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MECHANICS OF MULTIPHASE FLUID FLOWS IN 
VARIABLY SATURATED POROUS MEDIA 

MYRON B. ALLEN 
Department of Mathematics, University of Wyoming, Laramie, Wyoming 8207 1, U.S.A. 

Abstract-This article proposes a set of flow equations governing the simultaneous movement of 
aqueous and nonaqueous liquids in variably saturated soils. The basic principles and balance laws 
of continuum mixture theory, along with thermodynamically admissible constitutive laws and 
simplifying kinematic assumptions, yield a formulation for isochoric multiphase flows through a 
nondeforming porous matrix. Cast in terms of familiar quantities, the governing equations are 
similar in form to the classic Richards equation for each liquid phase. The development suggests 
new rock-fluid properties that must be measured to characterize multiphase flows in the 
unsaturated zone. 

I N T R O D U C T I O N  

GROUNDWATER contamination by liquids having limited miscibility with water has 
attracted increasing scientific and legal attention. While studies of groundwater pollution 
classically have focussed on single-phase flow and transport, many hazardous substances 
entering our aquifers are relatively insoluble in water and, hence, flow through porous 
media as separate, nonaqueous liquid phases. The physics of such flows differ substantially 
from the physics of single-liquid flows. Especially problematic are simultaneous flows of 
several liquid phases through the variably saturated zones of soils, which contaminants 
dumped near the earth's surface often must traverse before reaching saturated aquifers. 
This paper examines the basic mechanics of multiphase flows in variably saturated soils 
and proposes an extension of the theory of single-liquid flows to cases where water and 
nonaqueous liquids flow simultaneously. 

Investigations of the mechanics of water flowing in the variably saturated zone date to 
Richards [ 11. Indeed, Richards' formulation is now the most widely used model of water 
movement in unsaturated soils. Prominent among subsequent investigations of the 
dynamics of partially saturated flow are articles by Philip [2] and Zaslovsky [3]. Bear et 
al. [4] provide an excellent review of the classical literature in this field. Narasimhan and 
Witherspoon [ 5 ]  extend these basic models to include the effects of deformation in the 
solid porous matrix. More recently, studies by Prbvost [6] and Bowen [7, 81 have exploited 
the continuum theory of mixtures, as developed by Eringen and Ingram [9, lo] and reviewed 
by Atkin and Craine [ 1 I], to derive the partial differential equations governing fluid flows 
in saturated porous media. The present study also relies on the theory of mixtures but aims 
at a model of unsaturated media containing two liquid phases under some simplifying 
assumptions. 

In contrast to the physics of saturated porous media and variably saturated media 
with a single liquid, multiliquid flows in the unsaturated zone have received fairly scant 
experimental attention. Thus the development that follows amounts to a proposed model 
and should not be viewed as an a posteriori explanation of observations. 

K I N E M A T I C S  

Consider a mixture comprising four constituents, which we shall label R (rock), W 
(aqueous liquid), N (nonaqueous liquid), and A (air). These constituents represent four 
phases of concern in the simultaneous flow of water and oily contaminants in the vadose 
zones of soils. Our aim is to describe the movements of these constituents and. ultimately, 
to derive flow equations governing their dynamics. 

Corresponding to each constituent CY is a body Ba, which is a collection of material 
points labeled X". The four bodies BR, Bw; BR", 23* form a collection of overlapping 
continua, so that conceptually each spatial point at which the mixture resides ma) harbor 
material points from each of the bodies fB". Following the standard procedure in mixture 
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theory, let us establish for each body a reference configuration, so that we can label each 
material point X" by its spatial position X" in that configuration. The motion of the body 
3" is then the function x = x"(X", t )  giving the spatial coordinates of any material point 
X" at any time t E [0, 20).  Under the hypothesis that each motion is a continuously 
differentiable function with nonzero Jacobian determinant det [dxff/aX;],  the inverse 
function theorem guarantees the existence of an inverse motion defined at each time t by 
X" = Xa(x, t).  Given the motions x", we can define the Lagrangian and Eulerian velocities 

. .  . -  

1 (Xa, t )  = V"(X", t )  (Lagrangian), 

1 5 (Xa(xU,  t) ,  t )  = v*(x", t )  (Eulerian), 

as well as other Lagrangian and Eulerian quantities describing each body's motion. 
is a nonnegative scalar function Ma defined on 

measurable subsets V of the spatial configuration ~ ( 3 ~ )  at any time t 2 0. Physically, the 
value Ma( V, t )  is the mass of phase a contained in the set V of spatial points at time t. 
If, at each time t ,  M" is absolutely continuous with respect to Lebesgue measure on 
three-dimensional Euclidean space, then, by the Radon-Nikodym theorem, there must 
be some scalar function f a :  x(4Ba) X [0, co) - [0, co) such that 

Also associated with each body 

Ma( V, t )  = s, ["(x, t )  du. 

The function ta is the bulk mass density of,a,  giving the mass of phase a per unit volume 
of mixture. 

By analogy with the mass density, we can also define the volume fraction occupied by 
phase a! at a given point in the spatial configuration of 3". To each Ba associate a 
nonnegative scalar function F", whose domain at any time t is the collection of measurable 
subsets V of x(B"), such that Fa( V, t )  gives the volume in V occupied by phase a. It is 
clear that 0 5 F"(V) s sv du. If Fa is absolutely continuous with Lebesgue measure on 
Euclidean three-space, then we have a scalar function 4": x(B") X [0, cc) - [0, 11 such 
that 

Fa( V, t )  = Jv @"(x, t )  dv. 

The function $a is the volume fraction of phase a, and the collection {#R, @w, @N, 4*} 
must obey the constraint 2 da = 1. 

a 

Given the functions E a  and #a for each phase, we can define the intrinsic mass 
densities. These are pa = which are meaningful quantities only where 4a Z 0, that 
is, where material from phase a! is actually present. The function pa gives the mass of 
phase LY per unit volume of phase a. Having established the functions Fa,  4" and p a  and 
the phase velocities va, we can define a variety of quantities useful in describing the 
motions of the phases. Table 1 summarizes these definitions. 

To describe the rates of change of various quantities with time, we need to introduce 
material derivatives. As is usual in mixture theory, i f f is  a Lagrangian quantity, so that 
f = f(Xa, t) ,  then the material derivative of J'with respect to phase a is the time rate of 
change offfollowing a fixed material point X" in phase a: 

a 
q x a ,  t )  = - af (X", t).  
Dt at 

On the other hand, iff is an Eulerian quantity. implying f = f (x", t) ,  then 
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Table 1. Definitions of mass-related quantities 

SYMBOL DEFINITION NAYE 

Pa Sal+a Intrinsic mass density 

P 

?! 

a 
!! 

c QaPa Overall mixture density 
a 

( l / P )  1 QaPaYa Barycentric velocity 
a 
a !! -!! Diffusion velocity 

0 1 - QR Porosity 

sa (a = W,N,A) Qal@ Saturation of fluid a 

34 1 

where the operator V signifies the gradient with respect to spatial position; in Cartesian 
coordinates 

We can also associate with the mixture a barycentric material derivative, given by 

D d  - _ -  - +v*v,  
Dt dt 

where v 

E/Dt  as 

is the barycentric velocity defined in Table 1. The operator D/Dt is related to 

follows: 

Dt Dt 

where va = va - v is the diffusion velocity, also defined in 
encounter intensive variables !PLY appearing in mass-weighted 
the equation 

p!P = 2 (bLYpLY\ka, 
LY 

Table 1. Finally, we shall 
sums over all phases, as in 

defining the "mixture property" \k. When working with sums of this sort, we shall find 
the following identity useful: 

LY 

B A L A N C E  L A W S  

The equations governing multiphase contaminant flows in the unsaturated zone arise 
from the balance laws for mixtures, modified by constitutive assumptions and restrictions 
imposed by the Clausius-Duhem inequality of thermodynamics. We shall stipulate that 
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the multiphase mixtures of interest are isothermal and have no heat sources, so that it 
will not be necessary to solve an energy balance equation explicitly. However, the mass, 
momentum, angular momentum, and energy balances, together with an entropy inequality 
corresponding to the second law of thermodynamics, are all essential to the complete 
dynamic specification of the systems. The mixture balance laws, in their primitive form, 
assert relationships among certain integrals over material volumes and their bounding 
surfaces. A standard sequence of arguments reduces these integral laws to differential 
forms involving sums of densities, fluxes, and sources over all constituents in the mixture. 
Then, by introducing constituent exchange terms, one can reduce the differential balance 
laws for the mixture to differential laws for each constituent. Since Bowen [7]  reviews 
this development, the present section simply states the balance laws and gives their 
particular forms under appropriate assumptions about the mixture. 

The differential form of the mass balance for any phase a is 

5 
- ( 4 " ~ " )  + $"paV va = Yo, 
Dt 

where r" signifies the rate of exchange of mass into phase a from other phases as a result 
of chemical reactions, phase changes, adsorption, dissolution, and the like. To be 
consistent with the global mass balance for the mixture, the exchange terms ra must 
satisfy C ra = 0. We shall simplify matters by allowing no interphase mass transfer, so 

that each Y" = 0, and the mass balance reduces to 
a 

( 2 )  
5 - ($"pa) + 4"p"V va = 0, 
Dt 

It is worth noting that exchange terms may be present in many contaminant flows of 
practical interest, where dissolution and microbial degradation of organic liquids may be 
significant (Schwille [12]). In these cases one must retain Y" in eqn (2). 

The primitive differential momentum balance is 

Here t" denotes the stress tensor for phase a,  b" signifies the rate at which body forces 
contribute to the momentum density, and $ represents the exchange of momentum into 
phase a from other phases. As in the mass balances, the exchange terms must obey the 
restriction 2 ia = 0. By expanding the primitive momentum balance and eliminating 

terms that sum to zero according to the mass balance, one finds 
a 

In the mechanics of single continua it is well known that the primitive balance of 
angular momentum reduces, in the absence of body couples, to the symmetry of the 
stress tensor, t - tT = 0. Here tT denotes the transpose of the stress tensor t. For mixtures 
the analogous argument leads to a weaker statement, namely, 

where Mu stands for the exchange of angular momentum into phase a from other phases. 
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Let us assume that angular momentum exchanges are absent. In this case the angular 
momentum balance for any constituent a reduces to t" - (t")' = 0, that is, the stress 
tensor of each phase is symmetric. 

The primitive form of the differential energy balance is 

D 
Dt 
- (@"p"EQ + f@"pavQ vQ) + @*p*(EQ + ;vff va)V vQ 

In this equation, E" is the internal energy of phase a per unit mass, q" is the heat flux 
vector in phase a, and h" is the rate of contribution to the total energy per unit mass 
from heat sources. The term $#fpffvo: V" clearly accounts for kinetic energy; -V (t" v") 
is the rate of working and heating attributable to stress, and --q5"paba*vQ represents the 
rate of working of body forces. The quantity fa on the right of the energy balance again 
stands for the rate of exchange of energy into phase a from other phases, subject to the 
restriction C ea = 0. 

Q 

As with the momentum balance, it is possible to eliminate certain terms from the 
primitive energy balance by observing that their sum is proportional to the left side of 
the mass balance (2). Furthermore, one can notice that several "mechanical energy" 
terms in the energy balance also appear when one forms the dot product of the momentum 
balance (3) with vQ. Using the mass and momentum balances in this way to simplify the 
energy balance yields a "thermal energy balance" 

For our purposes the most useful energy balance is not the balance equation for each 
phase but rather the overall balance for the mixture. To get this equation, simply sum 
equation (4) over all phases a. Bearing in mind the identity (1) we find, after simplifying, 

- 2 @*paha = C pa v". 
ff U 

Now define the inner part EI of the total internal energy as 

and the total heat flux q and total heat source h as 

With these definitions the overall energy balance reduces to 

DEI 
D l  a a 

p - - 2 t":v" - V * q  - ph = 2 pQ*ua. 

Finally, certain thermodynamic restrictions on the behavior of the mixture follow 

ES 2?r:3-F 
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from the Clausius-Duhem inequality governing entropy changes. There is apparently no 
universally accepted form of this entropy inequality; Atkin and Craine [ 1 11, for example, 
review the history of this controversy. Passman et al. [13] also discuss the entropy 
inequality, noting some of the less satisfactory aspects of the mixture inequality as 
compared with the entropy inequality valid for single-constituent continua. The version 
adopted here is essentially that used in Bowen's [8] development for fluid flow in 
incompressible porous media. In differential form this law states that 

Z[~(m.P.777+mffP.n.o*va--v*q~-- a T" 1 Ta vp-h.]  2 0, 

where qa is the entropy per unit mass in the a phase, and Ta is the temperature of the a 
phase, assumed positive. Let us henceforth assume that the phases in the mixture share 
a constant, spatially uniform temperature T. By defining the total entropy of the mixture 
as 

1 

p a  
77 = - c V P a f  

and using the identity ( I ) ,  we can then rewrite the primitive inequality as 

Now we can use the energy balance (5) to substitute for the last term on the left of this 
inequality. After some simplification, this yields 

a! 
DA" -2 4*pa - + 2 t":Vv" + 2 p v "  2 0. 

a Dt a a 

The quantity A* appearing in this inequality is the Helmholtz free energy, defined as 
A" = E" - Tv". 

CONSTITUTIVE ASSUMPTIONS 

To apply the balance laws, which have rather general validity, to specific mixtures 
such as variably saturated porous media, we need to make some assumptions restricting 
the class of materials to which these laws apply. The restrictions of interest include certain 
kinematic assumptions regarding the nature of the motions, internal constraints on the 
possible responses of the bodies, and constitutive laws giving functional relationships 
between various quantities appearing in the balance equations. The constitutive laws also 
serve a mathematical purpose in closing the deficit between equations and unknowns in 
the mechanical formulation of the theory. 

Let us assume first that the fluids flow isochorically, so that Dp"/Dt = 0 for each fluid 
phase a. Thus, while some of the fluids occupying the rock's interstices may exhibit 
significant compressibilities, the velocities of interest are sufficiently small that the effects 
of compressibility on the flow field are negligible. Since fluid densities must be positive, 
the assumption that fluid motions are isochoric reduces the mass balance for fluids (2) to 

a 

+ V (@V) = 0, a! = W, N, A. 

Second, assume that the rock matrix moves rigidly, so that the Jacobian of its motion 
is just the identity tensor 

VXRX = FR = 1. 
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This assumption allows us to affix a rigid Cartesian coordinate system to the rock phase, 
forcing vR = 0. Also, since a rigid motion must be isochoric, the rock mass balance 
becomes 

R 
D4R - - _ - -  - 0. 
Dt at 

Now define the porosity of the rock matrix to be 6 = 1 - 6R, that is, the total volume 
fraction available to fluids. Since each fluid phase occupies a fraction of the voids, let us 
call S" = 4"/@ the saturation of fluid a, where a = W, N, A. 

As constitutive laws for fluid stresses. let us postulate that each fluid phase a = W, N, 
A possesses a stress tensor 

Here the dummy index p ranges over all fluid phases. The tensor d" = ~ [ V V "  + (VV")~] 
is the deformation rate in fluid phase a; A"* = A* and p*" = pa are the coefficients of 
viscosity of the fluid a, and A*@, p*@, a # p, are coefficients of interphase traction between 
fluids a and p. The parameter p* is the mechanical pressure in fluid phase a. Equation 
(7) is essentially a generalized version of Newton's law of viscosity. 

For the Helmholtz free energies A* we shall adopt a constitutive law of the form 

where the notation (@} signifies the set of volume fractions as /3 ranges over all phases. 
The temperature dependence indicated in this law, although formally appropriate, will 
turn out to be trivial, since the mixture is isothermal. 

Let us assume that the body forces are entirely attributable 
= p*gVZ, where g is the acceleration of the gravitational field, 
denotes depth below some datum. If we locate the origin of 
system (xl , x2, x3) at this datum, then 2 = -x3. Furthermore, 
to multiphase mixtures in which heat sources are absent (h" 
negligible (qa = 0). 

to gravity, so that 4*p"ba 
assumed uniform, and 2 
our Cartesian coordinate 
we shall restrict attention 
= 0) and heat fluxes are 

Finally, we need a constitutive relationship for the momentum exchanges ia. The 
assumption that is common to most theories of flow in porous media is that the exchanges 
of momentum between fluids and the rock dominate interfluid exchanges and have the 
form of Stokes drags: 

i" = +"(A")-'(V~ - v"). 

In this equation A" is an invertible transformation giving a tensor relationship between 
momentum exchanges and relative velocities, guaranteeing that fi" is objective with 
respect to changes of frame. Since vR = 0, however, eqn (8) simplifies in our frame of 
reference to 

fi" = -@"(A")-'V*. (9) 

Physically, A" varies with the microscopic configurations of the rock and fluid phases, 
that is, with both the volume fractions and pore-level geometries of the phases. In 
practice, however, the pore-level geometries are typically inaccessible to measurement. 
Therefore we consider A" to be a function of the fractions (@} for a given rock-fluid 
mixture in which the rock geometry is fixed and the interfacial tensions remain constant. 
Thus, in a sense, A" is a purely phenomenological variable requiring direct measurement 
for each system of rock and fluids under investigation. 

There are now several mechanisms for the transfer of momentum in the mixture. 
These include transfers through shear stresses within each fluid, interphase tractions, and 
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direct momentum transfer through fluid drags on the rock matrix. Let us assume that 
the last of these mechanisms overwhelms the others, so that shear stresses and tractions 
exert influences on momentum transfers that are negligible compared with the Stokes 
drag in eqn (9). Thus we need only consider the normal fluid stresses, approximating the 
constitutive law (7) by 

t" = -p"l, a! = W, N, A. 

For each fluid the mechanical pressure p" in this law may vary as a function of the fluid 
density in phase a and of the volume fractions ( + p > .  Thus we have an equation of state 
p" = p"(p", (@}), a! = W, N, A, where the index p ranges over all fluid phases. 

The Clausius-Duhem inequality (6) imposes certain thermodynamic restrictions, on 
the functional relationships admissible as constitutive laws. To deduce these restrictions 
in the general case, one must follow the methodology detailed by Coleman and No11 [ 141 
and extended to mixtures by Ingram and Eringen [ 101. This procedure involves expanding 
the inequality (6) in terms of the functional dependencies in the Helmholtz free energy, 
then reasoning about the values of certain coefficients, given that a linear combination of 
material derivatives having arbitrary sign must be nonnegative. The present development 
adopts a less general tack, examining in a similar fashion the restrictions that the 
Clausius-Duhem inequality imposes on the particular constitutive laws postulated above. 

To begin, let us expand inequality (6) using the chain rule and the functional 
relationship A" = A"( (@}, pa T):  

a! 
Now in an isothermal mixture DT/Dt = 0. Also, 

since each phase's motion is isochoric. What is more, the mass b 
implies 

1 nce fo phase a 

So, (10) becomes 

Since this inequality must hold for arbitrary variations in the volume fractions +@, we 
must conclude that 

and 

This last equation identifies the mechanical pressure of fluid phase a as the pore pressure 
of that phase. Thus, our constitutive relationship for the Helmholtz free energy reduces 
to A" = A"(+", p"), ignoring dependence on temperature in the isothermal mixture. 
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Equation ( 1  1 )  allows the pressures in different fluids to differ. Thus, between any two 
fluids a and p, we can define the difference 

This quantity is the capillary pressure between the two phases. From the definition it 
appears that pcap depends on the volume fractions and densities of each phase; however, 
if the fluids flow isochorically, the density dependence becomes trivial. Also, since the 
rock matrix is rigid we can factor the porosity 4 out of the volume fractions and thus 
consider the capillary pressure to be a function of fluid saturations: 

This functional relationship stands in accord with the usual theories of multiphase flow 
in porous media. Observe that, in a system where three fluids W, N, A are present, only 
two capillary pressure functions can be independent. 

F L O W  EQUATIONS 

We are now in a position to combine the balance laws and constitutive equations to 
derive the equations governing the behavior of multiphase flows in variably saturated 
porous media. To begin with, for each fluid phase a we have a mass balance 

a 
- at (@Sap") + v (@Sapava) = 0. 

For the rock, rigidity of the matrix and our choice of a coordinate frame in which 
vR = 0 reduce the mass balance to the equation 

There is also a momentum balance for each phase. We shall not concern ourselves 
with the rock momentum balance, however, since the rock is rigid and stationary in our 
frame. For each fluid phase a, though, our constitutive assumptions for t", ba and $' 
convert eqn ( 3 )  to 

As is common in porous-media theories, let us assume that the inertial terms in 
parentheses on the left of this equation contribute negligibly to the fluid motions, being 
dominated by the effects of normal stresses, gravity and momentum loss through 
interactions with the rock matrix. There follows the velocity field equation 

-- I Aa*(Op" - pagVZ) = va. 
@a 

From a phenomenological point of view, the mobility tensor A" accounts for the 
geometry of the rock matrix, the configurations of rock-fluid interfaces, and the flow 
properties of the fluids. Treating these influences as separable factors leads us to write 
A" = kk,/p". where k is the permeability of the rock, having dimensions [L2];  k ,  is the 
dimensionless relative permeability modeling the effects that other fluids have in blocking 
the flow of phase a, and p" is the dynamic viscosity of fluid a, having dimensions 
[ML-' T-'I. Thus the velocity field equation becomes 
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which is the familiar form of Darcy's law for multiphase flows. 
We need not consider the angular momentum balance explicitly as a governing 

equation for fluids, since the constitutive law t" = -pal guarantees symmetry of the fluid 
stresses automatically. Furthermore, we shall not make explicit use of the energy balance, 
since we assume that the mixture is isothermal with no heat fluxes or heat sources. In a 
strict sense this neglect is unwarranted, since even when the rock matrix is rigid the loss 
of fluid momenta to the rock must be accompanied by concomitant heating of the matrix 
(and hence the mixture as a whole) via dissipation through the vibrational modes in the 
solid. By neglecting the energy balance we are therefore excluding from further consideration 
porous-media flows in which this dissipative heating is significant. 

Finally, in addition to the balance laws we have independent functional relationships 
pcaa = pcas(Sa, SB)  for two of the three capillary pressures and the saturation constraint 

Substituting the fluid velocity field equation (14) into the mass balance equation (1 3) 
sw + SN + SA = 1 .  

yields a flow equation 

- a ($sapa) = v [$g (Vp" - p " g v z ) ]  . 
at 

An equation of this form applies to each fluid phase, a = W, N, A. However, in the 
variably saturated zones of many soils, the effects of air flow on the dynamics of the 
system are limited to the influence of the air saturation SA on relative permeabilities and 
capillary pressures. Since the details of air movement are likely to hold little interest 
compared to the movements of the liquid phases, let us therefore neglect the flow equation 
in the case a = A. 

For the aqueous and nonaqueous liquids the assumption that density variations are 
collinear with pressure variations-a weaker assumption than we have made in stipulating 
that the flow is isochoric-allows us to define a hydraulic head H a  in phase a (Hubbert 
[151) as 

Thus V H a  = (p*g)-'VpU - VZ, and the flow equation for a liquid phase (a = W, N) 
becomes 

a 
at 
- (4Sapa) = V (pakraKa V H a ) .  

Here Ka = p"gk/pff is the hydraulic conductivity of phase a, defined by analogy with the 
classical single-liquid case. 

By expanding the accumulation term on the left side of eqn (15), it is possible to cast 
the flow equation into a form where the principal unknown is a 
rule, 

a as" a4 
- ($sapa)  = $sa at at at 

+ 4pa  - + pasff - . 

The last term on the right vanishes since the rock matrix is rigid. 
liquids to be compressible (although they flow isochorically), then 

head. By the product 

Also, if we allow the 
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where.$! = 4g dpa/dpa represents the specific storage of the liquid a in the matrix. Now 
for flow fields in which density gradients are very small, we may approximate our flow 
equation by writing 

In a more general setting where a$/& Z 0, it is common to assume 4 = 4(HW).  In 
this case paSaa4/dt = paSapWgcwdHW/dt, where cw = (pwg4)-' d4/dHw quantifies the 
matrix compressibility. When several liquid phases are present, one formally encounters 
a matrix compressibility c, = (pag$)-' d4/dHa with respect to each liquid. There is 
clear mathematical convenience-and perhaps some physical plausibility-in assuming 
cw = cN. However, for a rigid solid matrix this issue does not arise. 

The conventional formulation of single-liquid flows in the variably saturated zone 
gives the flow equation in terms of pressure head and moisture capacity instead of 
hydraulic head and saturation (Pinder and Gray [16, Section 5.41). To make our 
multiliquid equation conform with the familiar case, let us define the pressure head a* 
in phase cy by the equation 

1 

Pag 
vaa = - Vp", 

so that H a  = CP" - 2. Also, define the moisture capacity for liquid phase a as 8* = 4Sa. 
If we observe that dZ/d t  = -ax3/& = 0 and -02 = Vx3 = e3, the unit vector in the 
(upward) x3 direction, and if we call 

the specific moisture capacity 

( c a  + 

(17) 
d 

d@" 
C" = 4 - (8") 

for fluid a? then the flow equation (17) becomes 

?)?g- - V o [kr&* (Vaa + e3)]. (18) 

Equation (1 8) is a natural extension of Richards' [ 11 equation for the flow of a single 
liquid through variably saturated soils. There are several new features to the equation, 
owing to the peculiar physics of multiphase flows in porous media. For one, we must 
regard the specific moisture capacity, moisture capacity, specific storage, hydraulic 
conductivity, and pressure head as pertaining to one liquid or the other, so we have the 
variables Cw, CN, eW, ON, sy, s y ,  KW, KN, aW, and a'. Also, in the flow equation for 
each phase there now appears a new parameter, k,, the relative permeability of the 
medium to the liquid phase a. This new parameter will entail a set of measurements of 
the medium's response over a continuum of liquid saturations Sw and SN, so we may 
consider krw = krW(Sw, S") and krN = krN(SN, S") for fluids of unchanging composition. 
Finally, in addition to the three-phase saturation restriction Sw + SN + SA = 1, we now 
have two independent capillarity relationships giving, say, pcWA and pcNA as functions of 
saturation according to eqn ( 12). Equation ( 17) already assumes equivalent relationships 
in terms of pressure head and moisture capacity, namely, ea = whose inverse 
(provided 8" is bijective and exhibits no hysteresis) is a" = @"(aa). Thus, while (18) is 
formally similar to the classic Richards equation, the extension to multiliquid flows 
entails the quantification of additional physical effects. 

C O N C L U S I O N S  

The foregoing development shows that the fundamentals of mixture physics, together 
with some relatively simple assumptions about the behaviors of various phases present, 
lead to a set of governing equations for multiliquid flows in variably saturated soils. This 
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formulation serves as a natural extension of Richards’ single-liquid theory. The extended 
model suggests the kinds of measurements that will be necessary to characterize multiliquid 
flows and may thus serve as the basis for designing experiments. Indeed, there is a great 
need for such experiments in light of growing concern over near-surface contamination. 
Also needed are numerical studies to identify the behavior of systems governed by eqns 
(18) and to provide a basis for the practical simulations that will be demanded when our 
understanding of such systems improves. 

The formulation of the model presented here identifies several simplifying assumptions 
that may not apply in all cases of interest. Noteworthy among these limitations are the 
rigidity of the solid matrix and the isochoricity of the fluid motions. Development of 
appropriate flow equations under more relaxed assumptions will therefore render a 
somewhat more general theory. 
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N O T A T I O N  
The symbols in square brackets indicate physical dimensions. M stands for mass, L for length, T for time, 

. 

and 0 for temperature. 

A 
b 
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C 
d 
e 
E 

F 
F 
g 
h 
H 
k 
K 

M 
M 
P 
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f 

k,  

i 
pmd 
Q 
r 
S 
ss 
1 
t 
T 

V 

X 
X 
z 

V 

X 

e 

?I 
t 
h 
A 
P 
Y 

4 
\k 

Helmholtz free energy [ L 2 T 2 ]  
body force [ L T 2 ]  
material body 
matrix compressibility [ W 2 L T 2 ]  
specific moisture capacity [L-I] 
deformation rate IT-'] 
unit vector in three-space [L]  
internal energy [ L 2 P ]  
generic function 
volume occupied by a phase [L3] 
Jacobian of the motion [ I ]  
gravitational acceleration [ L T - ~ ]  
heat source [ L 2 T 3 ]  
hydraulic head [L] 
permeability [L2] 
hydraulic conductivity [LT-'1 
relative permeability of phase a [ I ]  
mass [MI 
interphase angular momentum exchange [ML-' T2] 
mechanical pressure [ML-' T-'] 
interphase momentum exchange [ML-'T-'] 
capillary pressure between fluids cy and /3 [ML-'T-2] 
heat flux [ M T 3 ]  
interphase mass exchange [JWL-~T-'] 
fluid saturation [ 1 1  
specific storage [L-'1 
time [TI 
stress [ML-' T -2 ]  
temperature [ d ]  
velocity [LT-'I 
measurable set of spatial points 
position in spatial coordinates [L]  
material point 
position in material coordinates [L] 
depth below datum [L] 
interphase energy exchange [ML-' T-j] 
entropy [L2T-'d-'] 
moisture capacity [ I ]  
bulk mass density 
coefficient of viscosity or interphase traction [ML-' T-'1 
mobility [M-IL'T] 
coefficient of viscosity or interphase traction [ML-' T-'1 
diffusion velocity [LT-'1 
volume fraction or porosity [ I ]  
intensive quantity 

Indices 
A 
I 
N 
R 
W 

P 
1, 2. 3 

a 

air 
inner part 
nonaqueous liquid 
rock 
water 
phase index 
phase index 
spatial directions 




