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A Finite-Element Collocation Method for Variably 
Saturated Flow in Two Space Dimensions 
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CAROLYN L. MURPHY 

Edwards Air Force Base, California 

This paper introduces a finite-element collocation technique for solving the equation governing two- 
dimensional flow in a variably saturated porous medium. The scheme uses a mass-conserving formu- 
lation of Richards' equation as the basis for the finite-difference time-stepping method. Collocation in 
tensor-product spaces of Hermite cubics yields a computationally efficient finite-element approximation 
of the spatial derivatives. A Newton-like iteration gives a temporally stable implicit scheme. The paper 
examines two sample problems, including an initial boundary-value problem involving subsurface irri- 
gation. 

1. INTRODUCTION 
This paper presents a finite-element collocation scheme for 

simulating variably saturated flows in two space dimensions. 
The scheme is an extension of a mass conserving one- 
dimensional formulation presented earlier [Allen and Murphy, 
1985). The present exposition gives a complete description of 
work reported more briefly in the work by Murphy and Allen 
[1986]. Among the key features of the methodology presented 
here are (1) the particular piecewise polynomial approxi- 
mations used to represent the spatial heterogeneities in hy- 
draulic conductivity, moisture content, and specific moisture 
capacity, and (2 )  the implementation of a Newton-like itera- 
tive scheme that ensures a stable, consistent time-stepping 
procedure in the presence of strong nonlinearities. 

The equation we solve is the two-dimensional Richards 
[ 193 11 equation 

ae 
at 

V [K(Vh - e,)] - - = 0 

where V = e,a/dx + e,a/dz, with z measuring distance above 
some datum, and ex and e, are the unit vectors in the x and z 
directions, respectively. In this equation, h(x, z ,  t )  is the pres- 
sure head (m); K stands for the soil's hydraulic conductivity 
(m/s); and 0 signifies the moisture content of the soil (dimen- 
sionless). Typically, the physics of variably saturated flows dic- 
tate that K and 8 vary with h, and the relationships K(h) and 
8(h) make (1) strongly nonlinear. 

Our presentation is organized as follows. In section 2 we 
discuss a time differenced, finite-element projection of (1) onto 
tensor-product spaces of piecewise polynomial interpolating 
functions. The time-stepping algorithm uses a Newton-like it- 
erative scheme to accommodate the nonlinearities in material 
properties. Section 3 describes a collocation scheme that in 
conjunction with the appropriate treatment of boundaries, fur- 
nishes algebraic analogs to the differential equation. Section 4 
reviews two sample problems, and section 5 discusses our re- 
sults and conclusions. 
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2. FINITE-ELEMENT FORMULATION 
Our first task in numerically solving (1) is to discretize the 

governing equation. To do this, we first expand the spatial 
derivatives using the product rule. Then, assuming a uniform 
temporal grid (0 < At < 2At < * < nAt < * * -1, we use a 
backward (implicit) Euler difference scheme to approximate 
the time derivative. These procedures yield 

dKflf1 gnfl  - 8" 
aZ At 

--- 9(h"+  ') = 0 (2) 

This approximation incurs an @(At) truncation error. For the 
time being, let us allow the spatial dependencies in (2)  to 
retain their original forms from (1). Equation (2)  furnishes an 
implicit time-stepping scheme for the approximate pressure 
head h"(x, z )  w h(x, z ,  nAt), which we regard as the principal 
unknown. 

To solve (2 )  (or any spatially discrete analog of it) we must 
accommodate the dependence of the nonlinear functions 
K"+l  = K(h"+'), On+' = 0(hn+l)  on unknown values h"+l of 
the pressure head. To do this, we use an iterative method to 
advance between time levels, solving for iterative increments 
6h = h n + l * m + l  - h"+l*m to progress from the known iteration 
m to the next unknown iteration m + 1. This scheme allows us 
to lag the nonlinear coefficients by an iteration, giving a linear 
equation for 6h: 

1 

where the expression 9(P+ l q m )  stands for the quantity 

and plays a role analogous to that of the residual in standard 

1537 
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Newton schemes. (Indeed, (3) is precisely what we would get 
using the Newton method for the operator equation 
B?(h"+') = 0 in (2) were we to neglect derivatives of K(h"+') 
and VK(h"+ ') with respect to the unknown h"+ in computing 
the Frechet derivative of the differential operator 9.) In the 
sequel we write Equation (3) more compactly as 

d n  + 1 ."ah = - g(hn + 1 m) 

In executing the iterative method, we begin each time step by 
setting h"+l*O = h" and stop the iteration, setting h n + l , m + l  = 
h"", when IIB?(hn+l.m)ll, < E for some prescribed tolerance 
E > 0. 

The formulation leading to (3) differs from standard head- 
based formulations, which typically use the chain rule to 
expand the accumulation term as aO/dt = (dB/dh)dh/at. Such 
an expansion calls for the evaluation of the specific moisture 
capacity do/& at some time level in the interval [nAt, 
(n  + 1)Atl in the temporally discrete approximation. There 
seems to be no simple way of choosing this time level to 
guarantee global mass conservation in the sense 

r I r r  

where S2 represents the spatial domain of the problem, and n is 
the unit outward normal vector to the boundary dR. It is 
worth mentioning, however, that Milly [ 19843 advances an 
iterative scheme for evaluating d6/dh to force mass conser- 
vation. As is discussed in the work by Allen and Murphy 
[1985], discretizing the flow equation as in (3) avoids this 
difficulty, allowing iterative updates of all nonlinear flow coef- 
ficients simultaneously. 

Now let us discretize the time-stepping equation (3) in 
space. To do this, we project the spatially varying quantities 
h".'", P'", K"*'" and dfPm/dh onto finite-element subspaces. For 
the principal unknown hn,,(x, z) we select trial spaces spanned 
by tensor products of piecewise cubic Hermite interpolating 
functions in the x-  and z-directions. In one space dimension, 
denoted generically by [, the Hermite functions defined on a 
uniform grid { C l  < C2 < - . . [,> of mesh AC are 

Hoi(C) = (C - ii- 1)2C2(ii - i) + ACI/Ar3 

Hoi(C) = (C i+  1 - 02C3AC - 2(Ci+ 1 - OI/AC3 

ffoi(C) = 0 

5 E [Ci- 1, Ti] 

5 E Cli, C i +  1 1  

otherwise 

H,i(i) = (5 - C i -  - Ci)/AC2 

Hli(C) = ( C  - C i + 1 1 2 ( 5  - Ci)/AC2 

C E CCi- 1, Ti1 
C E [ti, Ti+lI  

HIi(5) = 0 otherwise 

As Prenter [ 1976, chapter 31 demonstrates, these functions 
give a continuously differentiable interpolation scheme 

L 

f(C) x 1 [f(Ci)Hoi(O + f'(Ci)H 1 i ( O I  
i =  1 

for functions f~ C1([[o, rL] )  whose values and slopes at the 
nodes C i  are known. 

For tensor-product interpolation on a rectangular region R, 
we adopt a two-dimensional grid (xl < x 2  < * < x M ]  

x { z l  < z2 < - * * < zN> with nodes (denoted x i )  at the points 
(xj, ZJ. Then, for x E R, we set 

MN 

Sh(x) zz Sh(x) = 1 [S,qoo,(x)  + Gi'")q,,i(x) 
i =  1 

Here Gi, G i ( x ) ,  Si('), and GicXz) represent approximate values of 
Sh, d(Sh)/dx, d(bh)/dz, d2(Sh)/dxdz, respectively, at the node x i .  

The basis functions qooi, qloi, qoli ,  and q l l i  are tensor prod- 
ucts of the oneddimensional Hermite basis functions; 
q p q i ( x )  = Hpi(x)Hqi(z).  The interpolation error associated with 
a projection of the form (4) is @(Ax4 + Az4). 

The finite-element projection (4) furnishes a continuously 
differentiable interpolation scheme for the iterative increment 
6h in which the nodal parameters are unknown except where 
given by boundary data, as is discussed in the next section. 
The head h inherits this interpolation scheme according to the 
updating rule 

(4 hn+ l , m +  p +  l , m + l  

MN 
= 1 {[(hi)"+ lTrn + Si]qooi(x) + [(hi(x))n+ l *m + S,'"']q1Oi(x) 

i =  1 

+ [(hi(z))n+ lVrn + Gi(z)]qoli(x) 

+ [(hi'"")"+ l * m  + 6 i (xz ) ]q1  , i ( X ) }  

We also give the moisture content 0 a Hermite cubic repre- 
sentation. To do this, we need expressions for the nodal values 
of the derivatives &?/ax, d0/dy,  and d20/dxay. Since physically 
0 is an explicit function of h, we must use the chain rule to 
express spatial derivatives of B in terms of the nodal spatial 
derivatives hi("), hi(z), and hi("'). We thus obtain the cubic ex- 
pansion 

This C' projection of 0 parallels the successful one- 
dimensional calculations reported in our earlier paper [Allen 
and Murphy, 19851. It is worth mentioning here that numeri- 
cal experiments with less expensive, lower-order dis- 
cretizations of 8, using, for example, co linear projections, 
failed to yield stable solution schemes. We do not know the 
precise reason for the instability. However, observe that a 
cubic expansion of 6 allows the accumulation term (@'+I 

- &)/At to match more closely the polynomial degrees of 
other terms in the finite-element expansion of (3). 

Finally, for the coefficients K and d0/dh in (3) we adopt 
piecewise bilinear approximations : 

MN 
K ( x )  = c K(hi)Li(X)Li(Z) 

i =  1 

where Li is just the one-dimensional piecewise linear Lagrange 
(chapeau) basis function associated with node i. On the grid 
{ T l  < * - - < C L }  defined above, 

Here, in contrast to the moisture content 0, the use of Co 
Droiections seems to imDose no difficulties with stability. In 
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fact, one might argue that low-degree polynomial approxi- 
mations are desirable here, since in (3) the coefficients K ,  VK, 
and dQ/dh all multiply functions whose finite-element repre- 
sentations have higher degrees. The use of Lagrange bilinear 
polynomials for these variables avoids possible oscillatory be- 
havior associated with high-degree interpolation by guaran- 
teeing that each term in the finite-element projection of (3) has 
local degree four or less. 

Substituting all of these finite-element projections into (3) 
yields a temporally discrete scheme with a finite number of 
unknown nodal degrees of freedom at each iteration of each 
t;me step. 

3. COLLOCATION SOLUTION SCHEME 
To determine the nodal values of Sh and therefore advance 

the head h in time, we need a set of algebraic equations at 
each iterative step. Some of these equations come from bound- 
ary conditions; the rest we shall construct using finite-element 
collocation. Let us begin by reviewing the boundary con- 
ditions. We shall encounter two types of boundary data: Di- 
richlet data, prescribing the head h(x, t )  along a boundary 
segment an, c aR, and Neumann data, prescribing the out- 
ward normal derivative Vh(x, t) * n(x, t )  along another, disjoint 
boundary segment ail, c dR. We shall not encounter Robbin 
boundary data, so we assume aRD u an, = aR. 

Collocation differs from standard Galerkin techniques in its 
treatment of boundary conditions. Viewed as a method of 
weighted residuals, collocation yields integral equations of the 
form 

[*+l'mdh + a(p+1'm)]6(x - %k) dx = 0 ( 5 )  

Here 2 signifies the analog of the operator at computed 
using finite-element representations of its coefficients, and 6(x 
- xk) is a Dirac distribution centered at some point %k E R. 

While these equations are formally similar to those arising in 
the classic Galerkin method, the use of the singular distri- 
butions S(x - %k) as weighting functions prohibits the use of 
Green's theorem to rewrite the integral of the first term. 
Therefore no boundary integral arises, and hence there is no 
way to accommodate Neumann conditions naturally. For this 
reason, the finite-element collocation formulation requires that 
both Dirichlet and Neumann data be treated as essential 
boundary data. We must therefore incorporate all boundary 
information into our trial functions in advance of collocating. 

By using the tensor-product basis defined above, we have 
tacitly oriented the computational boundaries parallel to the 
coordinate axes. In this frame the outward unit normal vector 
n and unit tangent vector t to dR will be +ex or +e,, depend- 
ing on position along dR. Suppose xi E an,. Then h"+'(xi) = 
hi"+' is a fixed, known quantity, and therefore 6, = 0. More- 
over, we can differentiate the boundary data tangentially 
along aR, to deduce fixed values for Vh"+' - z, thus forcing 
hi@) = 0 if t = +ex and Sl") = 0 if z = +e,. Similarly, if xi E 
dR,, then Vh"+ '(xi) is a fixed, known quantity, forcing ai@) = 
0 if n = +ex and Si(,) = 0 if n = +e,, Differentiating the 
boundary data tangentially in this case will give fixed values 
for V(Vh"+l n) t along aR,, forcing Si(xz)  = 0. Therefore at 
any boundary node within a boundary line segment the 
boundary data determine two nodal parameters. At corner 
nodes of the rectangle R the boundary data along the inter- 
secting boundary edges will combine to determine three nodal 
parameters. 

To determine the remaining boundary and interior nodal 

parameters, we impose the weighted-residual criterion ( 5 )  at a 
set of collocation points x k  E R. This yields a system of linear 
algebraic equations each having the form 

where I? represents the expression obtained by substituting the 
appropriate interpolatory projections for the spatially varying 
quantities in the functional B(h). 

We choose for the collocation points %k the Gauss points 
associated with four-point quadrature on each rectangular ele- 
ment [x,, x , + ~ ]  x [zq, z,+J [Pinder et al., 19781. If we ima- 
gine such an element mapped onto the square [ - 1, 13 x [ - 1, 
13 in a "local" (g, q )  coordinate system defined by ( = (2x 
- 2x, - Ax)/Ax, q = (22 - 22, - Az)/Az, then the collocation 

points jik in the element have images whose coordinates are 
(&, ?$ = ( + I/& + @). Given the assignment of bound- 
ary data described above, this choice of collocation points 
furnishes exactly the right number of additional equations for 
the remaining unknown nodal parameters and gives optimal' 
@(Ax4 + Az4) accuracy estimates for the linearized problem at 
each time step [Prenter and Russell, 19761. 

For any collocation point 2, from the set just defined, (6) 
yields a linear equation involving the unknown coefficients of 
Sh at the four nodes surrounding %k. If we denote the vector 
containing all such coefficients, listed lexicographically, as 6, 
call the matrix of coefficients in the collocation equations 
A""."', and let R"+l.m stand for the vector of residual values 

(xk), then we see that (6) reduces to a matrix equation 
An+ 1 , m  6 = - R " + l , m  at each iteration. 

The discretization procedure just described yields the fol- 
lowing iterative algorithm for advancing the approximate 
solution from t = nAt to t = (n  + 1)At. 

@+ 1.m 

I. Let n t n + I, rn t 0, tin+ '*O(X) t &x). 
2. Compute the residual vector R"+ l,"'. 

3. If llR"+ l * m l l o o  < E ,  then I?" '~"(x). Go to step 1. 
4. Compute the matrix A""."'. 
5. Solve A"+1.m6 = - R " + ' y " '  for the coefficients of Gh(x). 

7. Go to step 2. 
6. Let b"+l ,m+l  (x) 4- tin+ ""(x) + Sh(X). 

4. SAMPLE PROBLEMS 
To show the effectiveness of our collocation scheme, we 

solve two sample problems. The first is essentially a one- 
dimensional vertical infiltration problem solved using a two- 
dimensional spatial grid. The purpose of this exercise is to 
allow comparisons with solutions generated by one- 
dimensional formulations known to be accurate. The one- 
dimensional equation is 

with boundary conditions 
h(0, t )  = -0.14495 m 

dh 
(lm, t )  = 0 

The initial condition, stated in terms of moisture content 8, is 

Q(h(z, 0)) = 0.15 + 2/12 

Q(h(z, 0)) = 0.2 

if 0 < 2 I 0.6 m 

i f 0 . 6 m < z <  1 m 
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-1.8 - - 

PRESSURE HEAD (m) 
-2  -1 0 

0.3 

. .- 
0.4 

0.7 o-81 0.9 

0.0 0.025 0.050 

HORIZONTAL DISTANCE (m) 

Fig. 1. Comparison of solutions for a vertical infiltration problem at 2 hours, using the two-dimensional collocation 
formulation (left) and a mass-conserving one-dimensional scheme (right). 

This equation amounts to a condition on h given the function- 
al relationship 

8(h) = 0.6829 - 0.09524 In IlOOhl 

8(h) = 0.4531 - 0.02732 In llOOhl 

if h 5 -0.29484 m 

if h > -0.29484 m 

To complete the statement of the problem, we use 

K(h) = 1.157 x 10-7(19.34 x 10s(100hl-3.4095) m/s 

h I -0.29484 m 

K(h) = 1.157 x 10-7(516.81100h(-0.97814) m/s 

h > -0.29484 m 

for the hydraulic conductivity. 
This problem is the same as that posed by Warrick et al. 

[ 19713, except that we express the constitutive relationships in 
SI units. The solution appears in the literature in several 
places, including a paper by van Genuchten [1982], who com- 
pares various numerical solutions with a quasi-analytic solu- 
tion developed by Philip [1957], and our earlier paper [Allen 
and Murphy, 19851, where we discuss a mass-conserving one- 
dimensional scheme. 

To test the two-dimensional collocation scheme against this 
problem, we solve the analogous problem 

a0 
at 

V (KVh - e,) - - = 0 x E (0, 0.05 m) x (0, 1 m) 

h(x, 0, t )  = -0.14495 m 

ah - (x, 1 m, t )  = 0 
d Z  

ah ah 
- (0, Z, t )  = - (0.05 m, z ,  t )  = 0 
ax ax 

with the same initial conditions as above imposed uniformly 
in the x direction. The boundary data along the vertical sides 
of the spatial domain imply no horizontal flux across these 
boundaries. We use a two-dimensional grid in which 
Ax = Az = 0.05 m and a time step At = 60 s, imposing a re- 
sidual tolerance E = l o p 5  s-'. 

Figure 1 shows the level curves of h at 2 hours. Alongside 
this plot stands a profile of f ;  at 2 hours computed using our 
one-dimensional collocation code [Allen and Murphy, 19851. 
This latter solution agrees very closely with those of uan Ge- 
nuchten [1982] and Philip [1957]. The plots in Figure l show 
excellent agreement between the two formulations, both in the 
values of the pressure head and in the location of the wetting 
front. 

Our second sample problem is similar to one solved by van 
Genuchten [1983] using a Galerkin procedure on Hermite bi- 
cubics. This problem describes water infiltrating from a source 
located 0.15 m below the soil surface. The governing differ- 
ential equation is 

ae 
V [K(Vh - e,)] - - at + Q = 0 

where Q is the water source, measured in s-l.  The spatial 
domain of the problem is R = (0, 0.61 m) x (-3.5 m, 0). We 
assume that the left side (0 )  x (-3.5 m, 0) and right side (0.61 
m} x ( -3 .5  m, 0) are lines of symmetry with no normal flu?, 
that the bottom (0, 0.61 m) x { -3.5 m> is a free-draining 
boundary and that the soil surface (0, 0.61 m) x (0)  remains 
at atmospheric pressure. These assumptions lead to the mixed 
boundary conditions 

ah ah 
-(O,z, t)=-(0.61 m , z , t ) = O  - 3 S m < z < O , t > O  ax ax 



ALLEN AND MURPHY : FINITE-ELEMENT COLLOCATION METHOD 1541 

ah 
- (x, -3.5 m, t )  = 0 

h(x, 0, t )  = -0.14495 m 

0 < x < 0.61 m, t > 0 aZ 
0 < x < 0.61 m, t > 0 

We impose the initial condition h(x, 0) = -0.387 m, x E n. 
For the material properties K and 0 we assume the same 
functional forms as van Genuchten, which in SI units are 

K(h)  = (1.157 x 10-7)[96.768 exp (12.58h)I m/s h I 0  

e(h) = 0.10 + 0.40/[1 + 0.002qiooh)2~1/2 h I o 
We assume a point source of the form Q(x) = Qo6(x - 0)'6(z 

+ 0.15 m) with a source strength Qo = 5 x lo-' s-'. In 
finite-element collocation we must approximate Q by a 
square-integrable function. This requirement contrasts with 
classical Galerkin procedures, where the integrability of the 
test functions permits us to use singular distributions like the 
Dirac 6 in modeling point sources in the operator equation. 
We therefore choose a piecewise bilinear approximation of the 
form 

MN 

= 1 QiLi(x)Li(z) 
i =  1 

where the point xisource = (0, -0.15 m) is a node, Qi = 0 if 
x i  # xisource, and Jn 0 dx = jn Q dx .  

We solve the resulting collocation equations on the five- 
element-by-eleven-element grid given in the work by van Ge- 
nuchten [1983] using a time step At = 3600 s (one hour). 
Figure 2 shows the structure of the matrix A that has to be 
inverted at each iteration in the nonlinear time-stepping pro- 
cedure. The bandwidth for this matrix is 31. We use a direct 
solver executing LU factorization with partial pivoting on 
banded asymmetric matrices. 

Figure 3 shows the spatial variation of h(x, t )  at 2, 6, and 12 
hours. At 2 hours the source already has a noticeable effect on 
the pressure head. In the horizontal direction h peaks at the 
source, drops off, and then levels out. In the vertical direction 
the pressure head gradually increases further down into the 

. 
Fig. 2. Matrix structure for the irrigation problem. 

Fig. 3. Pressure head solution at 2, 6, and 12 hours for the irri- 
gation problem. 

column as time progresses. Finally, at t = 12 hours h reaches a 
very close approximation to the steady state solution in the 
sense that this solution is virtually identical to solutions at 
later times. 

It is also interesting to note the effects of our approxi- 
mations to the Newton method on the convergence of the 
iterative scheme. Ordinarily, if we had used the exact Frechet 
derivative of the time-differenced operator 9 in (2), we would 
expect the iterative scheme to converge quadratically at each 
time step. Figure 4, however, shows that plots of In 
I f f n +  l*m+ 11  a) versus In /I@"+ 19mll a) typically exhibit straight- 
line trends with slopes not far from unity. Thus the approxi- 
mations used in constructing the iterative scheme apparently 
slow the convergence to a linear rate. This finding may de- 
serve some more careful analysis in the future. 
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A 
A 

A 
A 

A 
A 

A 

1 -7.0 

1 

Fig. 4. Logarithmic plot of successive residual norms in the 
Newton-like iterative scheme. Line of least squares fit has slope 1.14. 

5. CONCLUSION 
The finite-element collocation method produces good ap- 

proximations to pressure head distributions in unsaturated 
flows through porous media. As we have shown, the mass- 
conserving iterative formulation, demonstrated earlier for one- 
dimensional flows, extends in a natural way to two space 
dimensions. One area deserving further investigation is the 
linear algebra involved at each iterative stage. Since the 
matrices for the multidimensional problems have an asymmet- 
ric block structure without diagonal dominance, better meth- 
ods for solving the linear iterative systems would be a boon to 
further applications. A particularly promising approach along 
these lines is that of Celia and Pinder [1986], who advance an 
alternating-direction collocation scheme that reduces two- 
dimensional problems to sequences of one-dimensional prob- 
lems. Given the efficiencies in matrix assembly already in- 
herent in finite-element collocation, this general area of in- 
quiry has the potential to make collocation even more com- 
petitive with Galerkin techniques. 
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