 2.4, 2.7, and 2,.8. Obviously, by increasing the
number of control points per reach, the possibility of such violations
within the system is reduced, though the detrimental effects on computer
storage requirements of such an approach have been evidenced. Thus,
when utilizing the FCP approach, an appropriate balance between water
quality assurance and the consumption of valuable computer storage
should be kept in mind.

As an alternative to the FCP approach, the results presented in
Tables 2.4 and 2.5 show that the use of the MCP technique offers the
analyst of the WLA problem an opportunity to reduce computer storage
requirements while ubiquitously assuring minimum levels of DO throughout

the river system under investigation. By employing the MCP approach,



TABLE 2.4 RESULTS FROM THE EXECUTION OF EXAMPLE WLA PROBLEM FORMULATED BY MCP APPROACH WITH
EQUITY CONSIDERATION OF EQUAL PERCENT REMOVAL

Effluent Waste Concentrations (mg/l BOD)

Computer Computer Discharger Total

Execution Storage #1 #2 #3 a4 #5 #6 Waste
Time Requirements Discharge

(Seconds) (Words) (mg/1 BOD)
4.32 1882 294.3 6.0 142.8 150.0 322.2 88.1 1003.4

9



TABLE 2.5 RESULTS FROM THE EXECUTION OF EXAMPLE WLA PROBLEM FORMULATED BY MCP APPROACH WITH
EQUITY CONSIDERATION OF EQUAL EFFLUENT CONCENTRATION

Effluent Waste Concentrations (mg/1 BOD)

Computer Computer Discharger Total

Execution Storage #1 #2 #3 #4 #5 #6 Waste
Time Requirements Discharge
(Seconds) (Words) (mg/1 BOD)

4,29 1882 168.2 6.0 168.2 148.2 168.2 168.2 827.0

€9
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the results show that the computer storage requirements are identical to
that of the FCP approach using one control point per reach. It should
be pointed out that this is only true during the first iteration of the
MCP approach. Successive iterating may lead to computer storége
requirements which are less than or equal to those utilized in the first
iteration. To explain this, recollection must be made to an earlier
discussion in this chapter indicating that the foundation of the control
point model is an iterative procedure in which a single control point
per reach is used during the first iteration. Then, control points are
updated to coincide with the critical locations computed within each
reach during the succeeding iterations. It was also pointed out that if
the computation of the critical points in each reach led to locations
that were beyond either the upper or lower geographical bounds of their
respective reaches, then the control point within that reach was femoved
and water quality checks were provided only at the discharge locations
for that reach. Thus, during the first iteration of the MCP approach,
the number of constraints and computer storage requirements would be
identical to that of the FCP approach using one control point per reach.
Then, in succeeding iterations, it would be possible to remove some of
the control points which were not needed, thus reducing the number of
constraints and total computer storage requirements. From this, it is
evident that the computer storage requirements for the MCP approach will
only be as large as that required by the FCP approach using one control
point per reach during the first iteration and possibly less during

succeeding iterations.
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Because the MCP approach is an iterative procedure relying on a
convergence criteria, there might be a concern that the number of
iterations to provide an acceptable convergence would be quite large or
that the model, as formulated, might never converge. On the contrary,
once the WLA model formulated by the MCP approach was executed, it took
an average only three to four iterations to converge.

The results in Tables 2.4 through 2.5 show nominal increases in
computer execution time when implementing the MCP procedures as compared
to the execution times obtained using the FCP approach. However, it is
important to note that implementing the MCP methodology can save large
quantities of computer storage while increasing execution time only
slightly when compared to the FCP approach.

Finally, the DO profiles based on the solutions for each execution
of the MCP model considering the different types of equity are shown in
Figures 2.11 and 2.12, where Figure 2.11 and 2.12 are based on the
equity considerations of equal percent removal and equal effluent
concentrations, respectively. In examining these figures, it is evident
that no water quality violations are found at any point in the river
system although an identical set of data was used in the execution of
the WLA model formulated by the FCP approach where several violations
occurred. This can be explained by the fact that the water quality
requirements of DO in the MCP formulation are only checked at discharge
locations and critical points. These points possess the greatest
susceptibility to violation and are checked accordingly. All other

points in the river system contain DO concentrations which are higher
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than those at the critical points and discharge locations. Thus, by
ensuring water quality at these points, the possibility of water quality
violations within the river system is nullified.

The solutions obtained for waste discharge in the WLA problem using

"exact'" in comparison to the results

the MCP approach can be considered
obtained for the FCP formulation. By this, it is meant that as the
number of control points per reach in the FCP model gets very large, the
solution obtained for optimal waste discharge using the FCP approach
will, in fact, become identical to the solution obtained from the
implementation of the MCP procedure. Thus, it is obvious that the
advantages in using the MCP approach, especially those of savings in

computer storage and water quality assurance, make it a very attractive

methodology for solving the WLA problem.

2.8 SUMMARY AND CONCLUSIONS

This chapter has presented two approaches to solve the optimal WLA
problem. To date the most widely used methodology to ensure water
quality requirements of minimum DO within a stream environment was the
inclusion of water quality constraints in the model formulation which
were derived by selecting several fixed control points within each reach
of the river system. The FCP approach has been shown by this study to
be inefficient in both computer storage consumption and in assuring that
there are no water quality violations at any point in the stream
environment.

In an attempt to circumvent the inherent inadequacies of the FCP

formulation, a new technique utilizing the concept of moving control
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points within each reach has been unveiled. This new approach (MCP)
possesses the advantages of considerable savings in computer storage
requirements and solutions, when generated deterministically, that
contain no possibility of violating the water quality standards at any
point in the river system. The efficiency and model predictability of
the MCP procedure has proven that the implementation of such an approach
is superior in comparison to that of the FCP approach so widely used in
the past. In the author's opinion, the advantage of computer storage
savings alone will make the MCP approach a very attractive alternative
to solving the optimal WLA problem. This is particularly true when the

WLA model is to be solved by microcomputers.



CHAPTER 3
DETERMINISTIC OPTIMAL WASTE LOAD ALLOCATION MODELS:
A MULTIOBJECTIVE FRAMEWORK

3.1 INTRODUCTION

The solutions to a growing number of environmental problems
facing water quality professionals today are becoming more complex. The
necessity for improved environmental protection has not precluded the
problem of optimal waste load allocation from increasing governmental
and societal demands on water quality assurance. As society progresses
with time, the demands placed on water quality requirements will con-
tinue to grow, resulting in the continued need for improved water
quality prediction and protection techniques. Consequently, as demands
grow, the solution to such problems will become ever increasingly
complex.

Past research attempts to solve the optimal waste load allocation
(WLA) problem have been centered around a single goal or objective to be
attained in the problem formulation, i.e., the minimization of treatment
cost or the maximization of waste discharge. From a decision-making
viewpoint, an optimum solution to such a problem can only be obtained by
including the entirety of possible physical, legal, and economic con-
siderations in the problem formulation. In reality, most environmental
problems, including optimal WLA, are multiobjective by nature. It is
unlikely that the optimum solution to such problems are obtained by
considering a single objective in the decision process. As in most

environmental problems, the decision-making process is cultivated by the
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desire to achieve several goals simultaneously. The problem of optimal
WLA is without exception to these aspirations. The identification of a
single objective to obtain a true optimum solution to the WLA problem,
as so widely used in the past, is obviously unrealistic.

The importance of considering a multiobjective approach in the
area of water resources has been cited in a number of previous works
(Monarchi et al., 1973; Cohon and Marks, 1973; Taylor et al., 1975). By
incorporating multiobjective procedures in the decision-making process,
three major improvements are accomplished: (1) the role of the analyst
and decision-maker are more clearly defined, (2) the results from the
multiobjective approach provide a greater number of alternatives to the
decision-making process, and (3) models utilizing such techniques are
generally more realistic.

The traditional use of a single-objective function requires the
model characteristics to be defined by a single measure of effective-
ness. Moreover, it is solely the analyst's responsibility to define the
individual impacts characterizing model performance. Because a unique
optimum solution is obtained in the traditional single-objective problem
setting, the majority of the decision-making process is left in the
hands of the analyst.

On the other hand, the utilization of multiobjective procedures
limits the role of the analyst to that of identifying the trade-offs
between model objectives. A systematic evaluation of each of the
objectives results in a greater number of feasible alternatives being

defined. The selection of a "best" optimal solution is then incumbent
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on the additional knowledge of preference provided by the decision-
maker. Thus, in the multiobjective formulation, the ultimate
responsibility of providing an optimal solution is given back to the
decision-maker, where it belongs.

The most prominent support for the use éf multiobjective analysis
is that most environmental water quality problems are multiobjective by
nature. In general, the traditional approach of utilizing a single-
objective to identify the goal of water quality management problems is
too restrictive and unrealistic. The use of multiobjective procedures
possess the distinct advantage of allowing a variety of problems to be
solved, while simultaneously considering several noncommensurable objec-
tives (Cohon, 1978).

It is the intent of this chapter to present a methodology for
formulating and solving the optimal WLA problem utilizing a multiobjec-
tive framework. Given the rising demands placed on water quality
assurance by government and society, the utilization of multiobjective
procedures can only lead to improved water quality prediction and

control.

3.2 GENERAL FRAMEWORK OF THE MULTIOBJECTIVE OPTIMIZATION MODEL

3.2.1 Vector Optimization Model

In comparison to the traditional single-objective approach, the
difference between the two approaches is that the multiobjective
formulation consists of more than one scalar objective function. Once

the utilization of a multiobjective approach has been accepted, the
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problem becomes one of "vector optimization". In general, such a

problem can be expressed as follows:

Max Z(X) = [Z;(X)s Z,(X)seves Zp(X)] (3.1

subject to
AXgb (3.2)
X<0 (3.3)

Where Z(X) is a K-dimensional vector of the objective functions, X is an
n-dimensional vector containing the decision variables, A is anm x n
matrix containing the technological coefficients, and b is an
m—~dimensional vector specifying the resource limitations in the problem
formulation.

It should also be noted that the statement defining the
multiobjective problem in terms of 'vector optimization" is somewhat
misleading. In reality, a vector of objectives can only be optimized
subsequent to the characterization of the preference between the
objectives by the decision-maker. The vector optimization model is
simply a convenient approach to mathematically formulate the

multiobjective problem (Loucks et al., 1981).

3.2.2 Noninferior Solution Set

Recall that the "optimality" is the goal of the single-objective
*
model formulation. In mathematical terms, the vector X €Q 1is optimal,

when maximizing Z(X), if
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2(X") » 2(X)  for all X €0 (3.4)
where Q is a set containing all the feasible solutions to the problem
(i.e., those solutions which simultaneously satisfy all model
constraints).

In contrast, the ideological theme of "optimality" is noulonger
appropriate in the context of the multiobjective framework. Note, that
within such a framework, there are normally several objectives which are
noncommensurate and conflicting with each other. It is also important
to realize that without prior knowledge of preference between the
objectives (supplied by the decision-maker), the mathematical program-
ming solution to the multiobjective problem results in a set of points
defining the tradeoff between each objective. Here, the goal of
"optimality" (in the single-objective framework) is replaced by the
concept of "noninferiority" in the multiobjective analysis. The notion

of "noninferiority" can be expressed by
2, (X°) >z, (X) for all k = 1,2,...,K (3.5)

where §° is a noninferior solution such that goé() and X€Q , for all X.
(This relationship must be treated as a strict inequality.)

In order to illustrate the idea of a "nmoninferior'" solution set,
a plot of the trade-off between objectives in a two-dimensional problem
is presented in Figure 3.1. Cohon (1978) defined the noninferiority in
the following passage: "A feasibility solution to a multiobjective

programming problem is noninferior if there exists no other feasible
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solution that will yield an improvement in one objective without causing
a degradation in at least one other objective."

Applying this definition to Figure 3.1, it is evident that all
interior points, not elements on the curve ABCD, must represent inferior
solutions to multiobjective problem. Hence, for every point in'the
interior of the curve ABCD, there exists at least one other feasible
solution in which the measure of effectiveness for each objective can be
improved simultaneously. For example, referring to points B and E in
Figure 3.1, by moving the feasible solution at point E to the feasible
solution at point B will lead to simultaneous improvements in both
objectives Z1 and 22. Following the definition, point E then represents
an inferior solution. On the other hand, the solution at points B and C
cannot be moved to any other points in the feasible region without
degrading the measure of effectiveness in at least one of the objectives
defining the utility of points B and C. Thus, points B and C represent
"noninferior" solutions, by definition, to the multiobjective problem.

All feasible solutions which are elements of the curve ABCD are
superior, in terms of utility, to any other point in the interior,
therefore, the entirety of such points along this curve (ABCD) define
the noninferior solution set. More importantly, when the objectives are
considered simultaneously, the noninferior solution set simply repre-
sents the boundary of the feasible solution range, ultimately defining
the maximum "frontier" of the solution alternatives. Each of the
alternatives along this frontier are not comparable amongst themselves.

For example, consider again points B and C in Figure 3.1. The utility,
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measuring the effectiveness, of each alternative along the noninferior
solution set, is a function of the values of each of the objectives Zl
and ZZ‘ By moving from point B to point C along the frontier, a certain
quantity of objective Z1 must be sacrificed in order to trade for a
certain gain in objective 22‘ This trade-off can be defined as fhe

"marginal rate of substitution" between the objectives Z, and z,.

1
Although the marginal rate of substitution is defined at this point,
such information is not useful in comparing the utility of the
individual alternatives. Once the noninferior solution is generated,
the ultimate responsibility of defining a best compromised solution
rests solely upon the preference characteristics provided by the
decision-maker.

Interestingly, the noninferior solution set, in general, is
defined by a unique continuous curve or surface depicting the trade-offs
between the various alternatives. From this, it is obvious that, in
theory, an infinite number of solutions exist to the multiobjective
problem. It is not until the decision-maker provides the characteriza-
tion of preference between each objective that a best compromised
solution is identified. The information concerning the decision-maker's
preference is most commonly depicted graphically by what is known as the
"indifference curve." A typical indifference curve is also shown in
Figure 3.1. Intuitively, the "best-compromised" solution to the multi-
objective problems is a unique set of alternatives which possess the

property of maximum combined utility and are elements in both the

noninferior solution set and indifference curve. Such an alternative
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only exists at the point where the indifference curve and noninferior

solution set are tangent (Cohon, 1978).

3.3 MULTIOBJECTIVE PROGRAMMING SOLUTION TECHNIQUES

3.3.1 Generating Techniques

To clarify the structure of this type of an approach, generating
techniques can be viewed as a "bottom-up" procedure for solving the
multiobjective problem. The flow of information is from the analyst, at
the bottom, to the decision-maker, on the top. By utilizing this-
category of technique, the analyst and decision-maker act separately,
however, the identification of a best compromised solution is dependent
upon the successful orderly completion of each of their tasks. Succes-
sively, the analyst first solves the multiobjective formulation without
prior knowledge of the decision-maker's preference between each of the
model objectives, thus producing the alternatives contained in the
noninferior solution set, These alternatives are then passed along to
the decision-maker where, once the preference between the objectives is
characterized, the best compromise solution can be identified. Each of
the tasks to be performed by the participants are clearly identified.
The analyst contributes his analytical expertise in generating all
possible alternatives, while the ultimate decision-making responsibility
is left to the decision-maker where it belongs.

As subclasses of this category of technique, there have been
several methodologies reported for solving the multiobjective problem:
(1) weighting method, (2) constraint method, (3) adaptive search, and

(4) functional derivation of the noninferior solution set (Loucks, 1975;
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Cohon, 1978). Although a variety of techniques exist, the oldest and
most appealing approaches are the weighting method and constraint
method, respectively. Of the two candidate techniques considered here,
the weighting method is operationally more cumbersome, and restricted
only to problems having a convex solution of the noninferior set:
Hence, the constraint method is selected as the preferred technique for
generating the noninferior solution set in this study.

The constraint method was first cited by Marglin in the book by
Maass et al. (1962) and again by Marglin (1967). This approach enables
the analyst to generate the noninferior solution set in entirety,
without regards to convexity. The computational simplicity is probably
the most distinguished advantage of the constraint method, although, in
general, such procedures are usually confined to multiobjective formula-
tions containing fewer than four objectives. Using the constraint
method, the multiobjective problem is solved by adopting only one
objective in the objective function. The remaining objectives are
simply transformed into constraints in the problem formulation. For
example, recall the two-dimensional problem cited earlier in this
chapter which considered objectives Zl(z) and ZZ(E)' The original
vector optimization formulation given in Egqs. (3.1)-(3.3) are simply

transformed into a single objective problem as:

Max Z,(X) (3.6)

subject to

>
1>
)N

o
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Zl(z) > cl (3.7)
x>0
where ¢, is the desired goal to be attained by objective Z An initial

1 1’

value is assigned to the right-hand-side parameter, c Then, the model

1°
formulation is solved iteratively, each time incrementally increasing
the value for ) until the solution becomes infeasible. During the

iterations, every pair of solution Zz(glcl) and c, are recorded for
constructing the noninferior solution set.

Once the multiobjective problem has been formulated, the con-
straint method provides a relatively effortless computational method-
ology for generating the noninferior solution set. Moreover, if the
multiobjective formulation followed a linear programming format, the
constrained method can be easily solved by a parametric linear program-
ming approach. For a detailed comparison of the attributes for each of

the generating techniques listed above, the reader should consult Cohon

and Marks (1975) and Cohon (1978).

3.3.2 Techniques Incorporating Prior Knowledge of Preference

The basic structure of this category of techniques can be charac-
terized as a "top-down" approach. The flow of information is from
decision-maker to analyst, resulting in the direct solution of the best
compromised alternative. The succession of solution procedures for this
type of an approach is not as clearly defined as that in the category of
generating techniques. The utilization of this general category of

techniques to solve the multiobjective problem requires significant
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interaction between the analyst and decision-maker. Essentially, the
general procedures are based on the decision-maker providing the analyst
with sufficient information to characterize the preference between each
of the objectives prior to model development. In doing so, the analyst
is then capable of incorporating this information into the multiobjec-
tive programming formulation. Once such a model has been derived, a
direct solution identifying the best compromise solution, consistent
with the decision-maker's preference, can be obtained.

In review of the literature on this subject, there have been
several methodologies reported for obtaining a direct solution to this
type of multiobjective problem: (1) sequential and multiphase linear
goal programming, (2) surrogate worth trade-off method, (3) estimation
of optimal weights, (4) electre method, and (5) step method (Loucks,
1975; Cohon, 1978; Ignizio, 1982). Each of the approaches cited above
possess unique advantages and individual characteristics. Again, the
reader should consult Cohon and Marks (1975) and Cohon (1978) for a
detailed comparison of the attributes and the procedures associated with
each of these techniques.

In addition to the methodologies mentioned above, there exists
another technique for obtaining a best compromise alternative: '"fuzzy
linear programming (FLP)" (Kickert, 1978; Ignizio, 1982; Zimmerman,
1984). The use of FLP procedures has recently grown in both popularity
and application in systems engineering. Because éf the recent excit-
ment surrounding this technique, FLP is selected as the methodology for

obtaining a direct solution to multiobjective optimization formulation
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in this study. The use of FLP will be discussed in detail in latter

sections of this chapter.

3.4 THE MULTIOBJECTIVE WLA MODEL

The initial step in analyzing the optimal WLA problem in a
multiobjective framework is to define the objectives to be considered in
the model formulation. Throughout this chapter, the presentation of
results and discussions are based on a two-dimensional multiple-
objective problem formulation. The two objectives considered for the
optimal WLA problem in this study are: (1) the maximization of waste
discharge, where both BOD and DO deficits from each discharger are
defined as the decision variables and (2) the minimization of the
maximum difference in equity between the various users of the stream
environment. The importance of such considerations have already been
discussed in Chapter 2. With the exception to multiple-objective
functions, the basic WLA model remains unchanged from that presented in

Section 2.4. Therefore, the two-objective WLA model can be expressed as

follows:
N
(objective 1) Z. = Maximize I (L, + D)) (3.8)
1 =1 J k|
j=1
(objective 2) Z2 = Minimize Emax (3.9)
subject to
oy oy
r 0,.L.+ sy . D, «R for all i = 1,2...,M (3.10)



83

,E,—E,,I <E for all j # 3' (3.11)
3 3 = "max

H, =
(S TN

0.35 < < 0.90 for all j = 1,2,...,N (3.12)

and

E >0, L, >0,D, >0 for all j = 1,2,...N
max = ij-= j=

where Emax is a new decision variable representing the maximum differ-
ence in equity between the various dischargers. Each of the remaining
terms have been defined and described in Chapter 2. It should also be
noted that the two forms of equity considered in Chapter 2, i.e., (1)
equal percent removal and (2) equal effluent concentration, are again

utilized in this chapter.

3.5 MULTIOBJECTIVE WLA USING THE CONSTRAINT METHOD

3.5.1 Formulation of Multiobjective WLA Model Using Constraint Method

Following the general procedures of the constraint method out-
lined in Section 3.3.1, the two-objective WLA model of this study must
first be transformed into a single-objective model formulation. In
doing so, the goal to maximize waste discharge is selected to be the
same objective function as that in the constraint method approach. The
objective to minimize the maximum difference in equity between the
various dischargers is transformed into a constraint in the WLA model.
Hence, the original two-objective formulation is reconstructed into a

single-objective formulation as follows:
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N
Maximize £ (L, + D)
j=l J J
subject to
n n,
st 6..L. + rw.D, <R for all 1 = 1,2...,M
.. 13 3 P 5 s B i
j=i j=i
IE, - E,,l < E for all j # j'
J J — max
L.
0.35 < 71 < 0.90 for all j = 1,2,...,N
k|
E < E° (3.13)
max -

E >0, L,>0,D, >0 for all j = 1,2,...N
max — ji-= j=

where E° is a pre-determined constant to control the maximum difference
in equity, Emax' Depending on the type of equity considered, equal
percent removal or equal effluent concentration, E° is specified in

terms of percent removal (decimal fraction) or mg/l, respectively.

3.5.2 Application of Constraint Method to the Two-Objective WLA Problem

The hypothetical example of the six-reach stream system described
in Section 2.6 1is used. The data aescribing the physical parameters of
the stream environment is given in Table 2.1. Once the two-objective
WLA model using the constrained method is formulated, it simply becomes

a matter of performing the iterative solutions procedures outlined
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previously to generate the noninferior solution set. Initially, values
of 0.05 and 5.0 mg/l were selected for E° for the two types of equity
considered, i.e., equal percent removal and equal effluent concentra-
tions, respectively. The individual model formulations, each uniquely
considering one of the two types of equity, are solved iteratively with
the primary objective of maximizing total waste discharge (measured in
terms of BOD and DO deficits in mg/l).

During such interations, the right-hand-side value, E°, is
incrementally increased by 0.05 and 5.0 mg/l for the respective types of
equity considered. The solutions obtained for the maximization of waste
discharge are stored during each iteration. In order to depict the
noninferior solution set, the respective model formulations are solved,
successively until the solution set became infeasible.

It should also be noted that the moving control point approach
for controlling water quality in the model constraints, as detailed in
Chapter 2, are incorporated into the constraint method model formulation
of this study. Such provisions are placed in the formulation in order
to take advantage of the savings in computer storage and improve model
performance.

The solutions to the noninferior set for each of the types of
equity considered are listed in Tables 3.1 and 3.2. These results are
plotted and displayed graphically in Figures 3.2 and 3.3. Through these
figures, the trade-off existing between the objectives, maximization of
waste discharge and minimization of the maximum difference in equity, is

clearly illustrated. Specifically, Figures 3.2 and 3.3 portray a linear



TABLE 3.1 NONINFERIOR SOLUTION SET CONSIDERING THE EQUITY
OF EQUAL PERCENT REMOVAL (DIMENSIONLESS)

Emax Total Waste
Discharge, mg/l

0.05 1036
0.10 1222
0.15 1407
0.20 1590
0.25 1771
0.30 1947
0.35 2103
0.40 2257

0.45 2409




TABLE 3.2 NONINFERIOR SOLUTION SET CONSIDERING THE EQUITY
OF EQUAL EFFLUENT CONCENTRATION (mg/1)

E ax Total Waste
m Discharge, mg/1

5.0 806
10.0 824
15.0 842
20.0 860
25.0 879
30.0 897
35.0 915
40.0 934
45.0 952

50.0 970
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marginal rate of substitution between the two objectives. From this, it
is evident that for every unit of the maximum difference in equity that
is given up, a uniform increase in the allowable waste discharge can be
obtained. Intuitively, this increasing trend can be explained by the
fact that as the constraints on equity between the various dischargers
are relaxed, larger totals for the waste discharges to the stream
environment are allowed, as long as the water quality requirements for
dissolved oxygen are not violated. These results are only reasonable
given the fact that the binding constraints in the model formulation
must be those associated with the type of equity considered. These are,
in fact, the conditions that occur when the constraint method is

utilized.

3.6 FUZZY LINEAR PROGRAMMING IN MULTIOBJECTIVE OPTIMIZATION

The foundation for this methodology was born out of research
introducing the theory and terminology associated with fuzzy set theory
by Zadeh (1965). Zadeh's original studies were in search of improved
decision analysis in the areas of expert systems and artificial intelli-
gence. Since its conception, the application of fuzzy set theory to the
field of mathematical programming were originally quite limited.
Although this technique remains obscure to some extent, it has experi-
enced a significant increase in popularity in recent years. The first
extension of fuzzy theory in an LP formulation was presented by
Zimmerman (1976). In order to completely grasp the use of these pro-
cedures, the methodologies associated with FLP can be divided into two

central concepts: (1) defining the membership functions and
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(2) outlining the FLP model formulation. Each of these concepts are

discussed in detail below.

3.6.1 The Membership Function

The use of fuzzy theory to linear programming can be neither
described as a deterministic nor probabilistic approach. Instead, such
procedures are uniquely "fuzzy'". To date, probably the most compre-
hensible and concise composition of the utility of fuzzy theory is that
given by Bellman and Zadeh (1970):

Much of the decision-making in the real world takes place
in an environment in which the goals, the constraints and the
consequences of possible actions are not known precisely. To
deal quantitatively with imprecision, we usually employ the
concepts and techniques of probability theory and, more
particularly, the tools provided by decision theory, control
theory and information theory. In so doing, we are tacitly
accepting the premise that imprecision~-whatever its nature--
can be equated with randomness. This, in our view, is a
questionable assumption. Specifically, our contention is that
there is a need for differentiation between randomness and
fuzziness, with the latter being a major source of imprecision
in many decision processes. By fuzziness, we mean a type of
imprecision which is associated with fuzzy sets, that is,
classes in which there is no sharp transition from membership
to nonmembership. For example, the class of green objects is
a fuzzy set. So are the classes of objects characterized by
such commonly used adjectives as large, small, significant,

- important, serious, simple, accurate, approximate, etc.
Actually, in sharp contrast to the notion of a class or a set
in mathematics, most of the classes in the real world do not
have crisp boundaries which separate those objects which
belong to a class from those which do not. In this connec-
tion, it is important to note that, in the discourse between
humans, fuzzy statements such as "John is several inches
taller than Jim," "x is much larger than y," "Corporation X
has a bright future," "the stock market has suffered a sharp
decline," convey information despite the imprecision...
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Although fundamentally criticized by some, the use of FLP has genuinely
proven to be an attractive technique for solving the ill-defined vector
optimization problem formulation.

The most important point to note in a decision-making context,
which attempts to incorporate the fuzzy environment, is that the
objective function and system constraints are defined by a unique
membership function. This membership function merely acts as a
surrogate characterization of preference in determining the desired
outcome for each of the objectives in the multiobjective framework. The
process to appropriately define the membership function is performed in
such a manner as to allow the function to take on values in the interval
(0,1). The membership function, denoted)uk for the k-th objective,

should at least satisfy the following conditions:

0 if Zk(g) <L,
M= {0<u, <1 Hf L <Z (X < U (3.14)
1 if z, (X) 2 U

where Zk(§) is the outcome of k-th objective; L, and U, represent the
léast acceptable and most desirable outcome for Zk(§), respectively.

By defining the membership function in such a manner, the analyst
and decision-maker, working interactively, can program a level of
desirability for the various outcomes of each of the objectives into the
model formulation. Once completed, the membership function acts as a

scaling device, assigning a level of acceptance to each of the alterna-

tives considered in the multiobjective formulation. Ultimately, the



93

best compromising solution can be identified as the alternative which
attains the highest level of desirability while simultaneously
satisfying the model constraints.

Several membership functions have been employed in FLP: (1)
linear, (2) exponential, (3) hyperbolic, and (4) logistic. This list,
by no means, is intended to represent the entirety of membership
functions in existence. Although a variety of such functions are
accessible, the linear and logistic membership functions are selected as
the means of defining the level of desirability in this study. Through
an appropriate transformation, the logistic membership function can be
linearized preserving the linearity of LP formulation.

The linear form of the membership function, as shown in Figure

3.4, can be expressed as follows:

0 for Zk(§) <L

2B - Ly ‘
M (2 = & for,L<,Z (X) <,U (3.15)
1 for Zk(§) > Uk

where dk is the range of outcomes for Zk(§) determined by Uk - Lk'

The logistic membership function is defined as:

, for z, (X) < L,
,uk(zk) =(1/ 1+ exp[-a - Bka(g)] for L < z (X)) < U, (3.16)
P, for Zk(z) 20U

Ib and Pu represent the degree of decision-maker's preference correspond-

ing to the lowest and highest attainable values for the k-th objective,
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where a, and Bk are constants in the membership function which can be

determined by

P P
- 2 —u_
a, = (Uk/dk)ln(l — Px ) - (Lk/dk)ln<1 — Pu) (3.17)
P P, .
= (/a) | 1n [ = | - 1n[— (3.18)
" k -3, -3 .
In general, values for Pu and E} are selected between 0.95-0.99 and

0.01-0.05, respectively. A representative configuration of a logistic

membership function is shown in Figure 3.5.

3.6.2 The Generalized FLP Model Formulation

Given the theory behind the FLP model formulation, the goal of
this technique is to obtain an optimal solution which maximizes the
level of desirability for each of the objectives in the multiobjective
problem. More precisely, the goal is to maximize the minimum attainable
membership for each of the objectives. That is, the model adopts the
max-min principal. This is accomplished by introducing a new decision
variable, A\, representing the level of minimum of any of the objectives.

The problem is then be formulated in a generalized LP format as follows:

Maximize \ (3.19)

subject to

>

1<

IA
o

M2, B -2 <0 for all k = 1,2...,K (3.20)



1.0

i)

Figure 3.5 Logistic Membership Function

96



97

when K is the number of objectives considered in the problem formula-
tion.

In solving the FLP model formulation, the procedures can be out-

lined in four basic steps:

1. Solve the vector optimization problem using only one of the
objectives at a time, ignoring all others. Repeat the
process until all objectives have been considered.

2. Frﬁm the solutions in step 1, determine the best (Uk) and
worst (Lk) outcomes for each of the objectives, k.

3. Define each of the membership functions,}uk[zk(X)], from the
results obtained for the objectives in step 2.

4, Redefine the objective function to maximize the minimum
;Ak[zk(g)], include constraints (in addition to those
controlling water quality, treatment, and equity), to
control the membership functions, and solve the final
formulation.

When performed correctly, these four steps provide an effective means of
obtaining a direct solution to the optimal or best compromising

alternative in the multiobjective model formulation (Ignizio, 1982).

3.7 MULTIOBJECTIVE WLA USING FUZZY LINEAR PROGRAMMING

3.7.1 The Linear Membership Model

As mentioned earlier, the multiobjective WLA problem considered
herein has two objectives: (1) the maximization of total waste discharge

and (2) the minimization of the maximum difference in equity. Referring
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to the original two-objective WLA model presented in Section 3.4, the

FLP formulation can be expressed as:

Maximize )\

subject to

1. original constraints in WLA model:

n, n,
i i
£ e,.L.+ Ty D.<LR, for all i = 1,2...,M
=1 i3] j=1 133 i
- < '
IEj Ej,l < E_ for all j # j
L,
0.35 < fl < 0.90 for all j = 1,2,...,N

J

2. linear membership constraints

i) for maximization of total waste discharge

-L
L, +D,) + \ 1
(Ly +Dy) =

d

[
n
-
=

-—]:' E +}‘<L2
d max = —
2 d
2
where
N
I (L,+D) -1
j=1 4 Lo -
A= min , 2 max
d d

(3.21)

(3.22)

(3.23)



99

3.7.2 The Logistic Membership Model

Referring to Eq. (3.16) we realize that a transformation of
variables must be made in order to develop a linearized function for
Zk(z) before the logistic function can be incorporated into a linear
programming framework. Similar to the linear membership case, we define

A\ = min (ﬂ(zl) ,M(Zz),...,M(Zk)) and 0 <M < 1. As a result,

1
~Ta, + 8,2 (®]

M(z,) = > A for all k = 1,2,...,K  (3.24)

1 +e

After some simple algebraic manipulation, Eq. (3.24) can be rearranged

into

a, +8,2,(X >1n (1 fx> (3.25)

Although A is the decision variable to be maximized, the term
In[A/(1-N] poses no difficulty since it is a strictly montonically
increasing function of A. To maximize A will automatically maximize
In[A/(1- N]. With this property, we can define a new decision variable
N= In[A/(1-\)] and Eq. (3.25) can be reduced to linear form as
—Bka(§) +n < ak for all k=1,2,...,K (3.26)
Notice that the value for n can be negative, zero, and positive (i.e.,
unrestricted in sign). When using the simplex algorithm developed for
solving an LP model, a non-negativity requirement for decision variables

is normally imposed. Thus, to satisfy this non-negativity requirement,
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we can simply replace the original decision variable , which is
unrestricted in sign, by the difference of two nonnegative decision
. + -
variables as n=1 —n .,
. R ; + -
Using the two new nonnegative decision variables n and n , a
relationship utilizing the logistic membership can be incorporated into

an LP format for solving the multiobjective WLA problem. The resulting

FLP model can be expressed as:
. . + -
Maximize (n ~n ) (3.27)
subject to

1. Original constraints including Eqs. (3.10), (3.11), (3.12)
2, Logistic membership constraints:
i) for the maximization of total waste load
N +

- B, (jile #D) 40" -n" < a; (3.28)

ii) for the minimization of maximum equity difference

+ -
-8, Emax +n -n <-a, (3.29)
and iii) non-negativity constraints:
+ -—
n >0,n >0, E >0, and L, >0, D, > 0 for all j.
= = max = j-= j=

The coefficients a's and pg's in Eqs. (3.28) and (3.29) can be computed

by Eqs. (3.17) and (3.18), respectively.
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3.8 APPLICATION OF FUZZY LINEAR PROGRAMMING TO EXAMPLE WLA PROBLEM
The example river system outlined in Figure 2.2. is again adopted
here. Each of the FLP models were solved using the two-objective
hypothetical model and the four basic steps outlined previously. In
order to simplify the discussion, let the objective to maximize waste

discharge be denoted Z.,, and that to minimize the maximum equity

1

difference be ZZ’

During the first stage, the two-objective WLA problem is solved
iteratively, with one objective at a time. The first iteration focusing

Z., as the objective function and the second iteration Z

1 Although a

9
single objective is considered during each of the first two iterationms,
the decision variables corresponding to the other objectives remain
universal throughout the system of constraints. Thus, a solution to
each of the objectives can be identified during any iteration. During
the first iteration of this example a best solution (Ul) is obtained for

objective Z since it is the current focus of the optimization. On the

l,

other hand, a least desirable solution (Lz) is also identified for the

objective Z Conversely, the second iteration led to the identifica-

9
tion of the best solution (UZ) for Z2 and the worst solution (Ll) for
Zl' The values of U1 and Lk for each of the objectives are given in
Table 3.3 for the two types of equity considered in this study. It

should also be noted that these values are independent of the type of

membership function assumed in the problem formulation. Remember, the

problem is being solved by separately considering the objectives Z1 and
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TABLE 3.3 THE BEST (Uk) AND WORST (Lk) SOLUTIONS FOR EACH OBJECTIVE

WHEN CONSIDERING THE TWO TYPES OF EQUITY.

(a) Equity Type: Equal Percent Removal

Bounds
Objectives Uk Lk
le Maximize Total Waste 2691 493
Discharge (mg/1 BOD)
Zz: Minimize Maximum Difference
in Equity (percent) 0.0 54.3
(b) Equity Type: Equal Effluent Concentration
Bounds
Objectives Uk Lk
Zl: Maximize Total Waste 2691 758

Discharge (mg/1 BOD)

22: Minimize Maximum Difference

in Equity (mg/1) 0

878




103

Z The use of a membership function has not yet been considered at

9
this stage in the solution process.

Once the values for Uk and Lk were identified, a unique linear

membership function is derived for each of the objectives, Z1 and 22'

The linear membership function for objective Zl’ was simply obtained by

substituting the values of U1 and L1 into Eq. (3.15), likewise for Z

Once completed, the problem is solved for the last time to obtain a

¢

direct solution to the multiobjective WLA problem using one type of
equity and the FLP formulation outlined earlier. The entire process can
be then repeated for the other types of equity.

The FLP solutions to the multiobjective WLA problem for the
six-reach example using a linear membership function are displayed in
Tables 3.4 and 3.5. Specifically, Table 3.4 contains the optimal WLA
when the equity of equal percent removal between the dischargers is
considered, while that in Table 3.5 is associated with the equity of
equal effluent concentrations. When comparing the two sets of optimal
allocations, the total allowable waste discharge for the equity of equal
percent removal, 1700 mg/l BOD, is less than the total for the equity of
equal effluent concentrations, 1837 mg/l BOD. This is the result of the
unique characteristics possessed by each of the membership functions
associated with the individual formulations. By considering the two
different types of equity, two separate and distinct problems are
formulated according to the FLP procedures. Once solved, ﬁhe individual

model formulations result in unique optimal solutions.



104

TABLE 3.4 OPTIMAL ALLOCATION OF WASTE FOR THE TWO-OBJECTIVE PROBLEM
USING FLP, WITH THE LINEAR MEMBERSHIP FUNCTION, AND THE
EQUITY OF EQUAL PERCENT REMOVAL

*
Discharger No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

Allowable Waste
Discharge 539 6 262 142 590 161
(mg/1 BOD)

Required

Percentage 60.7 0 60.7 84.5 60.7 60.7
Raw Waste

Removal

*
Discharger No. 2 is a tributary.

TABLE 3.5 OPTIMAL ALLOCATION OF WASTE FOR THE MULTIOBJECTIVE PROBLEM
USING FLP WITH THE LINEAR MEMBERSHIP FUNCTION, AND THE
EQUITY OF EQUAL EFFLUENT CONCENTRATIONS.

*
Discharger No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

Allowable Waste
Discharge 502 6 432 129 502 266
(mg/1 BOD)

Required

Percentage 63.4 0 35.0 85.8 66.5 35.0
Raw Waste

Removal

*
Discharger No. 2 is a tributary.
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Additionally, the solution procedures were repeated, this time
using the logistic membership function as reported in Egs. (3.16) to
(3.18). The optimal allocations for each type of equity utilizing a
logistic membership function are identical to those obtained using a
1ineaf membership function. Because of the unique analytic expressions
associated with the two unique membership functions, it was originally
thought that such results were erroneous or coincidental to the example
system chosen. Interestingly, the logistic membership problem was again
solved, this time using significantly different assumed stream data.

The optimum solutions for each of the membership functions were again
identical. At this point, more than idle curiosity had been raised
concerning these results. It turns out that, upon further analytical
investigation, the identical results obtained for the linear and
logistic membership functions can be proven to be continually true. A
formal proof of this phenomena is provided in Appendix A.

In reviewing this proof, the arithmetic sum of the linear member-
ship constraints given by Egs. (3.21) and (3.22) are shown to be identi-
cal to the sum of the logistic membership constraints given by Egs.
(3.28) and (3.29). The physical inference of the conclusions of this
proof is that the feasible domain described by each of the membership
functions share an identical boundary containing the optimal solution.
The difference between these feasible domains is related to the total
volume of such space. Essentially, the planes of the feasible region

described by the membership functions are rotated about a unique ridge,
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containing the optimal solution, when either the membership according to
the linear or logistic function is considered.

Clarification of these arguments can be made by relating to a
schematic diagram shown in Figure 3.6. Figure 3.6 represents the
feasible solution domain corresponding to the two-objective FLP problem
when considering each of the membership functions, i.e., linear and
logistic. Specifically, the domain bounded by points ABCD can be
assumed to represent the feasible space for using the logistic
membership and that of ABEF to be that feasible space for using the
logistic membership, respectively. Additionally, point 0 lies along
line AB, which is shared by each of the domains, and represents the
optimal solution to the multiobjective WLA problem.

In this figure, the effects of considering each of the membership
functions is portrayed. By changing the assumption of the membership
function, the feasible space is changed, i.e., the domain of the linear
membership function ABCD to that of the logistic membership ABEF.
However, this change only occurs in the positioning of the vertical
planes ABC to ABE and ABD to ABF. The position of the ridge boundary
defined by line AB remains unaffected. Hence, by maximizing the minimum
membership function, whether a linear or logistic member function is
considered, the optimal solution of the FLP problem presented here
remains unchanged. Moreover, these results should only be considered
true for any two-objective model formulation. Until further research is
conducted, these conclusions should not be extrapolated to problem

formulations considering three or more objectives.
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max

Figure 3.6 Feasible Region Defined By Membership Functions
In WLA Model
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In addition to the tabulated results, the dissolved oxygen
profile resulting from the discharge of waste according to their respec-
tive optimal allocations are plotted for each type of equity. These
plots are shown in Figures 3.7(a)-(c) and 3.8(a)-(c). The dashed line
at 4 mg/l represents the assumed minimum requirement for dissolved
oxygen (DO) to be maintained throughout the river system under
investigation. The significance and historical selection of this value
has already been discussed in Chapter 2. Figures 3.7(c) and 3.8(c) are
an indication of the effects on in-stream DO concentration resulting

from the optimal allocation of waste is illustrated.

3.9 SUMMARY AND CONCLUSION

As the demands on water quality continue to grow, the need for
improved methodologies to protect aquatic environments from exploitative
waste discharges increase. The problem of optimal waste load allocation
is not new to this decade. For many years, regulatory agencies have
utilized single objective optimization models to mandate and enforce
waste load allocations for various river system throughout this country.
Through continued research in the area of water quality management, the
limitations of such an approach to solve the optimal waste load alloca-
tion problem is becoming ever apparent.

In general, environmental water quality management problems are
multiobjective by nature. The problem of optimal waste load allocation
is, without exception, included. In answer to the shortcomings of the
single objective approach in WLA practice, this chapter has presented

two methods for solving a two-objective optimal waste load allocation
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CHAPTER 4

RISK ASSESSMENT OF STREAM WATER QUALITY STANDARDS

4.1 INTRODUCTION

Although technology has greatly improved our ability to treat
industrial and municipal wastes, it is still a common practice to
discharge allowable quantities of pollution from these effluents into
various watercourses. This practice is Sased on the principal that the
receiving waters possess a natural ability to assimilate a specific
quantity of pollutant. Given these conditions, the allowable waste
concentrations and natural biota coexist within the dynamic environment
of the stream system. Consequently, water quality officials have been
given the arduous task of determining the socioeconomic tradeoffs
between allowable waste load allocations and maintaining desired levels
of aquatic life within the stream environment. In answer to theée
problems, water quality agencies have enacted regulations allowing the
continuation of waste discharge to streams subject to a variety of
water quality standards.

In contrast to the fact that each stream is highly variable by
nature, the basis for the development of water quality standards con-
tinues to be a deterministic evaluation of the stream environment. As
a result, many of the present water quality standards neglect the
inherent stochastic nature of the system (i.e. rivers and streams)
which they are supposed to protect. Several authors, noting the

shortcomings associated with present water quality standards, have
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criticized the ability of deterministic standards to provide adequate
protection of the stream environment (Loucks and Lynn, 1966; Adams and
Gemmel, 1975; Burn and McBean, 1985). Knowing the reality of the
inherent random nature of these systems, deterministic standards should
be amended to account for the stochastic processes present in the
stream environment. In addition, most of the current standards do not
differentiate between the various levels of exceedence nor the lengths
of violation in the stream system. Given the deterministic structure
of present water quality regulations, it is implied that all water
quality violations are considered equal, irregardless of the effects on
the stream environment. Presently, no emphasis is placed on the
relative severity of the individual violations. For example, a small
exceedence, resulting in minor damage, is treated in the same manner as
a large exceedence, possibly resulting in significant damage. Both
conditions are simply defined as "violations', thus neglecting the
relative effects created by the specific violation conditions.

In an attempt to incorporate the random nature of the stream
environment and the level of severity for various violation conditions
into the water quality decision-making process, it is the objective of
this chapter to present a methodology for evaluating the joint risk
associated with a maximum dissolved oxygen deficit (beyond a specified
standard) and the length of such violation within any given stream
system. This chapter utilizes the simplified Streeter-Phelps equation
and Monte Carlo simulation techniques to evaluate the risk based on

several assumptions for the probability distributions assigned to each
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parameter in the model formulation. In addition, a sensitivity analy-
sis is performed to evaluate the effects of changes in the statistical
characteristics of the model parameters on the risk. By evaluating the
risks associated with water quality violations, it is believed a more
realistic decision can be made between the economic and environmental

questions facing water quality management agencies in the future.

4,2 UNCERTAINTY IN THE WATER QUALITY MODEL

The water quality model presented in Chapter 1 (Eqs. 1.5 to 1.8)
is a function of several stream parameters, such as, the reareation and
deoxygenation coefficients and the average stream velocity. In real-
ity, the system (i.e., the stream environment) to which this model is
applied is extremely variable, both spatially and temporally, by
nature. Inherently, the stream system represents a dynamic environment
in which the physical and biological characteristics are ever-changing.
As with the unpretentious passage of time, continual changes occur in
the character of the stream environment. Given such facts, it is quite
obvious that the parameters utilized in the water quality model of
Chapter 1 cannot be quantified with exact certainty. The inherent
random nature of the system to be modeled leads to uncertainties in the
prediction of model parameters. Thus, in order to accurately model
such an environment, the uncertainties associated with the stream
system must be included in the water quality model formulation.

The uncertainty linked with Eq. (1.5), for predicting DO levels
in a stream system, can be divided into three categories: inherent,

parameter, and model uncertainties. Inherent uncertainties are the
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result of the natural randomness exhibited by the physical and biologi-
cal processes described by Eq. (1.5). This inherent uncertainty is the
product of temporal and spatial variations, for example, in streamflow,
effluent waste concentration, temperature, and in-stream biological
composition (Churchill et al., 1962; Bansal, 1973; Wright and
McDonnell, 1979). 1In addition, the absence of unlimited data describ-
ing the characteristics of the stream system result in insufficient
information to estimate the parameters of the model with absolute
certainty. The combined effects of inherent randomness and imperfect
data collection result in parameter uncertainty in the model formula-
tion.

As previously mentioned, several researchers have modified the
original Streeter-Phelps equation to account for discrepancies between
DO deficits predicted by the model and collected field data. Such
discrepancies were the result of the original model's exclusion of a
number of oxygen sources and sinks. The inability of the model to
accurately predict the DO deficits is known as model uncertainty. To
account for this inadequacy, additional terms may be added to the model
formulation to include the effects of the various oxygen sources and
sinks. Alternatively, adjustment of the model may be accomplished by
multiplying the original equation by a "model correction factor." This
correction factor would simply be determined from an analysis of the
differences between the predicted and field data collected. Accord-
ingly, the model correction factor can also be treated as a random

variable in the model formulation.
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Given the fact that inherent, model, and parameter uncertainties
exist, the stochastic nature of the stream system should be included in
the model formulation if accurate DO predictability is to be attained.
The general approach for describing these uncertainties has been to
appropriately assign statistical properties, probability distributions,

and correlations to each of the parameters in Eq. (1.5).

4.2.1 Selection of Statistical Properties for the Model Parameters

The selection of statistical properties include the appropriate
determination of the mean, standard deviation, and possibly other
higher moments for each of the model parameters. In order to
accurately quantify the statistical properties, existing physical,
chemical, and biological data are analyzed according to standard
statistical procedures. Data used in the analysis should be obtained
from the specific site under investigation in order to preserve the
uniqueness associated with the various stream environments. Once the
analysis has been performed, the resulting statistical properties

become eligible for model applications.

4.2.2 Selection of Probability Distributions for the Model Parameters

Though several probability distributions are possible, the most
common assumption is that each of the parameters in Eq. (1.5) follow a
normal distribution (Kothandaramann and Ewing, 1969; Burgess and
Lettenmaier, 1975; Esen and Rathbun, 1976). However, some investi-
gators have utilized a variety of distributions to describe the random

behavior of these parameters (Kothandaramann, 1970; Brutsaert, 1975).
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Clearly, a universal agreement as to the type of distribution to use
for each parameter in Eq. (1.5) does not exist. Given the uniqueness
of each site under investigation, there is no reason to expect all the
parameters to follow a given distribution for every location. Thus,
it would seem reasonable to develop a procedure that will allow the
model to be flexible with regards to the selection of the probability
distribution for each parameter.

In following this idea, each parameter in the model of this
study can be assigned one of five probability distributions: normal,
log-normal, beta, gamma, and Weibull. By properly analyzing the
recorded data describing the random nature of the stream environment
for each site, an appropriate probability distribution can be selected

for each parameter in the model.

4.2.3 Correlation Between Model Parameters

In general, the model parameters in Eq. (1.5) are considered to
be independent. However, there has been extensive research in the
development of mathematical functions directly relating the reaeration
rate, Ka’ to the physical characteristics of the stream such as
average velocity, U (Bansal, 1973). These research results clearly
demonstrate that a positive correlation exists between the model
parameters Ka and U. Hence, procedures are provided in the model
formulation of this study which allow for the inclusion of a
correlation, between Ka and U.

Additionally, some investigators have proposed the existence of

a positive correlation between K, and Ka (Esen and Rathbun, 1976;

d
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Padgett, 1978). Although the presence of a positive correlation
between Kd and U may have resulted from the proper statistical analy-
sis of a given set of stream data, intuitively, the inclusion of such
a correlation is physically meaningless in the model formulation in
this author's opinion. The author's reasonings are based on the fact
that Ka is solely a function of the physical characteristics of the
stream, while Kd is characterized by the biological composition of the
waste discharge and stream environment. It is assumed that these
processes act independently within the stream system. Consequently,
the author feels that the correlation between Kd and Ka is spurious

and, therefore, it is not considered in this study.

4.3 MEASUREMENT OF WATER QUALITY CONDITIONS

Presently, water quality standards are developed on the basis
of maximum contaminant levels or minimum required concentrations, both
of which are never to be violated. The concept of a deterministic
water quality standard is plausible and feasible if the system has
very little or no uncertainty involved. However, as previously
discussed, it seems unreasonable to continue the enforcement of water
quality requirements that neglect the probability of violating these
standards. Because the stream system is inherently random and involves
many elements subject to significant uncertainty, the risk of violat-
ing the required standards will always exist. Hence, in order to
improve the basis for regulatory standards which recognize the sto-

chastic nature of the stream environment, a measure of the probability



123

associated with the violation of water quality standards should be
developed.

In following past procedures, the most widely used measure to
indicate the water quality condition of a stream system is the extent
to which BOD and/or DO deficit concentrations exceed existing water
quality standards. The effects of such violations on the aquatic
environment are related to the tolerance exhibited by the stream's
biota to a given pollution concentration and length of stream (or
time) subjected to these conditions. For instance, the stream system
may be able to tolerate relatively large DO deficits for short lengths
of violation or small DO deficits for much longer violation distances.
In reality, a tradeoff exists between the level of DO deficit in
violation and length of stream subjected to these violation condi-
tions. Thus, in order to provide a more complete analysis of the
stream environment under violation conditions, both the DO deficit in
. violation and the length of violation should be considered simultan-
eously.

In light of such facts, the joint probability of simultaneously
violating a specified DO concentration and tolerable length of viola-
tion has been selected in this study as the measure of water quality
in the stochastic stream environment. In doing so, both maximum and
average DO violation conditions associated with a given length of

stream violation distance are considered as follows:

. = ' '
Risk = Pr (Dmax > Dtol and X > Xtol) (4.1)
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or

- ' '
Risk = Pr (D' > Dtol and XD > Xtol) (4.2)

in which Pr( ) represents the probability, D;ax and D' are the maximum

and average DO deficits exceeding water quality standards (mg/1l),

]

respectively; XD is the actual length of violation (miles), and Dtol

and Xto are the specified tolerances for DO deficit beyond the

1
standard (mg/l), and the length of violation in the stream system
(miles), respectively (refer to Figure 4.1).

From this information, water quality management agencies could
introduce regulatory measures that limit the maximum probability of
violating the minimum dissolved oxygen standards. For example, an
amended DO standard might read as follows: '"the maximum probability
of violating a minimum DO concentration by 1 mg/l or less for a
distance of 2 miles shall not exceed 0.05". Once the allowable level
of risk associated with various violation conditions is quantified,
water quélity officials can then proceed with the determination of

allowable waste load allocations for the various users of the stream

environment.

4.4 QUANTIFICATION OF THE RISK OF VIOLATION

4.4,1 Determining the DO Deficit and Length of Violation

In reference to Figure 4.1, the length of violation is defined
as the distance within the stream system where the DO profile drops
below a specified minimum concentration (Dstd) of 4.0 mg/1l. (The

significance of a minimum DO requirement of 4 mg/l has already been
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discussed in Chapter 1). Because of the non-linearity presented in
Eq. (1.5), an analytical solution to determine the length of violation
is impractical. To circumvent this problem, the Newton-Raphson
numerical approximation technique was employed to solve the beginning
and ending points of violation (Henrici, 1982; Rice, 1983).

The Newton-Raphson method is a commonly used numerical techni-
que for finding the roots of a nonlinear equation. Thus, the begin-
ning and ending points of violation were identified (using Newton-
Raphson's method) by equating the DO deficit to zero and solving the
following equation for the location x (in miles)

Dx - (CS -C

min) =0 (4.3)

where DX is given by Eq. (1.5) and Cmin is the minimum allowable DO
concentration assumed to be 4 mg/l. Then, by taking the difference
between these two end points, the length of violation is determined.
Once the maximum DO deficit is calculated using equation (1.5),
the corresponding maximum DO violation is defined as the largest DO
concentration deficit beyond the minimum standard of 4 mg/l (see
Figure 4.1). In addition, the average DO deficit (Within the length
of violation) can be calculated by integrating Eq. (1.5) over the
length of violation. Then, dividing this expression by the same

length to obtain:

D _ KdLoU [1 (-deb/U -dee/U> 1 (—KaXb/U -KaXe/U)]
K-k, |x.\¢ - e S - e
a
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-K /U KX /U
+D0U (eaxb _e @ce ) /X'D ot
‘I<_ .

a

where Xb and Xe are the beginning and end points of violation, respec-

tively; XD is the length of violation in miles, XD = Xe - Xb'

4,4,2 Monte Carlo Simulation

Monte Carlo methods are an extension of the branch of experi-
mental mathematics which is concerned with experiments on random
numbers. The use of Monte Carlo techniques can be classified into two
general categories: (1) probablistic and (2) deterministic, depending
on whether or not they are directly related to the behavior and outcome
of a random process. When considering a probabilistic approach, the
simplest Monte Carlo technique is to generate random numbers such that
they simulate the physical random process of the system under investiga-
tion and to infer the desired solution from the behavior of these random
numbers (Kothandaramann, 1968).

Monte Carlo simulation can be simply described as a sampling
method used to approximate, through simulation, the solution of non-
linear formulation which would otherwise be extremely tedious to solve
by direct analytical methods. The foundation for such an application
lies in the large number of trials or iterations that are performed on
the proposed model. By performing these iterations, a sufficiently
large sample size can be generated, from which a relatively accurate

solution to the model can be predicted.
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Monte Carlo simulation techniques have found many applications in
the modeling of stochastic processes. The essence of the technique is
to develop a model that satisfactorily represents the random process to
be analyzed. Then, through the use of a digital computer and random
number generator, a large number of iterations are performed on the
model formulation. During these iterations, input data is randomly
generated according to selected probability distributions for each
parameter in the model. Thus, successive iterations are performed on
the proposed model formulation, each time using a completely new set of
model parameters. Once the iterations are complete, the generated
isolation set can be analyzed in entirety to determine its stochastic
properties or the individual values may be used in further analysis
(Brutsaert, 1975; Rubinstein, 1981). The application of Monte Carlo
simulation has been made in succeeding sections of this and remaining
chapters.

In this study a set of theoretical distributions including
normal, log-normal, gamma, Weibull, and beta distributions are con-
sidered as candidates for each of the parameters in water quality
models. In addition to assigning a distribution to each of the para-
meters in water quality models, the statistical properties including the
mean and standard deviation of the parameters are specified. In cases
that water quality parameters are assumed to be independent of each
other, pseudo random realizations of each water quality parameter are
generated independently according to their associated probability

distributions and statistical properties specified.
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When applying Monte Carlo simulation to Egqs. (1.5) and (1.6), it
is possible to generate negative DO concentrations. Though the number
of occurrences of such unrealistic values is low, provision should be
included in the simulation procedures which constrain the DO
concentrations to be greater than or equal to zero (Hornberger, 1980).
In the methods utilized in this study, negative DO concentrations
generated by simulation are simply ignored and replaced by another
iteration until specified numbers of realistic conditions are
established.

The probability density function (pdf), momént—parameter rela-
tions, and subroutines in International Mathematical Subroutine Library
(IMSL) used for generating random numbers are listed in Table 4.1. For
most probability distributions (except for the Weibull), the parameters
in the distributions can be easily determined from the knowledge of the
mean and standard deviation. For the Weibull distribution, Newton-
Ralphson method is applied to solve for a as it is related to the
coefficient of variation (Cv). Then the second parameter § can be
calculated easily once o is computed.

When parameters Ka and U are considered correlated, a bivariate
normal distribution is employed to model their log-transformed scale as
well as the original scale. Generating bivariate normal random realiza-
tions for Ka and U with a correlation coefficient p(KgU) by IMSL sub-~
routine (GGNSM) is straightforward. However, when Ka and U each have a
marginal log-normal distribution and are correlated with P(Ka,U), it is

necessary to compute the correlation coefficient for log-transformed



TABLE 4,1 LIST OF PROBABILITY DISTRIBUTION MODELS USED IN THE ANALYSIS

Distribution pdf Parameter- IMSL Routine Remarks
Moment Relations Employed
x-ay
1 -5\ B
Normal £(x| a,p) = e a=y_ GGNML Generate normal (0,1)
Yax B= random deviate z.
%% =a+ zp.
for-oco<x <00
C =0 /u
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-a\2
1 5 <1nx a My
Log-normal f(x]a,p) = Bx e B a=% 1n 1+ 02 GGNML x = exp(y) where
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for x >0 = Vln[l + C2]
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TABLE 4.1 (continued)

Distribution pdf Parameter- IMSL Routine Remarks
Moment Relations Employed
a
a-1 _(x )
. a/x E 1
Weibull f(x|a,p) = B (E> e px==B r+g GGWIB Generate
Weibull (a,B =1)
random deviate vy.
for x >0

1
Co=1-TQ+g@/r*a+ al-)

B

Beta fxfa,® =y - P Ba@,p W= (- %)/ - x)  GGBIR

2 |

>
k=
]

o /(x -x)
X u

]

for0<y<l, wherey=x
a= p2(1 -p ) ¢ ?-p
y y y y

B=w (1 -w)/ag?-(1-p)
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x= By

Generate Beta (a,B)
random deviate y.
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TABLE 4.1 (continued)

Distribution pdf IMSL Routine Remarks
Employed
Bivariate £(x,y/u_,H_,0.s0_5p. ) GGNSM
Normal ¥y oxy oy
1
= exp[ Q 2 ]
2no o Py 2(1 - p2)
Xy ¥i-p. Xy
where
x-p_\? 2p (x-p Xy -pu) /y-u\?
q = X _ Xy X VAN y
o, cxoy °y

431
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Ka and U. By applying the concept of a moment generating function, the

relation between p(Ka,U) and p(ana, 1nU) can be derived as

In{l + p(Ka,U) . Cv(Ka) . Cv() ]

p(ana,an) = :

(4.5)

5

1n[l + c%(xa)] 0.5 1011 + cdayy @

in which CV(Ka) and Cv(U) are the coefficients of variations of Ka and

U, respectively. After the correlation coefficient between ana and 1nU
is computed, the same subroutine GGNSM can be called to generate bivar-
iate normally distributed values of ana and 1InU, from which a retrans-

formation back to their original scale can be made.

4.4,3 Quantifying the Risk Associated with Various Violation Conditions

As previously noted, the joint risk is defined as the probability
of occurrence for a given pair of violation conditions (i.e. a maximum
or average exceeding DO deficit and length of violation). Direct
analytical methods were shown to be infeasible as solution techniques to
quantify these risks. Therefore, Monte Carlo simulation techniques are
applied.

Various pairs of violation conditions are generated using Egs.
(1.5), (L.7), (1.8), and (4.4). 1In order to describe the random
characteristics of the input data, each parameter in the water quality
model is assigned one of the five probability distributions utilized in
this study (normal, log-normal, gamma, beta, and Weibull), along with
their associated statistical properties. Through the use of Monte Carlo
simulation and Newton-Raphson's numerical technique, N pairs of viola-

tion conditions are generated for various DO deficits and lengths of
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violation. The risk is then calculated by simply computing the ratio of
the number of simulation pairs that jointly exceeded a specified deficit

and length of violation, n, to the total random sample, N, generated:

(4.6)

In order to choose an appropriate sample size, random samples of
various sizes were examined, finding that the joint probability of
violating a specified pair of maximum deficit and length of violation
differed only slightly for various sample sizes, between 500 and 2,000.
Thus, an intermediate number of N = 999 is adopted as the satisfactory

sample size in this study.

4.5 EXAMPLE OF APPLICATION

To illustrate the approach, an example is formulated using
hypothetical data for each parameter in Eq. (1.5). The selection of
the mean of the water quality model parameters is based on a general
stream classification described as "low velocity" (Fair et al, 1968;
Chadderton et al., 1982). 1In addition, the standard deviations for
each of the model parameters are selected in accordance with the data
presented by Chadderton et al. (1982). To complete the data set, a
correlation coefficient, between Ka and U, of 0.8 is adopted on the
basis of the experimental data tabulated in the article presented by
Isaacs (1969). It should be again noted that when the correlation

between Ka and U is specified, a bivariate normal or log-normal
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distribution is used. A summary of the model input data for the
parameters of this study is given in Table 4.2.

The joint probability of violation was evaluated for a combina-
tion of 15 maximum DO deficits, beyond the standard of 4.0 mg/1,
(ranging from 0.0 to 1.5 mg/l) and 15 lengths of violation (ranging
from 0.0 to 30.0 miles). The resulting 225 pairs of violation condi-
tions were used to construct a contour map of the joint risk associated
with the given combinations of maximum DO deficits and length of
violation (see Figure 4.2 as an example). In order to illustrate the
sensitivity of the risk to varying statistical characteristics, the
procedure was iterated by assigning a variety of probability distribu-
tions to each of the parameters in the model. The entire process was
repeated, this time developing risk contour maps based on various

combinations of average exceeding deficits and lengths of violation.

4,6, DISCUSSION OF RESULTS

Figures 4.2 through 4.11 illustrate the contours of risk assoc-
iated with the various assumptions for the probability distributions
assigned to each parameter in Eq. (1.5) and the correlation between Ka
and U. Each figure is documented with a heading providing information
about the type of distribution, the mean, standard deviation, and
correlation coefficient (p) assumed for the parameters in the risk
assessment. Several combinations were explored for the various types
of distribution utilized in this study. In order to analyze the
results of this study, the discussion will focus on the sensitivity of

the risk to variations with respect to the following factors: (a) the



TABLE 4.2 SUMMARY OF DATA FOR MODEL PARAMETERS
Parameter Units Mean Standard Remarks
Deviation
-1
Kd days 0.35 0.10
K, days™! 0.70 0.20 P(R,, U) = 0.8
ft./sec. 0.61 0.18
Lo mg/1 18.00 1.00
D mg/l 1.00 0.30
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Figure 4.8 Contour Of Joint Risk Associated With
Average Deficits And Length Of Violation
For An All Lognormal Assumption Of The
Model Parameters And Zero Correlation
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Kg ¢ NORMAL(0.35,0.10) Lo : WEIBUL(18.0,1.00)
Ka ¢ LGNORM(0.70,0.20) Do * BETA(1.00,0.30)
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Figure 4.9 Contour Of Joint Risk Associated With
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For The Variety Of Distributions Assumed
For The Model Parameters And Zero Correlation
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Lo ¢ NORMAL(18.0,1.00)

Ka : NORMAL(0.70,0.20) Do : NORMAL(1.00,0.30)
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Figure 4.10 Contour Of Joint Risk Associated With
Average Deficits And Length Of Violation
For An All Normal Assumption Of The Model
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probability distribution assigned to the model parameters; (b) the
correlation between Ka and U; and (c) the statistical properties
assigned to each parameter. In the following discussion, Figure 4.2
will be used as a basis for the comparison of other figures because a
number of previous studies have utilized the assumptions of normal
distribution and independency for all the model parameters. Though the
sensitivity of DO response to changes in water quality parameters has
been investigated by many researchers (Burgess and Lettenmaier, 1975;
Esen and Rathbun, 1976; Hornberger, 1980; Chadderton et al., 1982),
this study provides an attempt to evaluate the effects of the
uncertainty of model parameters on the risk of violating water quality

standards.

4.6.1 Sensitivity of the Risk to Variations in Probability Models

Initially, it is obvious from visual inspection of the figures
presented that the type of distribution adopted for each model para-
meter has a significant impact on the resulting joint risk for both the
maximum (see Figures 4.2-4.6) and average (see Figures 4.7-4.11) DO
deficits. Using Figure 4.2 as a basis for comparison, closer examina-
tion of the results for the maximum deficits, presented in Figures 4.2
and 4.4, shows an average increase of about 30 percent in the risk for
the variety of distributions selected in Figure 4.4. Conversely, a 20
percent average decrease is observed in the comparison between Figures
4.2 and 4.3. From these figures, it is evident that the risk is
significantly affected by the distributions assumed for each parameter

when considering maximum deficits of violation. Therefore, in order to
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accurately assess the risk associated with specific violation condi-
tions, the results of this portion of the study show that care should
be given to the appropriate selection of the probability distribution
for each parameter in the water quality model.

A comparison of the risk contour maps for the average deficits
(Figures 4.7-4.11) with those of the maximum deficits (Figures 4.2-4.6)
show an overall reduction in the risk associated with the average
violation conditions. This would be expected since the average DO
deficit beyond the specified standard over the length of violation is
lower than that of the maximum deficit (see Figure 4.1). 1In addition,
a comparison of the results among the average deficit conditions reveal
the same general trends as those presented for the maximum deficits,
thus reconfirming the sensitivity of the risk of violating water
quality standards to the type of distribution assumed for each para-
meter in the water quality model.

In order to clearly summarize these conclusions and present
additional combinations of the distributions selected for Kd, Ka’ u, Lo
and Do’ two tables have been constructed: (1) Table 4.3 contains the
risk of violation for a variety of distributions assumed for the model
parameters at select maximum violation conditions; and (2) Table 4.4
contains the difference in risk (percent) between the standard

assumption of normality for the model parameters and the variety of

distributions assumed.



TABLE 4.3 RISK OF VIOLATION FOR VARIOUS TYPES OF DISTRIBUTIONS ASSUMED FOR MODEL PARAMETERS WITH

ZERO CORRELATION BETWEEN Ka AND U.

Case Type of Distribution Assumed (Max. Deficit Beyond Std., Distance of Violation)
No. Kd Ka [§] Lo Do (0.4,8.0) (0.4,12.0) (1.0,20.0) (1.5,30.0)
1 N N N N N 114 .065 .048 .028
2 LN LN LN LN LN .107 .065 .038 .013
3 G G G G G .104 071 .052 .012
4 W W W W W 122 .087 .068 .040
5 B B B B B .100 .068 044 .014
6 N LN LN G G .101 .050 .031 .010
7 N LN G W B .146 .095 .059 .018
8 B N N LN N .121 .085 .057 .029
9 N LN LN G W .104 .056 .037 011
10 N LN LN G B .094 .050 .021 .001

N = Normal; LN = Log-normal; G = Gamma; W = Weibull; B = Beta

671



TABLE 4.4 DIFFERENCE IN RISK (PERCENTAGE) BETWEEN THE STANDARD ASSUMPTION OF NORMALITY FOR THE MODEL
PARAMETERS AND THE VARIETY OF DISTRIBUTIONS ASSUMED

Case Type of Distribution Assumed (Max. Deficit Beyond Std., Distance of Violation)

No. Kd Ka U Lo Do (0.4,8.0) (0.4,12.0) (1.0,20.0) (1.5,30.0)
1 N N N N N - - - -
2 LN LN LN LN LN -6.1 0.0 -20.8 -53.6
3 G G G G G -8.8 9.2 8.3 -57.1
4 %) W 1) 1Y) W 7.0 33.9 41.7 42.9
5 B B B B B -12.3 4.6 -8.3 -50,0
6 N LN LN G G -11.4 -23.1 -35.4 -64.3
7 N LN G W B 28.1 46,2 22.9 -35.7
8 B N N LN N 6.1 30.8 18.8 3.6
9 N LN LN G W -8.8 -13.9 -22.9 -60.7
10 N LN LN G B -17.5 ~23.1 56.3 96.4

N = Normal; LN = Log-normal; G = Gamma; W = Weibull; B = Beta

0¢T
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4.6.2 Sensitivity of Risk to the Correlation Between K and U

a

Figures 4.5 and 4.6 illustrate a risk contour map when a
positive correlation between Ka and U is considerated in risk assess-
ment. The sensitivity of the risk to changes in the assumption of the
correlation between Ka and U can be examined by comparing Figures 4.2
and 4.5. It can be seen from these figures that the inclusion of a
positive correlation, between Ka and U, results in a significant
reduction in the risk at large violation distances. A comparison of
the results in these figures shows an average reduction of about 20
percent in the overall risk, and a reduction as high as 70 percent for
large violation distances. These same conclusions can be emphasized in
the comparison of Figures 4.3 and 4.6.

In order to explain this observation, it has been shown that an
increase in the average stream velocity, U, results in an increase in
the reaeration coefficient, Ka (Bansal, 1973). According to the
physical process, an increase in Ka will lead to greater reaeration
rates and reduced DO deficits at downstream locations. The overall
effect can be seen in the reduction of the risk of violation at
downstream locations. Therefore, a positive correlation between these
parameters should be included in the model formulation in order to
accurately describe the physical characteristics of the stream

environment.

4.6.3 Sensitivity of Risk to Uncertainties in Statistical Properties

Given imperfect data collection, uncertainties arise in quantify-

ing the statistical properties of the parameters in Eq. (1.5). The
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sensitivity of the risk to these uncertainties was analyzed for changes
in the mean and standard deviation associated with each parameter in
the model. The results of this investigation are presented in Figures
4.12 through 4.16 for the mean, and Figures 4.17-4.21 for the standard
deviation. As a basis for comparison, normal distributions were
assigned to each parameter in this investigation, along with a positive
correlation coefficient between Ka and U. The mean and standard
deviation of each parameter was allowed to vary *15 percent. In order
to illustrate the sensitivity of the risk to these changes, figures
were constructed showing the variations in a single contour of risk at
six percent.

Figures 4.12-4.16 and 4.17-4.21 show that the variation of risk
is more sensitive to equal percentage changes in the mean of Kd than
that of equal changes in the standard deviation. This result was
observed for all the parameters used in this study. These results
imply that the accuracy in estimating the mean of the model parameters
have a greater impact on the risk assessment than estimates for the
standard deviations.

In comparing Figures 4.12-4.16, the results reveal that the risk
is most sensitive to changes in the mean values of Ka and Lo, followed
by Kd’ U, and Do’ respectively. It is clear from these results that
special attention should be given to the determination of the mean

values for Ka’ K. and L0 if accurate DO predictability is to be

d
attained. It is evident from this portion of the study that proper

selection of the statistical properties is crucial in order to
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Kg ¢ NORMAL(——,0.10) Lo : NORMAL(18.0,1.00)
Ka : NORMAL(0.70,0.20) Dg : NORMAL(1.00,0.30)
U : NORMAL(10.0,3.00)  o(K,,U) : 0.80
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Figure 4.12 Sensitivity Of Six Percent Risk With
Respect To The Mean Of Kg



MAX. DEFICIT CONC. BEYOND STD., MG/L

0.50 0.75 1.00 1.25 1.50

0.25

0.00

154

Kd‘: NORMAL (0.35,0.10) Lok: NORMHL[IS.O,l.OOJ

Ka @ NORMAL(——,0.20) Do : NORMAL(1.00,0.30)
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Figure 4.13 Sensitivity Of Six Percent Risk With
Respect To The Mean Of K,



MAX. DEFICIT CONC. BEYOND STD., MG/L

0.50 0.75 1.00 1.25

0.25

0.00

155

Kq : NORMAL (0.35,0.10) Lo : NORMAL(18.0,1.00)
Ka : NORMAL(0.70,0.20) Do : NORMAL(1.00,0.30)
U : NORMAL (——,3.00) o(Kg,U) : 0.80
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Figure 4.14 Sensitivity Of Six Percent Risk With
Respect To The Mean Of U
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Kg ¢ NORMAL(0.35,0.10) Lo : NORMHL(————,I.OO]
Ka ¢ NORMAL(0.70,0.20) Do = NORMAL(1.00,0.30)
U : NORMAL(10.0,3.00) p(Ka,U) :+ 0.80
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Figure 4.15 Sensitivity Of Six Percemt Risk With
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Ky : NORMAL(0.35,0.10) Lo : NORMAL(18.0,1.00)
Ko : NORMAL(0.70,0.20) Do : NORMAL(—— ,0.30)
U : NORMAL(10.0,3.00)  o(K,,U) : 0.80
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Figure 4.16 Sensitivity Of Six Percent Risk With
Respect To The Mean Of D
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Kg # NORMAL(0.35,——) Lo : NORMAL(18.0,1.00)
Ka * NORMAL(0.70,0.20) Do : NORMAL(1.00,0.30)
U = NORMAL(10.0,3.00) p(Kg,U) : 0.80
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Figure 4.17 Sensitivity Of Six Percent Risk With
Respect To The Standard Deviation Of Ky
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Ky : NORMAL(0.35,0.10) Lo : NORMAL(18.0,1.00)
Ks : NORMAL(0.70,——) Do : NORMAL(1.00,0.30)
U : NORMAL(10.0,3.00)  p(K,,U) : 0.80
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Figure 4.18 Sensitivity Of Six Percent Risk With
Respect To The Standard Deviation Of K,
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Kd;ﬁ NORMAL(0.35,0.10) Lo = NORMAL(18.0,1.00)
Ka @ NORMAL(0.70,0.20) Do : NORMAL(1.00,0.30)
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Figure 4.19 Sensitivity Of Six Percent Risk With
Respect To The Standard Deviation Of U
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Kg : NORMAL(0.35,0.10) Lo : NORMAL(18.0,—)
K, : NORMAL(0.70,0.20) Do : NORMAL(1.00,0.30)
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Kg * NORMAL(0.35,0.10) Lo : NORMAL(18.0,1.00)
Kg @ NORMAL(0.70,0.20) Dg : NORMAL(1.00, —)
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Figure 4.21 Sensitivity Of Six Percent Risk With
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accurately quantify the risk associated with the various violation

conditions.

4,7 SUMMARY AND IMPLICATIONS

This paper has presented a methodology for assessing the joint
risk associated with maximum and average DO deficits exceeding speci-
fied standards and the length of such violations in stream systems
receiving waste effluents. Moreover, this method allows this risk to
be calculated on the basis of several assumptions for the type of
probability distributions assigned to each parameter in the Streeter-
Phelps equation. The flexibility provided by this type of model
formulation permits a unique analysis of each site under investigation.

The results of this study show that the evaluation of the joint
risk is highly sensitive to the type of distribution assumed for each
parameter in the water quality model. In addition, a sensitivity
analysis revealed that prediction of these risks are greatly impacted
by variations in the mean values of each parameter in the model,

especially K Ka’ and Lo. It is clear from the results of this study

4’
that an accurate assessment of the risk associated with various water
quality violation conditions is based on the proper evaluation of the
statistical properties and type of distribution assumed for each
parameter in the model.

In conclusion, water quality regulations have failed to include

the inherent stochastic nature of the stream environment under their

control. Unrealistic standards have been enacted and remain enforced
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which are based on a deterministic evaluation of the stream environ-
ment. Implied in the method and results presented in this study is the
development of improved water quality regulations incorporating the
risks associated with various DO violations. It is believed that the
quantification of these risks will aid in the decision making processes
employed by water quality management agencies and promote further
investigations into the development of more realistic water quality
standards incorporating the natural random behavior of aquatic environ-

ments.



CHAPTER 5

UNCERTAINTY ANALYSIS OF STREAM DISSOLVED OXYGEN

5.1 INTRODUCTION

Water quality modeling and prediction is an exceedingly enig-
matic task. Such complexities are the result of the inherent random-
ness exhibited throughout the stream environment. Not only are the
physical and biological processes not clearly understood, but as shown
in Chapter 4, an imposing number of uncertainties are also associated
with the various processes occurring within the aquatic environment.
Several authors have already attempted to analyze these uncertainties.
For example, Loucks and Lynn (1966) investigated the effect of varia-
tions in streamflow and waste flow on the probability distribution of
DO; Padget and Rao (1979) presented a joint probability distribution
for BOD and DO; and Kothandaraman (1969) and Chﬁdderton et al. (1982)
have cited the stochastic nature of the model parameters in the
Streeter~Phelps equation.

Once the existence of such uncertainties is realized, the
prediction of the concentration of DO and critical location Xc (point
where the DO concentration is at a minimum) within a given reach of
stream is no longer deterministic. Rather, the DO deficit computed by
Eq. (1.5) and the critical location, computed by Eq. (1.7), are
themselves random variables, each associated with its own probability

distribution. However, in most cases, the exact distribution of the DO
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deficit and the critical location is not known and is, therefore,
frequently assumed.

Knowing the importance of proper water quality prediction in the
management of this vital resource, it is the intent of this chapter to
present an analysis for determining the appropriate probability
distribution associated with the DO concentration and critical location
Xc within a given reach of stream using first-order uncertainty
analysis. By doing so, the risk of violating a minimum level of DO at
any specified location in the stream system can be assessed. In
addition, confidence intervals for both the DO deficit and critical

location can also be derived from this information.

5.2 FIRST-ORDER ANALYSIS OF UNCERTAINTY

The use of first-order uncertainty analysis is quite popular in
all fields of engineering. Owing such popularity to its relative ease
in application to a wide array of problems. Detailed analysis and
development of first-order uncertainty methods can be found in Benjamin
and Cornell (1970) and Cormell (1972). Moreover, Burges and
Lettenmaier (1975) have utilized the methods of first-order analysis to
investigate the uncertainty in predictions of BOD and DO within the
stochastic stream environment.

Essentially, first-order uncertainty analysis provides a method-
ology for obtaining an estimate for the moments of a single random
variable or a function of several random variables. First-order
analysis estimates the uncertainty in a deterministic model formulation

involving parameters which are not known with certainty. By using
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first-order analysis, the combined effect of uncertainty in a model
formulation, resulting from the use of uncertain parameters, can be
estimated (Tung and Mays, 1980).

First-order uncertainty analysis can be characterized by two
major components: (1) single moment (variance) treatment of the random
variables and (2) the use of first-order approximation of any func-
tional relationship (e.g., the use of Taylor's series expansion). The
first major component implies that the random element of any variable
is defined exclusively by its first non-zero moment or simply the
variance of the variable itself. Thus, information pertaining to the
character of a random variable, Y, is provided solely by its mean )
and variance (oy)z.

The second component states that only the first-order terms in a
Taylor's series expansion will be utilized in the analysis of a func-
tional relationship containing random variables or processes. With
exception to the evaluation of the mean (in which second-order terms
may be utilized), any attempt to retain terms higher than first-order
in the expansion requires more information about the random variables
than that provided by their first and second moments (Cornell, 1972).

To present the general methodology of first-order analysis,
consider a random variable, Y, which is a function N random variable Xi

(multivariate case). Mathematically, Y can be expressed as:

Y=g (X (5.1)
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where X = (Xl’XZ""’XN)’ a vector containing N random variables Xi'
Through the use of Taylor's series expansion, the random variable Y

can be approximated by

2 3 2g
£ X 3 - - X
LA 10. U i oX; ]§=2<_ ;- X
1 N N
+= X azg — —_
2 . [——— X, - X)E, - X) (5.2)
i=1 j=1 DXian X=X i i’ i
in which z = (il,iz,...,iN), a vector containing the mean of N random
2
variables, = represents equal in the sense of a second order approxima-
tion.
Then, the second-order approximation of the expected value of Y
is
9 1 N N
£ (X = 2
E[Y] = g(X) + > I '}: [ 2°g ] COV[Xi’Xj] (5.3)
i=1 j=1 °X, 0%, -3
i3y X=X

in which Cov[xi,xj] is the covariance between random variables xi and
xj. It should be noted that the second term in the above equation
reduces to the sum of the variance if the random variables Xi are

independent.

It follows that the first-order approximation of the variance of

02 = var[v] T 3 g[@a} [@i] CovIXy,%,] G-
= | . -}z
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If the Xi's are independent, Eq. (5.4) reduces to

o8 o2 (5.5)

where i means equal in a first-order sense (Benjamin and Cornell,
1970; Burgess and Lettenmaier, 1975) and a; is the variance correspond-

ing to random variable Xi'

5.3 UNCERTAINTY ANALYSIS OF THE WATER QUALITY MODEL

In Chapter 4, significant discussion is given to the type of
uncertainties encountered in the modeling of the water quality process,
i.e., inherent, model, and parameter uncertainties. Knowing the
existence of these uncertainties in the aquatic environment, such
conditions should be incorporated into the modeling process in order to
improve model accountability. To do so, first-order uncertainty
analysis is utilized.

Utilizing a second-order Taylor's expansion, Eq. (1.5) can be

expressed as

2 — _— -_ - — ] — ] — | _—
DX = Dx(Kd’ Ka’ U, LO, Do) + PKd(Kd - Kd) + PKa (Ka - Ka) + PU (U -1um

1 ] — 1] -— 1 11) — 2 " —
+ PL (Lo - Lo) + PD (D0 - Do) + /2PK K (Kd - Kd) + %PK K (Ka - Ka)

o o d d a a

L " = 2 " - .2 n = .2
_ 1 - 1 -

+ ’iPU,U v < + /2PL0,L0 (Lo Lo) + % PDO’DO (Do Do)
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" _ "
+ P (K
Kd’Ka

+ PKd’Lo(Kd - Kd)(Lo -L)+P

" _ _ "
+ - -
P (Ka Ka)(U U) + PKa’Lo

K ,U (Ka - K )(Lo - L)

1" — - " - -
+ PKa’DO(Ka - Ka)(Do - Do) + PU,LO(U - U)(Lo - Lo)

" - - "
+ PU,DO(U - U)(Do - Do) + P

LD @, - f;)(no - 50) (5.6)
(o] (o]

where

]

[}
PX = an/ax and PXY = azDX/aan evaluated at the mean of the model

parameters (Kd,ﬁa,ﬁ,fo,ﬁo).

It follows that the second-order approximation of the expected

value of the DO deficit given by Eq. (1.5) at any location can be

expressed as:

"

Kd,Kd

N
|

X .U.1 .D 1
E[DX] DX( d,Ka,U,LO,Do) + 2Var[Kd]P

1"

1"t
+ %Var[Ka]PKa’Ka+ %Var{U]PU’U

"

Lo’Lo

"

1 1
+ 4Var[LO]P + /ZVar[Do]PDO,Do
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+ Cov[Ka,U]P; U (5.7)
a

in which Var[] and Cov[] represents the variance and covariance
operators, respectively. It éhould also be noted that provisions for a
positive correlation between parameters Ka and U are included in Eq.
(5.7). The existence and relevance of such a correlation is discussed
in detail in Chapter 4.

By considering all the model parameters in Eq. (1.5) to be

independent, the first-order approximation of the variance of the DO

deficit can be written as:

o;x = Var(D,] (P;d)2Var[Kd] * (P;a>ZVar[Ka] + (2 2Var[u]

+ (P; )2Var[Lo] + (P; )ZVar[DO] (5.8)
(o] (o]

In continuing this analysis, a first-order approximation
(assuming all model parameters to be independent) for the third (skew-

ness) and fourth (kurtosis) moments of the DO deficit are computed as

¥

b, = EL®_ - D)3/var[p '

{(P;( )SXK Var[Kd]l'5 + (PI'< )SX\K Var[Ka]l'5
d d a a

+ @ ¥, varvil® + (PI"O):" X‘LoVar[Lo]l'S

! 1.5 1.5 .
(pDO)SxDOVar[DO] } /Var[D_] (5.9)

+
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and

- 4 2
KDx = E[(DX - DX) ] /Var[Dx]

=

Leg ) Ky vark)? + (e ) K var(k,)’
d d a a

"4 2 ' 4 2
(PU) I(U var[U]™ + (PLO) I(LoVar[Lo]

+

P4 2 vor L2
+ (PDO) I{Do Var[DO] + 6(PKdPKa) Var[Kd] Var[Ka]

1 A 2 ] 1 2
+ 6(PKdPU) Var[Kd] Var([U] + 6(PKdPL°) Var[Kd] Var[Lo]

\J ] 2 L L} 2
+ 6(PKdPDo ) Var[Kd] Var[Do] + 6(PKaPU) Var[Ka] Var([U]

2 v o2
+ 6(PKaPL0) Var[Ka] Var[Lo] + 6(PKaPD0) Var[Ka] Var{U]

] \ 2 A ] 2
+ 6(PUPL0) Var[U] Var[Do] + 6(PUPD0) Var[U] Var[Do}

+

1 \} 2 2
6(PL0PD0) Var[Lo] Var[Do]} //Var[Dx] (5.10)

where )fD ’l(D are the skew and kurtosis of the DO

<« Dy 0O

deficit at any given location x and individual model parameters,

and X}),I(

respectively. Detail expressions of the first P' and second P" partial
derivatives of the DO deficit given by Eq (1.5) are outlined in

Appendix B.
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5.4 PROBABILITY DISTRIBUTION OF THE DISSOLVED OXYGEN DEFICIT

By considering the stream system to be an inherently random
environment, the DO deficit (or concentration) is itself a random
variable. Thus, in order to evaluate the probability of violating a
given water quality standard, knowledge of the probability distribution
associated with the instream DO deficit is required. Furthermore, by
knowing the distribution, it is then possible to quantify the DO
deficit at any location with a given level of confidence. Otherwise,
the quantification of the DO deficit at any location in a stream
environment under uncertainty is, at best, simply conjecture.

Although significant research has been conducted in the uncer-
tainty analysis of stream dissolved oxygen, most of these studies have
been concerned with variations in DO concentrations due to model para-
meter uncertainty (Kothandaraman and Ewing, 1969; Hornberger, 1979;
Chadderton et al., 1982). However, there have been some attempts to
derive analytical expressions for the probability distribution associ-
ated with the DO deficit. Thayer and Krutchkoff (1967) utilized a
stochastic birth and death process to obtain an expression for the
probability distribution of DO without considering the uncertainties of
the model parameters; Esen and Rathbun (1976) assumed the reaeration
and deoxgyenation rate coefficients to be normally distributed and
investigated the probability distribution for DO and BOD using a random
walk approach; Padgett et al. (1977) developed a joint probability
density function for BOD and DO by solving a random differential

equation; and Padgett and Rao (1979) utilized a nonparametric
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probability density estimator to again obtain an expression for the
joint probability density function of BOD and DO. From a practical
viewpoint, the main disadvantage to each of the aforementioned methods
is that the resulting probability distributions derived for the DO
deficit are too complicated. Such sophisticated approaches make it
difficult for most engineers to assess the probability of violating a
given water quality standard when using the methods above.

Thus, in support of a more tractable methodology, the present
study is directed toward the utilization of commonly used probability
distributions to describe the random characteristics of the DO deficit
computed by the Streeter-Phelps equation, i.e., Eq. (1.5). The candi-
date probability distributions considered for the DO deficit include
the normal, lognormal, gamma, and Weibull distributions. The mean and
variance of the DO deficit at any given location are estimated by
first-order analysis using Eqs. (5.7) and (5.8). The parameters in
each of the candidate probability distribution models can be obtained
through the moment-parameter relationships shown in Table 4,2,

Once the first two moments of the DO deficit are estimated and
the probability distribution of the model is assumed, the statistical
characteristics of DO deficit can be completely defined. This is
because the moments of any order of a random variable having a
specified probability density function are uniquely related to the
parameters in the probability model. Relations of the skew coefficient
and kurtosis to the parameters in the candidate probability models are

given in Table 5.1 (Hastings and Peacock, 1974; Patel et al., 1976).



TABLE 5.1 THIRD AND FOURTH MOMENTS FOR SEVERAL CONTINUOUS PROBABILITY DISTRIBUTIONS

DISTRIBUTION SKEWNESS KURTOSIS REMARK
Normal 0 3.0
4 3 2 2
Log-normal (w+ 2)y w-1 w + 2w + 3w - 3 w=1+ CV
Gamma® 2 [a 3 + 6/a
Weibulll’? 33 r1 + 3/a) 34 [ + 4/a)

lParameters a and B are defined in Table 4.2.

These formulae are for computing the moments about the origin; not for the skewness and kurtosis
directly.

GLT
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Instead of making such a strong assumption about the probability
density function of a specific form for the DO deficit, an approach of
using Fisher-Cornish asymptotic expansion (Fisher, 1950; Fisher and
Cornish, 1968; Kendall and Stuart, 1977) is applied. This method
relates the quantile of any standardized distribution to the
standard normal quantile and higher order moments. 1In this case, the
quantile of order p for the DO deficit at any location x, can be
approximated without making an assumption about its distribution as

follows

Dx(p) = E[Dx] + (p Y Var(Dx) (5.11)

in which Dx(p) is the p-th order quantile of standardized DO deficit

with skew coefficient X5‘ and kurtosisI(D and other higher moments of
X X

Dx. Because only the first four moments of DX are approximated
through first-order analysis in this study, i.e., Egs. (5.7) - (5.10),
Fisher-Cornish asymptotic expansion for Ep can be expressed as

=zt X‘Dxnz(zp)/e +KDXH3(zp)/24

2
- 2 .

¥ DX[( H3(zp) + Hl(zp)]/36 (5.12)

in which zp is p-th order quantile from standard normal distributionm,

Hl(zp), Hz(zp) and H3(zp) are Hermit polynomials which can be computed

by (Abramowitz and Stegun, 1970)

r r2 r-2 r4 r-4 r6 r-6
Hr(zp) = ZP - 5217 Zp + -2-!’_2T ZP - -2—5‘_5T ZP + ... (5.13)
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5.5 PERFORMANCE EVALUATION OF THE DISTRIBUTIONS FOR DISSOLVED OXYGEN
DEFICIT

The idea of applying first-order analysis for estimating the
statistical moments of the DO deficit, along with making an assumption
of the probability density function for the DO deficit, is straight-
forward and practical. However, among the various probability distri-
bution models that are commonly used, the ultimate question to be
raised is, "which probability distribution model (or models) best
describe the random behavior of DO deficit in a stream?"

To evaluate the relative performance of each of the candidate
probability distributions considered, three performance criteria are
adopted herein: (1) biasness (BIAS), (2) mean absolute error (MAE),
and (3) mean square error (MSE). Each of the three criteria are used
simultaneously in an attempt to identify the best probability model for
describing the random characteristics of DO deficit at a given
location.

These criteria are mathematically defined as

(i) Biasness,

1
BIAS = (X . - x)dp (5.14)
o Pf P
(ii) Mean absolute error,

dp (5.15)
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(iii) Mean square error

1
MSE = R - 24 5.16
Jo(xp,f xp) P ( )

where xp and Qp,f are, respectively, the true value and the estimate of
the p-th order quantile determined from the assumed probability model,
f. It should be noticed that the true value of the quantile for the DO
deficit cannot be determined exactly due to the complexity of Eq.
(1.5). As an alternative, Monte Carlo simulation is applied for
obtaining and estimate of the 'true' quantile for the DO deficit. The
Monte Carlo simulation for this task is described in the following
subsection.

5.5.1 Derivation of the 'True' Distribution of DO by Monte Carlo
Simulation

Recall, that in this study, the DO deficit at any downstream
location x can be computed by Eq. (1.5). However, when applying Eq.
(1.5) to a stream environment under uncertainty, the model parameters
(Kd, Ka’ u, Lo’ and Do) are treated as random variables, each
characterized by their own probability distribution. Thus, the DO
deficit computed by Eq. (1.5) is itself a random variable characterized
by its own distribution. An illustration of the distribution of the DO
deficit is given in Figure 5.1.

To determine the probability distribution of the DO deficit at a
given location, Monte Carlo simulation techniques are employed,

allowing each of the model parameters (K Ka’ U, Lo’ and Do) to be

d’



DO Concentration

—-Dosat
PDF of PDF of
D D
/s ,
~
~
e
N - T /R — T = D4
N S\
/ \
N - :
—
N
N
N
\
Possible DO :
Trajectory \
N
| ]
X X
1 Distance 2

Figure 5.1 Schematic Diagram Of The Probability Density
Function For The DO Deficit

179



180

assigned one of four distributions: normal, lognormal, gamma, and
Weibull. (A detailed discussion of the elements of Monte Carlo
simulation has already been presented in Chapter 4.) In additioq, the
statistical properties of the model parameter used throughout this
chapter are listed in Table 5.2. Simulation procedures are performed
such that 10 groups of 999 DO deficits are generated using Eq. (1.5)
and one of the four distributions mentioned above for each of the model
parameters. For example, during the first simulation run, 10 groups of
999 DO deficits (using Eq. 1.5) were generated under an independent and
all normal assumption for all the water quality parameters. Then, in
successive runs, different distributions are assigned to each of model
parameters. It should also be pointed out that provisions for
considering a positive correlation (p = 0.8) between model parameters
Ka and U, are included in this simulation exercise. Noting that when
such a correlation is considered, a bivariate normal distribution is
utilized.

During the simulation runs, each of the 10 groups of 999 DO
deficits are ranked in ascending order. Specifically, the minimum
value of the DO deficit generated is assigned to position 1 and the
maximum value to position 999. Then, quantiles of the DO deficit are
computed for several probability levels p by simply locating the value
of the deficit in position (999 + 1)p. Additionally in order to reduce
sampling errors, each of the respective quantiles obtained for the 10

groups are then arithmetically averaged.
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Table 5.2 THE STATISTICAL PROPERTIES OF THE MODEL PARAMETERS USED TO
INVESTIGATE THE DISTRIBUTION OF THE DISSOLVED OXYGEN DEFICIT
AND CRITICAL LOCATION

MODEL PARAMETERS MEAN STANDARD UNITS
DEVIATION
-1
Kd 0.35 0.10 days
K, 0.70 0.20 days ™t
10.00 3.00 miles/day
L 18.00 5.00 mg/1

D 1.00 0.30 mg/1l
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5.5.2 Results and Discussions

In this study, the analysis of the goodness-of-fit for the
probability distribution of the DO deficit are conducted within a
single reach (described in Table 5.2) at downstream locations of 10 and
20 miles. For the purpose of illustration, a sample result of the DO
deficit quantiles under various distributional assumptions and the
corresponding BIAS, MAE, and MSE is given in Table 5.3. Results of
more extensive experiments are given in Tables 5.4(a)-(c) through
5.6(a)-(c). Examining the biasness presented for each of the cases in
Tables 5.4(a)-(b), it is evident that the assumption of a lognormal
distribution for the DO deficit is consistently the lowest reported
value. In fact, upon review of Tables 5.5(a)-(b) and 5.6(a)-(b) in
which the MAE and MSE are tabulated, the lognormal distribution is
again consistently the lowest reported value for each combination of
distribﬁtion and correlation assumed for the model parameters. When
combining the information provided by the three fitting criteria, it is
determined that among the candidate distributions investigated the
lognormal distribution presents the 'best' fit to the simulated values
for the DO deficit. Moreover, it one were to select a second best
distribution according to Tables 5.4-5.6, the selection of the gamma
distribution would be made.

Depending on the probability distribution assumed for the para-
meters in the water quality model, Eq. (1.5), the relative performance,
according to the three criteria, of the normal distribution, Weibull

distribution, and the assumption of a Fisher-Cornish asymptotic



TABLE 5.3 EXAMPLE OF THE RESULTS OBTAINED FOR THE DISTRIBUTION OF DISSOLVED OXYGEN DEFICIT

(mg/1)
PROB. NORMAL LGNML GAMMA WEIBULL FISHER- SIMUL.
CORNISH
.010 1.27 2,22 1.98 1.58 - .40 1.48
.025 1.82 2.49 2.29 2.01 1.07 1.80
.050 2.29 2.74 2.59 2.42 2.09 2.08
.100 2.84 3.06 2.97 2.92 3.03 2.46
.150 3.21 3.30 3.25 3.28 3.54 2.75
.200 3.50 3.51 3.49 3.56 3.89 2.98
.300 3.98 3.87 3.87 4.02 4.36 3.38
.400 4.39 4.21 4,24 4,42 4.69 3.72
.500 4,77 4,55 4.60 4,79 4.95 4.06
.600 5.15 4.92 4.99 5.15 5.20 4,44
.700 5.56 5.35 5.43 5.54 5.45 4.83
.750 5.78 5.60 5.67 5.74 5.59 5.06
.800 6.04 5.89 5.95 5.97 5.76 5.34
.850 6.33 6.26 6.26 6.24 5.97 5.67
.900 6.70 6.75 6.75 6.56 6.27 6.09
.950 7.24 7.55 7.55 7.03 6.81 6.79
.975 7.72 8.32 8.32 7.42 7.41 7.36
.990 8.27 9.31 9.31 7.87 8.31 8.06
BIAS .5705 .5577 .5648 .5683 .5803
MAE .5758 .5577 .5648 .5730 .6564
MSE .6013 .5738 .5790 .5999 .7403

€81



TABLE 5.4(a) BIASNESS FOR THE DO DEFICIT BETWEEN SIMULATION RESULTS AND VARIOUS ASSUMED DISTRIBUTIONS

AT A DOWNSTREAM LOCATION OF 10 MILES.

DISTRIBUTIONS ASSUMED FOR MODEL PARAMETERS

BTASNESS (in mg/1)

Ky K, U L, D p(K,,U) N LN G W FC
N N N N N 0.0 .593 .580 .587 .591 .593
N N N N N 0.8 .561 .547 .557 .558 .561
LN LN LN LN LN 0.0 .560 547 .554 .557 .554
LN LN LN LN LN 0.8 .568 .554 .564 .565 .563
G G G G G 0.0 .560 547 .554 .558 .556
W W W W W 0.0 .571 .558 .565 .568 .580
LN N G W LN 0.0 .537 .524 .531 .535 541

NOTE: N-Normal; LN-Lognormal; G-Gamma; W-Weibull; FC-Fisher-Cornish

%781



TABLE 5.4(b) BIASNESS FOR THE DO DEFICIT BETWEEN SIMULATION RESULTS AND VARIOUS ASSUMED DISTRIBUTIONS
AT A DOWNSTREAM LOCATION OF 20 MILES.

DISTRIBUTIONS ASSUMED FOR MODEL PARAMETERS BIASNESS (in mg/1)

Kd Ka U Lo Do p(Ka,U) N LN G W FC
N N N N N 0.0 417 .401 412 .413 417
N N N N N 0.8 431 .416 426 428 .431

LN LN LN LN LN 0.0 .370 .354 .365 .366 .366

LN LN LN LN LN 0.8 .398 .383 .394 «395 .394

NOTE: N-Normal; LN-Lognormal; G-Gamma; W-Weibull; FC-Fisher-Cornish

G81



TABLE 5.5(a) MEAN ABSOLUTE ERROR (MAE) FOR THE DO DEFICIT BETWEEN SIMULATION RESULTS AND VARIOUS
ASSUMED DISTRIBUTIONS AT A DOWNSTREAM LOCATION OF 10 MILES.

DISTRIBUTIONS ASSUMED FOR MODEL PARAMETERS MEAN ABSOLUTE ERROR (in mg/1)

K, K U L, D, p(K_,1) N LN G W FC
N N N N N 0.0 .597 .580 .587 .610 .597
N N N N N 0.8 .607 .547 .557 .633 .612

LN LN LN LN LN 0.0 .596 .547 .554 . 600 .558

LN LN LN LN LN 0.8 .624 .554 .564 .628 .582
G G G G G 0.0 .583 .547 .554 .591 .559
W W W W W 0.0 .576 .558 .565 .573 .656

LN N G W LN 0.0 .548 .524 .531 .559 .598

NOTE: N-Normal; LN-Lognormal; G-Gamma; W-Weibull; FC-Fisher-Cornish

981



TABLE 5.5(b) MEAN ABSOLUTE ERROR (MAE) FOR THE DO DEFICIT BETWEEN SIMULATION RESULTS AND VARIOUS

ASSUMED DISTRIBUTIONS AT A DOWNSTREAM LOCATION OF 20 MILES.

DISTRIBUTIONS ASSUMED FOR MODEL PARAMETERS MEAN ABSOLUTE ERROR (in mg/1)

Kd Ka U L0 D0 p(Ka,U) N LN G W ¥C
N N N N N 0.0 . 458 .401 412 .488 .458
N N N N N 0.8 462 .416 .426 .487 .460

LN LN LN LN LN 0.0 .461 .354 .365 A44 . 408

LN LN LN LN LN 0.8 .475 .383 .394 464 422

NOTE: N-Normal; LN-Lognormal; G-Gamma; W-Weibull; FC-Fisher-Cornish

L81



TABLE 5.6(a) MEAN SQURAE ERROR (MSE) FOR THE DO DEFICIT BETWEEN SIMULATION RESULTS AND VARIOUS
ASSUMED DISTRIBUTIONS AT A DOWNSTREAM LOCATION OF 10 MILES.

DISTRIBUTIONS ASSUMED FOR MODEL PARAMETERS MEAN SQUARE ERROR (in mg/1)

Kd Ka U Lo DO p(Ka,U) N LN G W FC
N N N N N 0.0 .623 «590 .592 0635 .623
N N N N N 0.8 .644 .562 +567 +669 .654

LN LN LN LN LN 0.0 .638 .551 .566 644 +584

LN LN LN LN LN 0.8 .669 .558 .577 .676 .623
G G G G G 0.0 .622 .551 .561 .633 .589
W W W w W 0.0 .601 .574 .579 .600 . 740

LN N G W LN 0.0 .585 .530 .538 «593 666

NOTE: N-Normal; LN-Lognormal; G-Gamma; W-Weibull; FC-Fisher-Cornish

881



TABLE 5.6(b) MEAN SQUARE ERROR (MSE) FOR THE DO DEFICIT BETWEEN SIMULATION RESULTS AND VARIOUS
ASSUMED DISTRIBUTIONS AT A DOWNSTREAM LOCATION OF 20 MILES.

DISTRIBUTIONS ASSUMED FOR MODEL PARAMETERS MEAN SQUARE ERROR (in mg/1)
| W
K, K U L, D p(K_,U) N LN G FC
N N N N N 0.0 .489 434 422 .513 .489
N N N N N 0.8 .488 .435 431 .509 .486
LN LN LN LN LN 0.0 .502 .358 .381 .486 .435
LN LN LN LN LN 0.8 .511 .389 L411 .507 448

NOTE: N-Normal; LN-Lognormal; G-Gamma; W-Weibull; FC-Fisher-Cornish

681
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expansion, vary. However, of the majority of cases investigated, the
assumption of a Fisher-Cornish asymptotic expansion for the distribu-
tion of the DO deficit performs better or equally as well when compared
with the results for the normal and Weibull distributions.

Recall, the Fisher-Cornish asymptotic expansion approximates the
quantiles of any standardized random variable depending on statistical
moments higher than order two. Hence, the accuracy of approximating
the distribution of the DO deficit using the Fisher-Cornish expansion
relies heavily on the accurate estimation of the skew coefficient and
kurtosis, which are in turn estimated by first-order analysis in this
study. Knowing this fact, close examinations are made to compare the
values of the skew coefficient and kurtosis of the DO deficit
calculated by the first-order analysis with those from the simulation.
Discrepancies between the first-order analysis approximations and
sample statistics from the simulation were observed. The results of
this investigation reveal that such discrepancy becomes more pronounced
as the order of moment increases. This indicates that the skew coeffi-
cient and kurtosis of the DO deficit estimated by first-order analysis
1s not quite satisfactory. This is most likely attributed to the
nonlinearity involved in the computation of the DO deficit using
Eq. (1.5), which makes the use of first-order analysis less desirable
for estimating high order moments (Gardner et al., 1981; Hornberger and

Spear, 1981).
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5.6 UNCERTAINTY ANALYSIS OF THE CRITICAL LOCATION

As a result of the uncertainty involved in the stochastic stream
environment, the determination of the critical location, using Eq.
(1.7), is itself a random variable, commanding a similar analysis as
that performed on the DO deficit. Thus, to estimate the distribution
of the critical location under such conditions, first-order analysis is
agin employed. To illustrate the concept of the probability
distribution associated with the critical, a schematic diagram is
provided in Figure 5.2.

Recalling the expression for determining the critical location
given by Eq. (1.7), Taylor's series first-order expansion leads to bhe

following approximation

l — —_— 1 —_ 1
Xc =X (Kd,Ka,U,L ,D ) + FK (Kd Kd) + FK (K - Ka)
d a
] - 1 - ] -
+ FU(U -0) + FL (L0 - Lo) + Fp (Do - DO) (5.17)
o . o
where
] 1] 2 -
FX = EXC/BX and FX,Y = 9 Xc/aXbY evaluated at the mean values

of the model parameters. The analytical expressions for each partial
derivative can be found in Appendix C.
It follows that the first-order approximation of the expected

critical location X , can be written as
c
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l R e—
E[x ] = X (K »K U,L D ). (5.18)

This simply is Eq. (1.5) evaluated at the mean of the model parameter.
The use of first-order analysis can be continued to obtain
estimates for the variance, skewness, and kurtosis of Xc as follows:
2 T 12
9, = E[(Xc - X)°]

X c
c

Var[Xc]

12 12
FKd Var(Kd) + FKa Var(Ka) + F

r2

U

=

Var (U)

12 12

+ FLo Var(Lo) + FDO Var(Do) (5.19)

—
"
il

E[(X, - iic)3]/Var[xc]1'5

=

13 13
{FK Ve ar®p1'> + w0 Py varx)1'e?
d d a a

'3 13
+ Fy ¥y [Var(m)]1*> + FLO XDO [Var(Lo)]l'S

'3 1.5 1.5
+ FDOxDO [Var(D )] }/[Var(XC)] (5.20)

=
[

E[(X, - X)*1/var(x_]?

=

x Ky K4K [Vax'(Ka)]2

{F ‘K [Var(Kd)]2 +F
d d a

K
a

+ FI'J‘*KU [Var (U) ]2 +FI":KLO (var(x, )1’
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+ F]')‘*KD [Var(Do)]z}/ [Var(XC)]2 (5.21)

(o] (o]

where‘XX andI(X are the skew coefficient and kurtosis of the critical

location, respectively.

5.7 PROBABILITY DISTRIBUTIONS FOR THE CRITICAL LOCATION

Unlike the assessment of the probability distribution for the DO
deficit in which there have been several previous studies made, the
assessment of an appropriate distribution for describing the random
characteristics of the critical location has remained virtually
unexplored to date. Throughout the review of the literature available
on the stochastic analysis of the stream environment, most of these
articles are primarily concerned with DO-BOD interactions, and although

" the analysis of the critical location in a stochastic environment
remains relatively unaccounted for in the literature, this is not to be
taken to mean that such information is meaningless or of little signi-
ficance.

Quite the contrary, the identification of the critical location
plays a major roie in the regulatory process and monitoring of any
stream system to which waste effluents are discharged. Because the
critical location is the point at which the DO concentration is at its
minimum. This point, from a monitoring viewpoint, has the greatest
significance within any reach of the stream system. However, esti-
mating the critical location within a stochastic environment is not an

easy task.
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Realizing the importance of such considerations, it is the
intent of the remaining sections of this chapter to present an analysis
for estimating the probability distribution associated with the criti-
cal location. Again, the objective of the investigation is to examine
the appropriateness of using the more commonly available probability
distribution models in describing the random characteristics of the
critical location, Xc' Specifically, the assumed distributions of
normal, lognormal, gamma, and Weibull are again applied, along with the
Fisher-Cornish asymptotic expansion.

5.8 PERFORMANCE EVALUATION OF THE DISTRIBUTION ASSUMED FOR THE

CRITICAL LOCATION

Identical procedures as those employed for evaluating the
candidate probability distributions for the DO deficit are applied
herein, except the function of interest is now that of the critical
location, Xc’ given by Eq. (1.7). Values of performance criteria, i.e.
BIAS, MAE, MSE, under various conditions are given in Tables 5.7-5.9,
Examining the results presented in Tables 5.7-5.9, the choice of the
distribution for the critical location is not as clearly revealing as
that for the DO deficit. For the majority, the gamma distribution
appears to be best in describing the randomness of Xc according to the
MAE and MSE criteria.

In general, the overall performances of all five distributions
considered somewhat less than desirable, especially for Fisher-Cornish
asymptotic expansion. These results agaln place serious doubt on the

estimation ability of first-order analysis in conditions where the



TABLE 5.7 BTASNESS FOR THE CRITICAL LOCATION BETWEEN SIMULATION RESULTS AND VARIOUS ASSUMED

DISTRIBUTIONS.,

DISTRIBUTIONS ASSUMED FOR MODEL PARAMETERS

BIASNESS (in miles)

Kd Ka U Lo DO p(Ka,U) N LN G W FC
N N N N N 0.0 -.782 -.848 -.808 -.800 -.782
N N N N N 0.8 .0342 .010 .039 041 .028
LN LN LN LN LN 0.0 -.703 -.768 -.728 -.720 -.726
LN LN LN LN LN 0.8 .011 -.014 .015 .017 -.059
G G G G G 0.0 -.795 -.861 -.820 -.813 -.811
/

1Y) W W W W 0.0 -.703 -.769 -.728 -721 -670
G LN N G W 0.0 -.645 -.711 -.670 -.663 -.638

NOTE: N-Normal; LN~Lognormal; G-Gamma; W-Weibull; FC-Fisher-Cornish

961



TABLE 5.8 MEAN ABSOLUTE ERROR (MAE) FOR THE CRITICAL LOCATION BETWEEN SIMULATION RESULTS AND VARIOUS
ASSUMED DISTRIBUTIONS.

DISTRIBUTIONS ASSUMED FOR MODEL PARAMETERS MEAN ABSOLUTE ERROR (in miles)

Kd Ka U Lo Do p(Ka,U) N LN G W FC
N N N N N 0.0 .831  1.085 .889 .834 .831
N N N N N 0.8 .219 .346 . 240 301 4.269

LN LN LN LN LN 0.0 .985 .768 .728 .934 .735

LN LN LN LN LN 0.8 .354 .077 .126 574 4.798
G G G G G 0.0 .955 .922 .820 .941 .823
W W W W W 0.0 .713 .940 .751 721 1.858
e LN N G W 0.0 . 645 .954  .751 .664 .699

NOTE: N-Normal; LN~Lognormal; G-Gamma; W-Weibull; FC-Fisher-Cornish

L61



TABLE 5.9 MEAN SQUARE ERROR (MSE) FOR THE CRITICAL LOCATION BETWEEN SIMULATION RESULTS AND VARIOUS

ASSUMED DISTRIBUTIONS.

DISTRIBUTIONS ASSUMED FOR MODEL PARAMETERS

MEAN SQUARE ERROR (in miles)

Kd Ka U Lo Do p(Ka,U) N LN G %) FC
N N N N N 0.0 1.697 1.306 1.124 1.890 1.697
N N N N N 0.8 .364 .571 JA44 462 5.099

LN LN LN LN LN 0.0 1.672 .892 .857 1.708 1.240

LN LN LN LN LN 0.8 464 .113 .167 .739 5,787
G G G G G 0.0 1.653 1.129 1.004 1.765 1.402
\ W W W W 0.0 1.374 1.012 .821 1.497 2.506
G LN N G W 0.0 1.098 1.066 .821 1.253 1.211

NOTE: N-Normal; LN-Lognormal; G-Gamma; W-Weibull; FC~Fisher-Cornish

861
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functional relationship of interest is highly nonlinear. It appears
that the ability of first-order analysis to accurately estimate higher
order moments (such as skewness and kurtosis) of a functional relation-
ship diminishes as the degree of nonlinearity of the function
increases,

Before a final decision is made as to the type of distribution
to be selected for the critical location among those considered, the
results given in Tables 5.10(a) and 5.10(b) should be considered. In
these tables, the 90 percent confidence intervals of Xc for each of the
assumed distributions are reported; along with the confidence intervals
from Monte Carlo simulation and the Fisher-Cornish asymptotic expan-
sion. It should be pointed out that the 90 percent confidence inter-
vals reported for the assumed distributions in Table 5.10(a) are
independent of the type of distribution assumed for the model para-
meters. This is due to the fact that each of the common distributions
utilized here can be appropriately characterized by the mean and
variance of Xc’ which is in turn computed solely by the mean and
variance of the model parameters. The mean and variance of the model
parameters does not change as the distributions assumed for these
parameters are varied.

In addition, separate values are reported for a zero and posi-
tive correlation between model parameters Ka and U, Although such
considerations are not included in the development of the moments for
XC using first-order analysis, such a correlation can be considered

during the simulation portion of these procedures.
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NINETY PERCENT CONFIDENCE INTERVALS (MILES) FOR THE CRITICAL LOCATION
UNDER VARIOUS DISTRIBUTION ASSUMPTIONS

PR _,0) NORMAL LOGNORMAL GAMMA WEIBULL
0.0 (7.24,29.1) (9.53,30.6) (8.80,30.6) (8.10,28.4)
0.8 (11.5,24.8) (12.3,25.5) (12.1,25.5) (10.9,24.6)

TABLE 5.10(b)

NINETY PERCENT CONFIDENCE INTERVALS (MILES) FOR THE CRITICAL LOCATION
USING MONTE CARLO SIMULATION AND THE FISHER-CORNISH ASYMPTOTIC EXPANSION

DISTRIBUTIONS
ASSUMED FOR
MODEL PARAMETERS

NINETY PERCENT
CONFIDENCE INTERVAL

P(K ,U) Ky Kg U L D Simulation Fisher-Cornish
a (o] (o]
N N N N N (8.57,32.9) (7.24,29.1)
LN LN LN LN IN (9.78,32.3) (8.10,29.7)
0.0 G 6 G G G (9.24,32.8) (7.76,29.5)
W W W W W (10.6,31.7) (6.73,27.4)
G LN N G W (8.55,31.6) (7.04,28.9)
N N N N N (11.1,25.5) (13.0,23.3)
0.8
LN LN LN LN 1IN (12.3,25.2) (15.7,24.6)

Note:

N-Normal; LN-Lognormal; G-Gamma; W-Weibull
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When actually comparing the numerical values presented in Tables
5.10(a) and 5.10(b), it is obvious that the range of values presented
are quite extended. For example, Table 5.10(b) reports the 90 percent
confidence interval for Xc’ using the simulation procedures, to be
between 8.57 and 32.9 miles under all normal and uncorrelated assump-
tions for the model parameters. It is also interesting to observe
that, when the correlation coefficient between Ka and U exists, the
resulting 95 percent confidence interval length for XC is nearly
shortened by half.

Finally, the percentage of overlap between the confidence
intervals computed under each of the assumed distributions (normal,
lognormal, gamma, Weibull, and Fisher-Cornish) and that obtained
through simulation procedures are reported in Table 5.11. Again, the
assumption of a gamma distribution for the critical location results in
the closest characterization of the 'true' confidence intervals
" obtained through simulation. This provides an additional piece of
evidence supporting the use of a gamma distrubtion to model the random
behavior of the critical location.

Unfortunately, from a practical viewpoint, the results obtained
for the confidence intervals, in Tables 5.10(a) and 5.10(b), provide
little, if any, significant information in identifying an exact or
narrow range containing the critical location in a stochastic stream
setting. The results from this approach are simply too widespread to
be of any use in improving the monitoring or sampling process. The

wide range of values reported can again be explained by the highly



TABLE 5.11 PERCENTAGE OF OVERLAPPING FOR NINETY PERCENT CONFIDENCE INTERVALS WITH THAT OF SIMULATION

UNDER VARIOUS DISTRIBUTIONAL ASSUMPTIONS

DISTRIBUTIONS ASSUMED FOR MODEL PARAMETERS

PERCENTAGE OF OVERLAPPING FOR 90% C.I.

p(Ka,U) Kd Ka U Lo Do N LN G W FC
N N N N N 84.4 86.6 89.6 81.5 84,4
LN LN LN LN LN 85.8 92.4 92.4 82,7 88.4
0.0 G G G G G 94.3 89.4 90.7 81.3 86.0
W 1) W W W 87.7 94.8 94.8 94.4 79.6
G LN N G W 89.2 91.4 94,6 86.1 88.3
N N N N N 92.4 91.7 93.1 93.8 71.5
0.8 LN LN LN LN LN 96.9 100.0 100.0 95.3 69.0

¢0¢
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nonlinear character associated with Eq. (1.7). However, the importance
of identifying the critical location has not been forgotten. In
continuing the search, the following chapter is devoted in entirety, to
finding a meaningful location for the critical point within a given

reach of stream under uncertainty.



CHAPTER 6
DETERMINATION OF THE CRITICAL LOCATIONS
IN A STOCHASTIC STREAM ENVIRONMENT
6.1 INTRODUCTION

Simply by its definition, the importance of knowing the location
of the critical point in a stream system receiving waste discharge is
obvious. In a deterministic stream system, the critical point repre-
sents a unique location at which the dissolved oxygen concentration is
at a minimum. From a regulatory viewpoint, it is this location which
presents the water quality managing agency with the greatest threat to
water quality violation (i.e., DO concentrations that are below the
minimum standard). No other point within each reach of the stream
system possesses such character. Thus, in order to appropriately
protect the stream environment from excessive DO depletion, the ability
to determine the location of the critical point commands the water
quality manager's greatest attention.

Moreover, great savings in terms of water quality monitoring
costs can be accomplished if the location of the critical point can be
identified or at least established within a narrow range within the
stream system. By knowing the general location of the critical point
within each reach, monitoring stations could be established in these
regions without considering points outside the region which present a

lesser threat to violate water quality standards. Consequently, savings
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in the costs of laboratory analysis, sampling, and monitoring devices
would be realized.

In a deterministic stream system subjected to point-source
pollution, finding the critical location within a reach is quite
straightforward. By simply inputting the numerical values associated
with the stream parameters into Eq. (1.7), the critical location is
determined. However, as was shown in Chapter 5, the ability to identify
the critical location in a stochastic stream environment is no longer
such a trivial computation, and although an appropriate probability
distribution is established for the critical location in Chapter 5, the
use of confidence interval information was shown to be practically
meaningless in effectively identifying the location of the critical
point. For this reason, it is the intent of this chapter to present
methodologies by which the critical location in a stochastic stream
environment can be determined.

6.2 DEFINITIONS OF THE CRITICAL LOCATION IN A STOCHASTIC STREAM

ENVIRONMENT

As discussed in Chapters 4 and 5, the stream environment is
inherently random by nature, and as such, it should be treated
appropriately in the modeling of its components. For instance, having
accepted the prevalent stochastic behavior within the stream
environment, each of the model parameters in Eq. (1.7) for computing the
critical location should be treated as random variables. In doing so,
the uncertainties in the model parameters give rise to the random

behavior present in the computation of the critical location using Eq.
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(1.7). In fact, as was shown in Chapter 5, the uncertainty associated
with the ecritical location under such conditions is quite extended.

In order to provide an effective means of monitoring the effects
of waste discharge on the DO profile within any reach, the critical
location in a stochastic stream environment must be defined. 1In this
chapter, the critical locations are determined using the following four
criterié:

(1) the location determined by Eq. (1.7) using the mean values

of water quality parameters, Xél);
(2) the location at which the variance of the DO deficit given
by Eq. (5.8) is maximum, X(z);
(3) the location where the probability of violating a specified
DO standard is maximum, X£3); and

(4) the location "most likely" to be critical according to the

distribution model assumed for the critical location in a

(4)

particular reach XC .
The significance and rationale of each of these criteria in defining the
critical location in a stochastic stream environment are discussed in
the following sections.

6.2.1 The Critical Location Determined by Using Mean Valued Water
Quality Parameters

Basically, this is a deterministic approach for finding the
critical location in which the mean values of the water quality para-
meters are utilized in Eq. (1.7). However simplistic in idealogy, the

utility of such an approach for locating the critical point should not
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be initially discounted. This approach can become a competitive tool as
compared with the other methods. 1In fact, such an approach may lead to
results which are quite similar to those obtained from more sophisti-
cated techniques. 1In theory, the critical location, so determined,
corresponds approximately the averaged critical location.

6.2.2 Critical Location Associated with the Maximum Variance of DO
Deficit

To understand the utility of this second criteria, recall the DO
profile presented in Figure 1.2, noting that such a figure exists only
when a stream environment is considered deterministically. On the other
hand, in a stochastic system, the DO deficit at any point in the stream
system is no longer a fixed, unique value. Moreover, the value of a DO
deficit at any location is subject to a certain degree of variation.

The location with a maximum variance of the DO deficit is the one
associated with the largest uncertainty. By definition, the rationale
for considering such a location for the critical point is evident
because this point may possess significant potential for violating a
minimum specified standard. Although the point of minimum expected DO
might be known, this location may not represent a point posing the
greatest threat to water quality violation. For instance, consider a
point upstream and downstream of the location with minimum expected DO.
If the variance of the DO deficit at either of these points is larger
than that at the point of minimum DO, these other points may, in fact,

pose a greater threat to possible violations of minimum DO standards.
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This consideration is obviously more important as the DO profile near
the point of minimum DO becomes less acute.

Several authors have already attempted to analyze the variance
associated with the DO profile under the assumption of a stochastic
stream environment. In review of such articles, conflicting results
have been reported. Thayer and Krutchkoff (1967) and Padgett (1978)
have cited that the location of maximum DO variance coincides with the
point of minimum expected DO. On the other hand, Burger and Lettenmaier
(1975) and Esen and Rathbun (1976) have contradicted this earlier
research, citing that the point of maximum variance is located at a
downstream distance approximately twice that of the location with
minimum expected DO.

Although its true location remains unresolved, the importance of
knowing the point at which the variance of the DO deficit is maximum is
quite clear. This point uniquely represents the location in the stream
system where the uncertainty in DO prediction is the largest. Thus in
recognizing the threat of water quality violation associated with this
point, it has been selected as one of the possible criteria for deter-
mining the critical location.

6.2.3 Critical Location Associated with the Maximum Probability of
Violating Water Quality Standard

Unlike any other point in the stream system, the location where
the probability of violating a minimum DO standard is maximum represents
a point posing the greatest threat to water quality transgression. No

other point possesses such character. By definition, the importance of
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this location is self-evident. It is this location, amongst all others
in the stream environment, at which the potential for the destruction of
aquatic biota is most vulnerable,

Noting the significance of such a point, the knowledge of the
location associated with the maximum probability of violating minimum DO
concentrations can play an important role in the overall management of
- stream water quality. From this discussion, it is quite obvious that
such a point should be considered as one of the principal candidates for

the critical location in the stochastic stream environment.

6.2.4 The Location Most Likely to be Critical

When acknowledging the uncertainty associated with the stream
environment, the computation of the critical location, using Eq. (1.7),
no longer reveals a fixed, unique value. Instead, the critical location
is subject to probabilistic considerations, characterized by a unique
probability distribution. Whether the distribution of the critical
location is assumed or known, such information is the basis for this
final criteria.

As with any distribution, the value most likely to occur is more
commonly known as the mode. Thus, when considering the distribution of
the critical location, it is this point amongst all others, that occurs
most frequently. Hence, the mode of the distribution (either assumed or
determined) for the critical location is selected as the final candidate

for the critical point location.
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6.3 DETERMINATION OF THE CRITICAL LOCATIONS

With the exception of finding the critical location using the
mean values of the water quality parameters, each of the remaining
criteria seek to find a critical location associated with the maximum
value of their respective functions (i.e. the variance of the DO
deficit, the probability of violating specified DO standards, and the
ordinate of probability density function of the critical location).
Each of these locations could be determined analytically, but this would
require the specification of the functions and their derivatives,
together with a continuous solution for the points at which the first
derivatives are zero. Such procedures are computationally formidable
and impractical.

As an alternative to the analytical approach for solving the
maximization of these criteria, various search techniques can be
employed. Specifically, the Fibonacci search technique is selected to
perform the tasks outlined in this study. In order to fully appreciate
the utility of this technique, a general description of the Fibonacci

search technique is provided in the following section.

6.3.1 The Fibonacci Search Technique

The Fibonacci search is a univariate unconstrained optimizatioﬁ
technique. This technique is one of many sequential search methods
available (Beveridge and Schechter, 1970; Sivazlian and Stanfel, 1974).
Such procedures are quite effective in determining the optimum solution
of unimodel functional relationships (i.e., the DO deficit profile and

the probability density function of the critical location). However, if
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more than one peak of the function exists, sequential search techniques
cannot insure that the solution obtained is, in fact, the global
optimum.

The basic methodology of any sequential search technique is to
decide, after each set of experiments, where the most promising areas of
search are located. Then, to continue the search in these regions, each
time eliminating an additional undesirable portion. In this manner, the
exploration is confined to successively smaller regions, until the final
interval of search satisfies the desired convergence limits. This final
interval, howeﬁer small, is yet unexplored but is known to contain the
optimum solution. However, by assigning a small value to the desired
limits of convergence, the optimum solution can essentially be
identified with sufficient accuracy (Beveridge and Schechter, 1970).

In a similar fashion to the general procedures outlined above, the
Fibonacci search technique can be described as an interval elimination
method. In this method, the location of points for function evaluation
are based on the use of positive integers known as ""Fibonacci" numbers.
As a historical note, this procedure was originally developed by a
thirteenth-century Italian, Leonardo de Pisa, who was interested in
modeling the monthly growth of a population of rabbits. The sequence of
numbers which served as his model became known as the Fibonacci

sequence, Fi , i=0,1,2...,, where the recurrence relation is given by

i>1 (6.1)
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Clearly, the numbers begin to grow large very rapidly as the sequence
progresses beyond the first few terms. This property will prove to be
the greatest advantage in using the Fibonacci search technique
(Sivazlian and Stanfel, 1974).

The Fibonacci search is such that it can reduce an initial search
interval [a,b] to 1/FN its original size in just N function evaluations.
Once the desired level of convergent accuracy is specified, the number
of function evaluations, N, is determined. The basic strategy of this

technique is to reduce the original search interval to a length of FN—l

after the first iteration, after the second iteration, F_ , after

FN-Z N-i

the i-th; and F after the (N-1)th iteration. As such, this

N-(N-1)

technique will require N-1 iterations, thus, N function evaluations are
required (Sivazlian and Stanfel, 1974). An outline of the Fibonacci

algorithm for maximizing a functions is as follows (Kuester and Mize,
1973):

(1) Designate the search interval as L, between points a, and

1 1

bl’ such that bl > al.

(ii) Specify the desired accuracy, ™, and the maximum number of

iterations, N, such that

o(=F—1-
N
Fo=F =1
F,,,=F, +F l<i<N-1

i+1 i i-1°

where Fi is the i-th Fibonacci number.
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(iii) Place the first two points, X, and X2 (X1<:X2) within L

1 1
at a distance dl from each boundary a; and bl
F
N-2
d, =——01
1 FN 1

Xl = al + dl; X, =b, ~-d

(iv) Evaluate the objective function at Xl and X2. Designate
each as g(Xl) and g(Xz). Then, narrow the interval to be

searched as follows:
a; < X < X2 for g(Xl) > g(Xz)

X, <X <b for g(Xl) < g(Xz)

*
where X is the location of the maximum. The new search

interval is given as

with boundaries a2 and b2 where a2 = al, b2 = X2 for

g(X1)>g(X2) or a, = Xl’ b2 = b1 for g(X1)<g(X2).
(v) Place third point in the new interval L,, symmetric about
2

the remaining point



214

X3 = a2 + d2 or b2 - d2

(vi) Evaluate the objective function at X3, g(X3), compare with
function value remaining in the interval and reduce the

interval such that

(vii) Continue the process for N evaluations (N-1 iterations)

such that in general

F .
4 = ﬁgiﬁlill L, (6.2)
N-(j-1)

X, =a,+d,orb, -d 6.3
j+l h| i °F 73 h| (6.3)

F
o NG o L -
" . Ly =Ly, dj_l (6.4)

L

Once i=N-1 number of iterations have been performed, the final interval
[ai’bi] is known to contain the optimum solution, X*, and is of length
less than or equal to the desired level of accuracy, X. Hence, the
optimum solution is found. A flow chart illustrating the Fibonacci
search procedures is presented in Figure 6.1.

6.3.2 Finding the Critical Location Using Mean Valued Water Quality
Parameters

(1)

Using this approach to determine the critical location, Xc , the
mean values of the water quality parameters are simply substituted into

Eq. (1.7) for computation. Essentially the method is equivalent to the
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i=20
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deterministic evaluation of the critical location using the mean values

of water quality parameters.

6.3.3 Finding the Critical Location Associated with the Maximum
Variance of the DO Deficit

To compute this location, an expression for the variance of the
DO deficit as function of distance from the discharge point must be
defined. In Chapter 5 such an expression has already been developed
using first-order analysis, i.e., Eq. (5.8). For this case, Eq. (5.8)
is a univariate function of the downstream location, x, with values for
the statistical properties of the stream parameters (Kd’Ka’U’Lo’ and Do)
being known. Thus, the essence of this approach is to find a critical

location, X(z)

» such that the variance of the DO deficit, given by Eq.
(5.8), is maximized. To do so, Eq. (5.8) is designated as the function
of interest (i.e., the objective function). Then, applying the
techniques of Fibonacci search outlined earlier, the location at which
the variance of the DO deficit is maximum is obtained.

6.3.4 Finding the Location Associated with the Maximum Probability of
Violating DO Standard

Although the results obtained in Chapter 5 support the use of a
lognormal distribution to describe the DO deficit at any location,
several probability distributions are again assumed for the purpose of
providing both model flexibility and discussion regarding the sensitiv-
ity of the calculation of the critical location to the various distribu-

tion utilized. Specifically, the DO deficit is assumed to follow one
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of four distributions: normal, lognormal, gamma, and Edgewofth's
asymptotic expansion.

Evaluating the probability of violating a minimum DO standard at
any downstream location x by using normal, lognormal, or gamma prob-
ability model is straightforward. 1In this study, these probabilities
are evaluated using subroutines from IMSL.

In addition, Edgeworth's asymptotic expansion is also employed to
provide a means for approximating the probability of a known quantile
without having to assume or adopt any distribution of a specific form
(Abramowitz and Stegun, 1972; Kendall and Stuart, 1977). 1It, however,
requires the knowledge of higher order moments of the random variable
under investigation. By knowing the moments of the DO deficit for
orders up to four (kurtosis) from Chapter 5, Edgeworth's asymptotic

expansion is truncated to give the following approximation:

Fw) % B(w) - Dy a2 /6] + Ko (/241 + [z ¢ /721  (6.5)

where F(w) is the cumulative probability for the standardized quantile,

A
wy; ®(w) is the standard normal cumulative probability; ¥ andKX are the

X
skewness and coefficient of excess (kurtosis minus 3) of the random

(1)

variable under investigation, respectively; and ¢ " (w) is computed as

follows

r
e7 ) = o) - nT e (6.6)
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where Hr(w) is the r-th Hermit polynomial given previously in Eq. (5.13)

and ®(w) is the normal probability density function given as
o(w) = exp[—w2/2]/ Yin (6.7)

In the present study the random variable under study is the DO
deficit at any downstream location x from the discharge point. The

standardized DO, W, can be obtained as

W=|[D - E(Dx)]/[Var(Dx)]% (6.8)

std

= - DO
such that DStd DOsat D otd where DOSat and DOStd are the saturated

DO concentration and minimum required DO standard, respectively; E(Dx)
and Var(Dx) are the expectation and variance of the DO deficit at any
downstream location x from the discharge point which can be estimated by
Eqs. (5.7) and (5.8), respectively. The probability of violating DO

standard at any location x can be found as

Pr(Dx > Dstd) =1-FW) (6.9)

Based on this criterion the task is to determine the critical

location, X§3), at which the probability of violating the required DO

concentration standard, DO is maximum. To do this, appropriate

std’
probability distributions for the DO deficit at the downstream location,
X, is assumed along with the statistical properties of the stream
parameters (Kd’Ka’U’Lo’ and Do)' Using this information as the
objective function, the critical location, Xé3), for each of the
distributions assumed for the DO deficit can be found using the

Fibonacci search procedures.
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6.3.5 Finding the Location Most Likely to be Critical

Again, several distributions are assumed for the critical
location: normal, lognormal, gamma, and Edgeworth's asymptotic expan-
sion. Although the results of Chapter 5 found that the gamma distribu-
tion best described the random behavior of the critical location, such
procedures are carried out in an attempt to provide model flexibility
and discussion concerning the sensitivity of the computed critical
location to the use of different distributionms.

As it was pointed out earlier, the most likely point to be
critical, Xié), is simply the mode of the distribution assumed for the
critical location. Thus, to find the mode of each of the distributions,
equations from Patel, et al. (1976) and Haan (1977) can be utilized:

(i) Under the assumption of a normal distribution for the

critical location,

(4) _ -
X, =M ode = E(Xc) (6.10)

where E(Xc) is the expectation of the critical location
obtainable from Eq. (5.7);

(ii) Under the assumption of a lognormal distribution,

4) - exp(Y - 0%) (6.11)

X(
c
such that

g - %ln[E(Xc)zl(C‘zr + 1] (6.12)

2 2
oy = ln(Cv + 1) (6.13)
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CV =y Var(XC) /E(Xc) (6.14)

where Var(Xc) is the variance of the critical location
defined in Eq. (5.8).

(iii) Under the assumption of a gamma distribution,

(M = (- /1 (6.15)

such that
V= E(XC)Z/Var(XC) (6.16)
T= E(Xc)/Var(Xc) (6.17)

Finally, the mode of using Edgeworth's asymptotic expansion can be found
by locating the point at which the ordinate of the density function of
the XC is maximum. This can be done using the Fibonacci search
technique with the objective function

(3)
62

2 (6)

'(4)
/6] + [K /241 + ¥, @
X, ()

X% (v /72] (6.18)

f(y)= o(y) - [zrx >
(o]

where f(y) is the density function for the standardized critical
location using Edgeworth's expansion (Abramowitz and Stegun, 1972); y is

the standardized Xc defined as
Y = [xc - E(XC)]/ VVar(xc) (6.19)

and Xc is the downstream critical location (miles) under investigation.
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6.4 NUMERICAL EXAMPLE AND DISCUSSIONS

In order to compute the critical locations based on each of the
four criteria, knowledge of the mean, standard deviation (or variance),
skewness, and kurtosis of the stream water parameters (Kd,Ka,U,Lo and
Do) is required. For this example, the mean and standard deviation of
the model parameters are assumed to be the same as those shown in Table
5.2. Additionally, fifteen combinations of skewness, kurtosis, and
correlation (between Ka and U) are considered and given in Table 6.1.
It should be pointed out that during each of the fifteen cases performed
in Table 6.1, the mean and standard deviations of the stream parameters
remained unchanged. Each of the criteria for determining the critical
location in a stochastic stream environment are computed using this
example. The result of the numerical computations are displayed in
Tables 6.2 through 6.5.

Examining the results obtained for the computation of the criti-
cal location using the mean values of the water quality parameters
presented in Table 6.2, it is revealed that the calculation of the
critical location using this first criteria is independent of the
correlation between parameters Ka and U. This is because, in Eq. (1.7),
only the mean values of water quality parameters are used in the com-
putation. Correlations between model parameters are not used in Eq.
(1.7), thus the calculation of the critical location remains unaffected
by such consideration.

In addition to finding the critical location, Xii)(i=1,2,3,4)

under each of the four criteria, the probability of violating the



TABLE 6.1 COMBINATIONS OF SKEW, KURTOSIS, AND CORRELATION CONSIDERED

Case
No P(Ka,U)
1 2 1 2 1 2 1 2 1 2
1 0.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0
2 0.8 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0
3 0.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0
4 0.0 0.0 4.0 0.0 4.0 0.0 4.0 0.0 4.0 0.0 4.0
5 0.0 -.5 2.0 -.5 2.0 -.5 2.0 -.5 2.0 -.5 2.0
6 0.0 -.5 3.0 -.5 3.0 -.5 3.0 -.5 3.0 -.5 3.0
7 0.0 -.5 4.0 -.5 4.0 -.5 4.0 -.5 4.0 -.5 4.0
8 0.8 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0
9 0.8 0.0 4,0 0.0 4,0 0.0 4.0 0.0 4.0 0.0 4.0
10 0.8 0.5 2.0 0.5 2.0 0.5 2.0 0.5 2.0 0.5 2.0
11 0.8 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0 0.5 3.0
12 0.8 0.5 4,0 0.5 4.0 0.5 4.0 0.5 4.0 0.5 4.0
13 0.8 -.5 2.0 -.5 2.0 -.5 2.0 -.5 2.0 -.5 2.0
14 0.8 -.5 3.0 -.5 3.0 -.5 3.0 -.5 3.0 -.5 3.0
15 0.8 -.5 4.0 -.5 4.0 -.5 4.0 -.5 4,0 -.5 4.0
1
o= skew coefficient )
= kurtosis ( )

cee
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TABLE 6.2 CRITICAL LOCATIONS FOUND USING MEAN
VALUED WATER QUALITY PARAMETERS

Xél) Probability of Violating 4 mg/l DO Standard

p(Ka,U) (miles) Normal Lognormal Gamma Edgeworth1
0.0 18.2 0.284 0.242 0.258 0.284-0.301
0.8 18.2 0.317 0.269 0.278 0.302-0.335

lThese values represent the range of probabilities for all cases in
Table 6.1.

TABLE 6.3 CRITICAL LOCATIONS ASSOCIATED WITH
' MAXTMUM VARIANCE OF DO DEFICIT

(2)

X, Probability of Viclating 4 mg/l DO Standard

P(Ka’U) (miles) Normal Lognormal Gamma Edgeworth1
0.0 31.9 0.106 0.105 0.112 0.106-0.111
0.8 31.9 0.110 0.107 0.115 0.104-0.115

1These values represent the range of probabilities for all cases in
Table 6.1.



TABLE 6,4 CRITICAL LOCATIONS ASSOCIATED WITH THE MAXIMUM PROBABILITY OF VIOLATING THE MINIMUM DO STANDARD (4 mg/1)

C;zf Critical Location, X§3)(miles) lprobability of Violating & mg/l DO Standard
Normal Lognormal Gamma Edgeworth Normal Lognormal Gamma Edgeworth
1 15.81 15.65 15.71 15.81 0.294 0.250 0.267 0.294
2 15.79 15.65 15.70 15.79 0.328 0.280 0.297 0.328
3 15.81 15.65 15.71 15.81 0.294 0.250 0.267 0.302
4 15.81 15.65 15.71 15.79 0.294 0.250 0.267 0.286
5 15.81 15.65 15.71 15.69 0.294 0.250 0.267 0.312
6 15.81 15.65 15.71 15.68 0.294 0.250 0.267 0.304
7 15.81 15.65 15.71 15.67 0.29% 0.250 0.267 0.296
8 15.79 15.65 15.70 15.80 0.328 0.280 0.297 0.335
9 15.79 15.65 15.70 15.78 0.328 0.280 0.297 0.321
10 15.79 15.65 15.70 15.89 0.328 0.280 0.297 0.326
11 15.79 15.65 15.70 15.88 0.328 0.280 0.297 0.319
12 15.79 15.65 15.70 15.87 0.328 0.280 0.297 0.311
13 15.79 15.65 15.70 15.67 0.328 0.280 0.297 0.347
14 15.79 15.65 15.70 15.66 0.328 0.280 0.297 0.340
15 15.69 15.65 15.70 15.66 0.328 0.280 0.297 0.333

1
Assuming a lognormal distribution for DO deficit used in computing the critical location Xc

(3)

%ee



TABLE 6.5 THE LOCATIONS MOST LIKELY TO BE CRITICAL

Case Critical Location, xé“)(miles)  probability of Violating & mg/1 DO Standard
Normal Lognormal Gamma Edgeworth Normal Lognormal Gamma Edgeworth
1 18.17 15.05 15.74 18.17 0.294 0.250 0.267 0.293
2 18.17 15.05 15.74 18.17 0.328 0.280 0.297 0.328
3 18.17 15.05 15.74 18.17 0.294 0.250 0.267 0.302
4 18.17 15.05 15.74 18.17 0.294 0.250 0.267 0.286
18.17 15.05 15.74 19.11 0.294 0.250 0.267 0.312
6 18.17 15.05 15.74 18.84 0.294 0.250 0.267 0.304
7 18.17 15.05 15.74 18.68 0.294 0.250 0.267 0.296
8 18.17 15.05 15.74 18.17 0.328 0.280 0.297 0.335
9 18.17 15.05 15.74 18.17 0.328 0.280 0.297 0.321
10 18.17 15.05 15.74 17.22 0.328 0.280 0.297 0.326
11 18.17 15,05 15.74 17.51 0.328 0.280 0.297 0.319
12 18.17 15.05 15.74 17.66 0.328 0.280 0.297 0.311
13 18.17 15.05 15.74 19,11 0.328 0.280 0.297 0.347
14 18.17 15.05 15.74 18.84 0.328 0.280 0.297 0.340
15 18.17 15.05 15.74 18.68 0.328 0.280 0.297 0.333

Assuming a gamma distribution for DO deficit used in computing the critical location Xi

6¢e
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(1)

c

minimum DO standard at four types of critical locations X is also
assessed using the assumption of a normal, lognormal, and gamma distri-
bution as well as Edgeworth approximation for the DO deficit. The
resulting probabilities of violation for the critical locations féund
using mean valued water quality parameters are presented in Table 6.2.
This information is important in analyzing the risk of potential
damaging effects to be suffered by the stream environment under various
distribution assumptions for the DO deficit.

It is also observed from Table 6.2 that the probability of
violation increases when a positive correlation between Ka and U is
considered. To explain these results, recall equations (5.7) and 5.8)
for computing the expectation and variance of the DO deficit, respec-
tively. By considering a positive correlation between Ka and U, the
expectation and variance for the DO deficit at a given location are
increased. Thus, the magnitude of standardized DO, W, is reduced, refer
to Eq. (6.8). Hence, the probability of violation, according to each of
the distributions, is increased.

It should also be pointed out that probability evaluation using
Edgeworth's expansion is dependent on the skewness and kurtosis of the
DO deficit, refer to Eq. (6.5), which in turn are dependent on the
skewness and kurtosis of each water quality parameter, refer to Egs.
(5.9) and (5.10). Thus, unique values for the probability of violation
can be obtained for each of the 15 cases presented in Table 6.1. From
Table 6.2, it is revealed that the probability of violation in rela-

tively insensitive to changes in the skewness and kurtosis for the water



227

quality parameters. More important is the fact that whether or not a
positive correlation between model parameters Ka and U is included.
Knowing this, the probability of violating the minimum DO standard using
Edgeworth's expansion for the distribution of DO deficit are grouped
according to those cases which consider correlation between Ka and U and
those which do not. The range of values for each case is presented in
the final column of Table 6.2 for the critical location found using mean
valued water quality parameters. Similar results were obtained for the
remaining criteria and are presented in Tables 6.3-6.5.

Interestingly, the results obtained for the critical location
associated with the maximum variance of the DO deficit (see Table 6.3)
are about twice as large as the critical locations computed using the
remaining criteria. These results agree closely with those obtained by
Burges and Lettenmaier (1975) and Esen and Rathbun (1976) in which they
report the maximum variance to be located at a downstream distance
approximately twice that of the location for minimum expected DO,
However, as it was shown earlier, these results are in direct conflict
with those obtained by Thayer and Krutchkoff (1967) and Padgett (1978).

In addition, the calculation of the critical location for the
maximum variance criteria is seemingly unaffected by considering a posi-
tive correlation between K2 and U. However, recall Eq. (5.8), from this
it is evident that the consideration of correlation between parameters
Ka and U is not included in the development of an equation for computing
the variance of the DO deficit. Thus, identical values for the critical

location are obtained when a zero or positive correlation between Ka and
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U is considered. 1In analyzing Eq. (5.8) this should always be the
result for the first-order uncertainty analysis presented here.

The results from the third criteria, that using the critical
location associated with maximum probability of violating the minimum DO
standard, are presented in Table 6.4. One can also see, in Table 6.4,
the changes in the critical locations computed using the assumption of
Edgeworth asymptotic expansion for the DO deficit and the various
combinations of skewness, kurtosis and correlation. Although the
difference in the values reported for the various cases using Edgeworth
expansion seem relatively small, it should be noted that these distances
are reported in terms of miles. Hence, small changes, such as two or
three tenths, actually represent several hundred, possibly thousands of
feet difference between these values. This may, in fact, become quite a
significant factor in establishing an adequate monitoring system to
control water quality conditions at the critical location, while attempt-
ing to simultaneously reduce the cost of the instrumentation and labor
required to accomplish these tasks.

As in the result for the other criteria, the probability of
violating a minimum DO standard of 4 mg/l is also reported for each of
the critical locations, X§3), computed and are displayed in Table 6.4.
For this third criteria, the probabilities of violation are determined
for every critical location computed under each of the distributions
assumed for the DO deficit. However, the computation of these
probabilities resulted in values which were relatively insensitive to

changes in the assumption of the distribution for the DO deficit.
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Hence, having reported that a lognormal distribution best fit the random
behavior of the DO deficit at any location, only the probabilities of
violating the minimum DO standard for the critical locations, X§3),
found under the assumption of a lognormal distribution for the DO
deficit are reported.

Finally, in Table 6.5, the most likely critical locations are
displayed, and again, as in the results for the previous criteria, the
computation of the critical location, Xéa), is relatively insensitive to
changes in the correlation between Ka and U for the assumption of a
normal, lognormal, and gamma distribution for the critical location.
Once again these results can be explained by the fact that such
correlation is absent in the development of the first—-order uncertainty
analysis which governs this fourth criteria. Specifically, recall Egs.
(5.18) through (5.21) for computing the first four moments of Xc.
Alternatively, note that the computation of the most likely critical
location is dependent on knowing the distribution for Xc’ which in turn
is determined by Egs. (5.18) through (5.21). From these equations, it
is evident that such a correlation is not considered in the first-order
uncertainty analysis of Xc’ and hence, will have no effect on the
outcome of the computation of the most likely point to be critical.

Contrastingly, the results for the critical locatioms,

X§4), found using Edgeworth asymptotic expansion for the distribution of
the critical location show larger differences for the variety of combina-

tions of skewness and kurtosis selected. This can be seen, for example,

in the results for case numbers 1, 2, 10, and 13. Cases 1 and 2 have
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exactly the same skew and kurtosis; the only difference is that case 1
considers zero correlation between Ka and U and case 2 considers a
positive correlation. The critical locations computed under these
conditions (cases 1 and 2) resulted in similar values (for the same
reasons cited above). On the contrary, cases 10 and 13 both considered
a positive correlation between Ka and U, but changes were made in the
skewness and kurtosis for the water quality parameters. It is evident
that these changes led to approximately an 11 percent difference between
the critical locations represented in cases 10 and 13 when using
Edgeworth approximation for the distribution of the critical location.
In following the procedures of this study, the probabilities of
violating the minimum DO standard of 4 mg/l are calculated for every
critical location, X£4), computed under each of the assumed distribu-
tions for the critical location. As befofe, such calculations were
relatively insensitive to type of distribution assumed for the critical
location. Thus, having cited that a gamma distribution best fit the
random behavior of the critical location in Chapter 5, only the prob-
abilities of violation under the assumption of a gamma distribution for
the critical location are reported in Table 6.5. The trends displayed

in this table are again similar to those in Table 6.4 and those

exhibited throughout this investigation.

6.5 CONCLUSIONS
This chapter has attempted to lay a foundation for methodologies
to determine the critical locations in a stochastic stream environment.

From this study, unless other criteria are developed it would seem that
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the methods of determining the critical point by locating the position
at which the probability of violating a minimum water quality standard
is maximum or the most likely point to be critical would be the most
appropriate approaches to use, theoretically. However, due to the large
uncertainty involved in determining the distribution of the critical
location itself (refer to Chapter 5). It would seem that the method of
determining the point most likely to be critical could possibly be quite
unreliable by nature. Hence, it is this author's opinion that the
method of determining the critical location, X§3), associated with the
position at which the probability of violating a minimum water quality
standard would be the best approach both in theory and reliability. It

(3)

is this point, Xc , which poses the greatest threat to water quality

violation, by definition, in the stream environment under uncertainty.



CHAPTER 7

OPTIMAL STOCHASTIC WASTE LOAD ALLOCATION

7.1 INTRODUCTION

As an overview, water quality management can be defined as a
tool, used by society, to control the physical, chemical, and biologi-
cal characteristics of water. Historically, such efforts have been
guided toward the goal of controlling the impacts of society on the
quality of water. However, it should not be forgotten that water
quality in a stream is the result of the activities of society and the
inherently random processes of nature itself (Ward and Loftis, 1983).
If water quality management is to be implemented in a conscious manner,
it must acknowledge both the activities of society and the inherently
random nature of the stream environment.

Unfortunately, despite significant research in the area of water
quality management to date, many of the research efforts to develop
predictive water quality models have been based on a deterministic
evaluation of the stream environment. Only during relatively recent
times has the random nature of the stream environment been recognized
in the waste load allocation: (WLA) process.

There have been several articles advocating the concept of
variable treatment levels according to the seasonal variation of flow,
which since have proven to be cost effective (Yaron, 1979; Bathala et
al., 1979; Boner and Furland, 1982). Moreover, there have been some

notable works in the development of stochastic WLA models such as
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Lohani and Thanh (1979) and Yaron (1979). However, their models are
not complete in the sense that they consider only either the streamflow
or background pollution asrrandom variables. The limitations of such
models is pointed out by Brill et al. (1979). The main reason for such
simplifications and assumptions is to preserve the mathematical
tractability for solving the problem using well-known linear
programming techniques.

More recently, Burn and McBean (1985) have reported the develop-
ment of a stochastic optimal WLA model using a chance-constrained
formulation. In their paper, Burn and McBean state that the principal
uncertainties are in the technological coefficients and pollutant
loadings. The conclusion of their article notes the potential for
including stochastic considerations in the WLA problem.

However, such research has yet to answer all the questions
pertaining to effective water quality management in theluncertain
environment of the natural stream setting. In fact, to manage the
quality of water resources by considering all the inherent processes,
both deterministic and stochastic, is a seemingly insurmountable task.
On the other hand, the possibility of improvements or expansions of the
current research in this field are virtually unbounded. In light of
this fact, it is the intent of this chapter to present a refined
approach ﬁtilizing chance-constrained optimization in conjunction with
Monte Carlo simulation in an attempt to incorporate the stochastic
nature of the stream environment into the water quality management

process. The goal of this research is to improve model performance
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beyond such methods already in existence. It is believed that such an
endeavor will contribute to current management efforts which are
directed toward the protection of valuable water resources from the
ever increasing threat of contamination from industrial and/or

municipal users.

7.2 GENERALIZED CHANCE-CONSTRAINED FORMULATION

In all fields of science and engineering, the decision-making
process is generally dependent on several variables. More often than
not at least one of these variables cannot be assessed with certainty.
This fact could not be more evident as it is in the case of deciding
"how to effectively manage our environment?" In particular, the
environment in which decisions are to be made concerning in-stream
water quality management are inherently subject to many uncertainties.
The stream system itself, through nature, is an animate environment
abundant with ever-changing processes, both physical and biological.

If one were to attempt to manage such an environment determinis-
tically, as was done in Chapter 2, this would imply that the compliance
of water quality requirements at each control point in the WLA model
would be assured with ubiquitous certainty. However, as discussed in
Chapters 4 and 5, the existence of the uncertain nature associated with
the stream environment cannot be ignored. By acknowledging such
uncertainty, it would seem more appropriate and realistic to examine
the constraint performance in a probabilistic manner.

Recall the linear programming (LP) model presented in Egqs. (1.9)

and (1.10). By imposing a restriction on the constraints such that
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their performances will be met with reliability , the original model

is transformed into the following chance-constrained formulation:

Maximize ET X (7.1)
subject to
Pri{AX<b)> (7.2
X>0

where o represents an m~dimensional column vector containing the
desired levels of reliability for each constraint, 0 < g'< 1; Pr{ }is
the probability operator; X and C are n-dimensional vectors containing
the decision variables and their associated unit costs, respectively; b
is an m~dimensional vector of the maximum allowable units of a specific
resource which are available for allocation (or simply call it the
right-hand-side, RHS); and é is an m x n matrix of the technological
coefficients (Taha, 1982). For a detailed analysis of chance-
constrained problems, the reader should refer to Cooper and Charnes
(1963) and Kolbin (1977).

In chance~constrained models, elements in é, b, and C can be
considered as random variables. When the objective function coeffi-
cients cj's are random variables it is conventional to replace them
with their expected values. Hence, three cases remain: (1) element of
,'s) are random variables; (2)

ij

the elements of RHS vector bi's are random variables; and (3) the

the technological coefficient matrix (a
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combined random effects of aij and bi are considered simultaneously.
Without losing generality, the description of chance-constrained
formulation will focus on the case in which the elements aij's are
considered as the only random variables.

It should also be noted that a probabilistic statement of the
constraints, like that in Eq. (7.2), is not mathematically operational.
Further modification or transformation is required. To do so, it is
necessary to develop a deterministic equivalent for Eq. (7.2).

7.3 A DETERMINISTIC EQUIVALENT FOR THE CHANCE-CONSTRAINED

FORMULATION

Under the notion of uncertainty, the occurrence of the elements
of matrix A can be described by a probability distribution, not neces-
sarily known, with mean E[aij] and variance Var[aij] in which E[] and

Var[] are the expectation and variance operators, respectively.

Consider now the i-th constraint,

n
Pr{.z aijx, < bi} > a} (7.3)
j=1
We now define a new random variable Ti as
n
T. = ¥ a,.x, (7.4)
i j=1 13i7]

Under the assumption of independency for the random elements aij's, the

mean and variance of Ti can be expressed as



237

n
E[T,] = £ Ela,,]x, (7.5)
i j=1 ij 3
n 2
Var[Ti] = 'E Var[aij]xj (7.6)
J—
Hence, it follows that
bi - E[Ti]
= v
Pr Ti < bl Pr Zi _ > a} (7.7)

JVar[Ti]

where Zi is a standardized random variable with mean zero and unit

variance. Therefore,

- El1,] ‘
Pr{ri< (7.8)
JVar[T

where FZ represents the cummulative distribution function (CDF) of the
standardized random variable, Z. By substituting Eq. (7.8) into Eq.

(7.7), the deterministic equivalent of chance constraint Eq. (7.3) can

be obtained

E[T 1 + F (o() ,ﬁar [T 4 b (7.9)

where F (u ) is the appropriate quantile for the a percentage given

by the CDF of Z.

To express more explicitly in terms of decision variables xj's,
Eq. (7.3) can be written as
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n
-1, W 2
z
j=1E[aij]Xj + FZ (ai) Var[aij]xj < bi (7.10)

As can be seen, the resulting deterministic equivalent of chance

constraints, when aij's are random, are no longer linear.

7.4 OPTIMAL STOCHASTIC WASTE LOAD ALLOCATION MODEL

The deterministic WLA model presented in Chapter 2, Egs. (2.2),
(2.3), (2.11), and (2.14), is used as the basic model for deriving the
optimal stochastic WLA model considered here. Under the assumption of
uncertainty within the stream environment, the constraints on water

quality given by Eq. (2.3) are expressed probabilistically as

n ,
prla . + E' 6 L + £ w,, <DOSC - poSt | 5o (7.1D)
oi . ij ] . ij j = i i =i
j=1 j=1
in which
ni—l
a = LQ II b
oi o] O‘R=l 2,9+
ni-l ni—p ni—l .
+LQ, T M by g41)%, -p+1,n,-p+i| [ by kH
- i i k= +1
p=2 ‘3=1
n. -1 n,
i, i
+ D_Q g bk,k+l Q* z_ qm) (7.12)
k=1 m=1

Variables in Egs. (7.11) and (7.12) are defined in Chapter 2. The

corresponding deterministic equivalent of Eq. (7.11) is
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n n

i i -1, » i 2

g Eloy,]L, + 5 E[w 1D, + F (o)) {Vara ] + ):1Var[eij]Lj
j=1 j=1 j=1

n
+ 5 Var[w..]D? g < R, (7.13)
. iji i =i
j=1
. _ sat std
in which Ri = DOi - DOi E[aoi]

In summary, the optimal stochastic WLA model considered herein
using chance-constrained formulation consists of an objective function
given by Eq. (2.2), subject to constraints Eqs. (2.3), (7.13), and
(2.14).

Note that Eq. (7.13) involves a square root of the sum of
variances for the technological coefficients multiplied by the square
of the unknown decision variable, Lj and Dj. The deterministic
equivalent of the chance;constrained formulation is nonlinear. As
such, the use of LP techniques for problem solving is prohibited. To
solve the optimal stochastic WLA model, it is necessary to assess the
statistical properties of the random terms in the chance-constrained
formulation of Eq. (7.13) and to develop a methodology for treating the
nonlinear terms corresponding to the square of the decision variables.
To do this, it will be shown in the following section that the mean and
variance of each of the random technological coefficients Qij and wij
in the WLA model can be derived from Monte Carlo simulation. Finally,
the nonlinea?ity of the deterministic equivalents of the chance
constraints in WLA model is ignored and the "linearized" optimal

stochastic WLA model is solved iteratively.
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7.5 ASSESSMENTS OF THE STATISTICAL PROPERTIES OF RANDOM TECHNOLOGI-
CAL COEFFICIENTS IN STOCHASTIC WLA MODEL
To solve the optimal stochastic WLA model, it is necessary to
determine values for the statistical properties (i.e., the mean and
. A
13 and q&j s
evidenced in Eqs. (2.3) through (2.9), the equations which govern the

variance) of the random technological coefficients, 6

technological coefficients for the WLA problem are functions dependent
on several stream parameters (i.e., Kd’ Ka’ U, Lo and Do) in each reach
of channel, each of which are considered as random variables in this
study. Because of the nonlinearity, the use of analytical techniques,
such as first-order analysis, to determine the statistical properties
of the random technological coefficients would be an extremely
formidable task, especially for those water quality constraints
corresponding to the control points located in the downstream reaches.
Alternatively, by utilizing the theory underlying the "law of large
numbers" and Monte Carlo simulation procedures, estimates for the mean
and variance of the random technological coefficients can be readily
obtained with the aid of a digital computer.

in essence, the law of large numbers states that as the sample
size becomes sufficiently large, the probability that the sample mean
and variance are close to their respective true population values
approaches one. Thus, by using Monte Carlo simulation to generate a
sufficiently large sample, the mean and variance of the random techno-
logical coefficients can be estimated. Specifically, the procedures

are performed in four basic steps:
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1. Select (or assume) a distribution and appropriate
statistical properties (i.e., mean and variance) for each of

the water quality model parameters K Ka’ U, L0 and DO in

q’
each reach of channel.

2, According to each of the distributions selected, randomly
generate values for the model parameters.

3. Compute the technological coefficients , gij and u&j, using
Eqs. (2.3) through (2.11).

4. Repeat steps 2 and 3 for a sufficiently large number of

times. Then simply compute the mean and variance of the

simulated ©,, and v, ..
1] 1]

7.6 TECHNIQUE FOR SOLVING OPTIMAL STOCHASTIC WLA MODEL

The deterministic WLA models presented in Chapter 2 follow an LP
format which can be easily solved by the simplex algorithm. However,
the deterministic equivalent transformation of chance-constrained water
quality constraints leads to the presence of several nonlinearities
(see Eq. (7.13)) which cannot be solved directly by the LP technique.
Hence, fhe problem becomes one of nonlinear optimization which can be
solved by various nonlinear programming techniques such as the
generalized reduced gradient technique (Lasdon and Warren, 1979).
Alternatively, this chapter adopts the procedure to linearize the
nonlinear terms of the water quality constraints in the stochastic WLA
model and sol&e the linearized model by the LP technique, iteratively.

Tung (1986) proposed an approach of using the first-order

Taylor's expansion to linearize a nonlinear constraint. The
y P
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linearization requires an initial assumption of the solution to the
optimization problem which is not known. As a result, the linearized
problem has to be solved iteratively until the solution converges.
Since the linearization process utilized by Tung (1986) is a cumbersome
exercise and the resulting linearized model has to then be solved
iteratively, it is decided that, in this chapter, the assumed solutions
to the stochastic WLA model will be used to calculate the value of the
nonlinear terms, and then, the nonlinear terms will be moved to the RHS
of the constraints. The resulting '"linearized" water quality con-

straints in the stochastic WLA model can be written as

n n

i i -1, .
£ Ele . JL, + " E[w, .ID. < R, - F,~(a))
j=1 ij 73 j=1 ij 3 i Z i
n n
i A2 i VIR
Var[aoi] + : Var[eij]Lj + .i Var[u&j]Dj (7.14)

j=1 j=1

A A
where Lj and Dj are assumed solutions to the optimal stochastic WLA

model.

Consequently, the linearized stochastic WLA model can then be
solved by the LP technique iteratively, each time comparing the values
of the current solutions with those obtained in the previous iteration.
Then, updating the assumed solution values, used to compute the right-
hand-side, until convergence criteria are met between two successive
iterationms. TB clarify these procedures, the iterative solution

approach can be described as follows:



243

1. Provide an initial estimate of the effluent waste and DO
deficit concentrations at each discharge location.

2. Use the estimated/I:j and./];j to compute the RHS of Eq.
(7.14).

3. Solve the linearized model by the linear programming
technique.

4., Compare the current optimal solutions of effluent waste

 discharge and DO deficits with estimates from the previous
iteration.

5. Stop the iterations and determine the optimal solutions if
the difference between solutions from two consecutive
iterations are within a specified tolerance. Otherwise,
update current solutions and repeat steps 2 through 4.

From this, it should be apparent that the nonlinear character
present in the deterministic equivalent of the chance-constrained WLA
model is essentially reduced to an iterative, deterministic LP problem.
To further illustrate the algorithm, a flow chart depicting the above
procedures is shown in Figure 7.1. Of course, alternative stopping
rules such as specifying the maximum number of iterations, can be added
in order to prevent excessive iteration during the computation
procedures.,

Prior to the application of these procedures, an assumption for
the distribution of the standardized random variable Z must be made in
order to determine an appropriate value for the term FEI(G;) in Eq.

(7.14). 1In effect, this is the same as that in making an assumption
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Allocation Model.
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for the summation of the technological coefficients times the decision
variables (see Egqs. (7.7), (7.10), and (7.12)).

Due to the nonlinear nature of the stochastic WLA model, it
should also be pointed out that, in general, the optimum solution
obtained cannot be assured to be the global optimum. Thus it is
suggested that a few runs of these procedures with different initial
solutions should be carried out to ensure the model solution converges
to the overall optimum. Moreover, it is suggested that a reasonable
initial solution for these iterations is to select waste effluent
concentrations for each discharger which are comparable to the upper
bounds on their respective levels of treatment (refer to Chapter 2).

By doing so, the initial solutions for each waste discharge begin at
their respective lower limits. Then, if the stochastic WLA solution is
infeasible during the first iteration, more than likely a feasible
solution to the WLA problem does not exist. Knowing this, time and
computational effort can be saved in needless searching for an optimal
solution which may not exist.

7.7 SENSITIVITY OF THE STATISTICAL PROPERTIES OF THE TECHNOLOGICAL

COEFFICIENTS

In using Monte Carlo simulation, it is known that the mean and
variance of the random technological coefficients in the stochastic WLA
model depends on the distributions of the water quality parameters. In
an attempt to assess the sensitivity of the technological coefficients
to various assumptions for the distributions and correlation (between

Ka and U) of the stream quality model parameters, an example has been
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selected from the information provided in Tables 2.1(a)-(b) and
7.1(a)-(b). Furthermore, to lessen the computational burden and
complexity of this analysis, only the information concerning the mean,
Tables 2.1(a)-(b), and standard deviation, Table 7.1, of the model
parameters for the first two reaches are selected. The mean values of
the technological coefficients for these procedures are presented in
Table 7.2.

From Table 7.2, it is evident that the mean of the random
technological coefficients for the two-reach example are relatively
insensitive to changes in both the distributions assumed for the stream
model parameters and the correlation between parameters Ka and U,
Based on the experimental study, it is observed that changes in the
distributions and correlation assumed for the model parameters resulted
in differences between the respective technological coefficients for
the various assumptions which were generally less than 5 percent, and
in almost all cases, these differences were less than 10 percent.
Additionally, it should be pointed out that the computation for the
technological coefficients using Monte Carlo simulation became stable
when the sample size generated reached 1,000. Though not presented
here, the results for the standard deviation of the technological
coefficients are quite similar.

In conclusion of these results, although the computation of the
technological coefficients was found to be relatively insensitive to
changes in the assumptions for the distribution and correlation of the

model parameters, information concerning the distribution and
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TABLE 7.1 STANDARD DEVIATIONS SELECTED FOR THE PHYSICAL STREAM
CHARACTERISTICS

(a) TFor Each Reach

Deoxygenation Reaeration Average
Coefficient Coefficient Stream
Reach Velocity
&) (K) (V)
a
1-6 0.2 0.4 4.0
Units 1/days 1/days ft3/sec

(b) Background Characteristics

Upstream Waste Upstream Upstream
Concentration Flow Rate DO Deficit
@) @) (@)
1.0 20.0 0.3

mg/1 BOD ft3/sec mg/1




TABLE 7.2 SENSITIVITY ANALYSIS OF THE MEAN TECHNOLOGICAL COEFFICIENTS TO CHANGES IN THE
DISTRIBUTIONS AND CORRELATION ASSUMED FOR THE WATER QUALITY PARAMETERS

Assumed distributions

For Stream Water p(K_,0) . ..
Quality Parameters a i3 H
Normal 0.8 .000E + 00 .000E + 00 .136E - 02 .000E + 00
.247E - 03 .000E + 00 .331E - 03 .000E + 00
.148E - 03 .000E + 00 .726E - 04 .283E + 00
.951E - 04 .468E - 01 .154E - 04 .555E - 01
Normal 0.0 .000E + 00 .000E + 00 .136E - 02 .000E + 00
.241E - 03 .000E + 00 .337E - 03 .000E + 00
.148E - 03 .000E + 00 .727E - 04 .283E + 00
.950E - 04 L460E - 01 .178E - 04 .578E - 01
Lognormal 0.0 .000E + 00 .000E + 00 L134E - 02 .000E + 00
.240E - 03 .000E + 00 .334E - 03 .000E + 00
.148E - 03 .000E + 00 .715E - 04 .280E + 00
.950E - 04 .459E - 01 .184E - 04 .583E - 01

8¢



TABLE 7.2 (continued)
Assumed distributions
For Stream Water p(K ,0) Gi, ..
Quality Parameters a J HJ
Gamma 0.0 .000E + 00 .000E + 00 .134E - 02 .000E + 00
242E - 03 .000E + 00 .342E - 03 .000E + 00
.150E - 03 .000E + 00 .680E - 04 .280E + 00
.952E - 04 .463E - 01 .163E - 04 .564E - 01
Weibull 0.0 .000E + 00 .000E + 00 .137E - 02 .000E + 00
.252E - 03 .000E + 00 .350E - 03 .000E + 00
.154E - 03 .000E + 00 .743E - 04 .284E + 00
.946E - 04 .468E - 01 .176E - 04 .567E - 01

6%¢
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correlation of the model parameters should be included if known or can
be justified from the data. To clarify this statement, consider a
situation in which one has sufficient evidence to justify the use of a
lognormal distribution for Ka' It would seem unreasonable to ignore
this information for Ka simply by knowing that such changes will have
little effect on the outcome of the mean and variance of the
technological coefficients. Instead, if information pertaining to a
model parameter is known, one should include this information into the
modeling process in order to improve model predictability and

justification of one's approach.

7.8 NUMERICAL EXAMPLE AND DISCUSSION OF MODEL PERFORMANCE

The mean and standard deviations for the stream model parameters
are shown in Tables 2.1 and 7.1; however, this time the information for
all six reaches are used., An illustration of this six-reach example is
similar to that given in Figure 2.2.

To assess the statistical properties (i.e., mean and variance)
of the technological coefficients for this example, 999 sets of
technological coefficients are generated for each of the assumptions of
all normal and lognormal distributions for the stream model parameters.
From this, the mean and variance of the technological coefficients are
computed for each of the assumptions concerning the model parameters.
This information was then placed into the LP formulation of the
stochastic WLA model presented in Section 7.4. Additionally,
agssumptions of a normal and lognormal distribution for the random

variable
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ni ni
a .+ ¥ 6,.L,+ y w,.D,
oi j=1 ii7; j=1 ij ]

in Eq. (7.11) are made, along with the various reliabilities, ai, for
the water quality constraints, ranging from 0.85 to 0.99. The optimal
solutions to the stochastic WLA problem under these various assumptions
are reported in Tables 7.3 through 7.6.

In following the development of the WLA model presented in
Chapter 2, two typeé of equity between the dischargers are again
considered (i.e., equal percent removal and equal effluent concentra-
tion). In examining the results presented in Tables 7.3-7.6, the total
amount of optimal waste discharge is reduced as the reliability of the
water quality constraints is increased. These results can be explained
by the fact that as the reliability on water quality is increased, it
is equivalent to impose stricter standards or requirements on water
quality assurance. Thus, to meet the increased responsibility in terms
of water quality reliability, the amount of waste discharge must be
reduced in order to reduce the risk of water quality violation at each
control point. By continuing to increase the desired reliability for
the water quality constraints, at some point these restrictions become
too stringent and the feasible solutions to the problem are not obtain-
able.

Interestingly, at the outset, there was concern pertaining to
the ability of the proposed solution methodology to converge. However,
once the example for the model was performed, these concerns were,

fortunately, shown to be unfounded. In fact, a convergence criteria of



TABLE 7.3 OPTIMAL STOCHASTIC WASTE LOAD ALLOCATION UNDER AN ALL NORMAL ASSUMPTION FOR THE STREAM

WATER QUALITY PARAMETERS AND THE EQUITY OF EQUAL PERCENT REMOVAL1

) No. of Waste Load Allocations for Each Discharger2
Fz(z) Reliability Iterations to
(H Converge No. 1 No. 2 No. 3 ©No. 4 No.5 No. 6

Normal 0.85 4 242.4 6.0 117.7 115.5 265.4 72.5
0.90 5 233.6 6.0 113.4 109.7 255.8 69.9

0.95 6 220.9 6.0 107.2 101.2 241.9 66.1

0.99 "Infeasible" - - - - - -

Lognormal 0.85 4 244.1 6.0 118.5 116.7 267.3 73.1
0.90 5 232.4 6.0 112.8 108.8 254.4  69.5

0.95 6 215.0 6.0 104.4  97.3 235.4 64,4

0.99 "Infeasible" - - - - - -

15 percent maximum allowable difference in the equity considered.

2
Measured in terms of mg/l1 BOD.
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TABLE 7.4 OPTIMAL STOCHASTIC WASTE LOAD ALLOCATION UNDER AN ALL NORMAL ASSUMPTION FOR THE STREAM
WATER QUALITY PARAMETERS AND THE EQUITY OF EQUAL EFFLUENT CONCENTRATION1

No. of Waste Load Al<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>