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ABSTRACT 

This investigation focuses on the development of a methodology for modeling 
contaminant movements in the unsaturated zones of soil columns. Such prob- 
lems are of great technical as well as social interest. They are mathematically 
difficult and poorly understood from the physical point of view, yet they arise in 
most incidents of aquifer contamination by sources near the earth’s surface. Of 
particular concern are multiphase flows, which occur when contaminants having 
limited solubility in water enter the soil column. This document reports progress 
on several fronts in modeling subsurface contamination. First, we advance a one- 
dimensional finite-element collocation scheme for solving the nonlinear equation 
governing unsaturated water flows. The new scheme overcomes mass balance er- 
rors characteristic of this class of problems. Second, we discuss the extension of 
the collocation method to two space dimensions. Third, we propose a continuum- 
mechanical formulation of the equations governing multiphase unsaturated flows. 
These equations are extend the classical equation for unsaturated water flow. Fi- 
nally, we briefly report ongoing research into the numerical solution of the equa- 
tions for multiphase unsaturated flows. An appendix includes published articles 
detailing the mathematics of the results summarized in the main report. 
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INTRODUCTION 

Groundwater is a precious resource. Through most of Western history eco- 

nomics have partially masked this fact. Groundwater has usually been available 

in sufficient quantity and quality to satisfy most needs fairly cheaply. Conse- 

quently, the price per unit volume of groundwater remains very low compared to 

that of oil, a resource that is similar in many respects. Nevertheless, demand for 

groundwater is rising dramatically in parts of the country where surface water 

supplies either are declining in quality or, as in the water-scarce Western United 

States, are simply inadequate in volume. Declining aquifer levels coupled with 

increased pumping offer convincing evidence that groundwater is a bounded and 

easily threatened natural asset. 

Along with the rise in demand has come a different threat to groundwater: 

contamination. Disposal of industrial wastes at or near the earth’s surface often 

leads to pollution of nearby underground water supplies. For many years this 

problem drew less attention than the problems of air and surface-water pollu- 

tion caused by other waste disposal practices. The reasons for this are simple. 

Groundwater is relatively inaccessible to observation, so contamination seems in- 

visible until it appears at a production well. However, groundwater typically 

moves through the subsurface so slowly that a contaminant source may not af- 

fect water produced at wells for many years. Inaccessibility and large time scales 

make groundwater contamination a particularly insidious form of pollution. A 

contaminated aquifer is difficult, if not impossible, to clean, and by the time the 

contamination is discovered it is often hopelessly widespread and hard to trace. 

Inaccessibility and large time scales also mean that quantitative understand- 

ing of an aquifer’s contaminant transport properties can be difficult to establish. 

Groundwater obeys fairly complicated dynamical laws, and even with good mea- 
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surements of an aquifer’s rock and fluid properties hydrologists may have difficulty 

predicting or tracing contaminant movements. Here is where mathematical sim- 

ulation plays a role. Given an adequate description of a groundwater system, a 

hydrologist can use a mathematical model as a conceptual surrogate for the nat- 

ural system. A properly constructed simulator-one that is faithful to both the 

fundamental mechanics of groundwater flow and the geologic peculiarities of the 

aquifer under study-can approximately reconstruct the history of a contaminant 

flow, can estimate how the contaminant will move in the future, and can furnish 

a method for comparing proposed remedial measures. For these reasons, math- 

ematical techniques for modeling underground contaminant flows have attracted 

intensive research in the past two decades. 

There is a class of contaminant flows, however, for which available mathemat- 

ical techniques remain inadequate. These flows involve movement of contaminants 

in the unsaturated zone of the soil column. This zone typically connects surface 

disposal sites with the water table and is therefore an important pathway for 

aquifer contamination. Flows of water-soluble contaminants in the unsaturated 

zone have received a fair amount of attention in the simulation community, al- 

though there are still many open issues there. However, in a surprising number 

of cases contaminants percolate downward from near-surface dumpsites in the 

form of nonaqueous, relatively insoluble liquid phases. Such flows have received 

relatively scant scientific attention. 

Nevertheless, the contamination of underground water resources by nonaque- 

ous organic liquids has become a matter of urgent concern in the United States 

in the past few years. While such exotic and extreme cases as Love Canal in 

Niagara Falls, New York, have received much of the public’s attention, less dra- 

matic instances of groundwater contamination by organics abound. Leaking tanks 
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at gasoline filling stations, settling ponds at chemical plants, and leaching from 

contaminated landfills are all common sources of nonaqueous contaminants. De- 

spite its low level of heavy industry, Wyoming has not escaped this problem. The 

Baxter Tie Treating Plant, owned by the Union Pacific Railroad in Laramie, is so 

severely contaminated by organic wastes that the site has been targeted by the 

U.S. Environmental Protection Agency as qualifying for “Superfund” monies. 

In many sites, the nonaqueous-phase liquid (NAPL) contaminants enter the 

groundwater from sources near the earth’s surface. In these cases, the NAPL must 

ordinarily seep through a zone of soil that is only partially saturated with water be- 

fore the contaminants reach the water table, or the upper limit of water-saturated 

soil. The simultaneous movement of water, NAPL, and air in the interstices of 

this partially saturated, or vadose, soil obeys a complicated set of physics govern- 

ing multiphase flows in porous media. Understanding the fundamental continuum 

mechanics of these flows is crucial to the assessment of remediation schemes for 

near-surface NAPL contamination. Equally crucial is the need to develop predic- 

tive techniques that can use this physical understanding to furnish engineering 

tools for the design of remedial measures. 

This report documents the accomplishments of a project aimed at developing 

predictive techniques for NAPL contamination in variably saturated soils. The 

project, funded by the Wyoming Water Research Center, has been a two-year 

effort to develop mathematical techniques suitable for solving the equations gov- 

erning flows in unsaturated porous media. Because of the complexity and inherent 

nonlinearity of these governing equations, the solution techniques take the form 

of numerical approximations. The particular techniques employed here rely on 

the method of finite-element collocation to approximate spatial variations in the 

flow variables, accommodating temporal variations by the method of finite differ- 
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ences. The result of this methodology is a class of numerical techniques that is 

mathematically appropriate for the types of flow equations that arise in actual 

applications. 

It is important to recognize that this project does not furnish a working sim- 

ulator adequate for immediate engineering applications on specific sites. Indeed, 

it is doubtful that such applications could occur right now, given the nascent 

state of the art in the physical characterization of sites and hence the paucity of 

reliable data to be used as model inputs. The project does furnish sound, new 

methodologies for use in simulators of NAPL-water flows in unsaturated soils- 

methodologies that should prove useful as contamination assessment technologies 

continue to emerge. 

In summary, the project has yielded the following results. A continuum- 

mechanical investigation of multiphase flows in porous media, using notions from 

mixture theory, has indicated the governing equations. These equations extend 

Richards’ (1931) classic study of air-water flow. The results (Allen, to appear; 

see Appendix) are apparently the first discussion of the mechanics of multiphase 

unsaturated flows in the literature. An investigation of finite-element collocation 

methods for the single-liquid version of Richards’ equation in one space dimension 

has led to the development of a mass-conserving finite-element formulation of this 

nonlinear problem. As reviewed in Allen and Murphy (198513; see Appendix), 

mass conservation has long been a difficulty with unsaturated flow models. An 

extension of the one-dimensional method has yielded a solution technique for 

two-dimensional unsaturated flows in a vertical plane. This method, reported 

in Murphy and Allen (to appear; see Appendix), formed the basis for an M.S. 

thesis in Mathematics, written by Carolyn L. Murphy and submitted to the Water 

Research Center in the fall of 1985 (Murphy, 1985). Finally, the extension of the 
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finite-element collocation method to flows with two liquid phases is in progress. 

The fundamental formulation is established, but at this writing the computer code 

needs further debugging. This task has been slowed by lack of graduate student 

support. 

Copies of all published articles resulting from this report, with the exception 

of C. L. Murphy’s M.S. thesis, a progress report given at the Wyoming Water ’85 

conference (Allen and Murphy, 1985a), and an invited article in preparation for 

the inaugural issue of Hydraulic Engineering Software, appear in the Appendix to 

this report. These articles include the following: 

Allen, M.B. (1984), “Why upwinding is reasonable,” in J.P. Laible et al., eds., Pro- 
ceedings of the Fifth International Conference on Finite Elements in Water 
Resources, Burlington, Vermont, June 14-18, Berlin: Springer-Verlag. 

Allen, M.B. (1985), “Numerical modeling of multiphase flows in porous media,” 
presented at the NATO Advanced Study Institute on Fundamentals of Fluid 
Flow and Transport in Porous Media, Newark, Delaware, July 14-23, 1985; 
to appear in Adv. Water Resources. 

Allen, M.B. (to appear), “Mechanics of multiphase fluid flows in variably saturated 
porous media,” Int. Jour. Engrg. Sci. 

Allen, M.B., Ewing, R.E., and Koebbe, J.V. (1985), “Mixed finite-element meth- 
ods for computing groundwater velocities,” Numer. Meth. for P.D.E., 3, 195- 
207. 

Allen, M.B., and Murphy, C.L. (1985b), “A finite-element collocation method for 
variably saturated flows in porous media,” Numer. Meth. for P.D.E., 3, 229- 
239. 

Murphy, C.L., and Allen, M.B. (to appear), “A collocation model of two-dimension- 
al unsaturated flow,” in A. Sa da Costa et al., eds., Proceedings of the Sixth 
International Conference on Finite Elements in Water Resources, Lisbon, 
Portugal, June 1-6, 1986, Southampton, U.K.: CML Publications Ltd. 

Because the technical articles provide sufficient detail to reproduce the results of 

the study, the remainder of this report focuses on the results without elaborating 

on the details of the mathematics. 
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OBJECTIVES 

As described in the original proposal (Allen, 1983), the overall objective of 

this project was the development of modeling techniques for solving the equations 

governing multiphase contaminant flows in the unsaturated zone. The proposal 

outlined several intermediate objectives leading to this overall aim. These were as 

follows. 

The first task in the project was to derive the basic physics and govern- 

ing equations. The equations governing NAPL-water flows in variably saturated 

soils had not appeared in the technical literature at the time the project began. 

The second task was to formulate numerical methods for the discretization of the 

governing equations. The third task was to develop and test Fortran code im- 

plementing the methods devised in the second task. The second and third tasks 

are actually concomitant in nature, since the development of a numerical method 

for multidimensional and multiphase flows best proceeds via development and 

computer implementation of methods for a sequence of problems of increasing 

complexity. The fourth task was to document the results of the project. This 

report embodies the output of this last task. 

METHODOLOGY 

This section reviews the methodologies used in addressing the various tasks 

in the project. Detailed descriptions of the mathematics developed appears in 

the technical articles reproduced in the Appendix to this report. The articles are 

sufficiently complete that a mathematically inclined reader could reproduce the 

results of the project. The remainder of this section gives a description of unsat- 

urated flows, outlines the numerical solution techniques developed in the course 

of the research for flows involving a single liquid, and reviews the extension of the 
- 
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classical single-liquid theory to multiphase unsaturated flows. For conceptual ease 

it seems better to present the numerical methods in the context of single-liquid 

flows before discussing the mechanics of multiphase flows, even though this order 

reverses that of the original tasks. 

Description of unsaturated flows 

By definition, a groundwater flow is unsaturated if it occurs in a porous 

medium, such as soil, whose accessible pores are partly occupied by air. Such 

flows occur just beneath the earth’s surface, where cycles of precipitation and dry 

weather lead to incomplete saturation and dessication of the soil. Unsaturated 

flows stand in contrast with saturated groundwater flows, in which the pore space 

of the rock or soil matrix is occupied completely by liquid. 

From a physical standpoint, unsaturated groundwater flows are quite a bit 

more complicated than saturated flows. One source of complication arises essen- 

tially because the presence of air in the void spaces of the medium interferes with 

the flow of liquid. In general, water flows more easily in a porous medium when a 

larger fraction of its pore space is occupied by water. In other words, the hydraulic 

conductivity of the medium increases with its moisture content. Another source 

of complication arises from the surface physics that act at a scale of observation 

comparable to the size of a typical pore. The interaction between the surface 

tensions of air and water and the microscopic geometry of the porous medium im- 

ply a direct relationship between the moisture content of the soil and the average 

water pressure. Thus the moisture content depends on the water pressure. This 

phenomenon, known as capillarity, means that we can compute water pressure 

(or pressure head) and then compute the corresponding moisture content using 

the functional relationship between the two. 
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From the mathematical point of view, these two complications make the 

equations governing unsaturated flow significantly more difficult to solve than the 

equations governing saturated flows. To see why, consider the task of computing 

pressure head as an unknown function of space and time in the soil column. The 

equation governing pressure head contains as parameters the moisture content 

and the hydraulic conductivity. To solve for pressure head, we must therefore 

know values for the moisture content and hydraulic conductivity, but to compute 

these parameters we need values of the unknown pressure head. Problems in 

which the parameters in an equation depend on the unknowns are nonlinear, and 

often they can be solved only using approximate numerical methods. Except for 

certain physically unrealistic simple cases, this is the case with unsaturated flows. 

Huyakorn and Pinder (1984, Chapter 4) review some of the last decade’s research 

in this area. 

So far we have considered only unsaturated flows in which water and air are 

present. As mentioned, however, many contamination problems involve flows of 

water and air in a soil matrix together with the simultaneous flow of some non- 

aqueous liquid that is immiscible with water. When such “oily” contaminants are 

present the physics, and hence the mathematics, become even more complicated. 

Now, in addition to the old nonlinearities, the presence of nonaqueous liquid will 

affect the flow of water and vice versa. Also, there will be another capillarity 

relationship coupling the pressure head in the water to that in the immiscible 

contaminant. Again, numerical solution techniques are necessary, but in this case 

we have very little in the way of previous research to guide our approach. 

Numerical methods developed 
- 

One task facing the applied mathematician wishing to model unsaturated 
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flows is to select a numerical method capable of producing veracious solutions 

to the governing equations. In the simplest of cases-one-dimensional flow of a 

single liquid-the governing equation is a partial differential equation derived by 

Richards (1931). In its primitive form, Richards’ equation is 

-- - a [ k ( h ) E ]  -dko 
at az a2 

The first term (I) is the temporal rate of change of the moisture content 0 [m3 

water/m3 soil matrix] expressed its a function of pressure head h [m] according to 

(1) (11) (111) 

the capillarity relationship. The second term (11) arises from Darcy’s law for flow 

in a porous medium and accounts for fluxes of water attributable to gradients in 

pressure head with respect to height z above a datum. The parameter k(h) [m/s] 

in this term is the hydraulic conductivity of the soil, again expressed as a function 

of pressure head. The third term (111) accounts for the influence of gravity on 

the fluid flow. Given information about the initial pressure head distribution in a 

soil column and conditions at the spatial boundary of the column, Equation (1) 

determines a function h(z ,  t )  giving the pressure head distribution, and hence the 

moisture content 0, throughout the soil column at all subsequent times. However, 

the dependencies B(h) and k(h) that render the equation nonlinear make the actual 

calculation of h(z , t )  a tricky job. 

One apparent simplification to Equation (1) is both quick and quite common 

among modelers. By using the chain rule, one can write 

This device allows us to rewrite Equation (1) as a partial differential equation in 

which the pressure head h appears explicitly as an unknown in each term: 

dh d [ ah]  a i r )  
at a2 C ( h ) - =  - k ( h ) z  -- 
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The new parameter C(h)  is the specific moisture capacity [l/m], and, as the 

notation indicates, it too depends on the pressure head. Hydrologists sometimes 

call Equation 2 the “head-based formulation” of Richards’ equation. 

We solve Equation (2) , subject to a commonly used set of initial and boundary 

data, using the numerical technique of finite-element collocation. This method is 

attractive for several reasons. First, it shares with the more conventional Galerkin 

finite-element methods a degree of accuracy that forces errors in the approximate 

solution to diminish very rapidly for given increases in the computational effort. 

This rapid improvement in solution quality stands in contrast to the relatively 

slow improvements available through standard finite-difference approximations. 

Second, finite-element collocation bypasses some of the computational complexity 

of Galerkin methods and thus promises even more efficient use of computational 

resources. Third, finite-element collocation in recent years has produced good 

numerical solutions to other problems involving multiphase flows in porous media 

(Allen and Pinder, 1983; Allen, 1984; Allen and Pinder, 1985), so it is a natural 

candidate for unsaturated flows. 

Roughly speaking, the idea behind finite-element collocation is to replace the 

unknown function h(z ,  t ) ,  whose spatial variation has an infinite number of degrees 

of freedom, with an approximating trial function L(z, t )  whose spatial variation has 

a finite (and therefore computable) number of degrees of freedom. In particular, 

we choose the degrees of freedom of & to represent the values of pressure head and 

its vertical gradient &/i3z at each of a collection of representative spatial locations 

20,. . . , X N ,  called nodes, spread throughout the column. Then we can model the 

variation of h between nodes by smoothly interpolating between adjacent nodes. 

This interpolation relies on a set of interpolating functions known as Hermite 

cubic polynomials (see Prenter, 1975, Chapter 3). To get an approximate version 
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of Equation (2), for example, we substitute the trial function f for the true solution 

h and demand that the resulting equation hold at a number of collocation points 

~ 1 , .  . . , ZM located throughout the soil column: 

J 

k = 1, ..., M 
(3) 

Here k and & are interpolatory representations of the parameters k and C. Notice 

that the collocation points ZI, are logically different from the nodes. We choose 

exactly as many collocation points as are necessary to furnish the correct number 

of equations of the form (3) to solve for the unknown nodal values and gradients 

of h. 

This solution scheme tends to exhibit certain characteristic types of error 

with respect to true solutions of Equation (2). In particular, it is difficult to 

discretize Equation (3) temporally without confronting the question of where to 

evaluate the coefficient in time. Straightforward evaluation at a temporal node 

typically leads to mass balance errors, as Allen and Murphy (1985b; see Appendix) 

describe. Such errors are generally deleterious, since an incorrectly computed 

frontal advance of liquid into a soil will lead to incorrect estimates of contaminant 

transport. 

It is only fair to mention that mass-balance errors are not uncommon in 

numerical solutions to Richards’ equation. Milly (1984), for example, discusses an 

iterative procedure for improving mass balances in the time-stepping algorithms 

for Equation (2). His approach essentially prescribes a technique for choosing a 

representative time level at which to evaluate the nonlinear coefficient C(h) .  

Our approach to reducing the mass balance error is in some ways more nat- 

ural. We return to the primitive form of the governing equation, Equation (1). 
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In bypassing the apparent simplification offered by the chain rule, we circumvent 

the issue of where to evaluate C(h)  in time. Instead, we approximate term (I) in 

Equation (1) directly using an interpolatory finite-element representation. In this 

way the discrete analog of term (I) truly represents the rate of change of moisture 

content over a time step. Again, Allen and Murphy (1985b; see Appendix) give 

the details of the procedure, showing by means of a computable index that the 

new scheme conserves mass. 

In two space dimensions, say a vertical (2, 2)-plane, Richards’ equation is 

ae v [I~(v/z - e,)] = - at 
where e, is the unit vector pointing upward. We solve this equation using a 

two-dimensional extension of the mass-conserving finite-element collocation pro- 

cedure developed in one space dimension. For the finite-element representations 

of the spatially varying quantities in this equation we use two-dimensional tensor- 

product spaces associated with the interpolating representations used in one di- 

mension. While this approach is conceptually straightforward, the coding be- 

comes somewhat more complex in two dimensions. Murphy (1985) and Murphy 

and Allen (to appear; see Appendix) describe the two-dimensional formulation in 

detail. 

Research into the mechanics of multiphase flows 

While Richards’ equation is well established as the equation governing unsat- 

urated flows of water, there has been very little investigation into the fundamental 

mechanics of multi-liquid flows in unsaturated soils. Therefore part of our effort 

has been to propose a continuum-mechanical formulation of multiphase contam- 

inant flows in porous media. This line of inquiry differs from our investigation 

into finite-element collocation. There we were concerned with the development 
- 
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of effective solution procedures given an established governing equation. With 

multiphase unsaturated flows our contribution has been more basic: we have de- 

rived a set of governing equations consistent with sound physical principles and 

plausible assumptions about unsaturated porous media. 

Several other investigators have looked at physics similar to those of interest 

here. Raats (1984), for example, discusses a general mechanical formalism for 

treating unsaturated flows of air and water in soils using the theory of mixtures 

developed by Eringen and Ingraham (1965). Schwille (1984) discusses practical 

aspects of multiphase flows in the unsaturated zone, but presents no continuum- 

mechanical formulation for the governing equations. Corapcioglu and Baehr (to 

appear) derive a governing equation without referring specifically to a velocity 

field equation such as Darcy’s law. 

Our work is similar in spirit to that of Raats in that we use principles from 

continuum mixture theory. However, the current project focusses on multiphase 

flows in unsaturated zone. By considering a mixture containing soil, air, water and 

nonaqueous liquid and neglecting interphase mass transfer and chemical reactions, 

one can derive an extension of Richards’ equation to two liquid phases (Allen, to 

appear; see Appendix). In three space dimensions the new equations take the 

form 
( C w + - ) - -  ewsw dhw - v (kwvhw) + V (kwe,) 

4 at 
(4) 

Here hw and h~ stand for the pressure heads in the water and nonaqueous liquid, 

respectively; CW and CN stand for the specific moisture capacity of the soil with 

respect to water and nonaqueous liquid; Ow and ON stand for the aqueous and 

nonaqueous moisture contents; sw and SN stand for the specific storage coeffi- 



cients for the soil in the presence of water and nonaqueous liquid, and kwand 

kN stand for the effective hydraulic conductivities of the soil to water and non- 

aqueous liquid. The vector e, is the unit vector pointing vertically upward. The 

coefficients Icw and k ~ ,  at least, depend on the relative amounts of water and 

nonaqueous liquid present and are therefore functions of two moisture contents: 

In addition to these new functional dependencies there are some new con- 

straints. To begin with, the three fluids (air, water, and nonaqueous liquid) must 

occupy all of the pore space of the solid matrix. Therefore the fluid content vari- 

ables OA, Ow, and ON, giving volume of fluid per bulk volume of soil, must add 

together to give the total fraction ofthe matrix that is void: 

Moreover, the presence of three fluid phases implies the existence of three distinct 

pressures. From these pressures there arise two independent pressure differences 

pw -PA and p~ - P A ,  that is, the differences between the two liquid pressures and 

the air pressure. These pressure differences, and thus the corresponding pressure 

heads hw and h ~ ,  vary with moisture content. Inverting these relationships gives 

two functional relationships having the forms Ow = Ow(hw) and ON = 8 N ( h N )  

analogous to the relationship 8 = B(h) arising in the single-liquid theory reviewed 

above. 

Using principles from continuum physics to develop governing equations in 

this way has at least two benefits. First, since these principles have their basis 

in rigorous physical theory, the resulting flow equations at least have a sound 

conceptual foundation. The arguments used to derive Equations (4) explicitly 
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show how multiphase unsaturated flows fit into a general and widely accepted 

body of physical theory. Second, the resulting set of partial differential equations 

serves to guide experimental work by indicating new variables and functional 

dependencies that need to be quantified to allow precise descriptions of the flows 

in question. Progress in understanding multiphase unsaturated flows urgently 

needs empirical work, and a sound mechanical framework provides an essential 

context for the design of experiments. 

Work in progress 

The numerical solution of Equation (4) is a matter of current research. At 

this writing, the project has yielded a numerical formulation for two-liquid unsat- 

urated flows in the vertical direction. However, the coding of this formulation is 

still incomplete. This task has evolved more slowly than expected, for two rea- 

sons. First, the simultaneous solution of two coupled, nonlinear, time-dependent 

partial differential equations is inherently difficult from a numerical point of view. 

Second, and more important, both of the graduate students who have contributed 

to this project (Carolyn L. Murphy and Lowell Smylie) have left the University 

of Wyoming, the first after completing an M.S., the second for personal reasons. 

There being no funding available for students at this time, responsibility for math- 

ematical analysis, code development, and code testing now rests with the Principal 

Investigator. 

RESULTS 

To date, this project generated the following results. 

1. A continuum-mechanical formulation of the flow equations for multigrid flows 

in variably saturated porous media (Allen, to appear). 



2. A mass-conserving finite-element collocation method for solving one-dimension- 

a1 transient vertical flows of a single liquid through variably saturated porous 

media, together with a Fortran code implementing the method (Allen and 

Murphy, 1985). 

3. An extension of the one-dimensional collocation method to two space dimen- 

sions, together with Fortran codes implementing the method for two sample 

problems (Murphy, 1985; Murphy and Allen, to appear). 

Computer codes from items 1 and 2 are available from Myron B. Allen, Depart- 

ment of Mathematics, University of Wyoming, Laramie, Wyoming 82071. Each 

request should be accompanied by a blank 9-track tape, which will be returned 

with the appropriate codes and data at a density of 1600 characters per inch, 

Cyber format. 

As discussed above, development of a one-dimensional code using finite- 

element collocation to solve the flow equations for two liquids in a variably satu- 

rated porous media is in progress at this writing. 

CONCLUSIONS AND RECOMMENDATIONS 

This project has generated theoretical and numerical methods for the mod- 

eling of multiphase contaminant flows in the unsaturated zones of porous soils. 

As mentioned in the introduction, understanding of such flows is vital to the ad- 

vance of remedial schemes for an ever-growing class of groundwater contamination 

problems. Specific conclusions drawn here include the following: 

1. Mixture theory provides a sound theoretical basis on which to develop the 

continuum mechanics of multiphase underground flows. As explained in the 

published work (Allen, to appear), the equations developed in the course of 

this project reflect certain restrictive assumptions that, while plausible for 
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most soils, should be examined in any site-specific application. 

2. Finite-element collocation furnishes an accurate numerical method for solving 

the unsaturated flow equations. Given careful attention to the formulation 

of the discretization, collocation schemes can be forced to guarantee mass 

conservation, violation of which is a problem afflicting many naive numerical 

schemes for unsaturated flows. Moreover, a reasonable Newton-like iterative 

scheme accommodates the nonlinearity inherent in these flow equations in a 

stable manner. Finally, as our numerical results indicate, the method admits 

a conceptually simple extension to two space dimensions. 

Much remains to be done in this area. Specific recommendations include the 

following: 

1. Work on numerical schemes for two-liquid flows should continue. This is 

an important emerging area in groundwater engineering, and advances to 

date have been sparse (see Abriola and Pinder, 1985; Faust, 1985 for the 

major publications in this area known to the author). Numerical simulation 

is destined to be an important tool in studies of subsurface contamination, 

paralleling the now widespread use of simulators in the petroleum extraction 

industry. Without further research and development, this area of inquiry 

could become the critical path in the engineering of remedial measures. 

2. The basic governing equations developed in this project need to be verified 

by experiments. While the author is not qualified to design and conduct 

such experiments, he is willing to cooperate with any efforts in this regard. A 

potentially important effort in this regard is presently under way at Princeton 

University under the direction of Professor Chris Milly, Department of Civil 

Engineering. 
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3. Before numerical simulation can become a standard, site-specific engineering 

tool, we must have better methods for characterizing sites. This recommen- 

dation involves a plethora of research needs too broad to allow extensive 

mention here, but some of the major problems in site characterization in- 

clude the lack of sampling and measuring procedures for multiphase flows 

in the unconsolidated soils typically found near the surface, the lack of uni- 

versally accepted sampling and analysis protocol for NAPL in soils, and an 

incomplete understanding of the roles of such soil features as clay stringers, 

dessication cracks, and human-built bentonite structures in providing barriers 

or high-permeability conduits for NAPL migration. 
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APPENDIX: ARTICLES PUBLISHED FROM THIS PROJECT 

Attached are the articles, cited in the Introduction to this report, whose 

publication resulted from work done during this project. 



WHY UPWINDING IS REASONABLE 

Myron B. Allen 

U n i ve rs i t y of Wyoming 

INTRODUCTION 

Upwind-biased discrete approximations have a distinguished history in numeri- 
cal fluid mechanics, dating at  least to  von Neumann and Richtmyer (1950). 
Lately, however, upwinding has come under f ire in water resources engineering. 
Among the most effective critics of upwind techniques are Cresho and Lee 
(1980), who take umbrage at the smearing of steep gradients in solutions of 
partial differential equations. While this viewpoint has cogency, a blanket con- 
demnation of upwinding would be injudicious. There exist fluid flows for which 
upstream-biased discretizations are not only va.lid but in fact mathematically 
more appropriate than central approximations having higher-order accuracy. 

Figures 1 and 2 illustrate the source of the controversy. Both plots show 
numerical solutions t o  a convection-dominated species transport equation using 
finite-element collocation. Figure 1, the result of a centered scheme, shows a 
solution having unrealistic wiggles near the concentration front; Figure 2, from 
an upwind scheme, exhibits nonphysical smearing. The wiggles in the centered 

’ scheme disappear altogether when the spatial step Ax i s  small enough, where- 
as the smearing associated with upstream weighting decreases continuously 
with Cresho and Lee argue that the wiggles indicate an inappropriate 
spatial grid and that suppressing them via upwinding eliminates useful symptonr; 
in favor of a less informative flaw, smearing. 

Ax. 

Were wiggles the only difficulty with centered schemes, proscribing upwind 
methods might be in order. However, as we shall see, for certain types of 
equations centered schemes can fa i l  to converge. This difficulty i s  not sympto- 
matic of an unsuitable grid; rather, it betrays an inability of centered schemes 
to impose proper uniqueness criteria. For such equations, upwinding can be 
reasonable. 

SOME UPWINDINC TECHNIQUES 

Of various discrete methods used in numerical fluid mechanics, finite differ- 
ences, Calerkin methods, and finite-element collocation have proved to be 
among the most attractive. A brief review of techniques in each of these 
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make matters concrete, consider as a paradigm of convection-dominated flows 
the constant-coeff icient convection-diffusion problem 

~ 

where x and t are dimensionless space and time coordinates, u(x,t) denotes 
a normalized concentration, and the Peclet number Pe measures the degree to  
which convection dominates diffusion. 

As commonly implemented, each of the discrete interior methods calls for a 
partition 4: 0 = xo < x i  < ... < XN+1 = 1 of the spatial domain. Suppose 
for simplicity that AN has uniform mesh Ax. Then the foliowing finite- 
difference analog of Equation (1) has truncation error O( Ax2): 

where ui(t)  signifies the approximate solution at  x = i A x  and time t. The 
problem with Equation (2) i s  that, unless A x  is sufficiently small, the numeri- 
cal solution exhibits spurious wiggles near sharp concentration fronts. A desire 
to avoid these wiggles in favor of smearing prompts many analysts to  resort to 
upwind schemes. 

The simplest way to  derive an upwind scheme from Equation (2) is  to  
replace the analog of the convective term au/ax by a one-sided difference, 
yielding 

The truncation error of Equation (3), O( Ax), i s  larger than that for Equation (2),  
and writing the lowest error term explicitly shows 

where the terms on the right are evaluated at  It i s  clear that the 
upwind difference scheme augments physical diffusion by an amount propor- 
tional to  Ax. Hence by sacrificing one order of spatial accuracy one can sup- 
press nonphysical wiggles a t  the cost of numerically induced dissipation. 

x = xi. 

Upwinding techniques also exist for finite-element Galerkin schemes. One 
such technique is  the use of upstream-biased test functions proposed by Hein- 
rich et al. (1977). Consider the standard Galerkin method applied to  Equation 
(1). This method seeks a trial function 

N 

i=l 
G(x,t) = u ~ ( x )  + C ui(t)Li(x) 

approximating the true solution u(x,t). Here u,(x) is a chapeau function on 
AN satisfying the boundary conditions and vanishing at  each interior node Xi, 

i = 1, ..., N, and the functions Li(x) are elements of the chapeau basis on AN. 
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To determine the nodal values ui(t), we force the residual au^/at + aG/ax 
- Pe'l$6/ax2 t o  be orthogonal to  each basis function Lj(X), j = 1, ..., N, with 
respect to the inner product <f,g> = Jif(x)g(x)dx. This requirement leads to  
a set of N ordinary differential equations for the ui(t): 

N 
C (<Lj,Li> dui/dt + <Li',Lj>ui + Pe-'<Li',Lj'>ui) = 0, j = l,...,N (5 

i=l 
Computing the integrals 

A x  - 
6 

Equation ( 6 )  i s  similar 
only difference being a 

then gives 

d 1 - dt (uj-1+4uj+~j+1) + 7 (uj+1-uj-1) 

- (AX Pe)-l(uj+1-2uj+uj-1) = o ( 6 )  

to the centered difference formula, Equation (3), the 
peculiar spatial average of time derivatives in Equation 

(6). This scheme, like Equation (3), produces wiggles when Ax is too large. 

The method advanced by Heinrich et al. modifies Equation (5) by replacing 
the test functions in the convective term with asymmetric functions Lj*(x) = 
Lj(X) + crAj(X), where 

and a > 0, Thus the integral <Li',Lj*> appears in Equation (5) instead of 
<Li',Lj>, and the upstream-weighted Galerkin scheme differs from Equation (6) 
by a<Li',Aj>. Simple calculation shows 

- 1/2, i = j k l  
1, i = j  
0, l i - j l  > 1 

<Li',Aj> = 

so the scheme proposed by Heinrich et at. reduces to  

Therefore in a manner analogous to  Equation (3),  Equation (7) augments physi- 
cal diffusion by an amount proportional to  Ax, and this numerical dissipation 
mitigates wiggles at the expense of smearing. 

Shapiro and Pinder (1981) introduce a related upwinding technique for use 
with f inite-element collocation. Their approach entails the use of Hermite 
cubic interpolating bases (see Prenter, 1975, Chapter 3), except they perturb 
the trial function in the convective term by a piecewise quartic biased in the 
upstream direction. Shapiro and Pinder present a detailed Fourier analysis 
showing the dissipative effects of their upstream weighting on the propagation 
of sharp fronts. 
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There is another upwinding technique for finite-element collocation. Con- 
sider the standard implementation, in which the trial function has the form 

N 

i=l 

A 

u(x,t) = ua(x) + C [ui(t)Hoi(x) + ui ' ( t)Hl i(x)I 

Here the coefficients ui(t), ui'(t) approximate the nodal values u(xi,t), 

au(xi,t)fax, respectively, and (Hoi,H1i$=O is  the basis for Hermite cubic in- 
terpolation on AN. The standard collocation method, which has truncation 
error O(Ax4), requires the residual to  vanish, 

'+1 

at each of 2N collocation points Tlk = X i  + Ax/2 Axfi, i = I,..  .,N. As 
Figure 1 shows, unless is  sufficiently small the scheme generates wiggles 
near sharp fronts (jensen and Finlayson, 1980). 

Ax 

A technique called upstream collocation (Allen and Pinder, 1983) offers a 
simple remedy t o  the wiggles, at the usual cost of smearing as shown in Figure 
2, To implement the technique, simply shift the collocation points Xk in the 
convective term of Equation (8) to  upstream points xkf' = Fk - <Ax. This gives 

in which the differentiated basis-function values Hmi'(Xk*) appear in the con- 
vective term instead of Hmi'(Zk). By Taylor's theorem, the difference 
between these two values is  - < A x  Hmi"(Xk) + ( <2AX2/2)Hmi'"(Ek). Thus, t o  
within O(Ax2), Equation 9 i s  equivalent to  

It is clear from this equation that numerical diffusion is  again the mechanism 
by which the scheme mitigates wiggles. 

Upstream collocation is  closely related to  an upwind Galerkin scheme in- 
troduced by Hughes (1978). This latter scheme involves numerical evaluation 
of the Calerkin integrals using quadrature points shifted upstream from the 
Gauss points, In  fact, one can show an algebraic correspondence between up- 
stream collocation and a variant of Hughes' method using reduced integration 
on Hermite trial spaces (Allen, to  appear), 

A NONLINEAR HYPERBOLIC EQUATION 

Numerical dissipation makes upwinding attractive to  modelers wishing to  avoid 
wiggles in convection-dominated parabolic flows. It i s  precisely such motives 
that provoke justified ire in Cresho and Lee. There is, nevxrtheless, another 
motive for using upwind-biased schemes. Many physical systems combine 
minute dissipation with nonlinearity, obeying governing equations that are 
effectively hyperbolic. For these systems high-order discrete schemes may be 
mathematically inappropriate, not because they generate wiggles, but because 
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they fa i l  to converge. Upwinding techniques then provide reasonable alterna- 
tives. 

The Buckley-Leverett problem furnishes a simple example of a nonlinear 
hyperbolic equation for which high-order approximations fail. Consider a typi- 
cal Cauchy problem for this equation: 

Here S stands for water saturation; f(S) i s  a nonconvex, monotonically in- 
creasing function giving the flux of s; and So, and Swr are the minimum 
oil and water saturations, respectively, for the rock-f luid mixture. Equation 
(11) models immiscible flows in porous media in which capillarity exerts a neg- 
ligible influence on fluid velocities. A prime feature of Equation (11) is  the 
propagation of a saturation shock through the porous medium. This problem 
serves as a prototype for many kinds of nonlinear, hyperbolic or nearly hyper- 
bolic systems of flow equations that occur in applications where convective 
forces are dominant. 

It i s  widely known that spatially centered approximations to  Equation (11) 
can converge to  incorrect solutions. Allen and Pinder (1983), for example, 
examine the f inite-element collocation approximation t o  this problem using 
both the conventional formulation and the upstream collocation scheme dis- 
cussed above. As Figures 3 and 4 show, the conventional method predicts a 
saturation shock that i s  too slow and too strong, whereas the upstream method 
gives good approximations to  the true shock. No amount of grid refinement 
can correct the failure of the conventional scheme. The difficulty here i s  not 
one of spurious wiggles; it i s  a deeper problem concerning the suitability of 
numerical methods from a mathematical standpoint. 

Others have reported results similar t o  those displayed in Figures 3 and 4. 
Huyakorn and Pinder (1978) use the upstream-weighted Galerkir ;cheme re- 
viewed above to  overcome convergence difficulties with the standard Calerkin 
method in solving Equation (11). Mercer and Faust (1977) accomplish the same 
end by adding an adjustable capillary term to  the discrete equations. Shapiro 
and Pinder (1980) use their upstream-weighted collocation method to  produce 
convergent solutions t o  Equation (11). Indeed, upstream weighting has become 
standard practice for immiscible flow modeling in the oil industry (Aziz and 
Settari, 1979, Chapter 5). 

UNIQUENESS AND HYPERBOLIC CONSERVATION LAWS 

To see why upwind schemes converge for the Buckley-Leverett equation and 
similar problems, i t  i s  useful to review some mathematical facts about Equation 
(11 ). When such 
equations have nonconvex flux functions like f(S), one cannot expect Cauchy 
problems for the equations to  possess classical solutions. Instead, one may 
have to settle for weak solutions, defined for Equation (11) by the integral cri- 
terion 

This equation is a quasilinear hyperbolic conservation law. 
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for any Ca3 real-valued function $(x,t) with compact support. This crite- 
rion reduces to Equation (11) when S(x,t) i s  continuously differentiable but 
also admits solutions S(x,t) having shocks. 

However, Cauchy problems like Equation (11) may not have unique weak 
solutions. To guarantee uniqueness for general initial data requires an addi- 
tional constraint. The correct constraint, or shock condition, requires the weak 
solution t o  depend continuously and stably on the initial data. Equivalently, 
characteristic curves emanating from both sides of a discontinuity must inter- 
sect the curve on which the initial data are given. Oleinik (1963) proves a 
uniqueness condition on weak solutions that i s  mathematically equivalent to the 
shock condition but has more immediate implications for discrete approxima- 
tions. Her criterion essentially states that the solution to the hyperbolic equa- 
tion must be the limit of solutions, for comparable data, t o  a parabolic equation 
differing from the hyperboiic one by a dissipative second-order term of vanish- 
ing influence. In  gas dynamics, this second-order term is  called 'vanishing vis- 
cosity'; for the Buckley-Leverett problem the term 'vanishing capillarity' i s  
perhaps more appropriate. - -  

Hi gh-orde r, spat ia I ly centered disc ret i zat ions of the Buck ley- Leveret t 
problem, though formally consistent with Equation (11), yield approximate weak 
solutions that are physically and mathematically incorrect. From a physical 
standpoint the neglected capillary term in Equation (11), which has the form 

exerts an important influence in a microscopic region of what appears to mac- 
roscopic observers as a saturation shock. Thus while the global effects of cap- 
illarity may be legitimately neglected in the macroscopic flow equation, some 
device must remain to guarantee that the solution S(x,t) respect the micro- 
scopic physics. Artificial capillarity i s  such a device. 

It is a relatively simple matter to  see how various upwinded approximations 
contribute artificial capillarity. For example, an upstream-weighted difference 
approximation to Equation (11) that i s  analogous to Equation (3 )  yields a flux 
term that has the form 

Since 
physical capivarity of Equation (12), while preserving consistency. 

f ' (S )  > 0, it i s  clear that the lowest error term here mimics the missing 

Similarly, the use of upstream-biased test functions in the Galerkin scheme 
analogous to Equation (7) yields approximations to  the flux term of Equation 
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where f i  = f(Si(t)) and S i s  the trial function approximating S. Notice 
that, parallelling Equation (73), the use of asymmetric test functions adds a 
numerical capillarity that i s  O(Ax) smaller than the approximations t o  physical 
terms in Equation (11). 

Upstream collocation also adds artificial capillarity to the Buckley- 
Leverett problem. In  this case we project the flux t e r p  of Equation (11) to a 
Hermite interpolating space and collocate the result a f /ax  a t  points Xk*= 
xk - <Ax upstream of the usual collocation points. A Taylor expansion shows 
- 

Again, the upwind scheme adds the necessary artificial dissipation in the form 
of a 'vanishing capillarity." 

Various physics give rise to effectively hyperbolic systems for which 
uniqueness of weak solutions is an important issue. For such systems formal 
neglect of dissipation, while arguably valid from an engineering viewpoint, ne- 
cessitates a device like upwinding to  guarantee qualitatively correct numerical 
solutions. Other examples of interest in water resources engineering include 
hydraulic jumps (Whitham, 1974, Chapter 13) and wetting fronts in variably 
saturated soils (Nakano, 1980). 

CONCLU S ION S 

Upwinding can serve two purposes: it can suppress wiggles or, for certain 
equations, it can guarantee convergence, As Gresho and Lee observe, the first 
purpose is  largely cosmetic, and the attendant smearing may be a more difficult 
flaw to  recognize than spurious oscillations. However, in the case of conserva- 
tion laws with discontinuous weak solutions upwinding can be a legitimate 
practice. The aim in this second case is  to  formulate consistent approximations 
that have built-in mechanisms for accommodating the peculiarities of hyper- 
bolic or nearly hyperbolic flows. The lower spatial accuracy inherent in upwind 
schemes i s  far preferable to  the convergence failures of higher-order schemes. 
Indeed, in the neighborhood of a discontinuity the very notion of 'order of 
accuracy * can be problematic. 

Despite the mathematical validity of upwinding, the problem of smearing 
remains. While numerical dissipation vanishes with Ax, in practice A x  never 
vanishes and may be so large that artificial smearing is  unacceptable, One of 
the most promising remedies to  this difficulty i s  adaptive local grid refinement. 
Here one uses a spatial grid having smaller elements in portions of the flow 
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field where steep solution gradients drive numerical dissipation. Algorithms 
combining local grid refinement with upwinding allow both for convergence to 
correct weak solutions and for the reduction of artificial smearing near sharp 
fronts. There is no denying the formidable coding difficulties in adaptive local 
grid refinement; however, progress in this field is encouraging (see Ewing, t o  
appear). 
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Abst rac t  

This paper proposes a set  of flow equat ions  governing t h e  simultaneous move- 

ment of aqueous and nonaqueous l i q u i d s  i n  v a r i a b l y  s a t u r a t e d  s o i l s .  The bas i c  

p r i n c i p l e s  and balance l a w s  of continuum mixture  theory,  a long  wi th  thermodyna- 

mica l ly  admiss ib l e  c o n s t i t u t i v e  l a w s  and s impl i fy ing  kinematic assumptions,  

y i e l d  a formula t ion  f o r  i sochor i c  mult iphase flows through a nondeforming porous 

mat r ix .  Cast i n  terms of f a m i l i a r  q u a n t i t i e s ,  t h e  governing equat ions  are s i m i -  

l a r  i n  form t o  t h e  classic Richards '  equa t ion  f o r  each l i q u i d  phase. The develop- 

ment sugges ts  new rock-f lu id  p r o p e r t i e s  t h a t  must be measured t o  c h a r a c t e r i z e  

mul t iphase  flows i n  t h e  unsa tura ted  zone. 
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I n t r o d u c t i o n .  

Groundwater con tamina t ion  by l i q u i d s  having l i m i t e d  m i s c i b i l i t y  w i t h  water 

h a s  a t t r a c t e d  i n c r e a s i n g  s c i e n t i f i c  and l e g a l  a t t e n t i o n .  

water p o l l u t i o n  c l a s s i c a l l y  have focussed  on s ing le -phase  f low and t r a n s p o r t ,  

many hazardous s u b s t a n c e s  e n t e r i n g  o u r  a q u i f e r s  are r e l a t i v e l y  i n s o l u b l e  i n  

water and hence f low through porous media  as s e p a r a t e ,  nonaqueous l i q u i d  phases .  

The p h y s i c s  of such f lows d i f f e r  s u b s t a n t i a l l y  from t h e  p h y s i c s  of s i n g l e - l i q u i d  

f lows.  E s p e c i a l l y  p r o b l e m a t i c  are s imul t aneous  f lows of s e v e r a l  l i q u i d  phases  

through t h e  v a r i a b l y  s a t u r a t e d  zones of s o i l s ,  which contaminants  dumped n e a r  

t h e  e a r t h ' s  s u r f a c e  o f t e n  must t r a v e r s e  b e f o r e  r e a c h i n g  s a t u r a t e d  a q u i f e r s .  

Th i s  paper  examines t h e  b a s i c  mechanics of mul t iphase  f lows i n  v a r i a b l y  s a t u r a t e d  

s o i l s  and proposes  a n  e x t e n s i o n  of  t h e  theo ry  of s i n g l e - l i q u i d  f lows t o  cases 

where water and nonaqueous l i q u i d s  f low s imul t aneous ly .  

While s t u d i e s  of ground- 

I n v e s t i g a t i o n s  of t h e  mechanics of wa te r  f lowing i n  t h e  v a r i a b l y  s a t u r a t e d  

zone d a t e  t o  Richards [1931] .  Indeed ,  R icha rds '  f o r m u l a t i o n  i s  now t h e  most 

w ide ly  used model of water movement i n  u n s a t u r a t e d  s o i l s .  Prominent among sub- 

sequen t  i n v e s t i g a t i o n s  of t h e  dynamics of p a r t i a l l y  s a t u r a t e d  f l o w  a re  pape r s  

by P h i l i p  El9541 and Zaslovsky [1964] .  B e a r  e t  a l .  [1968] p r o v i d e  a n  e x c e l l e n t  

review of t h e  c l a s s i ca l  l i t e r a t u r e  i n  t h i s  f i e l d .  Narasimhan and Witherspoon 

[1977] extend t h e s e  b a s i c  models t o  i n c l u d e  t h e  e f f e c t s  of de fo rma t ion  i n  t h e  

s o l i d  porous m a t r i x .  More r e c e n t l y ,  s t u d i e s  by PrGvost [1980] and Bowen 

[1980, 19821 have e x p l o i t e d  t h e  continuum theory  of mix tu res ,  as developed by 

Eringen and Ingram [1965, 19671 and reviewed by Atk in  and Cra ine  [1976],  t o  

d e r i v e  t h e  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  governing f l u i d  f lows i n  s a t u r a t e d  

porous media. The p r e s e n t  s t u d y  a l s o  re l ies  on t h e  t h e o r y  of mix tu res  b u t  aims 

a t  a model of u n s a t u r a t e d  media c o n t a i n i n g  two l i q u i d  phases  under some s i m p l i f y -  
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ing as sump t ions. 

In contrast to the physics of saturated porous media and variably saturated 

media with a single liquid, multi-liquid flows in the unsaturated zone have re- 

ceived fairly scant experimental attention. Thus the development that follows 

amounts to a proposed model and should not be viewed as an a posteriori explana- 

tion of observations. 

Kinematics. 

Consider a mixture comprising four constituents, which we shall label R 

(rock), aqueous liquid (W), nonaqueous liquid (N), and air ( A ) .  These constitu- 

ents represent four phases of concern in the simultaneous flow of water and oily 

contaminants in the vadose zones of soils. Our aim is to describe the movements 

of these constituents and, ultimately, to derive f l o w  equations governing their 

dynamics. 

Corresponding to each constituent a is a body Ba, which is a collection 

of material points labeled Xa. The four bodies BR, R", R N ,  BA form a collec- 

tion of overlapping continua, so that conceptually each spatial point at which 

the mixture resides may harbor material points from each of the bodies 

Following the standard procedure in mixture theory, let u s  establish for each 

body a reference configuration, so that we can label each material point 

by its spatial position & in that configuration. The motion of the body 

is then the function g = ~  (z ,t) giving the spatial coordinates of any material 

point at any time t E [O,m). Under the hypothesis that each motion is a 

continuously differentiable function with nonzero Jacobian determinant 

det[ax./aX.], the inverse function theorem guarantees the existence of an in- 

verse motion defined at each time t by = (_x,t). Given the motions 5 , 

8'. 

Xa 
a 

a a  

a 

a a  
1 J  

a a a 

we can define the Lagrangian and Eulerian velocities 



5 

(Lagrangian) 

CI 

/a?a a a a a  - (z (2 ,t) ,t) = v ( 5  ,t) at v 
(Eulerian) 

as well as other Lagrangian and Eulerian quantities describing each body's motion. 

Also associated with each body Ra is a non-negative scalar function Ma 

defined on measurable subsets V of the spatial configuration x_(Ba) at any 

time t - > 0. Physically, the value Ma(V,t) is the mass of phase a contained 

in the set P of spatial points at time t. If at each time t Ma is abso- 

lutely continuous with respect to Lebesgue measure on three-dimensional Euclidean 

space, then by the Radon-Nikodym theorem there must be some scalar function 

ca: ~ ( 6 ~ )  x [O,..) + [O,..) such that 

M'(V,t) = ca(x,t) dv 
V 

The function ca is the bulk mass density of a, giving the mass of phase a 

per unit volume of mixture. 

By analogy with the mass density we can also define the volume fraction 

occupied by phase a at a given point in the spatial configuration of Barn 

To each Ba associate a non-negative scalar function Fa, whose domain at any 

time t is the collection of measurable subsets V of _x(Ba), such that Fa(V,t) 

gives the volume in V occupied by phase a. It is clear that 0 < Fa(V) < dv. - - 
V 

If 

then we have a scalar function 

FU is absolutely continuous with Lebesgue measure on Euclidean three-space, 

$a: ~ ( € 3 ~ )  x [ O , a )  -+ [ O , l ]  such that 
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The function @a is the volume fraction of phase a, and the collection 

{@I ,@ ,$ ,$ } must obey the constraint 
R W N A  

Given the functions 5' and Cpa for each phase, we can define the intrin- 

a a a  -- sic mass densities. 

where @a # 0, that is, where material from phase a is actually present. The 

function pa gives the mass of phase a per unit volume of phase a. Having 

established the functions Ca, @a, and pa and the phase velocities y a ,  we can 

define a variety of quantities useful in describing the motions of the phases. 

Table 1 summarizes these definitions. 

These are p = 5 /@ , which are meaningful quantities only 

To describe the rates of change of various quantities with time we need to 

introduce material derivatives. A s  is usual in mixture theory, if f is a 

Lagrangian quantity, so that f = f(5 ,t), then the material derivative of f 
a 

with respect to phase a is the time rate of change of f following a fixed 

material point Xa in phase a: 

a 
On the other hand, if f is an Eulerian quantity, implying f = f(5 ,t), then 
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where the  ope ra to r  V s i g n i f i e s  t h e  g rad ien t  w i th  r e s p e c t  t o  s p a t i a l  p o s i t i o n ;  

We can a l s o  a s s o c i a t e  wi th  t h e  mixture  a b a r y c e n t r i c  m a t e r i a l  d e r i v a t i v e ,  

given by 

- -  - -  a + y 4 7  
D t  a t  

where y i s  t h e  b a r y c e n t r i c  v e l o c i t y  def ined i n  Table 1. The ope ra to r  - D t  i s  

a 
r e l a t e d  t o  - ' as fol lows:  

D t  

a 

a where = y - y i s  t h e  d i f f u s i o n  v e l o c i t y ,  also def ined  i n  Table 1. F i n a l l y ,  

w e  s h a l l  encounter  i n t e n s i v e  v a r i a b l e s  

a l l  phases ,  as i n  t h e  equat ion  

Ya appearing i n  mass-weighted sums over 

de f in ing  t h e  "mixture property"  Y. 

s h a l l  f i n d  t h e  fol lowing i d e n t i t y  u s e f u l :  

When working wi th  sums of t h i s  s o r t  we 
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Balance L a w s .  

The e q u a t i o n s  governing m u l t i p h a s e  contaminant  f lows i n  t h e  u n s a t u r a t e d  

zone a r i se  from t h e  b a l a n c e  l a w s  f o r  m i x t u r e s ,  modif ied by c o n s t i t u t i v e  assump- 

t i o n s  and r e s t r i c t i o n s  imposed by t h e  Clausius-Duhem i n e q u a l i t y  of thermodyna- 

mics. W e  s h a l l  s t i p u l a t e  t h a t  t h e  m u l t i p h a s e  m i x t u r e s  of i n t e r e s t  a r e  i s o t h e r -  

m a l  and have no h e a t  s o u r c e s ,  s o  t h a t  i t  w i l l  n o t  be  n e c e s s a r y  t o  s o l v e  an  

energy b a l a n c e  e q u a t i o n  e x p l i c i t l y .  However, t h e  mass, momentum, a n g u l a r  mo- 

mentum, and energy b a l a n c e s ,  t o g e t h e r  w i t h  a n  e n t r o p y  i n e q u a l i t y  corresponding 

t o  t h e  second l a w  of thermodynamics, are a l l  e s s e n t i a l  t o  t h e  complete dynamic 

s p e c i f i c a t i o n  of t h e  systems. The m i x t u r e  b a l a n c e  l a w s ,  i n  t h e i r  p r i m i t i v e  form, 

asser t  r e l a t i o n s h i p s  among c e r t a i n  i n t e g r a l s  ove r  material volumes and t h e i r  

bounding s u r f a c e s .  A s t a n d a r d  sequence of arguments r educes  t h e s e  i n t e g r a l  

l a w s  t o  d i f f e r e n t i a l  forms i n v o l v i n g  sums of d e n s i t i e s ,  f l u x e s ,  and s o u r c e s  

ove r  a l l  c o n s t i t u e n t s  i n  t h e  m i x t u r e .  Then, by i n t r o d u c i n g  c o n s t i t u e n t  exchange 

terms, one can r educe  t h e  d i f f e r e n t i a l  b a l a n c e  l a w s  f o r  t h e  m i x t u r e  t o  d i f f e r e n -  

t i a l  l a w s  f o r  each  c o n s t i t u e n t .  S i n c e  Bowen [1976]  reviews t h i s  development, 

t h e  p r e s e n t  s e c t i o n  s imply s ta tes  t h e  b a l a n c e  l a w s  and g i v e s  t h e i r  p a r t i c u l a r  

forms under  a p p r o p r i a t e  a s sumpt ions  a b o u t  t h e  mix tu re .  

The d i f f e r e n t i a l  form of t h e  mass b a l a n c e  f o r  any phase a i s  

a 

a x h e r e  r s i g n i f i e s  t h e  ra te  of exchange of mass i n t o  phase a from o t h e r  

phases  as a r e s u l t  of chemical  r e a c t i o n s ,  phase changes,  a d s o r p t i o n ,  d i s s o l u -  

t i o n ,  and t h e  l i k e .  T o  be c o n s i s t e n t  w i t h  t h e  g l o b a l  mass b a l a n c e  f o r  t h e  mix- 
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a ture, the exchange terms r must satisfy 1 ra = 0. We shall simplify matters 

by allowing no interphase mass transfer, so that each 

balance reduces to 

a 
ra = 0, and the mass 

a 

D(ppa) Dt + cpapav*ya = 0 . 

It is worth noting that exchange terms may be present in many contaminant flows 

of practical interest, where dissolution and microbial degradation of organic 

liquids may be significant [Schwille, 19841. In these cases one must retain 

r in Equation (2). a 

The primitive differential momentum balance is 

a 

a 
Here t denotes the stress tensor for phase a, b' signifies the rate at .-., c1 

cy 

which body forces contribute to the momentum density, and $a represents the - 
exchange of momentum into phase a from other phases. A s  in the  mass balances, 

,a 
the exchange terms must obey the restriction 1 = 0. - By expanding the pri- 

a 

mitive momentum balance and eliminating terms that sum to zero according to the 

mass balance, one finds 

In the mechanics of single continua it is well known that the primitive 



balance of angular momentum reduces, in the absence of body couples, to the sym- 

metry of the stress tensor, t - t = 0. Here tT denotes the transpose of the 

stress tensor t. For mixtures, the analogous argument leads to a weaker state- 

T 
=Y 25 % = 5  

2. 

ment, namely 

where Ma stands for the exchange of angular momentum into phase a from other 

phases. In this case 
= 
Let us assume that angular momentum exchanges are absent. 

the angular momentum balance for any constituent a reduces to 

a T  t"-(t) = o ,  

that is, the stress tensor of each phase is symmetric. 

The primitive form of the differential energy balance is 

a 
In this equation, Ea 

is the heat flux vector in phase a; and ha 

the total energy per unit mass from heat sources. 

ly accounts for kinetic energy; -V*(ta*va) 

attributable to stress, and 

forces. The quantity E on the right of the energy balance again stands for 

is the internal energy of phase a per unit mass; q Y 

is the rate of contribution to 

a 'va*va clear- The term y@ p 
* -  

is the rate of working and heating 
2 -  

I -$apoka*va represents the rate of working of body - -  
a 
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the rate of exchange of energy into phase a from other phases, subject to the 

restriction 1 sa = 0 .  
a 

A s  with the momentum 

from the primitive energy 

balance, it is possible to eliminate certain terms 

balance by observing that their sum is proportional 

to the left side of the mass balance (2). Furthermore, one can notice that 

several "mechanical energy" terms in the energy balance also appear when one 

a forms the dot product of the momentum balance ( 3 )  with v . Using the mass and 
1 

momentum balances in this way to simplify the energy balance yields a t'thermal 

energy balance , I 1  

a a  a a a a -  a *a a a aDEU t :VV - V.q - @ p h - E - p @ P E T - ,  CI .y Y 

( 4 )  

For our purposes the most useful energy balance is not the balance equation 

for each phase but rather the overall balance for the mixture. 

tion, simply sum equation ( 4 )  over all phases a. 

(1) we find, after simplifying, 

To get this equa- 

Bearing in mind the identity 

a a a  a a a  
@ p E + (V*v) 1 @ p E -1 ta:Vva ..., 

a -  1 Dt a a 

Now define the inner part EI of the total internal energy as 
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and t h e  t o t a l  h e a t  f l u x  q - and t o t a l  h e a t  source h a s  

a 

With t h e s e  d e f i n i t i o n s ,  t h e  o v e r a l l  energy balance reduces t o  

F i n a l l y ,  c e r t a i n  thermodynamic r e s t r i c t i o n s  on t h e  behavior of t h e  mix- 

t u r e  fo l low from t h e  Clausius-Duhem i n e q u a l i t y  governing entropy changes. 

There i s  appa ren t ly  no u n i v e r s a l l y  accepted  form of t h i s  entropy i n e q u a l i t y ;  

Atkin and Craine [1976] ,  for example, review t h e  h i s t o r y  of t h i s  cont roversy .  

Passman e t  a l .  [ 1 9 8 4 ]  a l s o  d i s c u s s  t h e  entropy i n e q u a l i t y ,  no t ing  some of 

t h e  less s a t i s f a c t o r y  a s p e c t s  of t h e  mixture  i n e q u a l i t y  as compared wi th  

t h e  en t ropy  i n e q u a l i t y  v a l i d  f o r  s ing le -cons t i t uen t  cont inua .  

adopted h e r e  i s  e s s e n t i a l l y  t h a t  used i n  Bowen's [1980] development f o r  

f l u i d  f low i n  incompressible  porous media. 

s ta tes  that 

The v e r s i o n  

I n  d i f f e r e n t i a l  form, t h i s  l a w  

Ta 1 
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a where rl is the entropy per unit mass in the a phase and Ta is the tempera- 

ture of the a phase, assumed positive. Let us henceforth assume that the phases 

in the mixture share a constant, spatially uniform temperature T. By defining 

the total entropy of the mixture as 

1 a a a  n = - I @  P r l  
p a  

and using the identity (l), we can then rewrite the primitive inequality as 

Now we can use the energy balance (5) to substitute for the last term on the 

left of this inequality. After some simplification, this yields 

The quantity Aa 

defined as 

appearing in this inequality is the Helmholtz free energy, 

Aa = E" - Tqa. 
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Constitutive Assumptions. 

To apply the balance laws, which have rather general validity, to specific 

mixtures such as variably saturated porous media, we need to make some assump- 

tions restricting the class of materials to which these laws apply. The res- 

trictions of interest include certain kinematic assumptions regarding the nature 

of the motions, internal constraints on the possible responses of the bodies, 

and constitutive laws giving functional relationships between various quantities 

appearing in the balance equations. The constitutive laws also serve a mathema- 

tical purpose in closing the deficit between equations and unknowns in the me- 

chanical formulation of the theory. 
a 
Dp'/Dt = O  Let us assume first that the fluids flow isochorically, so that 

for each fluid phase a.  Thus, while some of the fluids occupying the rock's - 

interstices may exhibit significant compressibilities, the velocities of interest 

are sufficiently small that the effects of compressibility on the flow field are 

negligible. Since fluid densities must be positive, the assumption that fluid 

motions are isochoric reduces the mass balance for fluids (2) to 

Second, assume that the rock matrixmoves rigidly, so that the Jacobian of 

its motion is just the identity tensor: 

R V x = F  = l .  $- z - 

This assumption allows us to affix a rigid Cartesian coordinate system to the i 

R rock phase, forcing v = 0. Also, sincea rigid motion must be isochoric, 
.v - 
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the rock mass balance becomes 

R Now define the porosity of the rock matrix to be @ = 1 - @ , that is, the total 

volume fraction available to fluids. Since each fluid phase occupies a fraction 

of the voids, let us call S = @ /@ the saturation of fluid a ,  where a = W , N , A .  

A s  constitutive laws for fluid stresses, let us postulate that each fluid 

a a 

phase a = W,N,A possesses a stress tensor 

B aB B 
B 

ta = -pal + 1 XaB trace(d )1 + 1 2p d =5 
z 2 5  “ 1 3  a 

( 7 )  

Here the dummy index ranges over all fluid phases. The tensor 

l a  a T  da = ~ [ V V  + (Vv ) ] 

paa = 1-1 

is the deformation rate in fluid phase a ;  ha’ = ha and - Y Y 

a are the coefficients of viscosity of the fluid a ,  and x a B ,  p a B ,  a# B, 

are coefficients of interphase traction between fluids a and B. The parameter 

pa is the mechanical pressure in fluid phase a. Equation (7) is essentially 

a generalized version of Newton’s law of viscosity. 

For the Helmholtz free energies Aa we shall adopt a constitutive law of 

the form 

where the notation (4’) signifies the set of volume fractions as 6 ranges 

over all phases. The temperature dependence indicated in this law, although for- 

mally appropriate, will turn out to be trivial since the mixture is isothermal. 
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Let us assume that the body forces are entirely attributable to gravity, 

a a a -  a so that @ p b - p g V Z ,  where g is the acceleration of the gravitational 

field, assumed uniform, and Z denotes depth below some datum. If we locate 

cu 

the origin of our Cartesian coordinate system 

Z = -x3. 

which heat sources are absent 

(x1,x2,x3) at this datum, then 

Furthermore, we shall restrict attention to multiphase mixtures in 

(ha = 0 )  and heat fluxes are negligible 

(qa = 0). 
5 

Finally, we need a constitutive relationship for the momentum exchanges 

*.a 
p . The assumption that is common to most theories of flow in porous media is 
Y 

that the exchanges of momentum between fluids and the rock dominate interfluid 

exchanges and have the form of Stokes drags: 

R .  a 
= (f5-l (v - v  ) 

In this equation Aa 

ship between momentum exchanges and relative velocities, guaranteeing that 

is objective with respect to changes of frame. 

(8) simplifies in our frame of reference to 

is an invertible transformation giving a tensor relation- 
25 

5 

Since vR = 0, however, Equation 
CI 5 

Physically, ha u 
varies with the microscopic configurations of the rock and 

..d 

fluid phases, that is, with both the volume fractions and pore-level geometries 

of the phases. In practice, however, the pore-level geometries are typically 

inaccessible to measurement. Therefore we consider ha 5 t o  be a function of the 

fractions { @  } 8 for a given rock-fluid mixture in which the rock geometry is 
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f i x e d  and t h e  i n t e r f a c i a l  t e n s i o n s  remain c o n s t a n t .  Thus i n  a s e n s e  Aa i s  a 

p u r e l y  phenomenological v a r i a b l e  r e q u i r i n g  d i r e c t  measurement f o r  each system 

% 

of rock  and f l u i d s  under i n v e s t i g a t i o n .  

There are now s e v e r a l  mechanisms f o r  t h e  t r a n s f e r  of momentum i n  t h e  mix- 

t u r e .  These i n c l u d e  t r a n s f e r s  through s h e a r  stresses w i t h i n  each f l u i d ,  i n t e r -  

phase t r a c t i o n s ,  and d i r e c t  momentum t r a n s f e r  through f l u i d  d rags  on t h e  rock  

m a t r i x .  L e t  u s  assume t h a t  t h e  l a s t  of t h e s e  mechanisms overwhelms the o t h e r s ,  

s o  t h a t  s h e a r  stresses and t r a c t i o n s  e x e r t  i n f l u e n c e s  on momentum t r a n s f e r s  

t h a t  are n e g l i g i b l e  compared w i t h  t h e  S tokes  d rag  i n  Equat ion ( 9 ) .  Thus w e  

need on ly  c o n s i d e r  t h e  normal f l u i d  stresses, approximating t h e  c o n s t i t u t i v e  

l a w  (7) by 

For each f l u i d ,  t h e  mechanical  p r e s s u r e  

of t h e  f l u i d  d e n s i t y  i n  phase a and of t h e  volume f r a c t i o n s  {$’}. Thus w e  

have an  e q u a t i o n  of s t a t e  

pa i n  t h i s  l a w  may v a r y  as a f u n c t i o n  

a a  B pa = p ( p  ,{@ }),  a = W , N , A ,  where t h e  index  B 

r anges  ove r  a l l  f l u i d  phases .  

The Clausius-Duhem i n e q u a l i t y  ( 6 )  imposes c e r t a i n  thermodynamic r e s t r i c -  

t i o n s  on t h e  f u n c t i o n a l  r e l a t i o n s h i p s  a d m i s s i b l e  as  c o n s t i t u t i v e  laws. To de- 

duce t h e s e  r e s t r i c t i o n s  i n  t h e  g e n e r a l  case, one must f o l l o w  t h e  methodology 

d e t a i l e d  by Coleman and No11 [1963] and extended t o  m i x t u r e s  by Ingram and 

Eringen [1967] .  This  p rocedure  i n v o l v e s  expanding t h e  i n e q u a l i t y  (6)  i n  terms 

of t h e  f u n c t i o n a l  dependencies  i n  t h e  Helmholtz f r e e  energy,  t h e n  r e a s o n i n g  

abou t  t h e  v a l u e s  of c e r t a i n  c o e f f i c i e n t s  g iven  t h a t  a l i n e a r  combinat ion of 

material d e r i v a t i v e s  having a r b i t r a r y  s i g n  must be nonnegat ive.  The p r e s e n t  
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development adopts  a less gene ra l  t ack ,  examining i n  a similar f a sh ion  t h e  res- 

t r i c t i o n s  t h a t  t h e  Clausius-Duhem i n e q u a l i t y  imposes on t h e  p a r t i c u l a r  c o n s t i -  

t u t i v e  l a w s  pos tu l a t ed  above. 

To begin,  l e t  u s  expand t h e  i n e q u a l i t y  (6)  us ing  t h e  cha in  r u l e  

and t h e  f u n c t i o n a l  r e l a t i o n s h i p  A' = Aa({QB} ,paT) : 

a a 

a 
Now i n  an i so thermal  mixture  D T / D t  = 0. Al so ,  

s i n c e  each phase 's  motion i s  i s o c h o r i c .  

phase a impl ies  

What i s  more, t h e  mass ba lance  f o r  

So,  (10) becomes 
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Since this inequality must hold for arbitrary variations in the volume frac- 

tions @', we must conclude that 

and 

a - -  - P  
aAa 

This last equation identifies the mechanical pressure of fluid phase a as the 

pore pressure of that phase. 

free energy reduces to 

the isothermal mixture. 

Thus our constitutive relationship for the Helmholtz 

a a a  Aa = A ($ ,p ) ,  ignoring dependence on temperature in 

Equation (11) allows the pressures in different fluids to differ. Thus 

between any two fluids a and B we can define the difference 

This quantity is the capillary pressure between the two phases. From the defi- 

nition, it appears that p depends on the volume fractions and densities of 

each phase; however, if the fluids flow isochorically the density dependence 

becomes trivial. Also ,  since the rock matrix is rigid we can factor the poro- 

sity @ out of the volume fractions and thus consider the capillary pressure 

to be a function of fluid saturations: 

caf3 
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This functional relationship stands in accord with the usual theories of multi- 

phase flow in porous media. 

W,N,A are present, only two capillary pressure functions can be independent. 

Observe that, in a system where three fluids 

Flow Equations. 

We are now in a position to combine the balance laws and constitutive equa- 

tions to derive the equations governing the behavior of multiphase flows in 

variably saturated porous media. To begin with, for each fluid phase a we 

have a mass balance 

a a a a  
at 'y 

-(@sapa) + O * ( @ S  p v ) = 0 

For the rock, rigidity of the matrix and our choice of a coordinate frame in 

which vR = 0 reduce the mass balance to the equation - 

There is also a momentum balance for each phase. We shall not concern 

ourselves with the rock momentum balance, however, since the rock is rigid and 

stationary in our frame. For each fluid phase a, though, our constitutive as- 

sumptions for , , and p, convert Equation ( 3 )  t o  
a a  *a 
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A s  is common in porous-media theories, let us assume that the inertial terms 

in parentheses on the left of this equation contribute negligibly to the fluid 

motions, being dominated by the effects of normal stresses, gravity, and momen- 

tum l o s s  through interactions with the rock matrix. There follows the velocity 

field equation 

From a phenomenological point of view, the mobility tensor accounts 
=j 

for the geometry of the rock matrix, the configurations of rock-fluid interfaces, 

and the flow properties of the fluids. Treating these influences as separable 

a factors leads us to write Aa = kk,,/p , where k is the permeability of the 

rock, having dimensions 

3 25 =5 

2 
[L 1 ;  krcl is the dimensionless relative permeability 

modeling the effects that other fluids have in blocking the flow of phase 

and ua is the dynamic viscosity of fluid a, having dimensions [ML T 3 .  

a, 
-1 -1 

Thus the velocity field equation becomes 

which is the familiar form of Darcy's law for multiphase flows. 

We need not consider the angular momentum balance explicitly as a governing 

a a equation for fluids, since the constitutive law t = -p - 1 guarantees symmetry 
PI 

of the fluid stresses automatically. Furthermore, we shall not make explicit 

use of the energy balance, since we assume that the mixture is isothermal with 

no heat fluxes or heat sources. In a strict sense this neglect is unwarranted, 

since even when the rock matrix is rigid the loss of fluid momenta to the rock 
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must be accompanied by concomitant heating of the matrix (and hence the mixture 

as a whole) via dissipation through the vibrational modes in the solid. 

neglecting the energy balance we are therefore excluding from further considera- 

By 

tion porous-media flows in which this dissipative heating is significant. 

Finally, in addition to the balance laws we have independent functional 

a ( 3  (S ,S ) relationships pcaB - pcaB for two of the three capillary pressures and - 

the saturation constraint Sw + SN + SA = 1. 

Substituting the fluid velocity field equation (14) into the mass balance 

(13) yields a flow equation 

An equation of this form applies to each fluid phase, a = W , N , A .  However, in 

the variably saturated zones of many soils the effects of air flow on the dyna- 

mics of the system are limited to the influence of the air saturation 

relative permeabilities and capillary pressures. Since the details of air move- 

ment are likely to hold little interest compared to the movements of the liquid 

phases, let us therefore neglect the flow equation in the case a = A .  

SA on 

For the aqueous and nonaqueous liquids, the assumption that density 

variations are collinear with pressure variations -- a weaker assumption than 

we have made in stipulating that the flow is isochoric -- allows us to define 

a hydraulic head Ha in phase a [Hubbert, 19401 as 
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-1 a Thus ma = (pag) Vp - DZ, and the flow equation for a liquid phase (a = W , N )  

becomes 

a a a  
s ( @ S a p a )  = Q*(pak K *VH ) 

ra, 

Here Ka = pagk/pa 

analogy with the classical single-liquid case. 

is the hydraulic conductivity of phase a, defined by 
-23 - 

By expanding the accumulation term on the left side of Equation (15) it is 

possible to cast the flow equation into a form where the principal unknown is a 

head. By the product rule, 

a a a4 a a a a a  z ( @ s  p ) = +sa at + +pa 3- at + p s - at 

The last term on the right vanishes since the rock matrix is rigid. 

we allow the liquids t o  be compressible (although they flow isochorically), 

then 

Also ,  if 

a a a aHa - ssp s - ap - - + s  --- 
at 

a dpa aHa 
dH' at 

a 
at 

a 
S 

where s = @g dpa/dpa represents the specific storage of the liquid a in the 

matrix. 

approximate our flow equation by writing 

Now for flow fields in which density gradients are very small we may 

asa + s s s  - - a a aHa - Vo(k Ka*VH a ) @at at ra, 
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In a more general setting where &$/at # 0, it is common to assume 
$ = $(HW). In this case p a a  S a$/at = p a a w  S p gcw aH W /at, where c = (pwg$)-ld$/dHw 

W 

quantifies the matrix compressibility. 

one formally encounters a matrix compressibility c = (pag$) d@/dHa with res- 

pect to each liquid. 

some physical plausibility -- in assuming 
matrix this issue does not arise. 

When several liquid phases are present, 

-1 
a 

There is clear mathematical convenience -- and perhaps 

cw = cN. However, for a rigid solid 

The conventional formulation of single-liquid flows in the variably saturat- 

ed zone gives the flow equation in terms of pressure head and moisture capacity 

instead of hydraulic head and saturation [Pinder and Gray, 1977, Section 5.41. 

To make our multi-liquid equation conform with the familiar case, let us define 

the pressure head @' in phase a by the equation 

so that 

as oa = @S . I f  we observe that aZ/at = -ax3/at = 0 and -vZ = p3 = e _ 3 ,  
the unit vector in the (upward) 

Ha = (pa - Z.  Also, define the moisture capacity for liquid phase a 
a 

x3 direction, and if we call 

d 

doa 
ca = $ -(#) 

the specific moisture capacity for fluid a, then the flow equation (17) becomes 
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Equat ion (18) i s  a n a t u r a l  e x t e n s i o n  of R icha rds '  [1931] e q u a t i o n  f o r  t h e  

f low of a s i n g l e  l i q u i d  through v a r i a b l y  s a t u r a t e d  s o i l s .  There are s e v e r a l  

new f e a t u r e s  t o  t h e  e q u a t i o n  owing t o  t h e  p e c u l i a r  p h y s i c s  of mul t iphase  f lows 

i n  porous media. For one,  w e  must r e g a r d  t h e  s p e c i f i c  m o i s t u r e  c a p a c i t y ,  

m o i s t u r e  c a p a c i t y ,  s p e c i f i c  s t o r a g e ,  h y d r a u l i c  c o n d u c t i v i t y ,  and 

p r e s s u r e  head as p e r t a i n i n g  t o  one l i q u i d  o r  t h e  o t h e r ,  s o  w e  have t h e  v a r i a b l e s  

W N W N W N W N W  N 
C , C , 0 , 0 , s s ,  s K , K , 0 , and @ . Also,  i n  t h e  f low e q u a t i o n  f o r  

s' % % 

t h e  re la t ive  p e r m e a b i l i t y  of kra 3 
each phase t h e r e  now a p p e a r s  a new parameter  

t h e  medium t o  t h e  l i q u i d  phase a. 

urements of t h e  medium's r e sponse  ove r  a continuum of l i q u i d  s a t u r a t i o n s  

S , s o  w e  may c o n s i d e r  

unchanging composi t ion.  F i n a l l y ,  i n  a d d i t i o n  t o  t h e  three-phase s a t u r a t i o n  res- 

t r i c t i o n  S + S + SA = 1 w e  now have two independent  c a p i l l a r i t y  r e l a t i o n s h i p s  

Th i s  new parameter  w i l l  e n t a i l  a set of meas- 

Sw and 

- W A  N A  
krW - krW(S ,S ) and krN = krN(S ,S ) f o r  f l u i d s  of N 

W N  

as f u n c t i o n s  of s a t u r a t i o n  acco rd ing  t o  Equat ion 

Equat ion (17)  a l r e a d y  assumes e q u i v a l e n t  r e l a t i o n s h i p s  i n  terms of p re s -  

PCNA and 'CWA g i v i n g ,  s a y ,  

(12 ) .  

s u r e  head and m o i s t u r e  c a p a c i t y ,  namely 

Oa i s  b i j e c t i v e  and e x h i b i t s  no h y s t e r e s i s )  i s  = @'(Oa). Thus, w h i l e  (18) 

Oa = @(@'), whose i n v e r s e  (provided 

i s  f o r m a l l y  similar t o  t h e  c lass ic  Richa rds  equa t ion ,  t h e  e x t e n s i o n  t o  m u l t i -  

l i q u i d  f lows  e n t a i l s  t h e  q u a n t i f i c a t i o n  of a d d i t i o n a l  p h y s i c a l  e f f e c t s .  

Conclusions.  

The fo rego ing  development shows t h a t  t h e  fundamentals  of m i x t u r e  phys ic s ,  

t o g e t h e r  w i t h  some r e l a t i v e l y  s imple  assumptions abou t  t h e  b e h a v i o r s  of v a r i o u s  

phases  p r e s e n t ,  l e a d  t o  a set  of governing e q u a t i o n s  f o r  m u l t i - l i q u i d  f lows  i n  

v a r i a b l y  s a t u r a t e d  s o i l s .  Th i s  f o r m u l a t i o n  s e r v e s  a s  a n a t u r a l  e x t e n s i o n  of 

R icha rds '  s i n g l e - l i q u i d  t h e o r y .  The extended model s u g g e s t s  t h e  k i n d s  of meas- 



urements that w i l l  be necessary t o  c h a r a c t e r i z e  mul t i - l i qu id  flows and may thus  

s e r v e  as  t h e  b a s i s  f o r  des igning  experiments.  Indeed, t h e r e  i s  a g r e a t  need 

f o r  such experiments i n  l i g h t  of growing concern over near-surface contamina- 

t i o n .  Also needed are  numerical  s t u d i e s  t o  i d e n t i f y  t h e  behavior  of systems 

governed by Equations ( 1 8 ) a n d t o  provide a b a s i s  f o r  t h e  p r a c t i c a l  s imula t ions  

t h a t  w i l l  be  demanded when our  understanding of such systems improves. 

The formula t ion  o f t h e m o d e l  presented  h e r e  i d e n t i f i e s  s e v e r a l  s impl i fy ing  

assumptions t h a t  may n o t  apply  i n  a l l  cases of i n t e r e s t .  Noteworthy among 

t h e s e  l i m i t a t i o n s  are t h e  r i g i d i t y  of t h e  s o l i d  matrix and t h e  i s o c h o r i c i t y  

of t h e  f l u i d  motions.  Development of a p p r o p r i a t e  flow equat ions  under more 

re laxed  assumptions w i l l  t h e r e f o r e  render  a somewhat more genera l  theory .  

26 
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Not at ion. 

The symbols in square brackets indicate physical dimensions. M stands for 

mass, L for length, T f o r  time, and 8 for temperature. 

2 -2 Helmholtz free energy [ L  T ] 

body force [LT-2] 

A 

b 
Y 

73 material body 

C matrix compressibility [M 

C specific moisture capacity 

deformation rate [T ] -1 d 
Ri 

unit vector in three-space 

internal energy [L  T ] 2 -2 

e - 
E 

f generic function 

volume occupied by a phase F 

F 
x 

Jacobian of the motion [l] 

gravitational acceleration 

heat source [L  T 1 2 -3 h 

H hydraulic head [L] 

permeability [L2 3 k 
3 

hydraulic conductivity [LT-'1 K 
Rl 

relative permeability of phase a [l] kra 

M mass [MI 

interphase angular momentum exchange [ML T ] 

mechanical pressure [ML T 1 

interphase momentum exchange [ML T ] 

capillary pressure between fluids a and B [ML T ] 

-1 -2 

-1 -2 

-2 -2 

-1 -2 

M 
IJ 

P 

PCCIB 
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Q 

r 

‘y 

S 

S 
S 

t 

t 
zz 

T 

V 
‘y 

V 

X 
.v 

X 

X - 
Z 

& 

rl 

0 

heat flux [MT-3] 

interphase mass exchange [ML T ] 

fluid saturation E l 3  

specific storage [L 3 

time [TI 

-1 -2 stress [ML T ] 

temperature [ 81 

velocity [LT-’] 

measurable set of spatial points 

position in spatial coordinates [L] 

material point 

position in material coordinates [L] 

depth below datum [L] 

interphase energy exchange [NL T 3 

entropy [L T 8 ] 

moisture capacity [l] 

-3 -1 

-1 

-1 -3 

2 -1 -1 

5 
x 

V - 

Y 

bulk mass density [ML-j] 

coefficient of viscosity or interphase traction [ML T ] 

mobility [ M  L T] 

coefficient of viscosity o r  interphase traction [ML T ] 

-1 -1 

-1 3 

-1 -1 

-1 diffusion velocity [LT ] 

volume fraction or porosity [I] 

intensive quantity 
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Indices 

A air 

I inner part 

N nonaqueous liquid 

R rock 

W water 

a phase index 

B phase index 

1 , 2 , 3  spatial directions 

Acknowledgement. 

The author wishes to thank the Wyoming Water Research Center for supporting 

this work. The reviewer also deserves thanks for helpful comments. 



References 

Atkin, R. J., and R. E. Craine, Continuum theories of mixtures: basic theory 

and historical development, Quart. J. Mech. Appl. Math. 29 ( 2 ) ,  pp. 209-244, 

1 9 7 6 .  

----- 

Bear, J., Zaslovsky, D., and S. Irway (ed.), Physical Principles of Water -- 

Percolation and Seepage, UNESCO, Paris, 1968. - 

Bowen, R. M., Theory of mixtures, in Continuum Physics, Vol .  3 ,  (A.  C. Eringen, 

ed.), Academic Press, New York, 1 9 7 6 .  

Bowen, R. M., Compressible porous media models by use of the theory of mix- 

tures, Int. J. Engng. Sci. 2 0 ,  pp. 697-735, 1982.  

Coleman, B. D., and W. N o l l ,  The thermodynamics of elastic materials with 

heat conduction and viscosity, Arch. Rat. Mech. Anal. 13, pp.  167-178, 

1967. 

----- 

Eringen, A .  C., and J. D. Ingram, A continuum theory of chemically reacting 

media -- I, Int. J. Engng. Sci. 3, pp. 197-212, 1965.  -- -- 

Hubbert, M. K., The theory of groundwater motion, J. Geol. 48  ( 8 ) ,  Pt. 1, --- 

pp. 785-944, 1940.  

Ingram, J. D., and A. C. Eringen, A continuum theory of chemically reacting 

media -- 11. Constitutive equations of reacting fluid mixtures, Int. J. 

Engng. Sci. 5, pp. 289-322, 1 9 6 7 .  



31 

Narasimhan, 

ed flow 

T. N., and 

n deformab 

P. A .  Witherspoon, Numerical model for saturated-unsaturat- 

e porous media I, Theory, Water Resour. Res. 12 (3 ) ,  

pp. 657-664, 1977.  

Passman, S. L., Nunziato, J. W., and E. K. Walsh, A theory of multiphase mix- 

tures, appendix to C. Truesdell, Rational Thermodynamics, 2nd ed., Springer- 

Verlag, New York, 1 9 8 4 .  

Philip, J. R., An infiltration equation with some physical significance, 

Soil Sci. 7 7 ,  pp. 153-157,  1 9 5 4 .  --- 

Pinder, G. F., and W. G. Gray, Finite Element Simulation in Surface and Subsur- 
face Hydrology, Academic Press, New York, 1 9 7 7 .  

Prgvost, J. H., Mechanics of continuous porous media, Int. J. Engng. Sci. 18,  

pp. 787-800, 1 9 8 0 .  

Richards, L. A . ,  Capillary conduction of liquids through porous media, Physics 1, 
pp. 318-333, 1 9 3 1 .  

Schwille, F., Migration of organic fluids immiscible with water in the unsaturat- 

ed zone, in Pollutants in Porous Media, (B. Yaron et al., eds.), Springer- 

Verlag, Berlin, 1984.  

Zaslovksy, D., Theory of unsaturated flow into nonuniform soil profile, Soil. 

-- Sci. 9 7 ,  pp. 400-410, 1 9 6 4 .  



32 

TABLE 1 

DEFINITIONS OF MASS-RELATED QUANTITIES 

SYMBOL DEFINITION NAME 

Intrinsic mass density Pa 

P c 
a 

a 
Y - s  

1 - @R 

sa (a = W,N,A) @a/@ 

Overall mixture density 

Barycentric velocity 

Diffusion velocity 

Porosity 

Saturation of fluid a 



Numerical modelling of multiphase flow in porous 
media 

Myron B. Allen 111 

Department of Mutliematics, University of Wyoming, Laramie, Wyoming 82071, USA 

The simultaneous flow of immiscible fluids in porous media occurs in a wide variety of 
applications. The equations governing these flows are inherently nonlinear, and the geometries and 
material properties characterizing many problems in petroleum and groundwater engineering can 
be quite irregular. A s  a result, numerical simulation often offers the only viable approach to the 
mathematical modelling of multiphase flows. This paper provides an overview of the types of 
models that are used in this field and highlights some of the numerical techniques that have 
appeared recently. The exposition includes discussions of multiphase, multispecies flows in which 
chemical transport and interphase mass transfers play important roles. The paper also examines 
some of the outstanding physical and mathematical problems in multiphase flow simulation. The 
scope of the paper is limited to isothermal flows in natural porous media; however, many of the 
special techniques and difficulties discussed also arise in artificial porous media and multiphase 
flows with thermal effects. 

1. INTRODUCTION 

1.1  Importance of multiphme flow in porous media 
Multiphase flows in porous media occur in a variety of 

settings in applied science. The earliest applications 
involving the simultaneous flow of two fluids through a 
porous solid appear in the soil science literature, where the 
flow of water in soils partly occupied by air has 
fundamental importance"'. This unsaturated flow in 
some ways represents the simplest of multiphase flows. 
Yet, as we shall see, it exemplifies a fact underlying the 
continued growth in research in this area: multiphase 
flows in porous media are inherently nonlinear. 
Consequently, numerical simulation often hrnishes the 
only effective strategy for understanding their behaviour 
quantitatively. 

Although the earliest studies of multiphase flows in 
porous media concern unsaturated flows, the most 
concentrated research in this field over the past four 
decades has focused on flows in underground petroleum 
reservoirs. Natural oil deposits almost always contain 
connate water and occasionally contain free natural gas as 
well. The simultaneous flow ofoil, gas and water in porous 
media therefore affects practically every aspect of the 
reservoir engineer's job of optimizing the recovery of 
hydrocarbons. Here, again. the physics of multiphase fluid 
flows give rise to nonlinear governing equations. The 
difficulty imposed by the nonlinearities along with the 
irregular geometries and transient behaviour associated 
with typical oil reservoirs make numericai simulation an 
essential tool in petroleum engineering. The advent of 
various enhanced oil recovery technologies has added to 
this field further levels of complexity and hence an even 
greater degree of reliance on numerical methods. 
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Most recently, multiphase flows have generated serious 
interest among hydrologists concerned with groundwater 
quality. There is growing awareness that many con- 
taminants threatening our groundwater resources enter 
water-bearing rock formations as separate, nonaqueous 
phases. These oily liquids may come from underground or 
near-surface storage facilities, land-fills at  which chemical 
wastes are dumped, industrial sites such as oil refineries or 
wood-treatment plants, or illegal waste disposal. 
Regardless of the source of the contaminants, our ability 
to understand and predict their flows underground is 
crucial to the design of sound remedial measures. This is a 
fairly new frontier in multiphase porous-media flows, and 
again the inherent complexity of the physics leads to 
governing equations for which the only practical way to 
produce solutions may be numerical simulation. 

1.2 Scope of the article 
The purpose of this article is to review some of the more 

salient applications of numerical simultation in multi- 
phase porous-media flows. In light of the history and 
breadth of these applications, a review of this kind must 
choose between the impossibly ambitious goal of 
thoroughness and the risks of narrowness that 
accompany selective coverage. This article steers toward 
selective coverage. The aim here is to survey several 
multiphase flows that have attracted substantial scientific 
interest and to discuss a few aspects of their numerical 
simulation that have appeared in the recent technical 
literature. I confess at the outset that some important 
multiphase flows receive no attention here at all, and, even 
for the flows discussed, many potentially far-reaching 
contributions to numerical simulation get no mention. 
Perhaps the references given throughout the article can 
compensate in part for these shortcomings. 

In particular, we shall restrict our attention here to 
underground flows in natural porous media. This 

0309-1 708/85/040162-26$2.00 
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restriction excludes many applications in chemical 
engineering, one notable example being flows in packed 
beds of catalysts. Also, the article considers only 
isothermal flows. Therefore we do not discuss steam- 
water flows in geothermal reservoirs or such thermal 
methods of enhanced oil recovery as steam injection or 
fireflooding. Several numerical methods also receive scant 
or no mention. Among these are integrated finite 
differences, subdomain finite elements, spectral methods, 
and boundary-elemen t techniques. Some of these 
approaches undoubtedly hold promise for future 
applications in multiphase flows in porous media. For the 
present, however, we concentrate on developments based 
on the trinity of more standard discrete approximations: 
finite differences, Galerkin finite elements and collocation. 

2. BACKGROUND 
2.1 Dqfinitions 

From a quantitative point of view, one of the most 
fruitful ways of examining multiphase flows in porous 
media is through the framework of continuum mixture 
theory. In contrast to a single continuum, a inixture is a set 
of overlapping continua called constituents. Any point in a 
mixture can in principle be the locus ofmaterial from each 
constituent, and each constituent possesses its own 
kinematic and kinetic variables such as density, velocity, 
stress and so forth. How one decomposes a physical 
mixture into constituents depends larsely on one's 
theoretical aims, but in analysing porous media we 
commonly identify the solid matrix asone constituent and 
each of the fluids occupying its interstices as another. 

In discussions of porous-media physics it is important 
to distinguish between multipltuse mixtures and 
multispecies mixtures. A mixture consists of several phases 
if, on a microscopic length scale comparable, say, to 
typical pore apertures, one observes sharp interfaces in 
material properties. In this sense all porous-media flows 
involve multiphase mixtures, owing to the distinct 
boundary between the solid matrix and the interstitial 
fluids. At this boundary, density, for example, changes 
abruptly from its value in the solid to that in the fluid. 
More complicated multiphase mixtures occur, common 
examples being the simultaneous flows of air and water, 
oil and water, or oil and gas through porous rock. Here, in 
addition to rock-fluid interfaces, we observe interfaces 
between the various immiscible fluids at the microscopic 
scale. While the detailed structures of these interfaces and 
the i.olumes they bound are inaccessible to macroscopic 
observation, their geometry influences ths mechanics of 
the mixture. This, at least intuitively, is why volume 
fractions play an important role in multiphase mixture 
theory. The Liolume fruction 4, of phase z is a dimension- 
less scalar function of position and time such that 
o<$x  6 1, and, for any spatial region ;3p in the mixture, 
j d  # x  hi gives the fraction of the volume of &' occupied by 
Phase 2. The sum of the fluid volume fractions in a 
salwited solid matrix is the porositj. 4. 

On the other hand, there are mixtures in which no 
microscopic interfaces appear. Saltwater is an example. 
Here the constituents are ionic or  chemical species, and 

segregation of these constituents is not observable 
perhaps, at intermolecular length scales. Air is 

another multispecies mixture, consisting of N,, 02, C 0 2 ,  
and some trace gases. Multispecies mixtures differ from 
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multiphase mixtures in that volume fractions do not 
appear in the kinematics of the former. 

It is possible to have multiphase, multispecies mixtures. 
These compositional flows occur in porous-media physics 
when there are several fluid phases, each of which 
comprises several chemical species. Such mixtures arise in 
many flows of practical interest, two important examples 
being multiple-contact miscible displacement in oil 
reservoirs and the contamination of groundwater by 
nonaqueous liquids. In these cases the transfer ofchemical 
species between phases is a salient feature of the mixture 
mechanics. More detailed treatment of compositional 
flows appears later in this article. 

, 

2.2 Review of the basic physics 
While the theory of mixtures dates at least to Eringen 

and Ingram61, its foundations are still the focus of active 
inquiry, as reviewed by Atkin and Craine". Among the 
applications of mixture theory to multiphase mixtures 
and porous media are investigations by Prevost' 24, 

B ~ w e n * ~ . ~ ' ,  Passman, Nunziato and Walsh' l 2  and 
Raats'26. The aims ofthe present article in this respect are 
much more limited in scope than those just cited. What 
follows is a brief review of the basic physics of multiphase 
flows in porous media, using the language of mixture 
theory as a vehicle for the development of governing 
equations'. 

For concreteness, assume that the mixture under 
investigation has three phases: rock ( R )  and two fluids 
( N ,  W).  (The extension of this exposition to mixtures with 
more fluid phases is straightforward.) Each phase a has its 
own intrinsic mass density p,, measured in kg/m3; velocity 
va, measured in m/s; and volume fraction $a. From their 
definitions, the volume fractions clearly must obey the 
constraint c,4,=1. In terms of these mechanical 
variables, the mass balance for any particular phase a is 

where r, stands for the rate of mass transfer into phase a 
from other phases. To guarantee mass conservation in the 
overall mixture, the reaction rates must obey the 
constraint E d  ra = 0. 

We can rewrite equation (1)  in a more common form by 
noting that the porosity is d, = 1 -& and defining the 
fluid saturations SN = 4hr/4, S,. = &/4. Thus 

for the rock phase, and 

for the fluids. 
Each phase also obeys a momentum balance. In its 

primitive form this equation relates the phase's inertia to 
its stress t,, body forces b,. and rate m, of momentum 
exchange from other phases. Thus, 
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If  we assume that the rock phase is chemically inert, so 
rR = 0, and fix a coordinate system in which vR = 0, then the 
momenturn balance for rock reduces to 

V * f~ - d l R  Y ,  b R  = mR 

Let us assume that each fluid is Newtonian and that 
momentum transfer via shear stresses within the fluid is 
negligible compared with momentum exchange to the 
rock matrix. In this case t,= -p,l,  where p z  is the 
mechunicul pressure in fluid a and 1 is the unit isotropic 
tensor. If gravity is the only body force acting on fluid 
phase a, then +,b,=yVZ, where g stands for the 
magnitude of gravitational acceleration and 2 represents 
depth below some datum. For the momentum exchange 
ierms, the assumption common to most theories of 
porous media is that momentum losses to the solid matrix 
take the form of possibly anisotropic Stokes drags, 

Axm, = +(vR - v,) = - #w, 

where Az is a tensor called the mobility of phase a. If we 
assume further that the inertial effects in the fluid are 
negligible compared with rock-fluid interactions and that 
there is no interphase mass transfer, then equation (3) 
yields 

which is familiar as Darcy's law. 
Clearly, the mobility A, appearing in equation (4) 

accounts for much of the predictive power of Darcy's law 
in any particular rock-fluid system. Constitutive laws for 
mobility are largely phenomenological, the most common 
versions having the form A,=kkra/pz,  where pa is the 
dynamic viscosity of fluid phase a, k is the permeubility, 
and the relutive permeability kr, is a coeficient describing 
the effects of other fluids in obstructing the flow of fluid 3. 

For a two-fluid system with no interphase mass 
transfer, the relative permeabilities typically vary with 
saturation, and the curves krN(SW), k,,(S,) look roughly 
like those drawn in Fig. 1'02. The vanishing-point 
saturations SNr and Swr are called resiifiiul or irreducible 
saturations, and they account for the fact that, for a 
particular fluid to flow, it  must be present at a sufficient 
degree of saturation to permit the formation ofconnected 
flow channels consisting of that phase. Actually, this 
picture of relative permeabilities is quite simplistic. In 
nature relative permea bili t ies often ex hi bit significant 
hysteresis, and the verification of the relative-permeability 
model in the presence of three or more fluid 
phases92,1~~.10 1 or compositional is still not 
clear. 

Equation (4) allows each fluid phase to have its own 
pressure at any point in the reservoir. These pressure 
differences indeed occur in nature. At  the microscopic 
scale the effects of interfacial tension and pore geometry 
on the curvatures of  fluid-fluid interfaces lead to capillary 
effects. Leveret t9' uses the classical thermodynamics of 
G i b b ~ ~ ~  to describe these effects, while more recent works 
such as those of Morrow'03 and Davis and Striven" 
drawn connections with microscopic effects and 
molecular theories of interfacial tension. These theories 
imply that, at a macroscopic scale, there will be a pressure 
difference, or CLipillurj pressure, between any two fluid 
phases in a porous medium. In two-phase systems, for 

example, there is a single capillary pressure p C N W =  
p N  - p w .  In simple models pCNW is a function ofsaturation; 
however, in actual flows the capillary pressure exhibits 
rather pronounced h y s t e r e s i ~ ' ~ ~ * ~ ~ ~ ' ~ ~  and dependence 
on fluid c o m p ~ s i t i o n ~ ~ .  

Given velocity field equations such as equation (4), we 
can expand the mass balances for the fluid phases to get 
flow equations for each fluid. Using the customary 
decomposition ofthe mobility Az and directly substituting 
equation (4) into equation (2) yields, for a two-phase 
system, 

Flow equations for systems having more fluid phases will 
be similar, except that if P phases coexist, then P-1 
independent capillary pressure functions will appear in 
the system. 

2.3 Eurly inrestigntions 
The picture of multiphase flows in porous media 

outlined above evolved over several decades beginning in 
the 1930s. The use of an extended version of the single- 
phase form of Darcy's law in multiphase flows appears to 
have begun with Richards'28 in his work on unsaturated 
flows in the soil physics literature. The explicit use of a 
separate velocity field equation for each fluid began in the 
petroleum industry. Here the pioneering work of Muskat 
et af.lo4, Wykoff and Botset16', Buckley and L e ~ e r e t t ~ ~ ,  
Fatt and Dykstra6' and Welge'59, among others, 
promoted the widespread acceptance of Darcy's equation 
altered by the incorporation of relative permeabilities. 
Today this model is the one most widely used in the 
prediction of multiphase flows in porous media. 

Despite its broad appeal in applications, the 
multiphase version of Darcy's law has some limitations. 

0 0.2 0.4 0 6  0.1 LO 
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Fig.  1 .  Qpical relative permeubility czirves1O2 
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Relative permeabilities are not strictly functions of 
saturation, the most glaring violation being the 
phenomenon of hysteresis or dependence on saturation 
history. Such microscopic phenomena as gas slippage at 
the solid walls, turbulence, and adsorption can also 
invalidate the Darcy model in certain These 
limitations are worthy of consideration in the application 
ofthe multiphase Darcy law to any new rock-fluid system. 

3. TWO-PHASE FLOWS 
The simplest multiphase flows in porous media are those 
in which two fluids flow simultaneously but do not 
exchange mass or react with the solid matrix. While many 
flows of practical interest exhibit more complex physics, 
two-phase flows have drawn attention in many 
applications. Among these are unsaturated groundwater 
flows, salt-water intrusion in coastal aquifers, and the 
Buckley-Leverett problem in petroleum engineering. 

3.1 Unsaturated groundwater flow 
In typical soil profiles some distance separates the 

earth's surface from the water table, which is the upper 
limit of completely water-saturated soil. In this 
invervening zone the water saturation varies between 0 
and 1, the rest of the pore space normally being occupied 
by air. Water flow in this unsaturated zone is complicated 
by the fact that the soil's permeability to water depends on 
its water saturation. Let us derive the common form of the 
governing equation and' examine some of the com- 
putational difficulties that arise in its solution. 

Most formulations of unsaturated flow rest on the 
assumption that the motion of air has negligible effect on 
the motion of water. Therefore one usually neglects the 
flow equation for air, assuming that the air pressure 
equals the constant atmospheric pressure at the surface, 
that is, p,+, =pat,,,. Then we can define the pressure heud in 
the water by $ =(pw -pA) / (pwg) ,  having the dimensions of 
length and being negative in the unsaturated zone where 
Sn, < 1. Also, instead of saturation, soil physicists typically 
refer to the soil's moisture content, defined by 0 = 4Sw. In 
terms of these new variables the capillary pressure 
relationship for the air-water system becomes $ = $(O) or, 
provided $ is an invertible function, O=O($). From 
equation (Sb), the flow equation for water thus transforms 
to 

where K = pM,gkkrw/pw is the hydrmlic cordirctioitj, of  the 
soil. Notice that K is a function of $. since relative 
permeability depends on saturation, which varies with II/ 
according to the capillarity relationship. 

In many unsaturated flows the compressibility effects in 
water are small, so that time derivatives and spatial 
gradients of pw may be neglected. If this approximation 
holds, then the flow equation reduces to 

To get an equation in which $ is the principal unknown, 
we simply use the chain rule to expand the time derivative 
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on the left, giving 

I 
/ 

where C($) = dO/d$ is the specific moisture capacity. If the 
flow is essentially one-dimensional in the vertical 
direction, then this equation collapses to 

(7) 

which is Richards' equation ' ". 
Several investigators in h) drology have examined the 

unsaturated flow equation from analytic viewpoints. 
Philip' l 9  gives one of the earliest theoretical treatments of 
Richards' equation, proposing asymptotic solutions for a 
nonlinear problem. The equation has also attracted 
interest in the applied mathematics community, including 
investigations by Aronson16, Peletier' l6  and Nakanolos. 
Aronson' 6, for example, observes that, while the classical 
linear heat equation admits solutions in which 
disturbances propagate with infinite speeds, the nonlinear 
equation (7) may propagate disturbances with only finite 
speed. This implies that a moving interface, or wetting 
jvont, can form between the downward-moving zone of 
high moisture content 0 and the zone yet uncontacted by 
the wave of infiltrating water. Under certain initial 
conditions this moving boundary can exhibit steep spatial 
gradients in 0 and consequently in $. The resulting sharp 
fronts pose considerable difficulty in the construction of 
numerical schemes, since the discrete approximations 
used typically have lowest-order error terms that increase 
with the norm of the solution's gradient. We shall discuss 
this difficulty in more detail in Section 6. 

Numerical work by a variety of investigators has 
corroborated the existence of wetting fronts. Much of this 
work appeared during the 1970s, and it includes articles 
by B r e ~ l e r ~ ~ ,  Neuman"'. Reeves and D u g ~ i d " ~ ,  
Narasimhan and Witherspoon106 and Segol' 36. Van 
Genuchten' 51,152 presents solution schemes for the one- 
and two-dimensional versions of Richards' equation 
using both finite differences and finite-element Galerkin 
methods employing Hermits cubic basis functions. His 
work furnishes a good comparison of the finite-difference 
and finite-element approaches to the approximation of 
wetting fronts. 

Van Genuchten's investigation also demonstrates 
another difficulty in sol\.ing Richards' equation 
numerically. This problem owes its existence to the 
nonlinear coefficient C($) appearing in the accumulation 
term of equation (7). Because the equation itself is 
nonlinear, implicit time-stepping algorithms must 
incorporate an iterative procedure for advancing the 
approximate solution from one time step to the next. 
There then arises a question regarding the proper time 
level at which to evaluate C ( $ ) .  Van Genuchten 
demonstrates that evaluating this coefficient in a fully 
implicit fashion can lead to material balance errors in 
certain schemes, among them the Galerkin scheme using 
two-point Gauss quadrature to evaluate the mass and 
stiffness matrix elements. Figure 2 shows how this scheme 
produces a wetting front that lags the true solution. 
 mill^^^ advances an iteratii e method for evaluating C($) 

- 
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at the correct time level to guarantee good global material 
balances. 

Allen and Murphy" propose another approach to the 
time-stepping problem in unsaturated flows. Whle the 
method is used in connection with finite-element 
collocation - a technique closely related to the two-point 
Gauss quadrature scheme mentioned above - the basic 
idea should be applicable with most spatial 
discretizations. If we return to the original form of the 
accumulation term, equation (7) becomes 

One can circumvent the difficulties encountered in solving 
an equation in both 0 and rl/ by properly formulating an 
iterative procedure. Let us approximate the time 
derivative using implicit finite differences: 

We can linearize the flux terms in this approximation by 
establishing an iterative scheme in which $"+ '*" 
represents the value of rl/ at the most recent known 

represents the value at the sought iterative level: 
iteration level and $"+ + = $ f l +  l*" + drl/'#+ l , m  + 

This expression allows the nonlinear coefficient K(+"+ I )  

to lag by an iteration. 
In the accumulation term we also lag O(@n+l), but in 

addition we linearly project forward to the next iterative 
level using the Newton-like extrapolation 

Here, recall that C($)=d@/d+. The value $ n  of pressure 
head at the old time level represents the value hrnished by 
the iterative scheme after convergence, which a computer 
code can test using either of two criteria. First, one can 

is small check whether the iterative increment d$'*+ lVm+ 

enough in magnitude or norm to warrant stopping the 
iteration. Second. one can observe that collecting the 
terms involving the unknown S$'l+l,m+l on the left and 
ignoring truncation error leaves the known quantity 

acting as a right-hand side in the linearization. This 
quantity is precisely the residual to the flow equation at 
the mth iteration. Whenever liRnf1+"'ll is small in some 
appropriate norm, the resulting increment &bn+ will 
be small and, more to the point, we shall have solved the 
time-differenced equation to within a very small error. 

It is easy to see why such a scheme conserves mass, at  
least to within limits imposed by the iterative convergence 
criteria. If we integrate the residual R"+l*"(z) over the 
spatial domain R of the problem, we find 

At 

If the integral on the right were zero, this equation would 
be precisely the global mass balance for vertical 
unsaturated flow. Thus by iterating until IIRn+l*m/l is 
small, we implicitly enforce the global mass balance to a 
desired level of accuracy. 

3.2 Sultwater intrirsion 
In coastal aquifers both fresh water and salt water are 

usually present. Being denser, the salt water underlies the 
fresh water, the latter forming a lens whose shape and 
thickness may vary with changes in pumping and 
recharge. Figure 3 depicts a typical coastal aquifer in 
cross-section. When the upper portion of the aquifer acts 
as a source of fresh water, it becomes important to design 
pumping and recharge strategies that prevent the flow of 
salt water into production wells. 

Strictly speaking, salt water and fresh water are not 
separate phases. In fact they are completely miscible as 
fluids, and in a coastal aquifer there exists a zone lying 
between the two fluids in which salt concentration varies 
continuously. To be rigorously faithful to the physics of 
the problem, then, one would solve a single-phase flow 
equation coupled with a transport equation for salt. 
Indeed, one of the earliest numerical treatments of 
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Fig. 3. Schematic cross-section of a coastal 

saltwater intrusion used just this approach"'. Never- 
theless, the transition zone between salt and fresh water is 
often quite narrow in comparison with the overall 
thickness of the aquifer, and for computational purposes 
we may consider it to be a sharp interface. Such a sharp- 
interface approximation serves as justification for treating 
saltwater intrusion into coastal aquifers as a multiphase 
flow. 

Let us consider the problem of modelling the areal 
movement of salt and fresh water. To get vertically 
averaged flow equations, we first write the equations in 
terms of hydraulic heads, defined in the fkesh water ( F )  and 
salt water (S) as follows: 

is the effective rate of withdrawal from the freshwater 
zone, and 

q F  Iz = b = -(vF - 4vZ)lz= b ' (e: -Vb) 
is the effective rate of exchange of. freshwater across the 
interface C, which we have assumed to be zero. 

A similar development for salt water leads to the 
vertically averaged flow equation 

Here Ts=K,l, and C,=Ss,sls. The sink terms in this 
equation are 

4s Iz  = b = - (vS - 4 V Z  )I, = b * (e= - Vb)  
which represents the effective rate of withdrawal from the 
saltwater zone, and 

qslz = - vslz =,, (ez - Vu)  

which gives the effective rate of saltwater leakage into the 
lower confining layer, whose depth is fixed. 

To solve this system we need an equation relating kF 
and Fs. In this case, since the two fluids are miscible at the 
microscopic scale, there will be no head difference 
between the fluids where they are in contact. Thus the 
head is continuous across the interface E: hF = hs at Z= h. 
AS Huyakorn and PinderE4 show, this condition allows US 

Multiphase pow in porous media: M .  B.  Allen 

to solve for dbldt in terms of heads: 

where p,* = pa/(ps - pF).  Combining equation (1 1) with 
equations (9) and (10) yields the coupled system of flow 
equations 

Let us examine the approximate numerical solution to 
equation (12) using finite-element Galerkin methods. In 
these-methods we re lace the unknown functions h,(% t )  
and h,(x, t )  by trial &nctioris 

I 

h;(x, t )  = hF.Ax, t )  + i = l  C h, i ( t )Nix)  

I 

$AX, t )  = h s . ~ ~ ,  t )  + i =  1 1 hs,i(t)Ni(x) 

The functions hF,? and hs,? satisfy the essential boundary 
conditions for the problem at hand, and each of the sums 
on the right satisfies homogeneous boundary conditions. 
For continuous interpolating trial functions, h,,i(t) and 
hs,i(t) usually stand for the values of head at the ith spatial 
node, while the basis furictiom N,(x) dictate the variation 
between nodes. 

To form the Galerkin eq_uations _corresponding to 
equation (12), we substitute hf and hs for kf and hs in 
equation (12), multiply each equation by each of the basis 
functions N,(x), . . ., N,(x), and force the integral of the 
result over the spatial domain Q to vanish. Doing this 
leads to time evolution equations for the unknown nodal 
values hF.i(t) and hs,i(t). For the freshwater equation, there 
results 

- 

j = l ,  ..., Z 

where K[j ,  QL, MTj', M;'' and Bf have the meanings 
assigned in Table 1. 

A similar collection of  evolution equations arises from 
the saltwater flow equation: 

where the definitions of I$. Ofj, Mf;, Mff  and l$ again 
appear in Table 1. Rewriting this set of 21 evolution 
equations in matrix form gives a system having the 
structure 
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Tuble I .  Gcilerkin integrals uppeuring it1 the sultwuter intrusion equations 

Kt= T f V ; V i . V N j d x  Sn 

where ( h )  signifies a vector containing the 21 unknown 
nodal values of head, [a and [MI are the stiffness and 
mass matrices arising from flux and accumulation terms, 
respectively, and ( r )  is a vector containing known 
boundary data and withdrawal rates. 

The system (13) is nonlinear, owing to the dependence 
of the zonal thicknesses lF and Is on the unknown heads. 
Thus any temporal discretization of these ordinary 
differential equations will have to be iterative in nature to 
guarantee consistency betweeh the numerical solution 
and the flow coefficients a t  each time level. Pinder and 
Page'" advance one such iterative scheme. 

The saltwater interface problem exhibits a peculiar 
computational difficulty associated with the saltwater- 
freshwater interface C. This problem manifests itselfas the 
saltwater wedge retreats or advances. Under these 
circumstances the intersection of C with the lower 
confining layer, called the scrftwciter toe, moves 
horizontally. This moving boundary allows for the 
possibility that the interface may not exist at some areal 
locations, and at these locations the free surface condition 
becomes degenerate97. To accommodate this degeneracy, 
it becomes necessary to track the moving boundary as the 
flow calculations proceed. 

Shamir and D a g a r ~ ' ~ ~  present a finite-difference 
algorithm for tracking the saltwater toe in a vertically 
integrated, immiscible setting. By examining a one- 
dimensional flow, they develop a scheme for regnerating 
the spatial grid to guarantee that the toe lies on a 

computational node. Thus on the ocean side of the 
separating node they solve the simultaneous flow 
equations for saltwater and freshwater heads, while on the 
inland side they solve the equation for freshwater head 
only. This approach obviously involves a great deal of 
computational complexity in two or three dimensions, 
since it requires the construction of multidimensional 
moving finite-di fference grids. However, an analogous 
idea for finite-element grids in two dimensions has proved 
promisings5. 

In another approach, Sa da Costa and Wilson' ' use a 
fixed, two-dimensional, quadrilateral finite-element grid 
to model the immiscible flow equations. They devise a toe- 
tracking algorithm based on the Gauss points used to 
compute the integrals contributing to the matrix entries in 
equation (13). At Gauss points inland of the toe the model 
assigns a very small nonzero saltwater transmissibility T,. 
Thus, while the saltwater wedge never actually disappears 
in the numerical scheme, inland of the toe the flow of salt 
water is negligible. 

3.3 The Buckley-Lecerett problem 
The Buckley-Leverett problem serves as a fairly simple 

model of two-phase flow in a porous medium. The 
problem, introduced by Buckley and L e ~ e r e t t ~ ~ ,  has 
particular relevance in the petroleum industry, where gas 
and water injection are two common techniques for 
displacing oil toward production wells in underground 
reservoirs. The simplicity of the Buckley-Leverett 
problem arises from three basic assumptions. First, the 
total flow rate of oil and displacing fluid (say water) 
remains constant. Second, the rock matrix and fluids are 
incompressible. Third, the effects of capillary pressure 
gradients on the flow field are negligible compared with 
the pressure gradients applied through pumping. These 
assumptions are too restrictive to permit widespread 
application of the Buckley-Leverett model, but, as we 
shall argue below, the simplified model acts as a paradigm 
for the numerical difficulties that occur in more com- 
plicated models of oil reservoirs. 

To derive the Buckley-Leverett model, we begin with 
equation (9, identifying N as oil and W as water and 
assuming an isotropic porous medium: 

where A, = kkrx /pz  is the mobility of fluid a. Coupled to 
these flow equations are the constraint S,v + Sw = 1 and a 
capillary relationship pCNW = pcAvrv(Scv). If we restrict our 
attention to one-dimensional flow in a homogeneous 
reservoir of uniform cross-section and assume that gravity 
effects are absent, then the flow equations collapse to 

N o w  we invoke the assumption that capillarity has 
negligible effect on the flow field-wide, so that 
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~ p ~ ~ ~ / i ? x  2: 0. Further, the incompressibility assumption 
implies that 4, pN and p w  are constant in time and that the 
fluid densities are uniform in space, so that 

as, il apw 
4---(Aw at ax s.>=, (14b) 

Now observe that - Az2p,,,/dx is the Darcy flux q1 ofphase 
X .  Also, by assumption, the total flow rate q = qrtr + q,,. is a 
constant. Thus we need only solve one of equations (14), 
using the constant value of q to solve the other equation 
by subtraction. 

Let us solve the water equation (14b). Since 
- A,[ ?pM,/i?x = yw = Awq/(Aw + AN), we arrive at the 
Buckley-Leverett saturation equation 

where fw = Aw/(A,,, + A,) is the fractional flow of water. 
Equation (15) is clearly nonlinear, since fw depends on the 
unknown water saturation Sw through the fluid 
mobilities. While the functional form of f,,(S,) depends 
on the particular rock-fluid system being modelled, 
fractional flow functions typically have an 'S-shaped' 
profile over their supports (Sw,  1 - SNr) ,  as shown in Fig. 
4. 

Difficulties in solving Cauchy problems involving 
equation (15) arise from two sources. First, the equation 
itself is a nonlinear, hyperbolic conservation law. Its 
hyperbolicity owes to our neglect of capillary pressure 
gradients, inclusion of which would have led to an 
additional second-order term of the form 

Thus equation (15) is, in effect, an approximation to a 
singularly perturbed parabolic problem in which we have 
neglected the dissipative effects of capillarity. 

Second, the flux function qfw/4 appearing in equation 
(15) is nonconvex, its S-shaped form implying the 
existence of an inflection point somewhere in its support. 
The literature on hyperbolic conservation laws with 
nonconvex flux functions is quite extensive, including 
important contributions by Lax9' and Oleinik"' and a 
general discussion by Chorin and Marsded9. Of special 
importance in the present context are the following facts. 
Cauchy problems based on equation (15) may have no 
solutions that are classical in the sense of being 
continuously differentiable over their (x,t )-domains 
R x  J .  Instead, such problems may admit only w e d  
solutions S,.(x, t) .  These solutions need only satisfy the 
integral relation 

for all infinitely differentiable functions q(x, t )  that vanish 
on the boundary s(Q x J)126.  In contrast to equation (1 5), 
equation (16) admits functions S,(s, t )  that have 

discontinuities, or saturation shocks. Unfortunately, 
weak solutions may not be unique: there may be several 
different functions S,(x, t )  that satisfy the integral 
equation (16). 

Nature admits only one solution to the Buckley- 
Leverett problem. Much of the research into hyperbolic 
conservation laws has aimed at identifying physically 
correct weak solutions from among the class of functions 
obeying equation (16). To specify the physical solution 
requires an additional constraint known as the entropy 
condition. There are several equivalent forms of this 
constraint, including the following13: 

(i) The solution must depend continuously and stably 
on the initial data, implying that characteristics on 
both sides of a discontinuity must intersect the initial 
curve. 

(ii) The solution must be the same as that obtained using 
the method of characteristics with f&(S,,) replaced 
by its convex hull. 

(iii) The solution must be the limit of solutions, for the 
same initial data, to a parabolic problem differing 
from the hyperbolic one by a dissipative second- 
order term (in this case, capillarity) of vanishing 
influence. 

The tangent construction advanced by Welge' 5 9  

explicitly implements condition (ii) while, as Welge shows 
in his paper, the 'equal-area' rule of Buckley and 
L e ~ e r e t t ~ ~  imposes this same constraint in a slightly 
different fashion. 

Leverett problem, or even more complicated models of 
multiphase flows that are hyperbolic in character, must 
respect the entropy condition or else risk producing 
nonphysical results. Douglas et ~ l . ~ ' ,  for example, 
propose adding an artificial capillarity to the Buckley- 
Leverett equation to force convergence to the correct 
physical solution. An equivalent effect can be achieved by 
using certain numerical approximations whose lowest- 

l' 

Any numerical scheme for solving the Buckley- ' 

- 
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order error terms mimic the desired dissipative 
phenomena'. This tactic is perhaps easiest to see in finite- 

* difference approximations. Here, an upstream-biased 
difference analog of the flux term dif/ax gives 

. .  

Since f ' ( S ) > O  over the support of f, the lowest-order 
error term acts like the capillarity term neglected in 
equation (15) while vanishing linearly as Ax-0. Thus 
upstream weighting imposes a numerical version of 
condition (iii) while maintaining consistency in the 
numerical approximation. 

Several investigators have examined upstream- 
weighted finite-element met hods for the Buckley- 
Leverett problem, Mercer and F a ~ s t ~ ~  and Huyakorn 
aqd PinderS3, for example, discuss upstream-weighted 
Galerkin techniques. Shapiro and Pinder14' advance a 
finiteelement collocation scheme for the Buckley- 
Leverett problem using asymmetric basis functions. 

Allen and Pinder ' 2 * 1  introduce a collocation scheme 
for the same problem in which upstream biasing of the 
collocation points leads to the appropriate numerical 
version of condition (ii). To implement this method, we 
begin with a continuously differentiable trial function for 
saturation: 

I 

i = O  

where the basis functions H o , i ( x ) ,  Hl,i(x) are piecewise 
Hermite cubic polynomials (5) .  Si ( t ) ,  S i ( t )  are the un- 
known nodal values of SW and 2SW/ax, respectively. One 
can similarly represent the nonlinear flux function fW : 

Here, for flow in positive .Y direction, -c < &. Allen' 
presents an error analysis showing how this scheme 
introduces artificial capillarity. Figures 5 and 6 compare 
the results of standard collocation and upstream 
collocation, re spec t ivel y . 

In the standard collocation we derive ordinary 
differential equations for the unknown values Si, S:, by 
setting 

aS o f  - - (i&, t)+- - (X&, t ) = O  
at 6 dx 

at enough points i k  in the spatial domain to give one 
equation for each unknown. Douglas and D ~ p o n t ~ ~  show 
that, on a uniform partition -yo < - - - < xf = xo + I Ax, one 
can achieve lf(Ax4) accuracy in parabolic problems by 
choosing the Gauss points xi - Ax/2 f Ax/$, 
i =  1, .  . ., I -  1, as the collocation points. As Allen and 
PinderI3 demonstrate, however, this highly accurate 
scheme violates the entropy condition in equation (15). 
One can force convergence to the correct solution by 
evaluating the flux term at collocation points upstream of 
the Gauss points, as in the equation 

I .c 
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Fig. 5 .  Solution to the Brickley-Leuerett problem 
generated b y  orthogonal collocation with Ax=O.1 l 2  . 
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Fig. 6 .  Solutions to the Buckley-Leverett problem 
generated b y  upstream collocation with Ax = 0.1, 0.05, 
0.025 l 2  

Several investigators have examined the use of 
upstream weighting in more sophisticated models of 
multipha,se flow. Among the many such studies are those 
by Peacemen' 1 3 ,  Settari and Aziz13' and Young164, each 
of which offers a good overview of numerical approxima- 
tions used to model two-phase flows. We shall consider 
upstream weighting further in Section 4. 

One unfortunate aspect of upstream-biased 
approximations is that their artificially dissipative effects, 
while guaranteeing convergence, produce unrealistically 
smeared sharp fronts when the spatial grid mesh is large. 
What is 'large' in this sense depends on the physics of the 
problem and not the computational resources of the 
modeller. Therefore, in some problems, unacceptable 
smearing on uniform grids can occur even when the grid 
mesh approaches limits in affordable fineness. One 
approach to resolving this dilemma is to refine the spatial 
grid only in the vicinity of the steep front. Since the front 
itselfmoves as the flow progresses, such a strategy calls for 
self-adaptive local grid reflnement,'a topic discussed in 
Section 6. 

4. FLOWS WITH INTERPHASE MASS 
TRANSFER 
In many multiphase flows of interest in engineering the 
exchange of  chemical species among the fluid phases is 
crucial to the behaviour of the flows. Historically, concern 
with the compositional aspects of multiphase flows in 
porous media originated in the petroleum industry, where 
the effects of  gas dissolution, retrograde condensation, 
and vaporization and condensation of injected gases have 
substantial implications in oil recovery operations. As the 
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complexities of groundwater contamination by organic 
wastes become more urgent, however, interest in multi- 
phase flows with mass transfer has spread to the 
hydrology community. In this section we shall focus on 
the more established modelling efforts in the petroleum 
industry, leaving discussion of the newer applications in 
hydrology to Section 5. 

4.1 Contpositional oil reservoir f l o ~ ~ s  
In compositional flows there are several fluid phases in 

which some number of chemical species reside. It is 
therefore necessary to extend the mixture-theoretic 
formalism to accommodate two different categories of 
constituents: phases and species. A more detailed 
exposition of the development given below appears in 
Allen'. For simplicity, let us assume that there are three 
fluid phases, namely water (W) ,  oil (0) and gas(G) with 
chemical species indexed by i = 1, . . ., N + 1. As before, let 
us label the rock phase by the index R. Conceivably, at 
least, each species can exist in any phase and can transfer 
between phases via dissolution, evaporation, con- 
densation and so forth, subject to thermodynamic 
constraints. We shall assume here that the rock is 
chemically inert and that there are no intraphase or 
stoichiometric chemical reactions, although in such 
applications' as enhanced oil recovery by alkaline fluid 
injection reactions of this kind may be important. 

In our new formalism, each pair ( i ,  a), with ichosen from 
the species indices and a chosen from the phases, is a 
constituent. Thus, for example, CH, in the gas phase is 
one constituent, CH, in oil another and n-C,H,, in oil yet 
another. Each constituent ( i ,  a) has its own intrinsic ntass 
density py, measured as mass of i per unit volume of a, and 
its own velocity v5. To accommodate the familiar 
kinematics of phases, we shall still associate with each 
phase o! its volume fraction 4,, and if 4 = 1 - 4R as before, 
then we define the saturation of fluid phase a as S, = 4a/4.  
Using these basic quantities, we define the following 
variables: 

N 

p'= p: =intrinsic mass density of phase a 
i = l  

m:=p:/p"=mass fraction of species i in phase o! 

p = $  S,pa=bulk density of fluids 
, # R  

wi=(+/p) C S z  P"G 
z # R  

=total mass fraction of species i in the fluids 

w 
4=( l /p")  c p;v; 

i= 1 

= barycentric velocity of phase a 

ur = v'x -f 
1 1  

=diffusion velocity of species i in phase a 

If the index N +  1 represents the species making up the 
inert rock phase, then the following constraints hold: 

N N 

1 mi= c w ; = C 4 , =  c s,=1 
i =  1 i =  1 a c l#R  

where the index a in the second sum can represent any 
fluid phase, and 

Y 1 u;=o 
i = l  -, 

Each constituent (i, a) has its own mass balance, given 
by analogy with equation (1) as 

where the exchange terms r; must obey the restriction r' zfRc=O. If we impose the further constraint 
that there are no intraphase chemical reactions, then we 
have in addition z+R (= 0 for each species i =  1,. . ., N .  
Since phase velocities are typically more accessible to 
measurement than species velocities, it is convenient to 
rewrite the constituent mass balance as 

where j:=+S,p"oquq stands for the diffusive f lux of 
constituent ( i ,a) .  Summing this equation over all fluid 
phases ct and using the restrictions gives a total mass 
balance for each species i: 

+ V.(jr + jp + jy) = 0 i = 1,. . ., N 

To establish flow equations for each species, we need 
velocity field equations for each fluid phase and some 
constitutive equations for the diffusive fluxes jq. For the 
fluid velocities we may postulate Darcy's law, equation 
(4), assuming in addition that the porous medium is 
isotropic. For the diffusive fluxes the appropriate 
assumption is not so clear. In single-phase flows through 
porous media, the diffusive flux ofa species with respect to 
the fluid's barycentric velocity is called hydrodynamic 
dispersion. As reviewed in Section 5, theories of hydro- 
dynamic dispersion in multiphase flows remain poorly 
developed. The most common approach in oil reservoir 
simulation is to assume that hydrodynamic dispersion is a 
small enough effect that the diffusive fluxes in the mass 
balance for each species are negligible. Thus we arrive at 
the flow equation for species i in the fluids: 

, 

To close this set of  equations, we need some supple- 
mentary constraints giving relationships among the 
variables. One class of supplementary constraints consists 
of the thermodynamic relationships giving phase densities _, 

and compositions as functions of pressure and overall 
fluid mixture composition. Conceptually, these relation- 
ships take the forms 

i =  1,. . ., N - 1 pa = p"(ml,, . . ., p , )  a= W, 0, G 
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w:=w:(o,,...,oN-~,~~) X =  w 0 , G  

r =  w, 0, G S , = S , ( O , ,  . . ., o & I , p z )  
However, it is important from a computational viewpoint 
to observe that the actual mathematical statements of 
these relationships may constitute simultaneous sets of 
nonlinear algebraic equations giving phase densities, 
compositions and saturations implicitly. This occurs, for 
example, when one uses equal-fugacity constraints in 
conjunction with an equation of state to solve for local 
thermodynamic equilibria, as discussed further below. 

The other class of supplementary constraints includes 
constitutive relationships for the particular rock-fluid 
system being modelled. These relationships may take the 
following forms: 

p C O W = p C O W ( s O *  S G )  

PCCO = PCGO(s0 7 S G )  

a= w, 0, G 

k r z  = M S o  , s, ) 
Here, as mentioned in Section 2, we have greatly 
simplified the physics of many compositional flows by 
omitting possible dependencies on fluid composition 
through variations in interfacial tension. 

4.2 Black-oil simulation 
Black-oil models are special cases of the general 

compositional equations that allow limited interphase 
mass transfer, the composition of each phase depending 
on pressures only. This class of models has become a 
standard engineering tool in the petroleum industry. As a 
consequence the literature on the numerics of black-oil 
simulation, which apparently begain in 1948 with a 
consulting report by John van N e ~ m a n n ' ~ ~ ,  has become 
quite extensive. Indeed, there are now several books in 
print devoted to black-oil simulation' I 4 p 1 * .  Since any 
attempt to cover this field in an article of the present scope 
would be futile, we shall merely review the formulation of 
the black-oil equations and discuss selected aspects of 
their numerical solution. 

The fundamental premise of the black-oil model is that 
a highly simplified, three-species system can often serve as 
an adequate model of the complex mixtures of brine and 
hydrocarbons found in natural petroleum reservoirs. For 
practical purposes, petroleum engineers define these three 
pseudo-species according to what appears at the surface, 
at  stock-tank conditions (STC), after production of the 
reservoir fluids. Thus, we have the species 0, which is 
stock-tank oil; g, which is stock-tank gas, and w, which is 
stock-tank water. Underground, at reservoir conditions 
(RC), these species may partition themselves among the 
three fluid phases 0, G and CY in a distribution depending 
on the pressures in the formation. 

Now we impose a set of thermodynamic constraints on 
this partitioning of species. First, we assume that there is 
no exchange of water w into the nonaqueous phases 0 
and G, so that 0: = 1, and 01; = 01; = O .  Second, we allow 
no exchange of oil o into the vapour phase G or the 
aqueous liquid W ,  so that w: = I ,  and 0," = O: = 0. Third, 
we prohibit the dissolution of gas g into the aqueous 
liquid W, so that o ~ = O .  However, we allow the gas g to 
dissolve in the hydrocarbon liquid 0 according to a 
pressure-dependent relationship called the solution gus-oil 
ratio, defined by 

volume of g in solution at RC 
volume of o RS(P0) = 

where the volumes refer to volumes at STC. 
To facilitate further reference to volumes of  species at 

STC, we relate the phase densities p" at RC to the species 
densities pfTC at STC by defining the formation volume 
fczctors. For W and G these definitions are fairly simple: 

For the hydrocarbon liquid 0, however, we must also 
account for the mass of dissolved gas at RC: 

&(Po) = (dTC + R S P y 9 / P 0  
Ifwe substitute these definitions into the flow equations 

(16) for the s ecies 0, g ,  w and divide through by the 
constants p:Tq we obtain the three black-oil equations 

-V.[&,(Vpo-yoVZ)]=O (17b) 

- v * [ Rs &I(Vp, - yoVZ)] = 0 ( 1 7c) 

where A.2 = Az/Bz and yx  = p2g. 
These equations constitute a system of coupIed, non- 

linear, time-dependent partial differential equations. Each 
of the equations is formally parabolic in appearance. 
However, as suggested by the greatly simplified develop- 
ment in Section 3.3, the system can exhibit behaviour 
more typical of hyperbolic equations if capillary 
influences are small. To see this, consider the two-phase 
version ofequation (17) in which gas is absent, porosity is 
constant and fluid compressibilities and gravity forces 
have no effect. The flow equations in this case reduce to 

Adding these two equations gives a total flow equation 
V - q = 0, where q = - E.,Vp0 - AWVpW. Calling A. = A., + Aw 
and p = ( po + p, , ) /2 ,  we can rewrite the total flow equation 
as 

v . (AVp) - (9) VPCOW = 0 

If we examine the case when VpcoWzO, the total flow 
equation reduces to an elliptic prrssiire eqricition 

Then, recalling the fractional flow function 
fw=;l-W/(E.o+;.,,), we can rewrite the water flow 
equation as 

This suturution eqiicrtion is the hyperbolic analog of the 
one-dimensional Buckley-Leverett problem. 

Several approaches to solving the general system (17) 
numerically have appeared in the petroleum engineering 
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literature. We shall review two of the most popular 
methods: the simultaneous solution (SS) method and the 
implicit pressure-explicit saturation (IMPES) method. 

The SS method, introduced by Douglas, Peaceman and 
R a ~ h f o r d ~ ~ ,  and further developed by Coats et ~ 1 1 . 4 ~ ,  treats 
the flow equations (17) as simultaneous equations for the 
fluid pressures po, pG and p , .  Inverting the capillarity 
relationships and imposing the restriction on fluid 
saturations then yields the saturations So, SG and S,, For 
ease of presentation, let us examine the two-phase case, 
assuming that the vapor phase G does not appear and that 
the porosity 4 is constant. 

The first step in the formulation is to rewrite the flow 
equations so that the pressures po and pu. appear as 
explicit unknowns. To do this, we apply the chain rule to 
the accumulation terms, giving 

where b,=d(l/B,)/dp, and Sl, signifies the derivative of 
the inverted capillarity relationship S,( pcow). This device 
allows us to write the system (17) as follows: 

pW'gVZ +[ ,,z]=[:] (18) 

Now we can employ some finite-difference or finite 
element method to approximate the spatial derivative in 
equation (18), getting a system of evolution equations 
having the form 

Here [MI is the mass matrix, [K] is the stiffness matrix, 
{ p ]  represents the vector of unknown nodal values of oil 
and water pressure and {f) is a vector containing 
information from the discretized boundary conditions. 
Since the entries of [MI and [ K ]  vary with the unknown 
pressures, this system is nonlinear. Therefore the time- 
stepping approximation must be iterative. As an example, 
we might use a Newton-like procedure analogous to that 
presented in Section 3.1, yielding 

In this scheme the notation { R ) " + l * m  suggests that we 
regard the right side as a residual, iterating at each time 
step until I/ { R ] " +  l v m I I  is small enough in some norm. 

The formulation presented above is not unique. In fact, 

several variants of the SS method have appeared, 
including formulations treating different sets of variables 
as principal unknowns. Aziz and Settari18 provide a 
survey of these alternative approaches. 

In the IMPES formulation, the basic idea is to combine 
the flow equations (17) to get an equation for one of the 
fluid pressures32. Solving the equation implicitly provides 
the information necessary to update the saturations 
explicitly at each time step, using an independent set of 
flow equations and the restriction that saturations sum to 
unity. Sheldon, Zondek and Cardwell141 and Stone and 
G a ~ d e r ' ~ ~  introduced this method. 

The development follows a line of reasoning paralleling 
that leading to equations (18). We begin, as in the SS 
method, by expanding the accumulation terms, this time 
leaving saturations and pressures as principal unknowns. 
For the three-phase system, this leads to the following 
finite-difference approximations 

1 
4 d t  (%) Bo =- Ar (C34S0 + C44p0)+ O(At) 

a SG RSSO 4- -+- 
BO ) 

1 
=- At (c, 4SG + c64 PG + c,bSO + CBb PO) + o(Ar) 

The coefficients C,, . . ., C8 appearing here stand for the 
appropriate derivatives extracted using the chain rule, 
and 4 u  = u"+ - u" defines the time-difference operator. 

The next step involves the crucial assumption that the 
capillary pressures pcow, pCGo change negligibly over a 
time step, This assumption implies that 4 p o = 4 p w  
= 4 p G  and, furthermore, that we can treat the capillary 
contributions to the flux terms explicitly. Thus, our 
implicit, temporally discrete approximations to equation 
(17) become 

-' 

To get a single pressure equation from this set, we 
multiply equation (19c) by the coefficient B= 
C3/ (C ,  - C5),  multiply equation (19a) by A = BC5/C , ,  add 
equations (19a-4, and observe that the saturation 
differences in the accumulation terms now sum to an 
expression proportional to 4(S,  + So + S G )  = 0. Therefore 
our weighted sum of the time-differenced flow equations 
yields 

C"' 4 p o  = At{A"+ 'V*(i:,+ ' Vp:' ') + V*(Ag+ 'Vp;' ') , 

+ ~ n + l v . [ ( ; , ; + l + ~ ; f l  I,, - n + l  )vp;+ 1 1  - r n +  11 (20) 
The new parameter r is shorthand for the weighted sum of 
the gravity terms, and c = AC, + c4 + B( c6 + c8). 
Equation (20) is the presswe equation. 



Mitltiphase $ow in porous rnediu. M .  B.  Allen I/ i 
1, 

I '  ! j  

Now, provided we have an appropriate technique for 
producing discrete approximations to the spatial 
derivatives appearing in these equations, we can 
implement the following time-stepping procedure. 

(i) Solve equation (20) implicitly, using some iterative 
scheme. 

(ii) Solve equation (19a) explicitly for AJw and update 
the water saturation; solve (19b) for A& and update 
the oil saturation, setting S;' ' = 1 --S;+' - S ; + ' ,  

(iii) Compute pziG: and pFG+d using the new saturations; 
then use these to update p w  and p G .  

(iv) Begin the next time step. 

Notice that, in contrast to the SS formulation, the IMPES 
approach requires the implicit solution of only one flow 
equation at each time step. As with the SS methods, 
variants on this development have appeared; see Aziz and 
Settari" for a survey. 

The IMPES approach offers the obvious advantage 
that, with only one implicit equation to solve per time 
step, the algorithm requires smaller matrix inversions at  
each iteration. The resulting computational savings can 
be significant in problems involving large numbers of grid 
points. On the other hand, because it treats capillary 
pressures explicitly, the IMPES method suffers instability 
when the time step At exceeds a critical value. This 
limitation can be inconvenient i f  the critical value of At is 
unknown or small compared with the life ofa field project. 
The SS method, while requiring more computation per 
time step, boasts greater stability. This can prove to be a 
decided advantage when the problem to be solved exhibits 
strongly nonlinear phenomena, such as coning near 
wellbores or liquid hydrocarbons passing through bubble 
points. 

The performance of black-oil models is quite sensitive 
to the treatment of nonlinear coefficients in the discrete 
flow equations. Consider, for example, the spatial 
treatment of the flux coefficients Az. It is standard practice 
to use upstream-weighted approximations to these 
coefficients. To see why, examine the results of Fig. 7, 
showing predictions of a one-dimensional black-oil model 
using several midpoint and upstream approximations to 
A,. These plots show that upstream-biased analogs of the 
flux coefficients force the numerical solution to converge 
to the correct physical solution when capillarity is small. 
This result corroborates our discussion of the Buckley- 
Leverett problem in Section 3.3, since, as we have argued, 
the black-oil system exhibits similar hyperbolic features. 

The temporal weighting of the flux coefficients also 
affects the solution to the black-oil equations. It is a fairly 
common practice to treat these coefficients explicitly. As 
Settari and Aziz show, however, this tactic leads to limits 
on time steps allowable for stable solutions. The 
limitation is especially severe in problems with gas 
percolation, which occurs when the fluid mixture pressure 
drops below the bubble point. Blair and Weinaug" 
introduce the implicit treatment of the flux coefficients 

s that alleviates this stability problem. As Coatd3  reviews, 
this highly stable method has proved attractive in 
simulating other, more complex oil-reservoir flows. 

One of the most important problems in black-oil 
simulation, and in fact in reservoir simulation more 
generally, is the computational inefficiency associated 
with the solution of large systems of linear algebraic 
equations. In either the SS or the IMPES approach, the 
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iterative time-stepping scheme calls for the solution of 
matrix equations at  each iteration of each time step. For 
simulations at practical scales these calculations alone 
can tax the storage and CPU-time resources of the largest 
machines currently available. A great deal of recent 
research has focused on the development of fast iterative 
techniques for the solution of the large matrix systems 
arising in applications. 

Among the oldest of these iterative techniques are the 
block-iterative methods. These methods use the blocked, 
sparse structure of the linear systems to solve the 
equations iteratively, blo~k-by-block~~.  Block iterative 
met hods. such as block-successive overrelaxation, tend to 
be quite sensitive to 'tunable' iteration parameters such as 
overrelaxation coefficients. 

Another fairly old class of iterative techniques consists 
of  cilternutitiy direction methods., These methods, 
introduced in the context of  finite differences by 
Peaceman and Rachford' Is, Douglas and Rachford60 
and Douglass6, reduce the computational effort in multi- 
dimensional problems by implicitly solving over one 
space dimension at a time. While interest in alternating 
direction techniques for finite differences has waned in 
recent years, interest in alternating-direction Galerkin 
and collocation methods has been growing; see, for 
example, E ~ i n g ~ ~  and Celia and Pinder36. 

In a different approach, StonelJ3 proposes the strongly 
implicit proceiItire (SIP) for solving matrix equations 
implicitly. The idea here is to replace a matrix equation 



Multiphusc flow in porous media: M .  B .  Allen 

having the form [ A ) { p ]  = - { R )  by an iterative scheme 
having the form 

( [ A ]  + "1) : PI" + = ("41 + "1) ; P j rn - (C.4 1 .t PI" + { R  3) 
BY properly choosing the matrix [ N ] ,  one can efficiently 
factor ( [ A ] + [ N ] )  into a product of sparse upper- and 
loL%er-triangular matrices. This idea gives rise to an 
algorithm that gives relatively rapid convergence to the 
solution { p )  of  the original equation. 

Finally, much recent interest has focused on conjugate 
~ r ~ i d i e n t  methods for solving large matrix equations. 
These methods have their theoretical roots in the 
equivalence between linear systems and minimization 
problems for positive self-adjoint matricesg5. However, 
the methods admit extensions to the nonself-adjoint 
operators that arise in fluid flow problems. especially in 
conjunction with such preconditioning methods as in- 
complete LU factorization and nested factorization15*"0- 

. The motivation for preconditioning is that, for 
parabolic flow equations, fine spatial grids can yield 
iteration equations [ A ]  [ p }  = - ( R }  in which the 
condition number of [ A ]  is large. By 'preconditioning' 
[ A ]  with another matrix [ A * ] - ' ,  one can arrive at  an 
equivalent system 

that is better conditioned. Clever choices of [A* ] - '  
ensure that [ A * ] - ' { R )  will be easy to compute at  each 
iteration, thus promoting computational efficiency. It is 
reasonable to expect that preconditioned conjugate- 
gradient methods will play a larger role in oil reservoir 
simulation as the technology continues to advance. 

1 1 5 , 1 2 2  

[ A  *] - [ A ]  { p )  = - [A* ]  - ' I 1  ' R ' 

4.3 Compositional simulation 
The most ambitious applications of the equations for 

compositional flows arise in the simulation of enhanced 
oil recovery processes. Many of these processes depend 
for their success on the effects of interphase mass transfer 
on fluid flow properties. One noteworthy example of such 
a process is miscible gas flooding. This technology 
consists of injecting an originally immiscible gas, such as 
CO,, into an oil reservoir with the aim of developing a 
miscible displacement front in situ. In successful projects, 
miscibility develops through continuous interphase mass 
transfers, leading the fluid mixture ton ard its critical 
composition and hence reducing the interfacial tensio.1 
between the resident oil and the displacing fluid. Com- 
positional modelling serves as an important tool in other 
oil recovery problems, too, including production from gas 
condensate reservoirs and recovery of Lalatile oils. 

There are several ways to classify compositional 
simulators. One way is to characterize the models 
according to their treatment of fluid-phase thermo- 
dynamics. There are at least two forms in which the 
thermodynamic constraints mentioned in Section 4.1 can 
appear. The oldest form consists of  tabular data for the 
equilibrium ratios of/o4 of species mass (or mole) 
fractions in the vapour and liquid hydrocarbon phases. 
Thus, given overall hydrocarbon pressures and com- 
positions at a point in the reservoir, one can compute fluid 
saturations, densities and compositions by performing 
'flash' calculations familiar to chemical engineers' 09. The 
other form of the thermodynamic constraints is the 
requirement that vapour and liquid fugacities be equal for 
each component: J;G =ff, i =  1,. . ., N .  This approach is 
especially attractive when used in conjunction with an 

equation of state such as that proposed by Peng and 
Robinson' 1 7 .  Equation-of-state methods have the 
advantage of thermodynamic consistency near fluid 
critical points, leading to calculations with better 
convergence properties in models of miscible gas floods. . __-- 
In either the equilibrium-ratio approach or the equation- 
of-state approach, though, the thermodynamic 
constraints amount to a system of nonlinear algebraic 
equations giving fluid saturations, densities and 
compositions implicitly. 

Another way to classify compositional models is 
according to the manner in which they solve the flow 
equations (16). Two general schemes have appeared. One 
of these treats the flow equations sequentially, solving an 
overall pressure equation and then updating the 
remaining N - 1 composition equations and the thermo- 
dynamic constraints at each time step or iteration. This 
approach parallels the IMPES method in black-oil 
simulation, and, as one might expect, it offers com- 
putational speed at the expense of some stability. The 
other scheme solves the entire system of flow equations 
and thermodynamic constraints simultaneously at each 
time step. This approach, analogous to the SS method of 
Section 4.2, leads to enormous matrix equations at each 
iteration. However, it enjoys a greater stability than the 
sequential schemes. Given adequate computers, this fully 
implicit approach is quite attractive, since the com- 
positional equations can exhibit behaviour that is too 
complex to permit a priori estimates of stability 
const rain t s. 

Among the simulators using sequential methods are 
those advanced by Roebuck ut ~ 1 . l ~ ~ ;  Nolen'"; Van Quy, 
Corteville and Simandoux ' 53; Kazemi, Vestal and 
ShankB8; Nghiem, Fong and Aziz"'; Watts158 and 
Allen6v7. Let us examine the time-stepping structure of 
one such model7, restricting attention to an oil-gas system 
in which gravity has no effect. Summing the flow 
equations over all N species gives an overall fluid mass 
balance 

where T, = kk,,p"/pa for each fluid o! and T, = TG + To. This 
leaves N - 1 independent species balances 

-- ' (poi)  - V - ( Y , V ~ ~  - G ( g p ~ p ~ ~ ~ )  i = I ,  . . ., N - I (22) 
at 

where T i  = T,wy + T&'. We can regard equation (21) as 
an equation for the pressure pG, using equation (22)  to 
solve for the overall species mass fractions mi. The 
thermodynamic constraints then give the saturation, 
densities and compositions of the liquid and vapour 
phases. 

To solve these equations sequentially, we first discretize 
the pressure equation (21) in time, using the following 
Newton-like iterative scheme: 

This scheme is similar to that used in the unsaturated flow 
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equation of Section 3.1. After solving for 6 p ~ f 1 ~ m + 1  9 we 
update the pressure iterate by setting p;f;+ 'lm+ - - PZ+ ldn  + 
S p ; f ; + l v m + l ,  Then we can update each mass fraction 
ol,. . ., a,,,- I using the finite difference approximation 

YES 

n +  l , m +  1 - - LL); + 4w; + m+ 1. to equation (22), setting oi 
This update calls for values of p''+l~m+l , which are 
available from the latest iteration of equation (23) as 

This iterative sequence requires the solution ofa matrix 
equation only in the spatially discrete analog of equation 
(23), since equation (24) has an 'explicit' form at each 
iteration, Notice that, while the scheme is not fully 
implicit, it calls for implicit treatment of the flux 
coefficients, which lends to the stability of the formulation. 
Figure 8 shows a flow chart for the time-stepping 
algorithm, and Fig. 9 shows a profile of vapour-liquid 
interfacial tensions in a simulated vaporizing gas drive'. 
The wave of decreasing tensions indicates the develop- 
ment of a zone in which the fluid displacement is very 
nearly miscible. 

With the advent oflarge, fast digital computers, interest 
has grown in the hlly implicit approach to compositional 
simulation. Among the models based on this approach are 
those reported by Fussell and Coats*2, 
Heinemann", and Chien, Lee and Chen38. This class of 
formulations treats the discretized flow equations and 
thermodynamic constraints as a set of simultaneous 
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nonlinear algebraic equations, generally using some 
Newton-like iterative scheme to advance between time 
steps. The implicit nature of the formulations leads to 
great stability at  the expense of solving large matrix 
equations of the form [AJ(y] = - ( R )  at each iteration. 
Moreover, the iteration matrix [ A ]  typically has less 
sparseness than the matrices arising from sequential 
schemes, since simultaneous schemes account for more of 
the nonlinear coupling between variables. Young and 
S t e p h e n ~ o n ' ~ ~  present one approach to mitigating this 
complication by evaluating the flux coefficients explicitly. 
As should be expected, this scheme reduces the com- 
putational effort of the h l ly  implicit approach while 
sacrificing some of its stability. 

There are several areas of difficulty common to 
practically all compositional simulators. One class of 
problems concerns the mathematical representation of 
fluid phase behaviour. Most research in compositional 
simulation now focuses on methods using cubic equations 
of state coupled with equal-fugacity constraints to 
represent the fluid thermodynamics. While this approach 
guarantees thermodynamic consistency and therefore 
ensures smooth behaviour offluid densities, it requires the 
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solution of highly nonlinear algebraic equations in 
addition to the discretized flow equations. Furthermore, 
the numerical solution of these thermodynamic 
constraints often suffers poor converpnce when fluid 
pressures and compositions approach critical points' 2 9 .  

While the numerical problems associated with fluid phase 
behaviour calculations pose serious challenges to the 
petroleum industry, an extensive discussion of research in 
this area would carry us far afield. 

Another problem affecting compositional simulation is 
the numerical smearing introduced by upstream 
weighting. While this source of error affects other 
numerical models using upstream weighting, it is 
particularly problematic in compositional simulation. 
Because compositional models require so much storage 
and CPU time per spatial node, field-scale simulations 
often must use relatively few nodes and correspondingly 
coarser grids. The artifical diffusion that results can 
introduce large errors in species mass fractions and thus 
lead to unreal thermodynamics. 

Several investigators have proposed methods for 
alleviating numerical diffusion in compositional 
simulators. Chase3 ', for example, proposes local grid 
refinement methods for use with Galerkin finite elements. 
Section 6.4 discusses local grid refinement in more detail. 
Wilson, Tan and Casinader16' advance a method for 
selecting upstream-weighted difference approximations 
that yield reduced artificial smearing. Ewing and 
H e i n e ~ a n n ~ ~ . ~ ~  discuss the use of mixed finite-element 
methods to reduce smearing in compositional models. 
These authors propose that inaccurate fluid velocities, 
obtained by numerically differentiating pressure fields, 
aggravate numerical smearing. By incorporating mixed 
methods into their numerical scheme, they compute more 
accurate velocities and thereby help preserve sharp com- 
position fronts in the numerical solution. Section 6 
discusses mixed finite-element methods more thoroughly. 

Finally, the growing appeal of the fully implicit 
approach implies that the computational effort associated 
with the inversion of large linear systems will become an 
increasingly important concern. The stakes involved in 
the linear algebra of compositional modelling are much 
higher than in black-oil simulation, since a typically fully 
implicit compositional model must solve the discretized 
flow equations and equal-fugacity constraints for between 
seven and ten species. This avenue of research should be 
active for quite some time to come. 

5. OUTSTANDING PROBLEMS: PHYSICS 

The next two sections review some of the outstanding 
problems in simulating multiphase flows in porous media. 
Roughly speaking, these problems fall into two categories: 
difficulties arising because our knowledge ofthe physics of 
multiphase flows is incomplete and difficulties in devising 
mathematical methods to capture known physics. The 
two categories are not as distinct as this description 
suggests. For some phenomena our lack of physical 
understanding hinders attempts to model them mathe- 
matically. Viscous fingering is an example, as discussed 
below. For other phenomena, the mathematical 
difficulties are evidence of physical complications that 
lead to peculiar behaviour in the governing equations. 
The occurrence of sharp fronts in immiscible flows is an 
example of this coupling. Nevertheless, the distinction 
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between physical and numerical difficulties makes some 
sense i f  we interpret it as suggesting strategies for future 
research. In this section we consider several physical 
problems. 
5.1 Viscous fingering 

Often, in two-phase flows, the bulk of one fluid lies 
upstream of the other. In this case we say that the 
'upstream' phase displaces the 'downstream' phase, even 
though there may be large regions where both phases flow 
simultaneously. The global behaviour of such flows 
depends strongly on whether the mobility of the 
displacing fluid is greater or less than that of the displaced 
fluid. In the latter case, when the mobili ty ratio Adlsplaang/ 
&,sp,aced = M < 1, the flow proceeds stably. This implies 
that velocity fields and saturations depend continuously 
on the boundary and initial conditions and well rates. 
When M > 1, however, channels of high displacing-fluid 
saturation can bypass zones of displaced fluid in a 
geometrically irregular pattern. These irregularities in the 
fluid displacement reflect the instability of immiscible 
displacements at high mobility ratios. The channeling 
phenomenon is called viscous fingering. While this 
phenomenon occurs in both single-phase and multiphase 
flows, we shall restrict our attention to the multiphase 
case. 

Viscous fingering is economically important in oil 
reservoir engineering, where displacement of oil by some 
injected fluid is common to almost all recovery processes 
past primary production. In many cases the injected fluid 
is water, a gas such as CO, or N,, or a surfactant solution. 
These fluids tend to be more mobile than common crude 
oils; therefore viscous fingering can occur. As a result, such 
a displacement scheme may sweep only 3 small fraction of 
the oil-bearing rock between an injection well and a 
production well. This inefficiency motivates reservoir 
engineers to add mobility control agents, such as 
hydrolysed polymers, to injected fluids to lower their 
mobility . 

Investigations into the physics of viscous fingering in 
immiscible displacements began in the late 1950s. Saffman 
and Taylor' 32 investigated an analogy between porous- 
medium flows and Hele-Shaw flows, confirming that 
M > 1 leads to frontal instability. Chuoke, van Meurs and 
van der Pol4' applied perturbation techniques to show 
the existence of a critical wavelength for unstable fingers. 
From these early papers through the 1970s the literature 
on viscous fingering mushroomed. Ewing and George63 
provide a fairly extensive review of this body of work. 

Research into viscous fingering has continued in recent 
. While controversy still exists, there 

seems to be broad agreement that unstable fingers are 
triggered by heterogeneities in the porous medium 
observable at the microscopic scale. However, the macro- 
scopic governing equations based on Darcy's law do not 
explicitly account for microscopic heterogeneities. 
Mathematical models based on the macroscopic 
equations and assuming a macroscopically homogeneous 
porous medium therefore have no mechanism for 
initiating fingers. Consequently, the homogeneous model 
will not exhibit instability, eien though it is present in 
nature. One might, as an analogy, consider the mathe- 
matical model of an ideal pendulum hung vertically 
upward with zero velocity. The idealised model predicts 
that the pendulum is at equilibrium, whereas a natural 
pendulum in such a configuration is unlikely to stay there. 

yearS7h.l 18,163.94.87 
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This failure to capture microscopic physics has 
unfortunate implications in numerical simulation. The 
response of a mathematical method to unstable 
immiscible displacements depends on the degree of 
heterogeneity in the data of  the problem. Discrete models 
can represent spatial heterogeneity only within the limits 
imposed by the fineness of the spatial grid. Hence, models 
of immiscible displacement in media exhibiting hetero- 
geneity at many scales can produce qualitatively different 
results depending on the spatial discretization used. 

Several articles have appeared reporting efforts to 
produce better numerical representations of viscous 
fingering, given the inherent limitations of discrete me- 
thods. Among these are papers by Glimm, Marchesin and 
M~Bryan '~ ,  who propose the random choice method for 
solving the flow equations, and Ewing, Russell and 
Wheeler66, who examine a mixed method in conjunction 
with a modified method ofcharacteristics to give accurate 
approximations of fluid interfaces. Another set of ap- 
proaches has been to incorporate the 'average' effects of 
fingering on the mixing of fluids in numerical simulators. 
This line of research began with Kovalsg and became a 
common simulation tool with the introduction of a 
mixing model by Todd and Longstaff'". This 'averaging' 
approach, while currently lacking in rigour, may offer 
fertile ground for the interaction of sound physical 
reasoning with the development of numerical techniques. 

Finally, there is a great need for more empirical work 
on viscous fingering. Among the many sources of un- 
certainty regarding the nature of fingering is the paucity of 
field-scale data characterizing its effects. As Settari, Price 
and Dupont ' 3 8  asserts 

The study of unstable displacements, particularly viscous 
fingering, is distingyished by the fact that in no other area of 
reservoir engineering is there less agreement. There is not 
even complete agreement on the existence of viscous 
fingering as a real phenomenon for reservoir conditions, let 
alone agreement as to the magnitude and interaction of the 
various mechanisms involved. 

5.2 Multip hase h ydrodj-numic dispersion 
As the derivation of the compositional equations in 

Section 4.1 demonstrates, individual species within a fluid 
phase need not move with the barycentric velocity of the 
phase. In porous-media flows, the deviation of species 
motions with respect to the mean flow of the fluid is called 
hydrodynamic dispersion. This diffusion-like pheno- 
menon is familiar in the context.of single-phase flows such 
as miscible displacement in petroleum engineering or 
soluble contaminant transport in groundwater hy- 
drology. However, the literature on hydrodynamic dis- 
persion in multiphase flows is frustratingly sparse. 

One likely reason for this sparseness is the difficulty of 
understanding the physics of hydrodynamic dispersion 
even in single-fluid flows. Dispersion in porous media 
actually comprises a set of phenomena, including the 
following": 

(i) molecular diffusion, which to macroscopic observers 
appears retarded owing to the tortuosity of the solid 
matrix; 

(ii) . Taylor diffusionLa6, an effect whereby no-slip boun- 
dary conditions at  the solid walls cause solutes in 
small-diameter pore channels to spread with respect 
to their mean motion; 

(iii) stream splitting, in which parcels of solute-bearing 
fluid di\ide at pore-chgnnel intersections, and 

(iv) transit-time deviations, in which the dissimilar tor- 
tuositiss of adjacent flow paths cause nearby fluid 
parcels to have different net velocities in the mean 
flow direction. 

Notice that the descriptions of these phenomena belong 
to the microscopic level ofobservation, and hence the use 
of hydrodynamic dispersion to account for their macro- 
scopic effects imposes an inherent loss of information. To 
modelers, this smearing of small-scale heterogeneities has 
undesirable implications. Indeed, in models of solute 
transport in porous media, hydrodynamic dispersion is 
often the most poorly quantified of all physical para- 
meters fed into the simulator. 

Relativel) few investigators have ventured to propose 
quantitative forms for hydrodynamic dispersion in the 
multiphase setting. Among the earliest laboratory studies 
of multiphase hydrodynamic dispersion is that of Tho- 
mas, Countryman and Fatt14'. These authors find that, 
when two phases flow in a porous medium, each fluid 
alters the effsctive pore-size distribution available to the 
other fluid. Thus the degree of saturation of a given phase 
has pronounced effects on the observed level ofdispersion. 
More recently, Delshad et ales3 confirm the dependence of 
multiphase dispersion on saturations. 

As Section 4.1 mentions, most mathematical models of 
species transport in multiphase systems ignore hydro- 
dynamic dispersion. There are, however, at least three 
noteworthy exceptions. The first is the compositional 
model developed by Young164, who assumes the second- 
order tensor form 

- 

for each fluid phase a. Here DDLmol stands for the molecular 
diffusion coefficient in phase a, and a,, and q,, signify the 
longitudinal and transverse dispersivities, respectively, in 
phase Q. This formulation amounts to a natural extension 
of the standard hydrodynamic dispersion model to mul- 
tiphase fl0u.s. A model described by Abriola' and Abriola 
and Pinder' assumes a related form for dispersion within 
a phase, namely 

D,= Dr,mol + D1: fv" 

where Drmo, is a second-order tensor adcounting for the 
effects of molecular difhsion in phase a, modified by the 
matrix tortuosity, and D, is a fourth-order tensor. This 
form extends the tensor equation proposed by Beart3 on 
theoretical grounds. Finally, Baehr and Corapcioglu2' 
and Corapcioglu and Baehr49 derive a set of flow 
equations for immiscible contaminant transport incor- 
porating a dispersion tensor for each phase; however, they 
do not postulate a precise tensorial form for dispersion. 

Multiphase hydrodynamic dispersion appears to be 
one area of uncertainty where numerical simulation 
cannot shed much light. The fundamental questions that 
plague modelers are the same ones that arise in single- 
phase flows. What is the mathematical form ofdispersion? 
How can we measure it? Do scale dependencies and 
asymmetric effects influence dispersion? I t  seems apparent 
that these questions address themselves primarily to 
experimentalists, guided ideally by theoretical studies of 
continuum mixtures such as that advanced by Bowen3'. 
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5.3 Multiphase contaminant flows 
In recent years interest has arisen in multiphase flows 

involving immiscible groundwater contaminants. It has 
long been common practice to store or dispose of 
hazardous chemicals in near-surface or underground 
sites, and fluids escaping from these sites pose serious 
threats to groundwater supplies. Many hazardous chemi- 
cals and wastes take the form of nonaqueous-phase 
liquids, or NAPL. Common examples include gasoline, 
polychlorinated biphenyls (PCB), chlorinated hydro- 
carbons, coal tars and creosotes' 54. However, many 
dumpsites harbour a menagerie of chemical wastes, 
making it difficult to characterize the NAPL chemically. 
The multiphase flows that lead to contamination of 
groundwater are physically quite complex, and, despite 
the pressing need for predictive tools, numerical simu- 
lation of NAPL flows remains in its infancy. 

One type of flow that is important in this context is the 
simultaneous flow of NAPL and water in the unsaturated 
zone. This soil layer usually lies between near-surface 
NAPL sources and the water table and therefore acts as 
the main pathway for groundwater contamination. As we 
illustrated in Section 3.1, the flow of a single liquid in the 

l unsaturated zone already poses a difficult nonlinear 
problem, so one might expect that multiliquid flows will 
be even harder to simulate numerically. 

Current efforts in multiphase unsaturated flows focus 
mainly on developing physical understanding. 
S ~ h w i l l e ' ~ ~ ,  for example, discusses the migration of 
immiscible organics in the unsaturated zone, reviewing 
such fundamental processes as capillary action, 
volatilization of the organic species, and microbial 
degradation. Alleng applies continuum mixture theory to 
develop a set of flow equations for two liquids in the 
unsaturated zone. By analysing a medium containing air 
(A) ,  NAPL ( N )  and water (W) ,  he derives a pair of partial 
differential equations, each resembling Richards' 
equation in form: 

for a = N  or W. Several variables appearing in this 
equation are analogous to those appearing in the single- 
liquid case: C, is the specific moisture capacity of phase a; 
0, is the moisture content of a; $, is the pressure head in 
phase a; K is the soil's hydraulic conductivity and 2 is 
depth below some datum. Also appearing are the vari- 
ables S,.,, which is the specific storage associated with 
phase a, and k,,, signifying the relative permeability of the 
soil matrix to phase a. The pair of flow equations given by 
equation (25) constitutes a nonlinear system. Coupling 
between the equations occurs through the dependence of  
a,, S , ,  and k,, on the pressure heads $%; the capillarity 
relationships $, = I)~(@~, Q W ) ,  and the restriction 

In what appears to be the first effort at numerically 
simulating multiphase unsaturated flows. F a ~ s t ~ ~  de- 
velops a two-dimensional finite-difference model for the 
flow of  water and NAPL. This model uses a two-equation 
formulation similar to that given by equation (25). To 
solve the discretized flow equations, Faust devises a fully 
implicit scheme akin to the SS method used in black-oil 
simulation. As with other models of multiphase flows, 
Faust's simulator uses upstream-weighted relative per- 

0, +0,=4(1-SJ. 
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meabilities to accommodate possible hyperbolic be- 
haviour, as explained in Section 4.2. 

As a practical matter, the simultaneous flow of NAPL 
and water is only part of the multiphase contamination 
problem. Groundwater contamination itself occurs be- 
cause of mass transfer between NAPL and water. Even 
though NAPL may be immiscible with water, some of its 
constituent species may dissolie in water at very small 
concentrations. While highly dilute, the resulting solution 
of organics in water is often toxic or carcinogenic. 
Therefore, a complete mathemarjcal description of multi- 
phase contaminant flows ought to incorporate phase- 
exchange effects more familiar in the setting of com- 
positional reservoir simulators. 

Very little work has been dons in this area. Baehr and 
Corapcioglu" propose a model consisting of individual 
flow equations for each species. Since their model aims 
principally at predicting pollution from gasoline spills, 
they include in their formulation such effects as microbial 
degradation, equilibrium partitioning among fluid pha- 
ses, and adsorption onto the solid phase. Abriola' and 
Abriola and Pinder2*3 present a finite-difference model of 
species transport in an air-water-NAPL system. This 
simulator accommodates interphase mass transfer th- 
rough the use of equilibrium ratios analogous to those 
discussed in Section 4.3. The model solves the nonlinear 
algebraic equations resulting from the finite difference 
approximation using a scheme patterned after the SS 
method reviewed in Section 4.2. Considering the range of 
problems solved and the analyses given of the code's 
performance, this is perhaps the best documented model 
of multiphase, multispecies contaminant transport ap- 
pearing in the literature at this writing. 

6. OUTSTANDING PROBLEMS NUMERICS 
Quite a few of the difficulties arising in numerical 
simulation of multiphase flows concern the limitations of 
the numerical methods themselves. Here the problem is 
that the numerical techniques in common use produce 
approximations that are in some way unrealistic based on 
our understanding of the flows that they model. In this 
case the challenge to researchers is to devise new methods 
or to modify existing approaches to permit more accurate 
simulations. We shall examine three types of numerical 
difficulties oftopical interest: ?rid orientation effects, front 
tracking and local grid refinemat. 

6.1 Grid-orientittion ejjCecrs 
Since the early 1970s, petroleum engineers have re- 

cognized that many discrete methods for solving fluid 
flow equations give qualitatiiely different results when 
one changes the orientation of the spatial grid with respect 
to the geometry of the physica! flow. Todd, O'Dell and 
H i r a ~ a k i * ~ ~  first reported this phenomenon in a simulator 
of immiscible flow. They noted that the effect:. of grid 
orientation are especially pronaunced at large mobility 
ratios. A severe example occurs in steamflood simu- 
lation4". where solutions generated using different grid 
orientations apparently con\eige to different answers. 
Since these investigations, a substantial body of research 
has developed in the effort to 01 ercome or mitigate grid- 
orientation effects in reservoir simulators. 

One of the first effective techniques for reducing grid- 
orientation effects appeared in 1979, when Yanosik and 
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McCracken ' 6 2  presented a nine-point finite-difference 
scheme that reduces grid-orientation effects for square 
grids. The nine-point scheme approximates derivatives a t  
a point ( x i , y i )  in two-dimensional domains by using 
values at  all adjacent nodes instead of the corner nodes 
only. Thus the nine-point analog of the Laplacian on a 
uniform grid is 

Coats and R a m e ~ h ~ ~  observe that the nine-point formula- 
tion exhibits poor behaviour when used on nonuniform 
spatial grids. Bertiger and Padmanabhan25 explain this 
poor performance by demonstrating that the usual nine- 
point formulation on nonuniform grids yields an incon- 
sistent approximation to V 2 .  These authors then propose 
a modified nine-point scheme that restores consistency 
while still reducing the grid-orientation effect. In another 
approach, Potempa' 2 3  advances a finite-element tech- 
nique that is closely related to the Yanosik-McCracken 
nine-point difference scheme but again preserves con- 
sistency. Several other investigators have devised mo- 
dified finite-difference schemes yielding solutions that are 
largely independent of grid-orientation effects; among 
them are Vinsome and A u ' ~ ~ ;  Frauenthal, di Franco and 
Towler7'; Shubin and Bell'42 and Preuss and 
Wdvarsson' 5 .  

Finite-element techniques also admit variants that 
reduce grid-orientation effects. Among the more promis- 
ing groups of finite-element schemes in this regard are 
mixed  method^^^*^^*'^. The motivation behind these 
techniques is to compute accurate Darcy velocities ex- 
plicitly rather than incurring the loss of accuracy as- 
sociated with standard schemes requiring the differen- 
tiation of fluid pressures. Thus, for example, we factor the 
second-order pressure equation 

V - (kVp) = 0 
into two first-order equations 

V =  - k V p  

- v - v = o  
By properly choosing the trial functions for v and p ,  we 
can compute pressures and velocities having the same 
order of accuracy. In problems involving the effects of 
species transport the mixed method is especially effective 
when used in conjunction with time-stepping procedures 
based on modified methods of character i~t ics~~.  A variety 
of numerical experiments reported in the references cited 
above demonstrate the method's ability to give good 
numerical results even in problems with highly variable 
material properties. 

6.2 Front-trmking methods 
As we have seen in previous sections, several multi- 

phase flows in porous media exhibit sharp fronts that can 
be modelled as discontinuous fluid interfaces. The salt- 
water toe and the Buckley-Leverett saturation shock are 
two examples of such discontinuities. Discrete 
approximations using fixed finite elements or finite- 
difference cells have difficulty in capturing the behaviour 
of  these sharp fronts, since the computational procedures 

tend to smear information over the spatial subregions of 
the discretizations. Front-tracking methods aim at 
circumventing this difficulty by assigning computational 
degrees of freedom to the unknown location of the front. 
Solving for the frontal locations along with the variables 
characterizing the smooth parts of the flow allows the 
modeller to track the front explicitly without introducing 
numerical diffusion. Since one can concentrate many 
degrees of freedom at the interface, front tracking me- 
thods also hold great promise in the simulation of viscous 
fingering. 

Front-tracking methods have their roots in numerical 
applications of the method of characteristics in 
convection-dominated flows. The first applications of this 
approach in porous-media simulation addressed the 
miscible transport of solutes in single-phase  flow^'^^'^^. 
In the method of characteristics, one replaces a partial 
differential equation by a system of ordinary differential 
equations valid along curves where the original equation 
agrees with the chain rule. For example, by comparing the 
Buckley-Leverett saturation equation 

with the chain rule 

one can see that dS,/dC = O  along curves y'(x, t) in the 
(x, t)-plane where dx/dt = qfb(Sw)/4. Loci of constant Sw 
therefore travel with speed qf;(S,)/$. This fact allows us 
to compute the position of the constant-saturation shock 
as it moves across a one-dimensional domain. 

Perhaps the most extensively applied front-tracking 
scheme in the current literature is that of Glimm and his 
 coworker^^^*^^^^^. This approach uses an IMPES for- 
mulation for two-dimensional immiscible displacements 
in the absence of capillarity. The scheme solves the 
pressure equation on a finite-element grid whose element 
boundaries move to align themselves with the saturation 
shock. To update saturations, the scheme uses standard 
interior methods in regions where the saturation is 
smooth and couples to the smooth solution a Riemann 
problem propagating the interface. This frontal pro- 
pagation relies on a yethod of characteristics akin to the 
one-dimensional version outlined above, taking advan- 
tage ofa local coordinate system aligned with the shock to 
advance the discontinuity in its normal direction. Thus 
the actual computations required to track the front reduce 
to locally one-dimensional ordinary differential 
equations. 

Jensen and F i n l a y s ~ n ~ ~ ? ~ ~  introduce an alternative 
scheme for front-tracking that gives good results in 
convection-dominated species-transport problems. This 
method defines a set of moving coordinates based on the 
method of characteristics for the hyperbolic, or purely 
convective, part of the partial differential equations. 
Within this moving coordinate system, the convection- 
dominated transport problem reduces to a problem ofthe 
diffusion type. Jensen and Finlayson construct a finite- 
element grid attached to the moving coordinates, ensur- 
ing that the grid in the vicinity of the sharp front is 
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sufficiently fine to avoid the occurrence of nonphysical 
oscillations in the numerical solution. 

In a third approach to front tracking, the Mathematics 
Group at the Lawrence Berkeley Laboratory applies the 
theory of Riemann problems for first-order hyperbolic 
systems to solve the immiscible flow equations using the 
random choice The random choice me- 
thod, developed as a numerical technique by Chorin4O, is 
an effective procedure for approx.imating nonlinear hyper- 
bolic conservation laws such as equation (26). The method 
replaces the unknown funttion S,(x , t )  by a piecewise 
constant approximation Sw(x,  t )  and then solves a 
sequence of Riemann problems, each advancing the 
numerical_ solution by sampling the piecewise constant 
hnction S to determine initial data. When the solution 
possesses shocks, the random choice method preserves 

. their sharp fronts, since the sampling at  each time step 
ai.oids the introduction of spurious intermediate values in 
the numerical solution. However, the method allows small 
errors in the shock location since the sampling identifies 
the frontal position only to within the resolution limits 
imposed by the spatial grid. Although developed for one- 
dimensional flows, the random choice method admits 
extensions to two-dimensional problems. Colella, Concus 
and Sethian47 describe the use of operator splitting 
techniques to decompose a two-dimensional equation 
into a sequence of one-dimensional equations. 

6.3 Adapatioe local grid refinement 
Many problems involving multiphase flows in porous 

media exhibit behaviour whose structure is localized in 
small subregions of the spatial domain. We have already 
encountered such phenomena in the form of wetting 
fronts and saturation shocks. Similar localized behaviour 
occurs near wellbores or in the moving concentration 
fronts found in convection-dominated species transport 
processes. To capture the essential physics of these 
features often requires a spatial grid capable of providing 
high resolution in their vicinity. Grid refinement is 
especially important in view of the common use of low- 
order upstream-weighted approximations in near- 
hyperbolic flows. As frequently applied, these approxima- 
tions introduce a numerical diffusion error whose magni- 
tude is O ( h )  for grids of mesh Ax. By refining the spatial 
grid in the vicinity of the front, one reduces numerical 
diffusion by shrinking Ax. all the while preserving the 
desirable effects of upstream weighting. 

Generating this extra resolution usually poses few 
difficulties if  the locus of highly structured behaviour 
remains constant in time. However, in the case of moving 
fronts, for example, the zones where increased resolution 
is needed move through the spatial domain as time 
progresses. Under these circumstances the refined port ion 
of the grid must be capable ofmoving in time to follow the 
localized structure of the solution. Such schemes fall 
under the rubric of uduptive locul grid rejiiirntent (ALGR). 
While ALGR schemes are generally difficult to imple- 
ment, the technical literature in this area is yast. Therefore 
the review that follows merely highlights results that 
appear relevant in multiphase flow simulation. 

There are three basic approaches to ALGR. One of 
these is to increase the polynomial degree of the 
approximation to the solution in regions needing refine- 
ment. Such techniques are called p-mcrhods. Another 
approach is to add computational degrees of freedom in 
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the regions of refinement, keeping the polynomial degree 
of the approximation constant. These techniques are 
perhaps most appropriate when used in conjunction with 
upstream weighting, since they reduce numerical diffusioo 
by shrinking Ax. Such methods are called h-nzethods. 
Finally, there are several techniques that allow the 
location of the spatial nodes in the grid to act as variables 
in the numerical approximation. By solving for the nodal 
locations and nodal solution values simultaneously, one 
effectively forces the grid to move in time to accommodate 
the structure of the solution. These methods are called 
moving jinite element (MFE) techniques. 

Reports of underground flow simulators using p- 
methods are not very numerous. Chase3' describes a 
chemical flood simulator based on a finite-element Galer- 
kin method that employs hybrid trial functions. These 
trial functions use Co piecewise bilinear Lagrange func- 
tions in smooth regions of the flow but insert C' 
piecewise bicubic Hermite functions in the vicinity of 
steep gradients. MohsenloO describes another p-method 
applied in finite-element collocation solutions of the 
Buckely-Leverett equation. This approach refines a 
coarse grid consisting of C' piecewise cubic Hermite 
functions by substituting C1 piecewise quintic functions 
near the saturation shock. 

The use of h-methods has been more popular. One 
reason for this fact may be a general aversion to the 
oscillatory tendencies associated with polynomial 
approximations of high degree. Another reason is un- 
doubtedly that h-methods fit more naturally into the 
framework of finite-difference approximations, which do 
not explicitly use trial functions. Quite a few ALGR 
schemes for finite differences have appeared; among them 
are the methods of von R ~ s e n b e r g ' ~ ~ ,  Heinemann and 
van Handelmann" and Douglas et dS7, who present 
both finite-difference and finite-element schemes. A 
considerable amount of theoretical work and numerical 
experimentation has focused on finite-element schemes 
with ALGR19*52-24-s4. One of the problems that arises in 
the construction of adaptive refinement codes is the 
management of the data defining the grid as its structure 
changes. There are great computational advantages as- 
sociated with the invention of data structures that can 
accommodate the dynamic refinement and unrefinement 
of a grid without destroying the efficiency of matrix 
solution algorithms". 

MFE methods adopt a somewhat different ap- 
p r o a ~ h ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ .  For an equation of the form &/St  - 
d u = O ,  where .d is a spatial differential operator, we 
begin with a piecewise polynomial trial function ri having 
unknown time-dependent coefficients u l ( t ) ,  . . ., uN( t ) .  In 
addition, we allow the coordinates of the spatial nodes 
X1, . . ., XN to be variable. By choosing { ArJSt ,  Xi]*:= to 
minimize (Ic?ii/Sr-.diil!z in a Galerkin sense, one can 
develop a finite-element approximation in which the 
nodes tend to concentrate around regions where the 
solution exhibits localized structure. To prevent all of the 
nodes from accumulating near shocks, however, one must 
impose certain penalties on the clustering of nodes. A 
variety of internodai spring functions and viscosity-like 
devices exist to help preserve good global approximations 
by maintaining adequate separation between nodes. 

ALGR techniques have a wide range of potential 
applications in general computational mechanics. Fluid 
flows in particular exhibit highly localized behaviours for 

,- 

_/ 
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which local refinement is an attractive alternative to 
globally line grids. Gas dynamic shocks, hydraulic jumps, 
moving interfaces, and such singularities as sources, sinks 
and corners are just a few examples of these features. 

7. CONCLUSIONS 
Throughout this review we have seen several facets of 
multiphase flows in porous media reappear in various 
applications. These physical and computational pecu- 
liarities emerge as major themes in the numerical simula- 
tion of flows. Let us close by recapitulating these themes. 

Every flow we have examined obeys a nonlinear, time- 
dependent partial differential equation. Nonlinearity is a 
characteristic feature of multiphase porous-media flows, 
owing to the fact that the permeability of the rock matrix 
to one fluid varies with the saturation of any other fluid. 
Further nonlinearities can arise when storage or com- 
pressibility effects imply pronounced dependence on 
pressure in the accumulation terms or when there is 
strong coupling within a system of flow equations. The 
nonlinear governing differential equations generally give 
rise to nonlinear algebraic equations in the approximat- 
ing discretizations. These algebraic systems, in turn, 
demand iterative solution, and therefore one commonly 
finds Newton-Raphson schemes or related procedures 
imbedded in implicit time-stepping methods for these 
problems. 

Another common feature in mu1 tiphase porous-media 
flows is the occurrence of sharp fronts or moving boun- 
daries in the fluid system. The Buckley-Leverett satu- 
ration shock stands as a classic example. Similar inter- 
faces arise in other contexts: unsaturated flows can give 
rise to wetting fronts, and the saltwater intrusion problem 
exhibits a moving boundary in the toe of the saltwater 
wedge. Sharp fronts pose difficulties to the numerical 
analyst, since they require high spatial resolution to 
model and are sometimes associated with uniqueness 
issues. In certain classes of flows they can also exhibit 
instability, as when viscous fingering occurs in displace- 
ments at adverse mobility ratios. The most natural 
solutions to these sharp-front difficulties are front- 
tracking methods and adaptive local grid refinement. 

Finally, various numerical aspects of modelling multi- 
phase flows combine to require truly large-scale com- 
putations. A typical simulator solves large, sparse matrix 
equations at every iteration of every time step. When 
compositional effects are present, the code must solve 
nonlinear thermodynamic constraints as well. The de- 
sirability of local grid enrichment, front-tracking algor- 
ithms, or moving grid schemes adds to this scale of 
calculation both in complexity and in computational 
effort. Scientists who model multiphase underground 
flows have every reason to applaud the emerging gene- 
ration of supercomputers and parallel architectures, since 
these machines may spell the difference between com- 
promise in the approximation of complex flows and the 
practical achievement of realistic simdations. 
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NOMENCLATURE 
Capital letters 

coefficient 
system matrix 
spatial operator 
formation volume factor; coefficient 
(see Table 1) 
specific moisture capacity; compressibility; 
coefficient 
diffusion coefficient 
hydrodynamic dispersion tensor 
Hermite cubic of the first kind 
Hermite cubic of the second kind 
number of nodes 
temporal domain 
hydraulic conductivity scalar 
hydraulic conductivity tensor 
(see Table 1) 
stiffness matrix 
mobility ratio 
(see Table 1) 
mass matrix 
basis function; number of species 
SIP matrix 
order symbol 
number of phases 
(see Table 1) 
residual 
solution gas-oil ratio 
residual vector 
spatial region 
saturation 
specific storage 
transmissibility (defined variously) 
depth below datum 

Lower case Ietters 
a 
b 
b 

e 
f 
3- 3. 
9 
h 

C 

h )  

186 

z-coordinate of con fining layer 
z-coordinate of interface; derivative of 1/B 
body force 
z-coordinate of free surface 
unit vector 
fractional flow; fugacity 
boundary data vector 
gravitational acceleration 
hydraulic head 
vector of hydraulic heads 
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diffusive flux 
permeability scalar 
relative permeability 
permeability tensor 
vertical thickness 
momentum exchange rate 
pressure 
vector of pressures 
flux; flow rate 
flow rate vector 
mass exchange rate 
right-hand side vector 
specific yield 
time 
stress tensor 
unknown hnction 
diffusion velocity vector 
velocity vector 
horizontal space coordinate 
spatial position vector 
vector of unknowns 
vertical space coordinate 

Capital greek letters 
4 time-difference operator 
At time increment 
Ax space increment 
0 moisture content 
A mobility scalar 
A mobility tensor 
I: interface 
Y compositional flux coefficients 

R spatial domain 
free surface 

Lower case greek letters 
a dispersity 
y gravity coefficient 
S iterative increment operator 
5 curve in (x, t)-plane 
1 flux coefficient 
p dynamic viscosity 

density $ volume fraction; porosity 
cp test function 
II/ pressure head 
o mass fraction 

Subscripts ~irid superscripts 
A air 
atm atmospheric 
C capillary 
F freshwater 
G gas phase 
g gas species 
i ,  j 
k collocation point index 
l longitudinal 
m iteration level 
mol molecular 
N nonaqueous liquid phase 
n time level 
0 oil phase 
o oil species 
R rock phase 

node indices; species indices 



RC 
ref 
S 
STC 
T 
t 
W 
W 

Z 

reservoir conditions 
reference 
salt water 
stock-tank conditions 
total 
transverse 
water phase 
water species 
z-direction 
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OL phase index 
8 boundary 

Special symbols 
4. approximation 
f derivative; dummJ- variable 

- 
average; collocation point 

* dimensionless; upstream; preconditioner 



Mixed Finite Element Methods for 
Computing Groundwater Velocities 
M. B. Alien, R. E. Ewing, and J.V. Koebbe 
Department of Mathematics, University of Wyoming, 

\ Laramie, Wyoming 82171 

Central to the understanding of problems in water quality and quantity for effective 
management of water resources is the development of accurate numerical models to 
stimulate groundwater flows and contaminant transfer. We discuss several important dif- 
ficulties arising in modeling of subsurface flow and present promising numerical proce- 
dures for alleviating these problems. Furthermore, we describe mixed-finite element 
techniques for accurately approximating fluid velocities, and review computational re- 
sults on a variety of hydrologic problems. 

I. INTRODUCTION 

In the past decade, water quality problems have assumed increasing im- 
portance in water resources engineering. An emerging awareness that our 
groundwater supplies face the threat of contamination from various sources has 
prompted vigorous research into mathematical methods for predicting contami- 
nant movements in underground water. In many respects the task of simulating 
contaminant flows in porous media is computationally more demanding than 
the more traditional problem of resolving supply issues. The fundamental rea- 
son for this increased difficulty is that in contaminant flows, the fluid velocity 
plays a crucial role, while water supply problems more typically concern a 
scalar field such as head or pressure. According to Darcy's law, one must dif- 
ferentiate heads or pressures to get velocities, and this leads to at least two re- 
lated mathematical problems. First, any pathologic behavior in pressure or head 
manifests itself in even more severe behavior in velocity. Thus, for example, 
the relatively mild logarithmic singularities in pressure or head that occur at 
pumped wells appear as simple poles in the velocity field. Second, standard 
numerical solutions of the flow equations commonly produce discrete approxi- 
mations to the pressure or head, and in differentiating these approximations to 
compute velocities one incurs a loss of accuracy that is typically one order in 
the spatial grid mesh. 

convergent approximations to velocities near wells and, in the second case, to 
inferior predictions of the very aspect of groundwater motion that is most cru- 
cial in forecasting contaminant transport. In this paper we examine a mixed 
finite element method for the groundwater flow equations that mitigates these 
difficulties. The essential idea of the mixed method is that, by solving the 
second-order equation governing groundwater flow as a set of coupled first- 
order equations in velocity and head, one can compute both fields explicitly 
without sacrificing accuracy in the velocity through differentiation. The method 

' 

. .  

\ These difficulties are significant, for they can lead, in the first case, to non- 
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also admits natural choices of interpolating polynomials for the trial functions 
to guarantee the highest accuracy for a given number of degrees of freedom. 
Furthermore, in problems involving pumped wells, one can incorporate appro- 
priate singularities in the trial functions for velocity. The singular parts, being 
known, then contribute to the inhomogeneous terms in the systems of algebraic 
equations that arise through spatial discretization. This approach circumvents 
convergence difficulties near wells and leads to good global error estimates. 

Proper choice of trial functions is an essential feature of the mixed method 
presented here. In particular, the trial space used for the fluid velocity must 
yield an approximation whose divergence lies in the trial space for head; other- 
wise the favorable convergence rates cited below are no longer valid. Thus, the 
methods advanced here are distinct from other formulations that also treat 
velocity and head as principal unknowns but use trial functions belonging to the 
same continuity class for both [ 13 .  

II. REVIEW OF THE MIXED METHOD 

Let us examine a model equation arising in the simulation of steady-state 
flow in a two-dimensional, horizontal, leaky aquifier. This type of problem is 
representative of the sorts of flow equations that need to be solved in conjunc- 
tion with species transport equations in groundwater contamination studies. The 
governing equation is 

K 
b 

V * (TVh) - -((h - ha) + Q = 0 

where h is the unknown head in the aquifier, T is the transmissivity, K is the 
hydraulic conductivity in the aquitard overlying the leaky aquifier, b is the thick- 
ness of the aquitard, ha is the head in the aquitard, and Q represents internal 
sources or sinks. If the sources or sinks are all wells, then we can idealize them 
as points: 

Q = Xy"=, Qe 8(x - xp) . 
Here Q p  stands for the strength of the t-th source (negative for producing 
wells), and 6(x - xt) is the Dirac distribution centered at spatial position xt. 
The leakage term in ( I )  has the linear form proposed by Charbeneau and 
Street [ 2 ] .  

In the mixed finite-element method we factor Darcy's law from Eq. ( l ) ,  
giving a coupled set of first-order equations: 

u + T V h  = 0 (2a) 

K 
b -  

-V u - -(h - ha) + Q = 0 

where u is the superficial or Darcy velocity of the water. In typical boundary- 
value problems we solve Eqs. (2) on a bounded open set fl C IR2 subject to 
boundary data of the form 

,' 
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u(x) * u(x) = 0, x E dfl,v (36) 

h(x) = ha(x), x E do, * (3b) 

Thus the orientable boundary do, having unit outward normal vector u,  admits 
a decomposition dR, U dR, into no-flow and prescribed-head segments. 80, 
is a locus of points where normal fluid velocities vanish, while doD is the 
boundary segment along which heads are known. 

The boundary-value problem formed by Eqs. (2) and (3) has a variational 
form that underlies the finite-element approximations. Let L 2 ( 0 )  be the space 
of square-integrable functions on a, and define the trial spaces: 

V = {v E L*(Q) X L2(fl)IV v E L2(fl) andv - Y = Oon doN} 
being the space of vector-valued velocity trial functions, and 

w = {w  E L ~ ( Q )  I w = h, on XIz,} 
being the space of trial functions for the head. Observe that functions belonging 
to V not only obey the no-flux boundary conditions but also have divergences 
lying in L2(fl). This inclusion, which is a natural mathematical feature of the 
problem, must be preserved in discrete analogs to ensure good error estimates. 
The 1;ariational version of our boundary-value problem is a set of integral equa- 
tions obtained using the inner products (f, g) = fn fg dv and (f, g) = jn f * g dv: 
we seek u E V and h E W such that 

( T - * u  + Vh,v) = O for all v E v 

Integrating by parts and observing the boundary values of the trial functions 
gives 

(T-’u,v) - (h ,O * v) = -knDhv * v d s  for all v E V (4a) 

(v - u , w )  + ( $ h , w )  = ($ha + Q , w )  for all w E W .  (4b) 

Finite-element approximations to the boundary value problem given in 
Eqs. (2) and (3) are analogs of Eqs. (4) posed on finite-dimensional subspaces 
Vk and Wk of the trial spaces V and IV. In particular, we choose subspaces of 
piecewise polynomial interpolating functions on R. The index k therefore indi- 
cates the mesh of partitions for finite-element interpolation. 

To define the specific subspaces used in this paper, we need to introduce 
some notation. For simplicity let us choose fl to be a rectangle, fl = I X J, 
where I = (a, b)  and J = (c, d )  are open intervals in x and y, respectively. 
Consider partitions AT:  a = xo < - < x M  = b and A?:  c = yo < 6 * < 
yN = d of I and J having mesh: 

k = max{xi - x , - ] , y ,  - Y,-~}. 
I S i S M  
I s J S N  
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We define piecewise polynomial space MPq on a given partition h of any inter- 
val S to be the space of q-times continuously differentiable functions that, when 
restricted to a single interval in the partition, reduce to polynomials of degree 
not greater than p :  MP,(A) = {$ E Cq I $ is a polynomial of degree at most p on 
each subinterval of A}. Thus, for example, M!!, is a space of piecewise con- 
stant functions that may be discontinuous between subintervals, while MA is a 
space of continuous, piecewise linear functions. 

For our trial spaces, we choose tensor-product Raviart-Thomas [ 31 subspaces 
on the rectangle I X J .  In the lowest-degree case, we pick 

W k  = {Wk E M!1(Ax) @ M!l(A,) I W k  = ha O n  dflz,} 

VA = { v k  E [M,$,h,) @ M!l(A,)] X [M!I(Ax) @ MA(A,)] I V k  v = 0 on an,}. 
In this case our trial function for the head h will be piecewise constant in the x 
and y directions. The trial function for velocity u will have two components: 
the x-component will be piecewise linear and continuous in the x direction and 
piecewise constant with jump discontinuities in the y direction, while the y- 
component will be piecewise constant in x and piecewise linear in y. For the 
next highest degree of approximation we choose 

w k  = {wk E MLl(AJ @ M!l(A,) I wk = ha on dS2,} 

v k  = { V k  E [Mi(A,) @ M!l(Ay)] X [M!l(Ax) 0 Ms(A,)] I V k  ' U = O On dfiz,}. 

Notice that the degrees of the polynomials have increased by 1 over the first- 
order spaces, but the degrees of continuity remain the same. 

Having chosen our trial spaces, we derive finite-element analogs of Eqs. (4) 
by forming trial functions Lk E w k  and u k  E v k  whose values at the nodes 
(x,, y,) of the partition A, X A,, are unknown. To solve for these unknown coef- 
ficients, we impose the Galerkin criteria: 

_, 

( T - l Q .  v k )  - (hk, v ' v k )  = - h k v k  ' v d s  for all vk E v k  (5a) 

(5b) 

These equations are just finite-dimensional analogs of the variational equations 
derived earlier. 

In problems having pumped wells in fl the velocity field will possess poles 
of order one. Error estimates relying on smoothness in the approximated solu- 
tion fail near these singularities, and as a result many standard finite-element 
approximations to fluid velocity do not converge near wells. To avoid poor 
polynomial approximations near wells we modify the trial function for the ve- 
locity to accommodatr: the singularities. Hence, we decompose uL into a regular 
part and a singular part: ui = ur + ux. Since we know the strengths, locations, 
and local forms of the singularities, we can write 
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and therefore treat u, as known. In this case Eqs. ( 5 )  become 

and 

- (V * u,, wk) for all w k  E wk. 
Evaluating the integrals appearing in these equations leads to a, set of linear 
algebraic equations in the unknown nodal coefficients of Q, and h. 

111. THEORY 

As mentioned earlier, the class of methods just described has two advantages 
over traditional finite-element formulations: they retain high-order accuracy in 
the velocities by obviating differentiation, and they eliminate convergence 
difficulties near wells through the subtraction of singularities from trial func- 
tions. These advantages have their bases in theoretical error estimates. For the 
more traditional, straightforward projections of the variational analog of Eq. ( 1 )  
onto interpolating subspaces, fluid velocities must be computed from heads as 
u = -TTh. Standard approximation theory [4] reveals that a piecewise poly- 
nomial method furnishing O(k') approximations to h yields approximations to 
V h  that are only O(k'-') as k - 0. Thus improvements in the accuracy of u 
require greater refinement of the finite-element partition than comparable im- 
provements in the accuracy of h. In contrast, the mixed method suffers no such 
disparity. Douglas, Ewing, and Wheeler [ 5 ]  show that, in regions where the 
source term Q is smooth, the mixed method using the first- and second-order 
trial spaces described above has global error bounds of the form 

Ilu - ull2 5 M , k  

Ill; - hjlz 5s Mzk 

I IQ - u& 5 M3k' 

11,; - / I &  5 M,k' 

and 

respectively, where M I .  M 2 .  M 3 .  M ,  are constants for a given boundary value 
problem and 1 1 - 1 1 2  signifies the norm associated with the inner product ( * a * ) .  Thus 
refining the spatial partition in the mixed method yields comparable improve- 
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ments in both heads and velocities. As Douglas, Ewing, and Wheeler [ 5 ]  
demonstrate, however, the inclusion relationship between the divergence of the 
velocity trial space and the head trial space is an essential fact in deriving these 
error estimates. 

The error estimates have implications for problems involving nonhomoge- 
neous media. In standard formulations with spatially heterogeneous trans- 
missivitiss the calculation u = -TCh calls for the multiplication of a function, 
T, that may be rapidly varying for physical reasons, with another, V h ,  that may 
vary rapidly simply by virtue of its being the gradient of a spatially varying ap- 
proximation. Such a product of rapidly varying functions may be quite poorly 
behaved in numerical models. The mixed method avoids the numerical noise 
associated with differentiation of heads and therefore does not compound physi- 
cal fluctuations with artificial ones. 

Douglas, Ewing, and Wheeler [5] also give theoretical justification to the 
subtraction of singularities. In this case both the first- and second-order 
schemes give global error estimates of the form 

IIL - h112 I h!& l ~ g ( k - ' )  

where, again, M5 and M6 are constants for a given boundary-value problem. 
These estimates ensure that the velocities predicted by the mixed method will 
converge to the exact velocities near pumped wells when the trial function u 
explicitly incorporates simple poles at the wells. 

IV. COMPUTATIONAL EXAMPLE 

To illustrate the effectiveness of the mixed method we shall examine a simple 
numerical example. Consider the equation 

V'h - (h  - 1) + Q = 0 

on 112 = (0, 1) X (0, 1) with Q = 6(x - ( 1 ,  1))  and u + v = 0 on 8112. We 
shall examine various pressure and velocity solutions for this boundary- 
value problem. 

Before discussing the numerical results, however, it is worth reviewing our 
choice of bases for the trial spaces Vk and W,. For convenience let us tempo- 
rarily use the variable z to stand for either x or p, let the partition in the z -  
direction be A:: 2 0  < * - < z . ~ ,  and call AzA = z A  - z A -  = 1 ,  . . . , A .  
Define the functions {v,,);!~ = 1 as follows, If y is even, v, is the standard 
piecewise linear chapeau function having v,(zB) = 6,. If y is odd, say y = 
2h - 1, then v, is the piecewise quadratic gii Ln by 

- z A - 1 )  (ZA - Z ) / ( k ) ? ,  a? E [ = ) r - l ,  z,] 
V K - I  = {;!z othenvise 
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( 0 ,  otherwise 
I 

where C T ~ , ( T ~  are the Gauss points ( 1  2 V3-')/2 in the unit interval (0, 1). 
Then Mt = span { N ~ ~ ~ ,  w ~ ~ } ; = ~ .  With these definitions, we can form tensor- 
product bases for the spaces Wk and V, introduced in Section 11. 

Using these bases we can compute the matrix equation representing the dis- 
crete Galerkin approximation to the model problem, It happens that, while the 
matrix is sparse, positive-definite. and invertible, it is not particularly well 

FIG. 1 .  
32 elements on a side. 

Head distribution computed using first-order elements on a square grid having 
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FIG. 2. x-velocity distribution computed using first-order elements on a square grid 
having 32 elements on a side. 

conditioned. Ewing and Koebbe [6] describe an application of preconditioned 
conjugate-gradient techniques to overcome the poor conditioning and speed the 
iterative solution of the linear system. 

Figure 1 shows the pressure or head distribution over LR computed using the 
lowest degree (first-order) elements on a square grid having 32 elements on a 
side. Figure 2 shows the corresponding field for the x-component of water ve- 
locity. These solutions exhibit a logarithmic drawdown in head near the produc- 
ing well together with a concomitant pole in 11,. Figures 3 and 4 shows the head 
and x-velocity distributions computed for the same problem using the second- 
order trial space on a square grid having 16 elements on a side. Since the 
second-order method requires approximately twice as many degrees of free- 
dom per element in each coordinate direction, the number of nodal unknowns 
needed to generate Figures 3 and 4 is comparable to the number needed in 
Figures 1 and 2. The two pairs of plots are quite similar, as one might expect 
considering the panty in computational effort between the two cases. 

The method also performs well in problems with heterogeneous medium 
properties. Figure 5 .  for example, shows the x-velocity distribution that results 
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FIG. 3.  
having 16 elements on a side. 

Head distribution computed using second-order elements on a square grid 

when we use first-order elements and impose a nonuniform transmissivity hav- 
ing the form 

Thus T suffers a jump discontinuity along a line running diagonally through 
into the wellbore. The x-velocity away from the wellbore therefore remains 
small for y < x but increases rapidly toward the wellbore near the edge of the 
domain where y = 1. 

Figure 6 illustrates the x-velocity that results from using second-order ele- 
ments and a discontinuous aquitard head ha of the form 

The contour plot of u, in Figure 7 shows more clearly the radial flow dominant 
near the well and the “ridgeline” pattern prevailing away from the well. While 
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FIG. 4. 
having 16 elements on a side. . 

x-velocity distribution computed using second-order elements on a square grid 

heterogeneities of the forms given in Eqs. (7) and (8) are highly idealized, they 
provide simple yet relatively strenuous tests of the mixed method's ability to 
model problems with nonuniform material properties. 

V. CONCLUSIONS 

We have seen that the mixed finite-element method is an attractive approach 
for solving groundwater flow equations, especially in contaminant transport 
problems where accurate water velocities are paramount. The method gives 
velocities that have the same order of accuracy as heads, affording rapid error 
reductions on grid refinement compared with the traditional finite-element ap- 
proach. Further advantages accrue through the explicit incorporation of source 
and sink singularities in the trial functions for velocity. Here the improvement 
over traditional discrete methods is more dramatic: the mixed method with 
subtracted singularities converges at wells, while traditional schemes do not. 

, 
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FIG. 5 .  x-velocity distribution computed using first-order elements on a problem in 
which the transmissivity has a discontinuity along y = x .  

Finally, the mixed method gives good numerical results even in problems with 
rather severe heterogeneities in medium properties. 

This research is supported in part by Contract No. DAAG29-84-K-002 from the Army 
Research Office, by Grant No. CEE-8404266 from the National Science Foundation, 
and by a grant from the Wyoming Water Research Center. 
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FIG. 6. x-velocity distribution computed using second-order elements on a problem 
where the acquitard head ha has a discontinuity along x = 0.5. 
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A Finite Element Collocation Method 
for Variably Saturated Flows in 
Porous Media 
Myron B. Allen and Carolyn Murphy 
Department of Mathematics, University of Wyoming, Laramie; Wyoming 
82077 U.S.A. 

One common formulation of Richard’s equation for variably saturated flows in porous 
media treats pressure head as the principal unknown and moisture content as a constitu- 
tive variable. Numerical approximations to this “head-based’ formulation often exhibit 
mass-balance errors arising from inaccuracies in the temporal discretization. This article 
presents a finite-element collocation scheme using a mass-conserving formulation. The 
article also proposes a computable index of global mass balance. 

1. INTRODUCTION 

The ability to model water flows in variably saturated soils is importnt to 
several problems in water resources engineering, among them the prediction of 
water table contamination from sources at or near the earth’s surface. The par- 
tial differential equations governing such flows are difficult to solve owing to 
their nonlinearity, and it is generally necessary to use numerical techniques 
such as finite differences or finite elements to produce approximate solutions. 
However, even with numerical schemes there remain difficulties, notably the 
conservation of mass. Discrete analogs to some formulations of variably satu- 
rated flow fail to produce approximate solutions that respect the global mass 
balance law, even though the original differential equation is derived from this 
law. We introduce an approach to this problem using finite element collocation. 
The key to the success of this approach is the choice of a formulation of the 
flow equation whose temporal discretization is a differential form of the global 
mass balance for each time interval. Thus the only mass-balance errors in the 
numerical solution are those arising from the use of a nonzero convergence 
criterion in the iterations used to advance between time levels. The use of finite 
element collocation to discretize the space derivatives guarantees approxima- 
tions of high-order spatial accuracy while obviating the costs of integration and 
formal matrix assembly associated with other finite-element techniques. 

, 

II. SETTING OF THE PROBLEM 

The equation governing one-dimensional water flows in variably saturated 
soils has the form 111 

a [K(h)dh  - K ( h ) ]  = C ( h ) x  ah . 
ax ax 

Numerical Methods for Partial Differential Equations. 3, 229-239 (1985) 
0 1985 John Wiiey & Sons, Inc. CCC 0749- 159X/85/030229- 11$04.00 
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Here h stands for pressure head, measured in meters; K represents the hydraulic 
conductivity of the soil, measured in meters/second; and C is called the spe- 
cific moisture capacity of the soil, measured in meters-’. The specific moisture 
capacity C accounts for the variation in the soil’s dimensionless moisture con- 
tent 8 in response to changes in pressure head; specifically, C = do /&.  In 
practice one uses experimental data to quantify the constitutive relationships 
o(h) and K(h).  

Equation (1) casts the pressure head h as the dependent variable, leaving 8 
and K as nonlinear coefficients. As an alternative to this h-based formulation, 
we can pose the problem in terms of the moisture content 8 as follows: 

’ 

L 

Here K appears as a function of 8, and D = K d h / d 8  is the soil’s hydraulic 
diffusivity, measured in meters2/second. This is the 0-based formulation. 
Although Eq. (1) and (2) are equivalent by the chain rule. modelers prefer the 
h-based formulation in most practical problems, where spatial variations in 
soil properties and sharp gradients in 8 can lead to poor behavior in the 0-based 
formulation [2]. 

As a model problem we shall solve the initial-boundary value problem for 
variably saturated flow posed by Warrick et al. [3]. Let a soil column [0, 1.251 
have an initial water saturation described by 

0.15 + x/12, 0 < x 5 0.6 
0.6 < x < 1.25’ {O.?, 

e(.u, 0) = 

where x stands for depth in meters from the surface. Assume that the pressure 
head at the surface is atmospheric, that is 

(3b) h(0, t )  = -0.14495 , 

and that the pressure head gradient vanishes at the outflow, 

ah 
- (1.25, t )  = 0 .  
ax (3c) 

For the constitutive relationships K(h) and C(h) we use the functions measured 
by Warrick et al. [3], which in SI units are 

1.157 X 10-7(19.34 X 

1.157 x 10-’(516.8( 100h(-’ 97814), 

h 5 -0,29484 
h > -0.29484 

0.6829 - 0.09524 ln1100hl, [ 0.4531 - 0.02732 lr1100hl, 
h 5 -0.29484 
h > -0.29484 

{ K(h) = 

e(h) = 

Thus the prescribed atmospheric pressure head at x = 0 corresponds approxi- 
mately to a moisture content e(0, t )  = 0.38. 

The numerical solution of this problem using finite elements is not entirely 
straightforward. The nonlinearities in the h-based flow equation can lead to 
poor global mass balance and thus to unacceptable numerical approximations. 
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Van Genuchten [4] demonstrates this difficulty quite clearly by comparing sev- 
eral Galerkin approximations to Eq. (1) with the auxiliary data (3). Figure 1 
shows some of his results. Notice in particular that the wetting front in the solu- 
tion using a Hermite cubic trial function with two-point Gauss quadrature on 
each element (marked “2GP, 3LP* in Fig. 1)  lags the correct wetting front by a 
significant distance. This poor approximation apparently bodes ill for finite- 
element collocation on Hermite cubic spaces, since there is a direct algebraic 
correspondence between such collocation schemes and Galerkin’s method on 
Hermite cubics with two-point quadrature [5]. We shall examine the difficulties 
with collocation in the next section. 

Recognizing the importance of mass-balance errors, Milly [6] examines the 
effect of temporal discretization on the accuracy of the accumulation term 
C a h / &  in Eq. (1). He proposes a global mass-balance criterion of the form 

where $2 = [0, 1.251 is the spatial domain of the flow, At  is the discrete time 
interval, and n,n + 1 signify successive time levels. Milly attributes the mass 
balance errors plaguing various discrete analogs to failures to evaluate tine coef- 
ficient C(h)  in a way that reflects the average behavior of the soil over each 
time interval. He advances ;in iterative scheme for approximating C(h)  that 
leads to arbitrarily good mass balance in the sense of Eq. (4), given a sufficient 
number of iterations. 

MOISTURE CONTENT (cm3/crn31 

80 

I00 --- 2GP,  3LP 
SGP, 4LP --- --...- 4 G P  

0000 5 Lp (nod01 *ol 
120[, p ,   lo"^ 

FIG. 1.  Numerical moisture-content profiles ,:omputed from the h -based formulation 
using the Galerkin method on Hermite cubics with various quadrature schemes (from 
Reference [4]). 
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We propose a finite element collocation scheme for variably saturated flows 
that conserves mass by a somewhat simpler device. Before describing this 
scheme, however, let us examine in detail the difficulties that arise in the 
straightforward application of collocation approximation to Eq. ( 1). 

111. COLLOCATION USING THE h-BASED FORMULATION 

To construct a collocation approximation to Eq. ( l ) ,  we can follow an ap- 
proach that is analogous to Van Genuchten's [4]. Let us begin by discretizing 
Eq. (1) in time using an implicit Euler difference scheme: 

Here, as in Eq. (4), the superscripts n.n + 1 indicate successive time levels 
and At  is the time interval between them. This approximation imposes a trunca- 
tion error that is O ( A t ) .  

Since the coefficients K"+l ,  Cn+l depend on the unknown h"", it is necessary 
to use an iterative method to advance Eq. ( 5 )  from one time level to the next. 
We can effect a Newton-like iteration scheme as follows: 

(hn"3m + 6h) 
a aKnt1.m 

+ 6h) + -- K n + I . m -  a2 ( h n + l , m  

d X 2  ax ax - -  

In this scheme, the variable h"+'8m signifies the known approximation to the 
new pressure head h"+' at the rn-th iterative level; K"+'3m and Cn+l.m stand for 
K(h"tl,m) and C(h"+l*m), respectively, and the unknown 6h represents an in- 
crement that must be added to h"+l*m to produce an improved approximation 
h "+ * m+ . At each time level the iterative scheme begins with the initial value 
h"t l io  = h" and ends by assigning h"" = h"+l,"'+l when either the increment 
6h or the residual 

p n +  1 .  m+ I 

is sufficiently small. 
To construct a collocation analog of this discrete-time scheme, let us 

approximate the unknown 6h t-ly a piecewise Hermite cubic finite element 
representation: 

N 

I =  1 

In this equation H , , , ( x )  and h , . ; ( x )  are elements of the Hermite cubic basis 
for C '  polynomial interpolation on a partition of R, and 6, and 6,' stand for the 
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values of 6ĥ  and d(Sh^)/ax, respectively, at node i of the partition [7]. Once we 
'have solved for the coefficients {8,,6:}y=l in Eq. (7), we can compute a new 
iterative approximation to the pressure head in the obvious way: 

N 

p . m + l ( X )  = c [ ( j p  nl + s , )H, , , (x)  + ( h : n + l * m  + S r ' ) H , , , ( x > ] .  
I =  1 

There are several ways to represent the coefficients K and C. One approach 
that seems to produce well-behaved approximations is simply to interpolate be- 
tween the nodal values K(h, )  or C ( h , ) .  If we use linear interpolation, then the 
representations become 

N 

i =  1 

where {LI}:ll is the Lagrange basis for Co linear interpolation on the partition 
of LR [7]. 

If we substitute all of these finite element approximations into the discrete- 
time equation (6), there remains the task of solving for the 2N unknowns 
{S,, S,'}y=, . Since the boundary conditions translate to ho = h(0, t )  and h,; = 
dlz/a.u( 1.25, t ) ,  we know that SI = Sf; = 0. To solve for the remaining 2N - 2 
unknowns, we collocate the finite-element approximation to Eq. (6). That is, 
we force 

at 2N - 2 values Xk E a. Douglas and Dupont [5]  show that, if the finite ele- 
ment partition of LR is uniform, then the optimal collocation points are the 
Gauss points 

where A x  is the mesh of the partition. This scheme produces approximate solu- 
tions with a spatial error that is 0 ( A s 4 ) .  

Figure 2 shows the numerical pressure head profiles at two and nine hours 
using this scheme with A x  = 0.05, Ar = 240, and an iterative convergence 
criterion requiring that the maximum residual max{R"'1."''1(Xk)}~~~2 be less 
than 5.0 X 10-b/s. Figure 3 depicts the corresponding moisture content distri- 
butions at two and nine hours, computed from the constitutive relationship 
6(h) .  Observe that the wetting front at two hours lies at approximately x = 
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FIG. 2. 
ing finite-element collocation. 

Numerical pressure-head profiles computed from the h -based formulation us- 
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using finite-element collocation. 

Numerical moisture-content profiles computed from the h -based formulation 
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0.24, which is very close to that in Van Genuchten's solution in Figure 1 using 
Hermite cubics with two-point Gauss quadrature on each element. Thus the col- 
location method outlined above exhibits mass-balance errors similar to those of 
the Galerkin method with two-point quadrature, as we expected on the strength 
of the theoretical correspondence between the two methods. 

IV. AN ALTERNATIVE COLLOCATION SCHEME 

One can generate a mass-conserving collocation scheme by discretizing a dif- 
ferential equation derived directly from the global mass balance, Eq. (4), in the 
limit A t  + 0. This yields a governing equation of the form 

2 [K(h)'lh - K @ ) ]  = - ae (h)  
ax ax at 

L J 

provided the integrands in the global equation are continuous. Since the left 
side of this equation is exactly the same as the left side of the h-based formula- 
tion (Eq. ( l)) ,  while the right side is simliar to that appearing in the &based 
formulation (Eq. ( 3 ) ) ,  we might call Eq. (8) a hybrid formulation. 

Let us discretize Eq. (8) in a fashion analogous to our treatment of Eq. ( 1 ) .  
First, replace the time derivative by an implicit difference scheme having trun- 
cation error @ A t ) :  

Here 8f1+1, 8" stand for 8(Iz""), 8(h"),  respectively. Next, to accommodate the 
nonlinearities in K and 8, assume an iterative method of the form 

for updating the implicit coefficients from one time level to the next. Finally, 
project the unknowns 612 to Hermite cubic subspaces and the coefficients K and 
d8/dh = C to Lagrange linear subspaces as in Section 111 above. 

There remains the question of a finite-element representation of 8. We have 
found through numerical experimcnts that a Hermite cubic expansion of 8 gives 
superior results. To effect such a representation, we use the chain rule to com- 
pute the nodal gradients in 8: 

Then, using the finite element spatial discretizations together with the iterative 
time-stepping scheme in Eq. (9), we collocate at the 2N - 2 Gauss points as 
before to advance the iterations from one time level to the next. 
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Figure 4 shows the pressure head profiles at two and nine hours using the 
new scheme with the same Ax, At, and convergence criteria as used in produc- 

ing  Figure 2. Figure 5 displays the corresponding profiles for moisture content. 
Notice that the wetting front at two hours in this plot falls at about x = 0.30, 
which agrees with the location of the wetting front that Van Genuchten identi- 
fies as the correct solution in Figure 1.  Finite element collocation applied to the 
hybrid formulation in Eq. (8) apparently furnishes approximate solutions that 
more closely respect the balance of mass. 

It is useful in checking a coded algorithm for this type of problem to have a 
computable technique for checking global mass balance. For the collocation 
method presented in this section we can readily derive such a technique. We 
wish to verify at any time level that Eq. (4) holds to a good approximation. It 
happens that each of the integrals in this equation can be rapidly computed us- 
ing information that is already available from the collocation solution at each 
time step. Consider first the flux integral on thenright side ofAEq. (4). Since 

E C'(n) and K E Co(Ln), the differential flux ( K ( & / d x )  - K )  E Co(Ln) and 
hence the fundamental theorem of calculus yields 

j-;pg - K A)  dx = K(h,V) (h'h - 1) - K(h, )  ( h ;  - 1 ) .  

Now look at the accumulation integral on the left side of Eq. (4). This can be 
written as 

But the integrand in each term in this decomposition is a cubic function of x, 
and so two-point Gauss quadrature suffices for the exact calculation of these 
integrals. Since the Gauss points are precisely the collocation points, the com- 
putation of the accumulation integral reduces to a sum of previously com- 
puted values: 

where each F1 is a collocation point. 

tegral to the flux integral: 
Now we can define a mass balance index as the ratio of the accumulation in- 

For a perfectly conservative numerical scheme IMue = 1. For real schemes. 
however, the necessity of stopping the time-stepping procedure after a finite 
number of iterations will generally prohibit an exact mass balance. Figure 6 ex- 
hibits ranges of values of IMB computed from the hybrid collocation scheme us- 
ing several spatial meshes Ax. The plots show that the new formulation gives 
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FIG. 4. 
finite-element collocation. 

Numerical pressure-head profiles computed from the hybrid formulation using 
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Numerical moisture-content profiles computed from the hybrid formulation 
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reasonable global mass balances that improve upon refinement of the spatial 
partition. These results corroborate the good agreement between the profiles 
shown in Figure 5 and Van Genuchten’s “correct solutions” plotted in Figure 1. 

V. CONCLUSIONS 

The collocation scheme presented here gives numerical solutions to the vari- 
ably saturated flow equation that enjoy high-order spatial accuracy and stand in 
quantifiable agreement with the principle of global mass balance. The choice of 
a hybrid formulation incorporating features of both the h-based and &based 
flow equations proves instrumental in forcing mass conservation. since this for- 
mulation is directly descended from the global mass balance criterion. The di- 
rect projection of the accumulation term M / d t  onto Hermite cubic interpolation 
polynomials avoids the delicate problem of choosing representative values for 
the time-varying coefficient that arises on applying the chain rule to this term. 
When one imposes an iterative time-stepping scheme upon this hybrid form in 
conjunction with finite element collocation, the individual collocation equations 
drive the mass-balance error at each collocation point toward zero as the itera- 
tions proceed. 

The authors thank the Wyoming Water Research Center and the National Science 
Foundation (grant number CEE 8404266) for their support of this work. 
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A COLLOCATION MODEL OF TWO-DIMENSIONAL 
UNSATURATED FLOW 
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ABSTRACT 
This paper introduces a numerical scheme for solving the equation gov- 
erning two-dimensional flow in a variably saturated porous medium. 
The scheme uses a mass-conserving time-stepping method together with 
a computationally efficient collocation formulation of the spatial deriva- 
tives. A Newton-like iteration gives a temporally stable implicit scheme. 
The paper examines a sample problem involving subsurface irrigation 
in the unsaturated zone. 

INTRODUCTION 
This paper presents a new numerical scheme for simulating variably 
saturated flows in two space dimensions. The scheme, based on finite- 
element collocation, is an extension of a one-dimensional formulation 
presented earlier (Allen and Murphy, 1985). In that paper we discussed 
some of the computational advantages of collocation and examined the 
issue of mass conservation that arises in many numerical approaches to 
variably saturated flows. 

The equation we solve is 

-0 V - [K(Vh  - e,)] - - - ae 
at 

where, in two dimensions, V = (a/&, a/&) with z measuring distance 
above some datum, and e, is the unit vector in the x-direction. In this 
equation, h(z ,z , t )  is the pressure head (m), K stands for the soil’s 
hydraulic conductivity (m/s), and 8 signifies the moisture content of 
the soil (dimensionless). Typically, the physics of variably saturated 
flows dictate that K and 8 vary with h, and the relationships K(h)  and 
B(h) make Equation (1) nonlinear. Murphy (1985) gives a derivation of 
this equation. 



In the following section we discuss a finite-element formulation of 
Equation (1) incorporating iterative time-stepping to accommodate the 
nonlinearity. Then we describe a collocation scheme for obtaining alge- 
braic analogs to the differential equation and review an application to 
a sample problem. 

FINITE-ELEMENT FORMULATION 
Our first task in numerically solving two-dimensional unsaturated flows 
is to discretize the governing equation (1). To do this, we first expand 
the spatial derivatives using the product rule and use a backward Eu- 
ler difference scheme to approximate the time derivative on a uniform 
temporal grid 0 < At < 2At < . * .  < nAt < -: 

This equation furnishes an implicit time-stepping scheme for the ap- 
proximate pressure head hn(z, z )  = h(z ,  z ,  nAt) ,  which we regard as 
the principal unknown. 

To solve Equation (2) we must accommodate the dependence of 
the nonlinear functions Kn+l = K(hn+'), On+' = 0(hn+') on unknown 
values hn+' of the pressure head. To do this, we use an iterative method 
to advance between time levels, solving for iterative increments 6h = 
hn+l!m+l - hn+lpm to progress from the known iteration m to the next 
unknown iteration m + 1. This scheme allows us to lag the nonlinear 
coefficients by an iteration in solving for 6h: 

where the expression 

plays a role analogous to that of the residual in standard Newton- 
Raphson schemes. In executing the iterative method, we begin each 
time step by setting hn+ljo = hn and stop the iteration, setting 



hn+l)m+l - - hn+l, when llRn+lsmlloo < E for some prescribed toler- 
ance e > 0. 

The formulation leading to Equation (3) differs from standard 
head-based formulations, which typically use the chain rule to expand 
the accumulation term as iM/at = (dB/dh)ah/dt. Such an expansion 
calls for the evaluation of the specific moisture capacity at some 
time level in the interval [nAt , (n  + l)At] in the temporally discrete 
approximation. There seems to be no simple (noniterative) way of 
choosing this time level to guarantee global mass conservation in the 
sense 

1 
At 

(Kn+lVhn+l - Kn+le,) - ndx  = - /,($"f' - en) dx 

where R represents the spatial domain of the problem and n is the unit 
outward normal vector to the boundary dS2. As discussed in (Allen and 
Murphy, 1985), discretizing the flow equation as in Equation (3) avoids 
this difficulty, enforcing global mass conservation to within the iterative 
convergence criterion at each time step. 

To discretize Equation (3) in space, weproject the spatially varying 
quantities hnPm (5, x ) ,  Pm (5 ,  z ) ,  Kntm (2, 2) and denSm/dh onto finite- 
element subspaces. In particular, we select for the principal unknown 
hntm(z, z) trial spaces spanned by tensor products of piecewise cubic 
Hermite interpolating functions in the 2- and z-directions. Thus, for 
a rectangular region R, we adopt a two-dimensional grid {ZO < x1 < 
- - *  < ZM} x (20 < z1 < *.. < x ~ }  with nodes (denoted x;) at the 
points (zj,zk) and, for x E n, set 

N 

i= 1 

+ $"' CpOli(X) + 61""' 'Pll i(X)] (4) 

Here 6i,  sf"', sf"), and bjzz )  represent approximate values of 6h, 
a(bh) /dx ,  d ( 6 h ) / a z ,  a z ( 6 h ) / a z d z ,  respectively, at the node xi. The 
basis functions (poo;, plo;, (pol;, and ~ 1 1 ;  are tensor products of the 
one-dimensional Hermite basis functions (Prenter, 1976, Chapter 3 ) :  
pppi(x) = H p ; ( x )  H&), where Hoi is the one-dimensional basis func- 
tion associated with the oodal value of the interpolate, and HI; is as- 
sociated with its nodal slope. 

The projection (4) furnishes a continuously differentiable interpo- 
lation scheme for the iterative increment S& in which the nodal param- 
eters are unknown except where given by boundary data. The head h 



inherits this interpolation scheme according to the updating rule 

Therefore, given initial and boundary data for k ,  one can use Equa- 
tion (3) to solve for 6k at each iteration, updating f to step forward in 
time . 

We also let the moisture content 0 have a Hermite cubic expansion, 
using the chain rule to express spatial derivatives of 0 in terms of the 
nodal unknowns hi2),  hi"), and h,!ZZ): 

This C projection of 0 parallels the successful one-dimensional calcu- 
lations reported in (Allen and Murphy, 1985). 

Finally, for the coefficients K and d8 /dh  in Equation ( 3 )  we adopt 
piecewise bilinear approximations: 

N 
K(x) = C K(hi) Li(x) L ~ ( z )  

i= 1 

where L; is just the one-dimensional piecewise linear Lagrange (cha- 
peau) basis function associated with node i. 

Substituting all of these finite-element projections into Equation (3) 
yields a temporally discrete scheme with a finite number of unknown 
nodal degrees of freedom hi at each time step. 

COLLOCATION SOLUTION SCHEME 
To determine the nodal values of bk and therefore advance the head h in 
time, we need a set of algebraic equations at each iterative step. Some 
of these equations come from boundary conditions; the rest we will 



construct using finite-element collocation. Let us begin by reviewing 
the boundary conditions. 

By using the tensor-product basis defined above we have tacitly 
oriented the computational boundaries parallel to the coordinate axes. 
For nonrectangular domains, we would isoparametrically transform the 
(z,y)-plane to a plane endowed with a deformed coordinate system as 
described in Pinder et al. (1978). In the untransformed system, the 
unit normal vector n and unit tangent vector r to the boundary will be 
ke, or f e z ,  depending on the position along the boundary. Suppose x; 
is a Dirichlet node. Then b+'(xi) = h;+' is a fixed, known quantity 
and therefore Si = 0. Moreover, we can differentiate the boundary 
data tangentially along the Dirichlet boundary do, to deduce ;.xed 
values for Vkn+l - 2 ,  thus forcing biz )  = 0 if r = *ez and S/*) = 0 if 
7 = ke,.  Similarly, if x; is a Neumann node, then Vfin+'(xi) is a fixed, 
known quantity, forcing = 0 if n = ke, and bjz)  = 0 if n = &ex. 
Differentiating the boundary data tangentially in this case will give fixed 
values for V(Vhn+' n) -2 along the Neumann boundary d n ~ ,  forcing 

= 0. Therefore at any boundary node within a boundary line 
segment the boundary data determine two nodal parameters. At corner 
nodes the boundary data along the intersecting boundary segments will 
combine to determine three nodal parameters. 

To determine the remaining boundary and interior nodal param- 
eters, we collocate the finite-element approximation to Equation (3) 
at a set of collocation points Xk E 0. This yields a system of h e a r  
equations each having the form 

where k represents the expression obtained by substituting the appro- 
priate interpolatory projections for the spatially varying quantities in 
the residual R. 

We choose for the collocation points the Gauss points associ- 
ated with four-point quadrature on each rectangular element [xp, xp+l] 
x [zp, zq+l] (Pinder et al., 1978). This choice of collocation points fur- 
nishes exactly the right number of additional equations for the remain- 
ing unknown nodal parameters and gives the best possible accuracy 
estimates for the linearized problem at each time step (Prenter and 
Russell, 1976). 



SAMPLE PROBLEM 
To show the effectiveness of our collocation scheme, we solve a sample 
problem similar to one solved by van Genuchten (1983) using a Galerkin 
procedure on Hermite bicubics. This problem describes water infiltrat- 
ing from a source located 0.15m below the soil surface. The governing 
differential equation is 

do 
at V [ K ( V h  - e,)] - - + Q = 0 

where Q is the water source, measured in s-'. The spatial domain of 
the problem is R = (0,0.61m) x (-3.5m,0). We assume that the left 
side {O} x (-3.5m,O) and right side (0.61m) x (-3.5m,0) are lines of 
symmetry with no normal flux, that the bottom (0,0.61m) x {-3.5m) 
is a free-draining boundary, and that the soil surface (0,0.61m) x (0) 
remains at atmospheric pressure. These assumptions lead to the bound- 
ary conditions 

d h  dh 
- (0,  x ,  t )  = - (0.61m, z, t )  = 0 ,  dX dX -3.5m < z < 0, t > 0 

dh 
- (5 ,  -3.5m,t) = 0 ,  
dz 

h(x,O,t) = -0.14495m, 

0 < x < 0.61m, t > 0 

0 < z < 0.61m, t > 0 

We impose the initial condition h(x,O) = -0.387m, x E R. For the 
material properties K and 8 we assume the same functional forms as 
van Genuchten, which in SI units are 

K ( h )  = (1.157 x 10-')[96.768exp(l2.58h)]m/s, 
6(h) = 0.10 + 0.40/[1+ 0.0025(100h)2]'/2, 

h 5 0 

h 5 0 

We assume a point source of the form Q(x) = Q&r - O)S(z + 
0.15m) with a source strength QO = 5 x 10-5s-1. In finite-element 
collocation we must approximate Q by a square-integrable function. 
We choose a piecewise bilinear approximation of the form Q(x) = 
EL, Qi L;(z) Li(z ) ,  where the point xQource = (0, -0.15m) is a node, 
Q i  = 0 if xi # ~ 7 o u r c e  , and sn Q dx = sn Q dx. 

We solve the resulting collocation equations on the five-element-by- 
eleven-element grid given in (van Genuchten, 1983) using a time step 
At = 3600s (one hour). Figure 1 shows the structure of the matrix 
that has to be inverted at each iteration in the nonlinear time-stepping 
procedure. The bandwidth for this matrix is 31. We use a direct solver 
executing LU factorization with partial pivoting on banded asymmetric 
matrices. 



Figure 1. Matrix structure for 
the sample problem. 

Figures 2 through 7 show the spatial variation of L(x, t )  at two-hour 
intervals. At two hours (Figure 2), the source already has a noticeable 
effect on the pressure head. In the horizontal direction peaks at 
the source, drops off, and then levels out. In the vertical direction 
the pressure head gradually increases further down into the column as 
time progresses. Finally, at t = 12 hours (Figure 7) reaches a very 
close approximation to the steady-state solution in the sense that this 
solution is virtually identical to solutions at later times. 

CONCLUSION 
The finite-element collocation method produces good approximations to 
pressure head distributions in unsaturated flows through porous media. 
As we have shown, the mass-conserving iterative formulation, demon- 
strated earlier for one-dimensional flows, extends in a natural way to 
two space dimensions. One area deserving further investigation is the 
linear algebra involved at each iterative stage. Since the matrices for the 
multidimensional problems have an asymmetric block structure with- 
out diagonal dominance, better methods for solving the linear iterative 
systems would be a boon to further applications. 
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Pressure head solution 
at 2 hours. 

Figure 3. Pressure head 
at 4 hours. 
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Figure 6. 

Pressure head solution 
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