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GROUNDWATER MANAGEMENT BY
CHANCE-CONSTRAINED MODEL

By Yeou-Koung Tung,' A. M. ASCE .

ApstRACT: * A stochastic groundsvater management model for a confined, ho-
mogenous, and nonuniform aquifer is developed using the concept of response
function in the linear system theory. The Cooper-Jacob equation is used to de-

* velop the unit response function. The model explicitly considers the random
nature of transmissivily and storage cocfficient, which enables the determina-
tion of optimal pumping pattern in a well ficld subject to a specified system
peiformance reliability requirement. A hypothetical example is utilized to dem-
onstrate applicability of the model. Model results alfected by reliability require-
ment and uncertainty level of aquifer paramelers were examined. A post-op-
timality simulation is conducled to examine the performance of the model and
to further assess ils usefulness. :

INTRODUCTION

Highly variable surface water in arid and semi-arid regions has placed

groundwaler in a major role in most waler supply systems. However,
due to lack of proper management, many groundwater aquifers were
depleted and conlaminated. Beneliting from the advancement of geo-
physical knowledge on subsurface flow phenomena and computer ca-
pability, cffective management of groundwater aquiler of various com-
plexities has become practical and viable. '
" Literature on optimal groundwater management can be found else-
where. Basically, the methodology can be classified into simulation and
direct optimization. Groundwaler managements using simulation ap-
proach (36) generally employ numerical groundwalter models based upon
either finite difference (28,32) or finite element (27) schemes. Because
groundwalter simulation models mainly describe the stress-response re-
lationship of an aquifer system, the use of the simulation approach to
seek oplimal management scheme requires trial and error, which could
be very time consuming and laborious. '

Direct optimization approach, on the other hand, includes some types
of automalic optimal secking algorithms. Depending on how detailed
the system is to be modeled, groundwater management models using
the direct optimization approach can be categorized into lumped-param-
eter and distributed-parameter models. Lumped-parameter models are
mainly concerned with the temporal allocation of water, which generally
is computationally simpler. Examples of Jumped groundwater manage-
ment models can be found elsewhere (6,7, 10). If management decisions
concern both temporal and spatial aspects of waler allocations and sys-
tem behavior in groundwaler aquifers, a distributed-parameter model
should be employed. Optimal groundwater management models with
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distributed-parameter capabilities can be approached either by an
embedding technique or response-matrix technique (18, 31). The embed-
ding technique directly incorporates the groundwater flow equation as
constraints in an oplimization framework (1-3), while the response-ma-
trix technique utilizes the concept of influence function and linear sys-
tem theory (8,16,17,19,22,26,34). A review of the two techniques in
groundwater management was recenlly given by Gorelick (18).

Like any other resource management, groundwater management is
generally done in the environment where uncertainties exist. Uncer-
tainly in groundwater management may be ascribed mainly to lack of
perfect knowledge about an aquifer system, inherent variability of sys-
tem parameters and flow characteristics (12,15), and other factors such
as costs and revenues of the project, engineering design, and operation
of the systemn. As a result, the existence of uncertainties limits our ca-
pability to predict system behavior with definileness under various man-
agement decisions. Several studies were made to consider the effect of
stochasticity in groundwater management. Burt (7) incorporated random
recharge or stream in his economic study. Maddock (23) considered the
elfect of random demand in a distributed-parameter aquifer model. Re-
cently, Flores et al. (11) developed a physical-based lumped stochastic
model for managing a stream-aquifer system.

In groundwater management, the selection of an appropriate model
for analyzing cause-and-effect relationships of subsurface water flow is
largely dependent on the budgelary condition and data availability of
the groundwater system. Capabililies of a sophisticated distributed-pa-
rameler groundwater model is well-understood. However, meaningful
results can be generated only if there are sufflicient amounts of data of
good quality available. Bredehoef and Young (5) stated that, “The lim-
ited resources available to the project precluded any delailed field stud-
ies of hydrologic, legal, and economic relationships necessary to rep-
resent a specific arca accuralely.” Bathala et al. (4) investigated the
problems encountered in the formulation of digital simulation models,
particularly those related to the data, manpower, and computational ex-
penditure. They concluded that the results from digital simulation models
developed by using limited available data should be interpreted with
caution. In addition to the inherent random process of subsurface flow,
data on most groundwater basins are lacking. This is particularly true
for an undeveloped basin during earlier stages of planning. In such cir-
cumstances, there are only a few pumping tests, boundary conditions
regarding quantities and locations of recharges and discharges are dif-
ficult to estimalte, and available information often contains errors in ob-
servations and interpretations that introduce additional uncertainties. As
a result, the use of a realistic distributed-paramelter aquifer model may
not be necessary. Prickelt (29) pointed out that “In any event, chovsing
an overly sophisticated model which doesn’t fit the problem is a case of
applying the wrong model.” Recently, he (30) addressed the need in
developing a large group of models aimed at solving problems in the
range of simple to moderate complexity. :

Furthermore, there have been some studies made showing the evi-
dence that the use of a simplified subsurface flow model in groundwater
management might be adequate. Young and Bredehoeft (36) observed
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in their simulation study that management decisions were relatively in-
sensilive lo the change in hydraulic conductivity of the aquifer. Mad-
dock (23) also performed a sensilivity analysis on a distribuled-param-
eter model in his groundwaler management study and found that results
were most sensilive to economic factors ralther than to aquifer parame-
ters. Recently, McElwee and Yukler (24) analyzed sensitivity of ground-
waler models of various complexities with respect to variations in trans-
missivily and the storage coefficient. They observed that about 20% change
in transmissivily and storage coefficient would only result in 5% change
in drawdown. Also, the results of sensitivity analysis on a {wo-dimen-
sional distributed-parameter groundwater (low model in a homogenous
aquifer are basically the same as those obtained from a simple Theis
equation. '

Due to lack of data, and relative insensitivity of management decisions

to variation of aquifer properties, it seems that the use of a simple but
representative groundwaler model could be adequate in management
problems. Furthermore, computational simplicity is an advantage of us-
ing a simple model to provide decision makers with quick but relevant
solutions to management problems.
“ In light of the inherent randomness of subsurface flow and the exis-
tence of uncertainties in aquifer parameters, the groundwater {low sys-
tems should be treated as stochastic processes and aquifer properties be
considered as random variables. To carry this argument even further,
groundwater management models should, if possible, have the feature
to take the random nature of the subsurface flow system into account
and derive management solulions accordingly.

In this paper, the development of a simple multiple-period (transient)
slochastic groundwater management model is iliustrated utilizing the
Cooper-Jacob equation. The model considers explicitly the random char-
acteristics of lransmissivity and the storage coefficient in a confined ho-
mogenous aquiler. The stochastic management model is formulated by
transforming model constraints containing random aquifer properties to
the so-called chance-constrained expression (21), which specify the re-
liabilily requirements of system performance. =~ = ¢

UnNiT REsPONSE FUNCTIONS

In groundwater management models constraints describing relation-
ships between system responses and management decisions are gen-
erally included for purposes of control. The constraint equations of this
type in groundwater management models presented herein uljlize the
approach of the unit response functions. Unit response functions de-
scribe relationships between state variables of an aquifer system such as
drawdown and management decision variables such as pumpage.

The continuous form of convolulion relations between aquifer draw-
down and discharge for a linear flow system can be expressed as (22) -

M ! )
s(Xi,l)=Zf BOXi, Xj b = DO ATt eeieeeiieiieeiieeanee (1)

i=1
where s(X; ) = drawdown at control point X,- at time £; B(X;, X;,t — 1)
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= drawdown response at control point X; resulting from a unit impulse
of pumping at point X; during time 7; (X;,7) = pumpage of discharge
well at X; during time 7; and M = total numbers of pumping wells under
consideration. The time-dependent drawdown response function,
B(X;,X;,t), represents incremental drawdown of each control point at
X; at time ¢ = 7 resulting from a unit impulse of pumping at each dis-
charging well applied at time t = 0. When the time scale is discretized,
Eq. 1 can be expressed in an equivalent form as S o
M n Co : ’ ' o
s(jomy =0 D B, QU n—k+1)........ P e @
i=1k=1
where s(j,n) = drawdown at the jth control point at the end of the nth
period; B(i,j, k) = response function for the kth period relating draw-
down at the jth control point to unit pumpage at the ith discharging
well; and Q(i,n — k + 1) = pumpage at the ith discharging well during
the kth period, k = n. . .

In groundwater management practices, the entire planning horizon is
generally divided into operational intervals. An operation policy or man-
agement decision may vary from one operational interval to another but
it generally remains the same within each operational interval. As a re-
sult, discrete formulation of convolulion relation, Eq. 2, is more practical
than the continuous formulation in groundwater management.

The unit response function, B, can be oblained from a distributed-
parameter groundwater simulation model. Procedures of obtaining unit
response functions using a simulation model were described by Heidari
(19). However, when hydrogeologic information of an aquifer system is
lacking or unavailable, some closed form of analytical solution to an
idealized condition can be utilized to derive the unit response function,
In this paper, a stochastic groundwater management model is developed
for a confine, homogenous, and nonuniform aquifer with the following
assumptions: (1) Aquifer is nonleaky and infinite in horizontal extent;
(2) radial flow pattern; (3) wells fully penctrate the entire thickness of
aquifer; and (4) piezometric head prior to pumping is uniform through-
out the entire aquifer. Under the preceding assumptions, the unit re-
sponse function can be obtained from the well funclions (4,22):

[l ; =
pij 0 = {00 tork =1
Wi, j, k) — ¥, j,k— 1), fork=2

where (i, ], k} = (1/4wT) W]u(i,j, k)] in which W[ ] = well function and
u(i,j, k) = riS/4wTt,; r; = distance between the ith pump well and the
jth control point; S = storage coefficient; T = aquifer transmissivity; and
t, = time instant at the end of the kth period. :

The well function for the Theis equation can be written as

=

o ‘ . . ‘ .
Win(i, j, k)] = f T SO S )
SJugi, j, k)
while for the Cooper-Jacob equation
2.25Tt
Wu(i,j, k)] = ln( S ‘) ....................................... (5)
i

In this paper, the Cooper-Jacobs equation is utilized to demonstrate the
development of a stochastic groundwater management model. A sto-
chastic management model based on the Theis equation was also de-
veloped by the writer but will not be presented.

DetermiNisTiC MANAGEMENT MODEL

Consider the quantity aspect of groundwater management e.n*r_\phasnz-
ing on hydraulic response control and water supply c'apablhty of a
groundwater basin. The problem is to determine thg optimal pumpage
and pumping pattern over a specified planning horizon s.uch that un-
desirable consequences do not occur. In genera}, undesirable conse-
quences such as depletion of aquifer and land subsidence can be avoided
by properly controlling aquifer drawdown. .

Since the response function characterizes an aquifer pumpage draw-
down relationship, a groundwater management model can be very eas-
ily formulated once the response functions are defined. Without C(')n.su:'l-
ering the random nature of aquifer properties,, the deterministic
management model can be stated as follows:

M N

Maximize 3 v QU )+« vneeennneneiei e 6)

i=] n=1

M n : R
Subject to z Z B(i,j, k)QG,n — k + 1) <s*(j,n); foralljandn.... (7)
i=1k=1 .

M .
Z QUi,my=D(n), forallm.........oiiiiiiiiiiiiiiiii e 8)
i=1

in which D(n) = water demand during the nth period. When the ob-
jective function like Eq. 6 is used, the model tends to withdraw water
as much as it can be allowed by the drawdown constraints, i.e. Eq. 7.
The foregoing management model follows the well-known linear pro-
gramming (LP) format, which can be solved very easily by' the sm}plex
algorithm. The problem size depends on the number of time periods,
pumping wells, and control points.. o

PRroBABILISTIC CONSIDERATION OF MODEL ELEMENTS WITH UNCERTAINTY

Values for transmissivity and storage coefficient are derived fror? a
pump well test, and as such a test provides in. situ Vfllues of aquifer
parameters averaged over a large and representative aquifer volume (13),
T and S should be treated as random variables. Consequently, the re-
sponse function B and the left-hand side of the drawdown constraint
are random in nature because they contain random variables of T a!ld
S. This implies that the compliance of constraints at each control point
cannot be assured with certainty. Thus, it is more appropriate and re-
alistic to examine the constraint performance probabilistically. In a sto-
chastic environment, it is operationally feasible to specify limitations on
allowable risk or required reliability of constraint performance. Now, if
we impose a restriction on that drawdown at any control point j at the
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enc]ll ?.f ltge nth period resulting from pumping operation over the entire
well field cannot exceeq a specified value s*(j, n) with a reliability a(j,n)
the drawdown constraints then can be expressed as T

M n
Pr {; ?;1 B(,j, K)Q>,n — k + 1) < s*(j, n)} za(j,n); foralljandn (9)

A prob.?bilistic statement of drawdown constraint like Eq. 9 is not
p1ather31ahcally operational and further modification or transformation
Is required. To make Eq. 9 mathematically operational, it is necessary to

assess slatistical properties of random terms in chance-constrained equa-

tions.
_ First-Order Analysis.—:rhere have been a number of field investiga-
tt)l(l)n and l‘?bor:atory experiments, cited in Ref. 12, assessing the proba-
ility (!lstx:lbutxpns: of aquifer transmissivity and hydraulic conductivity.
Most findings indicate that hydraulic conductivity has a log-normal dis-
tnbuho'n._B.ecause the response function, B, is a nonlinear function of
transmissivity and storage coefficient, the probability density function of
Blas well as glrawdpwn at each control point cannot be eésil)'r assessed.
T(K:'re;forfl it is decndedfthat the first-order analysis is applied to estimate
statistica] properties of the response function i
bl p n and drawdown af each
f:’lr?t-order analysis is a useful method to estimate statistical charac-
teristics such as the mean and variance of a function involving random
components. The method has been applied in many aspects of water
lf-:;sour(:gsa probl_ex;j\ls (9,33). In first-order analysis, the function contain-
g random variables is expanded in Taylor series about the n ’
of random variables, i.e. Y . 1 fhe mean values

- 9f(Y)
[(y)‘-‘f(u)*-;‘g; y“”(y,,—u,,)+e .......................... (10)

in which f(y) = a function involving P random variables; 1 = a vector
of mean values of P random variables; and € = higher order terms in
Taylor expansion. Neglecting the higher order terms in Eq. 10 and as-
suming independence of random variables involved, the mean and vari-
ance of the function f(y) can be approximated as

BT FI) oo an
_ [y :
var [f(y)] ~P§ [—a;f-,y= p.] R (12)

in wh;ch E[ ]and var [ ] are the expectation and variance respectively;
and o is _lhe variance of the pth random variable. ’ v

Denyahgms of statistical properties of drawdown at each control point
assuming independency of transmissivity and the storage coefficient are
given in Appendix I and the results are given as follows:

M n

ElsGom] =2 S B i )QGn =k +1) oonsone (13)

i=1 k=1

M n 2
var [s(j, n)} = [2 > Al,j, k)QU,n — k + 1)0,]
i=1 k=1
+ [2 > B(,j, HQU, 1!)05] .......................... (14)
k=1

i=1

ance of drawdown at control point j at the end of the nth period; o} =
= the variance of the storage coef-

the variance of the transmissivity; o} =
ficient; B(i,j, k), A(i,j. k), and B(,j, k) = coefficients that are function of
the mean transmissivity and storage coelfficient as shown in Appendix
I. It is shown in Egs. 13 and 14, the mean of drawdown is a linear func-
tion of the pumpage while the variance of drawdown is a quadratic func-
tion of the pumpage. Derivation of Eqgs. 13 and 14 enables the devel-
opment of deterministic equivalent of Eq. 9, as shown in the next section,
which is mathematically operational and the random characteristics of
the aquifer properties are explicitly incorporated in the management

model. .

in which E[s(j, n)] and var [s(j, n)] = respectively, the mean and vari-

StocHAsTIC MANAGEMENT MODEL

Since the total drawdown at any control point is the sum of the draw-
down created by many individual pump wells, the total drawdown at
each control point can be assumed to have a normal distribution (loose
use of the central limit theorem, CLT) with mean and variance given by
Eqs. 13 and 14, respectively. Under the normality assumption the orig-
inal chance-constrained equation (9) can be expressed as :

s*(j,n) — E[s(j,n .
Pr{Z < S0 — Bl "} Z QM) e (15)
Vvar {s(j, m] ‘
where Z = a standard normal random variate with mean zero and unit
variance. By substituting Eq. 13 into 15, then an equivalent expression

can be writlen as

M n
VVar G, M1 F~ el m) + 0 Y B, QG n =k + 1)

i=1k=1

=s*(j,n); foralljandn........ooooiiiiiiiiiiiiiiiiie
in which F~'[a(j, m)] = a standard normal deviate corresponding to the
normal cumulative distribution function of a(j, n)."

Note that the first term in Eq. 16 involves a square root of the variance
of drawdown at each control point which, in turn, is a quadratic func-
tion of unknown decision variables Q’s (see Eq. 14). The deterministic
equivalent of a chance-constrained equation is nonlinear and the use of
the LP technique for problem solving is prohibited. However, a linear-
ization procedure called quasi-linearization can be employed to linearize
the nonlinear terms in Lq. 16. The linearization procedure is similar to
the one used by Willis (35).

In the process of linearization, the nonlinear terms in Eq. 16 is ex-
panded in Taylor series about any arbitrary pumping rate, say [Q%i,n
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~k+ 1 foralli=1, ..., M;ksmn;andn=1,... N, as
f1Q) = {var [s(j, mI}'"” = £1Q"]

M n
) P ()

i=1 k=1 OQ(I, n - k + 1) Qo

in which q = the higher order terms. After neglecting the higher order
terms and some algebraic manipulations, the first-order linear approxi-
mation of the nonlinear terms (shown in Appendix II) can be expressed

as

fQ) = WMBUJWV”

[QGn-k+1D)=Q%in—k+D]+v (17)

M n .
Z z D@, ki, n—k+1); foralljandn.................... (18)

n

where D(i,j, k) = 7 { [Z E A, j, KorQ°,n — k + 1)] Ali,j, K)ot

M n o
+ [Z > B, K)osQ,n — k + 1)] B(i, j, k)us] ................... (19)
i=1 k=1
Finally, substituting Eq. 18 into Eq. 16 results in a linear approxima-
tion of deterministic equivalent of original chance-constraint

M n
E 2 EG,j, QU n —k+ 1) =s*(jn); foralljandn ............. (20)
i=1 k=

where E(i,j, k) = B(i,j,k) + F'[a(j, m]D(,j, k). If we replace the draw-
down constraints in the previous deterministic management model by
Eq. 20, then the model would become a stochastic one which considers
the random nature of aquifer properties. The coefficient E(i,, k) in Eq.
20 can be considered as a stochastic unit response function derived from

the Cooper-Jacob equation.

SotutioN TECHNIQUE

Because the original chance-constrained management model formu-
Jation contains nonlinear terms in the drawdown constraints, a lineari-
zation procedure is performed on Eq. 16 in order to utilize the LP tech-
nique for problem solving. In the process of linearization, initial estimates
of pumping rates are needed for each pumpage well during all periods,
and these estimates, in turn, are used to calculate the values of each
stochastic influence coefficient E(i,j, k) in Eq. 20. As a result, the optimal
solution obtained from the linearized management models, Eqgs. 6, 20,
and 8, is not necessarily the optimal solution to the original problem.
An iterative procedure is required to ensure the convergence of the ap-
proximated solution to the true optimal solution.

When solving the linearized slochastic management model, the model
formulation originally stated can be relaxed by dropping the demand
constraints. The writer felt that, in problems of this nature, the inclusion

8

Specify initial estimate
of pumpages, Q;'s

‘ Replace Q1-1 2,000 s
X by Q°1=Qj_

as new estimates

Solve for Qi‘s by linear
ptqgramming

NO

Optimal solution
found

FIG. 1.—Flow Chart for Solving Linearized Chance-Constralned Groundwater
Management Model
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of a demand constraint in the management model is somewhat redun-
dant because decision-makers generally would have some knowledge
about the desirable demand level. Under a specified limitation on draw-
downs, the relaxed model can solve for the maximum allowable pump-
age that can be extracted from the aquifer without violating the draw-
down constraints. If the maximum allowable pumpage determined by
the model does not exceed the desirable demand level, then, the prob-
lem does not have a feasible solution. Decision makers would have to
reconsider the drawdown limitations, performance reliabililies, or even
the demand level they originally imposed on the system. On the other
hand, the problem solution is obtained if the maximum allowable pump-
age exceeds the demand. In other words, the relaxed model can be used
by decision-makers for finding the maximum physical capacity of a
groundwater system and to adjust their planning decisions accordingly.

The solution for the relaxed stochastic management model can be ob-
tained as follows:

1. Provide an initial estimate of pumpage at each well for all periods.

2. Solve the linearized model by the linear programming technique.

3. Compare the current optimal solution of pumpage rates with the
pumpage estimates from the previous iteration.

4. If the difference between solutions from two consecutive iterations
is within the specified tolerance limit, stop the iteration and the optimal
solution is found. Otherwise, update pumpage estimates and repeat steps
2 and 3.

A flow chart of the above solution procedures for a multi-period chance-
constrained groundwater management model is shown in Fig. 1. Of
course, other stopping rules, additional to the convergence criterion, can
also be imposed o prevent excessive ileration during the computation.
It should be noted that the global optimum to the problem, in general,
canno! be guaranteed because of the nonlinear nature of the problem.
Therefore, a few runs with new starting points are suggested to ensure
that the overall optimum is obtained.

MoDEL APPLICATION

Consider a hypothetical confined aquifer basin with three potential
wells and five control locations where the drawdown is of interest. The
locations of potential production wells and control points for this hy-
pothetical example are predetermined and are shown in Fig. 2. From the
physical layout, the distances belween the production well and control
point can be measured and are given in Table 1. The mean transmissiv-
ity and storage coefficient over the basin are 5,000 ft*/day (465 m?/day)
and 0.002, respectively. The problem is to determine the optimal pump-
ing rate for each potential well over three time periods of 50 days each,
such that the resulling drawdown at each control point will not exceed
a maximum allowable value with a specified reliability. The maximum
allowable drawdown value at each of the five control points, j = 1, 2,
-+, 5, over each period are given in Table 2. The objeclive function is

10

TABLE 1.—Distance, In ft, between Potentlal Pumping Wells and Control Points
In Hypothetical Example

Control Point
4 .. |. 5
Pump wells 1 2 . 3
:)1) 2 3) 4 (5) (6)
158 381 158 255 430
; 515 255 . 292 474 158
3 447 447 200 200 200

TABLE 2.—Maximum Allowable Drawdown, in ft, at ‘each Control Point In H_ypof
thetical Example

Control Point
.4 5
Period - 1 2 3 ] ‘ .
(1) 2) (3) () (5) (6)
1 5 8 i . 5 5
2 8 8 10 ' 8 8
3 10 10 15 10 10
[ \ 6 6¢
3  pertae 1 E,:s L Pertod £2 gs  Pertod 13
::" 3 :‘ 3 tentot ;‘ E cov of Tranamtssivity:
H 2 b cOV of Transmtasivity: 3 [ i
EJ :cov of Tr(:nztnh-lvily. EJ 0.2 ’ E] 3 0.2
3 3 0.4 P E—
Fb e EF—y T B b—a——
& A i t p—
! t' 4 5 .6.7 .8 ‘-: ST e e Y EyaTs e g 8
(a)'zcuv.;:.( Stet. Coeff. ' {b) cov of Stor. Coeff. (c) cov of Stor. Coeff.

Id for Period No. 1 with Varlous
FIG. 3.—Total Allowable Pumpage from Well Fie ¢ s
Rellability Levels: (a) Reliabllity = 0.975; (b) Rellability = 0.950; (c) Rellability =

0.900
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to maximize the total pumpage subject to drawdown constraints of spec-
ified reliability. - ‘
To examine the effects of the reliability level and aquifer property un-
certainties on the optimal solutions, problems with different perfor-
mance reliability requirements and various levels of uncertainty in aqui-
fer transmissivity and storage coefficient are solved and the results are
shown in Figs. 3-6. The uncertainty level of aquifer parameters is mea-
sured by the coefficient of variation (COV). As expected, the maximum
total amount of pumpage increases as the required performance reli-
ability level decreases. At a given required reliability level, the maximum
total pumpage decreases as aquifer parameter uncertainty increases. Model
results are quile insensitive to the uncertainty of the storage coefficient
under a specified performance reliability level and a given uncertainty
level of transmissivity. This relative insensitivity of the uncertainty level
of the storage coefficient on the model results can be explained from Eq.
26 in Appendix I and Eq. 14. That is, the contribution of the uncertainty
of the storage coefficient to the overall uncertainty in the total draw-
down is quite insignificant. This implies that the aquifer storage coeffi-
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cient could practically be treated as a constant. However, the uncertainty
of the aquifer transmissivity cannot be ignored.

PoST-OPTIMALITY SIMULATION

During the process of transforming the original chance-cor_@lrained
drawdown equation to its deterministic equivalent, the probability den-
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sity function of the random drawdown at each control point for all pe-
riods is assumed to have a normal distribution. It is worthwhile to in-
vestigate the adequacy of model results under such an assumption. In
this section, a post-optimality simulation study is presented to examine
how close the model outputs comply with the required system perfor-
mance reliability at various control points during different planning pe-
riods. One thousand log-normally distributed independent random sam-
ples for the transmissivity and storage coefficient were generated based
on their individual statistical properties used in the hypothetical exam-
ple. Optimal pumpages determined from the stochastic model under
various reliability requirements and uncertainty levels were used in the
post-oplimality simulation study. From the study, actual reliability at
different control points during all planning periods were computed. It
was found that actual reliability varies from one control point to another
even though the required performance reliability in the model for all
control points are uniformly the same. This implies, from a system op-
eration viewpoint, that only a fraction of control points in the system
which would be critical and dictate the model results. Unfortunately,
identification of such critical locations in system modeling is difficuit.
The actual reliability averaged over a total of five control points for each
period under various reliabilily requirements and uncertainty levels of
aquifer parameters are shown in Figs. 7-9. As can be scen, the actual
average reliability corresponding to the model results is lower than the
specified model reliabilily requirements in all cases. From a practical
viewpoint, the model results are acceptable when the COV of transmis-
“sivity is small. Again, the uncerlainty level of the storage coefficient is
not critical. This study indicated that, when the uncertainty of trans-
missivity is small, the use of the normality assumption to describe draw-
down probability distribution is adequate. It would be interesting to in-
vesligate the adequacy of using other types of probability distribution
in Eq. 19. Possible sources for such a discrepancy between actual reli-
ability and specified reliability, especially when the COV of transmis-
sivity is moderate or large, are the inappropriateness of the first-order
used analysis in assessing statistical properties of the random drawdown
and the number of potential pump wells is too small to make the CLT
applicable. '

SummaRY AND CONCLUSIONS

A simple stochastic multi-period groundwaler management for a ho-
mogenous, nonuniform, confined aquifer is developed. The model uti-
lizes the concept of the unit response function that explicitly considers
the random nature of aquifer properties such as the transmissivity and
storage coefficient. The response function is derived from the simple
Cooper-Jacob equation. The purpose of the paper is to present a meth-
odology for formulaling a simple stochastic management model apply-
ing those analytical equations for groundwater flow under idealized con-
ditions when there is insufficient hydrogeologic information available.
The use of a simple model is justified when data is lacking. However,
as development progresses and more data is collected, a more sophis-
ticated model should be employed.
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Application of the model is demonstrated using a hypothethal eg—
ample through which factors affecting model results are investigated.
Basically, the total maximum pumpage increases as the reliability re-
quirement and uncertainty level of aquifer properties dgcrea§es. Because
the value of the storage coefficient in most confmgd aquifers is very small
and the use of the Cooper-Jacobs equation in this study, the mode] re-
sults were found to be quite insensitive to its uncertainty level.f How-
ever, model outputs are very sensitive to the uncertainty level of trans-

issivity. .
mln a pgst-oplimalily simulation study, it is f_ound that the model yields
rather acceptable resulls in complying sp.emfled rellabx'llty requirements
only when uncertainty of transmissivity is small. Again, uncertainty of
the storage coefficient has little effect on the compliance of required re-
liability. These observations could lead to the following general conclu-

sions:

1. Effort should be given to better evaluate aquifer trqnsmissivity in-
cluding its variability. The storage coefficient in a mode.elmg process can
be treated as delerministic and its accuracy is not crucial.

2. When the uncertainty of transmissivity is moderately large,_ the
normalily assumption for random draw.down may not be appropriate.
Some other types of distribution functions shguld be examined. Fur-
thermore, the assessment of statistical properties of drawdown using
first-order analysis may not be appropriate. There have been some in-
vesligations regarding the appropriateness of fnrst'ord.er analysis applied
to situations where variation of system components is large (14, 20).
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APPENDIX |.—UNCERTAINTY ANALYSIS OF RANDOM DRAWDOWN

Discrete formulation of drawdown at control point j at the end of the
nth period is given by Eq. 2 as
M n
s(om) = 2, 2, B j QM — Kk + 1)
i=1k=1 :
where B(i,j,k} = the unit response function, which can be derived from
the Cooper-Jacob equation as

B, i, k) = ﬁ (WL, j, k) = WG j k= DI} ceeeeneeeiieiinens

v
“where W{u(i,j, k)] = In (2.25Ttk/r;2,-5). Since T and S are randqm variables,
the unit response function, (i, j, k) as well as drawdown, s(j, k), are both

random variables because they are functions of random variables.
To estimate statistical properties of random drawdown, the first-order
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analysis of uncertainty is employed. Taylor's expansion of drawdown
about the mean values of T and S can be expressed as

n

M
s(j,m) = D0 > B, j,k)QU,n — k + 1)

i=1k=1}

+ as(j, m)

.. 9s(j,n)
T - —_—
(T-T) + s

T

whge ﬁ(i,j, k) = unit response funclion given in Eq. 21 in which random
Yarlableg T and S are replaced by their respeclive mean values, T and
S. The first-order partial derivative of s(j, n) with respect to T can be
obtained as

Gy [
T [E‘ kzl B(i.,j, K)QG, n — k + 1)]

n

ZA(i,j,k)Q(i,n-—k+1)................' ......... (23)

i=3 k=1 )
1 2.25Tt ‘
4ni"[l—l"( 1S )] k=1

()]
AT In ;: k=200 (24)

Similarly, first-order partial derivative of drawdown with respect to the
storage coefficient can be obtained as

i
Mz

i

in which~ A(i,j, k) =.

(/1) e s .
=T Z B KQU M =k FT) e (25)
i=1 k=1
LN
where B(i,j, k) = 4110T’f fag T (26)

Ignoring the higher order terms in Eq. 22, the expectation of draw-
down can be approximated as Eq. 13
M n

Els(j,m] =~ 2. > B 7, kQG,n ~ k + 1)

i=} k=1

Furthermore, assuming independency of T and S the variance of draw-
down can be approximated as Eq. 14

? as(imy | TP
., [osGm | T,
J o [ 95 3 7s

r M ) 2
> kz A, j, Q3 n — k + 1)] ol
L i=1 k=1
M n 2
TZ kz B(i, j, Qi n ~ k + 1)] ol
L i=1 k=]

_Bs(j, )

var [s(j, n)] = oT
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where o7 and o = respectively, the standard deviations of transmissiv-
ity and storage coefficient. S

AppenDIX II.—DerivaTION OF Ea. 18

Substituting Eq. 14 into Eq. 17,' we can express Vvar [s(j,n)] in terms
of unknown pumpages Q’s more explicitly as ~ ~ '

M n S 2
f(Q) = {var [s(j, P}/ = HZ S AGi,j, korQi,n -k + 1)]
T i=1k=1" N AR .
i M n 24172 : :
+ [2 >, Bi,j,kosQli,n — k + 1)] } = {fHQ) + fHQN........ 27)
i=1 k=1 . ' ‘

M n
where fr(Q) =, >, A(i,j,KorQ(i,n —k +1)
i=1 k=1

3

M ) ' '
and fs(Q) =, 2, B(i,j,kosQli,n —k+1)

i=1 k=1 o )
Eq. 17 is a first-order Taylor expansion of Eq. 27. The first terms on the
right-hand side of Eq. 17, £(Q°), is the value of function f(Q) calculated
by using arbitrarily assumed pumpages, Q%s. The partial derivative in
the second terms of Eq. 17 can be expressed as

Q) R TP »
9Q(i,n —k+ 1) g B f(go)_ (@ )A(f,],(c)ar e )B(l'»]:’ .k)US] .... (2%)

Substituting Eq. 28 into Eq. 17 and multiplying it with Q(i,n — k+ 1)
and Q(i,n —k+1), respectively, we obtain -

1 . :
= "y ~ 0 A 'I ‘lk .
f.= 19" - 75, 2 2 Ur@OAGj: o

. 1 _
+f(QNBGjRosIQ G — k1) + g > Z {fr(QDAGj, kyor

+ f5(QMBG,j, Kos1Q,n —k+ 1) +m SURTIT

Since f+(Q°) and f5(Q°) are constants, they can be moved out the double
summation in the second terms on the right-hand side of Eq. 29. As a
result, the first and second terms cancel each other. By dropping the
higher order term, 7, Eq. 29 can be rewritten as Eq. 18.
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