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ABSTRACT 
This paper introduces a numerical scheme for solving the equation gov- 
erning two-dimensional flow in a variably saturated porous medium. 
The scheme use8 a mass-conserving timestepping method together with 
a computationally efficient collocation formulation of the spatial deriva- 
tives. A Newton-like iteration gives a temporally stable implicit scheme. 
The paper examines a sample problem involving subsurface irrigation 
in the unsaturated zone. 

INTRODUCTION 
This paper presents a new numerical scheme for simulating variably 
saturated flows in two space dimensions, The scheme, based on finite- 
element collocation, is an extension of a one-dimensional formulation 
presented earlier (Allen and Murphy, 1985). In that paper we discussed 
some of the computational advantages of collocation and examined the 
issue of mass conservation that arises in many numerical approaches to 
variably saturated flows. 

The equation we solve is 

ae v [ K ( V h  - e,)] - at = 0 

where, in two dimensions, V (a/&, a / a z )  with z measuring distance 
above some datum, and e, is the unit vector in the z-direction. In this 
equation, h(z , z , t )  is the pressure head (m), X stands for the soil’s 
hydraulic conductivity (m/a), and 8 aignifies the moisture content of 
the soil (dimensionless). Typically, the physics of variably saturated 
flows dictate that K and B vary with h, and the relationships K ( h )  and 
8(h) make Equation (1) nonlinear, Murphy (1985) gives a derivation of 
this equation. 



/ In the following section we discuss a finite-eiement formulation of 
Equation (1) incorporating iterative time-stepping to accommodate the 
nonlinearity. Then we deacribe a collocation scheme for obtaining a lge  
braic analogs to the differential equation and review an application to 
a sample problem. 

FINITKELEMENT FORMULATION 
Our first task in numerically solving two-dimensional unsaturated flows 
is to discretize the governing equation (1). To do this, we first expand 
the spatial derivativea uaing the product rule and use a backward Eu- 
ler difference scheme to approximate the time derivative on a uniform 
temporal grid 0 < At < 2At < * * *  < nAt < 0 . 0  : 

This equation furnishes an implicit time-stepping scheme for the ap- 
proximate pressure head h"(z,z)  ss h(z,z,nAt), which we regard as 
the principal unknown. 

To solve Equation (2) we must accommodate the dependence of 
the nonlinear functions Kn+I = K(h"+l ) ,  = B(h"+') on unknown 
values hnfl of the pressure head. To do this, we use an iterative method 
to advance between time levels, solving for iterative increments 6h = 
h"+lBrn+l - h"+'n" to progress from the known iteration m to the next 
unknown iteration m + 1.. Thie scheme allows us to lag the nonlinear 
coefficients by an iteration *in aolving for 6h: 

where the exprwion 

(3) 

I 
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I 
plays a role analogous to that of the reeidual in etandard Newton- 
Raphson schemes. In executing the iterative method, we begin each 
time etep by setting h"+l@O = hn and atop the iteration, setting 
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h"+'bm+l = h*+l, when llR"+',"Ilm < L for some prescribed toler- 
ance e > 0. 

The formulation leading to Equation (3) differs from standard 
head-based formulations, which typically use the chain rule to expand 
the accumulation term as a6/at = (d8/dh)ah/at. Such an expansion 
calls for the evaluation of the specific moisture capacity d8/dh at some 
time level in the interval [nAt,(n + l )At]  in the temporally discrete 
approximation. There seems to be no simple (noniterative) way of 
choosing this time level to guarantee global mass conservation in the 
ieme 

where fl represents the spatial domain of the problem and n is the unit 
outward normal vector to the boundary d n .  A8 discussed in (Allen and 
Murphy, 1985), discretizing the flow equation aa in Equation (3) avoids 
this difficulty, enforcing global mass comervation to within the iterative 
convergence criterion at each time step. 

To discrethe Equation (3) in space, we project the spatially varying 
quantities h"sm(z, z ) ,  8"mrn(z, x ) ,  K"lrn(z,r) and d O " ~ ~ / d h  onto finite 
element subspaces. In particular, we select for the principal unknown 
h"tm(z,t)  trial spaces spanned by tensor products of piecewicle cubic 
Hermite interpolating functions in the 2- and z-directions. Thus, for 
a rectangular region fl, we adopt a two-dimensional grid (20 < 2 1  < 
* * a  C ZM) x (20 < z1 < m - 0  < ZN} with nodes (denoted Xi) at  the 
points (zj,ak) and, for x E fl, set 

N 

i= 1 

Here 6;, 6!"), a!.), and bi(t') represent approximate values of 6h, 
a (bh) /az ,  a (6h) /az ,  a2(6h)/az  at, respectively, a t  the node xi. The 
basis functions Pooi,  vloi, pol i ,  and Plli are tensor products of the 
one-dimensional Hermite basis functions (Prenter, 1976, Chapter 3): 
Vppi (X)  = H p i ( Z )  Hqi(z), where Hoi is the one-dimensional basis func- 
tion associated with the nodal value of the interpolate, and Hli ie as- 
sociated with its nodal elope. 

The projection (4) furnishes a continuously differentiable interpe 
lation scheme for the iterative increment S i  in which the nodal param- 
eters are unknown except where given by boundary data. The head h 
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I inherits this interpolation scheme according to the updating rule 

Therefore, given initiFl and boundary data for h ,pne  can use Equa- 
tion (3) to solve for 6h at each iteration, updating h to step forward i s  
time. 

We also let the moisture content 8 have a Hermite cubic expansion, 
using the chain rule to express spatial derivativea of 8 in terms of the 

. nodal unknowm hi"), hi,), and hif'): 

This C' projection of 6 parallels the successful onodimensional calcu- 
latiom reported in (Allen and Murphy, 1985). 

Finally, for the coefficients K and d@/dh in Equation (3) we adopt 
piecewise bilinear approximatiom: 

where L; is just the onedimensional piecewise linear Lagrange (cha- 
peau) basis function associated with node i. 

Substituting all of these finiteelement projections into Equation (3) 
yields a temporally discrete scheme with a finite number of unknown 
nodal degrees of freedom h; at  each time step. 

COLLOCATION SOLUTION SCHEME 
To determine the nodal values of S h  and therefore advance the head A in 
time, we need a set of algebraic equations at each iterative step. Some 
of these equations come from boundary conditions; the reat we will 
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construct using finiteelement collocation. Let u8 begin by reviewing 
the boundary conditions. 

By using the tensor-product basis defined above we have tacitly 
oriented the computational boundaries parallel to the coordinate axes. 
For nonrectangular domains, we would isoparametrically transform the 
(z,y)-plane to a plane endowed with a deformed coordinate system aa 
described in Pinder et al. (1978). In the untransformed system, the 
unit normal vector n and unit tangent vector t to the boundary will be 
Ifre, or fe,, depending on !he position along the boundary. Suppose X i  

is a Dirichlet node. Then h"+'(xi)  = hl+' is a fixed, known quantity 
and therefore 6i = 0. Moreover, we can differentiate the boundary 
data tangentially along the Dirichlet boundary ano to deduce fixed 
valuea for VA"+' 01, thus forcing a,(z) = 0 if r = fe, and a,(*) = 0 if 
r = fe,. Similarly, if xi is a Neumann node, then V&n+l(Xi) is a fixed, 
known quantity, forcing S / = )  = 0 if n = f e z  and ti!') = 0 if n = fe,. 
Differentiating the boundary data tangentially in this case will give fixed 
values for V(Vkn+l a n )  0 1  along the Neumann'boundary  an^, forcing 
6i("#) = 0. Therefore a t  any boundary node within a boundary line 
segment the boundary data determine two nodal parameters. At corner 
nodes the boundary data along the intersecting boundary segments will 
combine to determine three nodal parameters. 

To determine the remaining boundary and interior nodal param- 
eters, we collocate the finite-element approximation to Equation (3) 
at a set of collocation points Xk E n. This yields a system of linear 
equations each having the form 

where represents the expression obtained by substituting the a p p r e  
priate interpolatory projections for the epatially varying quantitiea in 
the residual R. 

We choose for the collocation points Xk the Gauss points associ- 
ated with four-point quadrature on each rectangular element [zp, zp+: J 
x [zq,zq+l]  (Pinder et al., 1978). This choice of collocation points fur- 
nishes exactly the right number of additional equations for the remain- 
ing unknown nodal parameters and gives the best possible accuracy 
estimates for the linearized problem a t  each time step (Prenter and 
Russell, 1976). 
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To show the effectiveness of our collocation scheme, we solve a sample 
problem similar to one solved by van Genuchten (1983) using a Galerkin 
procedure on Hermite bicubics. This problem describes water infiltrat- 
ing from a source located 0.15m below the soil aurface. The governing 
differential equation ia 

a0 
at 

V-[K(Vh -em)]  - - + Q = 0 

where Q is the water source, measured in 8-l .  The spatial domain of 
the problem is f l  = (0,0.61m) x (-3.5m90). We assume that the left 
side (0) x (-3.Sm,O) and right side (0.61m) x (-3.5m,0) are linea of 
symmetry with no normal flux, that the bottom (0,O.Slm) x {-3.5m) 
ia a free-draining boundary, and that the,soil surface (0,0.61m) x ( 0 )  
remains at atmospheric pressure. These assumptions lead to the bound- 
ary conditions 

-3 .5m<z<03  L > O  
ah ah - (0, r , t )  = - (0.61m, z, t )  = 0, az a x  

ah 
- (z, -3.5m9t) = 0, 
a x  

h(z,O, t )  = -0.14495m3 

0 < z < O.6lm, t > 0 
0 < z < 0.61m, t > 0 

I 
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We impose the initial condition h(x,O) = -0.387m, x f fl. For the 
material propertiw K and 8 we assume the same functiond forma as 
van Genuchten, which in SI unite are 

t 

K ( h )  = (1.157 x 10-')[96.768exp(12.58h))m/8, h 5 0 
B(h) = 0.10 + 0.40/11 + 0.002S(100h)2)''3, h < 0 

We aSsume a point source of the form Q(x) = Q06(z - O)b(z + 
0.15m) with a source strength QO = 5 x 10'6a-1. In finiteelement 
collocation we must approximate Q by a square-integrable f%nction. 
We choose a piecewise bilinear approximation of the form Q(x) = 
EL, Qi L i ( Z )  L i ( Z ) ,  where the point ~f~~~~~ = (0, -0.15m) is a node, 
Qi = 0 if X i  # x : ~ ~ ~ ~ ~ ,  and J ,  Qdx = Jn Q dx. 

We solve the resulting collocation equations on the five-element-by- 
eleven-element grid given in (van Genuchten, 1983) using a time step 
At = 36009 (one hour). Figure 1 shows the structure of the matrix 
that has to be inverted at  each iteration in the nonlinear time-stepping 
procedure. The bandwidth for this matrix is 31. We use a direct solver 
executing LU factorization with partial pivoting on banded asymmetric 
matrices. 

t 
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Figure 1. Matrix structure for 
the sample problem. 

Figures 2 through 7 show the spatial variation of k(x, t) at  two-hour 
intervals. At two hours (Figure 2), the source already has a noticeable 
effect on the pressure head. In the horizontal direction A peaks at 
the source, drops off, and then levels out. In the vertical direction 
the pressure head gradually increases further down inLo the column as 
time progresses. Finally, a t  t = 12 hours (Figure 7) h reaches a very 
close approximation to the steady-state solution in the sense that this 
solution is virtually identical to solutions at later times. 

CONCLUSION 
The finite-element collocation method produces good approximations to 
pressure head distributions in unsaturated flows through porous media. 
As we have shown, the mass-conserving iterative formulation,. demon- 
strated earlier for onedimensional flows, extends in a natural way to 
two space dimensions. One area deserving further investigation is the 
linear algebra involved at each iterative stage. Since the matrices for the 
multidimensional problems have an asymmetric block structure with- 
out diagonal dominance, better methods for solving the linear iterative 
systems would be a boon to further applications. 

ACKNOWLEDGMENTS 
The Wyoming Water Reeearch Center provided partial support for this 
work. The National Science Foundation also provided support through 
grants numbered CEE-8404266 and DMS-8504360. 



Figure 2, Pressure head solution 
at 2 hours. 
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Figure 5. Pressure head solution 
at 8 hours. 

Figure 6. Preeeure head solution 
at 10 hours. 
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