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Asstract:  The linear form of the Muskingum model has been widely applied
to river flood routing. However, a nonlinear relationship between storage and
discharge exists in most actual river systems, making the use of the linear model
inappropriate. In this paper, a nonlincar Muskingum model is solved using the
state variable modeling technique. Various curve fitting techniques are em-
ployed for the calibration of model parameters, and their performances within
the model are compared. Both linear and nonlincar models are applied to an
example with pronounced nonlinearity between storage and discharge. The re-
sults show that the nonlinear Muskingum model is superior to the linear one.

INTRODUCTION .

It is well-recognized by hydrologists and water resource engineers that
river {lood routing models have a wide spectrum of sophistication. The
Muskingum method (15), which represents a linear reservoir concept, is
an example of the simplest form. The full-scale dynamic wave model
(the Saint-Venant Equations) (8) is an example of the most sophisticated
form. The amount of time and effort required to implement, calibrate,
and solve the selecled model increases with the degree of model so-
phistication. Although a sophisticated model usually provides more ac-
curate resulls, its use is justified only when there are sufficient data of
good quality available. Thus, a tradeoff must be made in the selection
of a flood routing model based upon the quality of given data, the social
. or economic importance of the project, the fiscal constraints, and the
safety requirements. S o

Because of its simplicity, among the many models used for flood rout-
ing in natural channels and rivers, the Muskingum model las been one
of the most frequently used tools. The most common form of the Mus-
kingum model (herein referred to as the linear Muskingum model) is

Si=Klxh + (1= X) Ol eevrininiieiniiiei (1)

in which S, = the absolute channel storage at time ¢; I, and O, = the
rates of inflow and outflow at time ¢, respectively; K = the storage time
constant for the river reach, which has a value reasonably close to the
flow travel time within the river reach; and x = a weighting factor vary-
ing between 0 and 0.5. Strupczewski and Kundzewicz (31) have recently
shown that the theoretical values of x range from —o to 0.5. To perform
channel flood routing, Eq. 1 is solved in conjunction with the continuity
equation
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in which S, = the time rate of change of channel storage at time . The
~ numerical solution of Eqs. 1 and 2 results in the well-known Muskingum

routing equation as

O,:COI,+C)I,_..|+C20171 N (3)

in which C,, C;, and C, = coefficients that are functions of K, x, and
discretized lime interval At; Cy, + C; + C;, = 1.

After the introduction of the linear Muskingum model, there have been
a significant number of studies done both on the model and the impli-
cations involved in its use (2,9-10,11,13,14,22-25,31,32,34). The appli-
cation of the Muskingum model basically involves two steps: calibration
and prediction. The calibration procedure, in essence, is centered on model
parameter identification using historical inflow-outflow data. Conven-
tionally, parameters K and x in the linear model are graphically esti-
mated by a trial and error procedure, which is subjective and inefficient,
Several methods utilizing curve-fitting techniques such as least squares,
linear programming, and other statistical methods were recently pro-
posed to enhance the efficiency of the calibration procedure (9,19,29,30).
Finally, prediction with the model is simply a straightforward applica-
tion of the routing equation given by Eq. 3.

In natural channel reaches, it is not uncommon to observe a nonlinear
storage-discharge relationship as opposed lo a linear one assumed by
Eq. 1. Under such circumstances, the use of the linear Muskingum model
could result in signiflicant error in the prediction of flood levels. There
have been several methods proposed to address this nonlinear behavior
by considering the values of K and x, in the linear model, to vary both
with respect to time and space (13,26,27). Napiorkowski, et al. (22) re-
cently derived a lumped nonlinear slate model from hydrodynamics.
The linearization of the resulting model was found to be equivalent to
the linear Muskingum model. Their physical-based approach yields
functional relationships between model parameters and hydrodynamic
characteristics of the system.

Alternatively, the formulation of the linear model can be modified to

account for nonlinearily by writing .
Si=alxl +H (L =x)O0" o . 49)

in which « and m = constants. Eq. 4, as compared with Eq. 1, has more
degrees of freedom, which presumably would yicld a closer fit to the
nonlinear relation between storage and discharge. However, because of
the presence of nonlincarily in the equalion, the calibration procedure
becomes more complicated. Furthermore, the rouling procedures for flood
prediction will no longer be as straightforward as those for using the
linear model. Nonlinear forms of the Muskingum models such as Eq. 4
and others can be found in hydrology texts. However, with the excep-
tion of Gill’s recent works (9), the solution procedures for such nonlinear
models have never been mentioned or developed. The rouling tech-
nique, proposed by Gill, for solving Eq. 4 requires a trial and error so-
lution of a system of nonlinear equations at each time step. The tech-
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nique, could be very lime consuming if several time steps are involved.

In this paper, a rouling technique is proposed for the nonlinear model
expressed by Eq. 4 using the concept of state variable modeling. By tak-
ing advantage of this concept, the trial and error procedure to obtain a
solution is eliminated. Three techniques for parameter estimations are
employed and their performances are compared.

STATE VARIABLE MODELING CONCEPT

The concept of state variable modeling was developed primarily to
analyze automatic control systems in the field of electrical engineering
(3). 1t is capable of describing systems which are linear or nonlinear,
time-variant or time-invariant, deterministic or stochastic, while having
multiple inputs and outputs at the same time (18). For a system to be
solvable by the state variable modeling analysis, it must be lumped. In
other words, a system must be represented in only one dimension such
as time or space and must be describable by ordinary differential or dif-
ference equations. Water resource systems are usually distributed, but
they can be approximated by dividing the enlire system into subsys-
tems, which may be individually treated as a lumped system. Also, water
resource systems are dynamic in nature with the inputs, outputs, and
throughputs varying with respect to lime.

State variable modeling follows the “modern system’ theory in which
the input space is first related to the state space through the state equa-
tion (Fig. 1). Then the state space, and in some cases in input space, is
related to the output space through the output equation. The state equa-
tion is used to describe the change in the state of system with respect
to time in response to various inputs. The output equation is used to
relate the oulput to the state of the system and, in some cases, to the
inputs. In state variable modeling, the system structure is given explicit
representalion as a state vector X, where X = (X,, X,, ... X,,) and the
state variables X,, X,, ..., X, are functions of time or space, or both.

In water resources systems, the state variables are usually expressed
in volumetric or mass units and can represent, e.g., the volume of water
or the amounts of pollutant contained in various parts of the system.
The input and output variables commonly correspond to volume or mass
flow rates, which may be rainfall intensity or rate of discharge of pol-
lutant. The stale of a system is a measure of the level of activity in each
of its components and can be thought of as the interface between the
past and the future of the state of the system.

The stale variable model for continuous time can be formulated as
follows

State OQutput
Equation Equation
Pag
\\ P
rd
N = e - e = — -

FIG. 1.—Modern Approach to Dynamic System Modeling
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Eq. 7 and the continuity equation, Eq. 2, the state equation can be ex-
pressed as ’ '

B ' 1/m 1 7 o
S = —(1 1.7(‘) (%) + (I:) Licooiviaiiin, RECERRRTERTRRRRERTE 8)

where the state variable for the system is the channel storage and the
input is the inflow at the upstream end of the channel reach.

Once the state variable model is formulated, the output from the sys-
tem can be obtained by solving the state equation and the output equa-
tion recursively. Although water resource systems actually operate con-
tinuously in lime, the data are usually analyzed using discrete-time
intervals. The solution procedure for the discrete-time state variable
nonlinear Muskingum model, thus, involves the following five steps:

Step 1.—The inflow hydrograph to the channel reach is discretized into

)—.(' = g' + §—U' """""""""""""""""""""""""" S) : several lime stages where time intervals need not be eq_ual.
= ' ' Step 2.—From the initial state of system storage, 5y, and initial inflow
and X e U v © rate to the channel reach, 1;, the time rate of change of storage

in which Eqs. 5 and 6 are the state equation and output equation, re-
spectively; X, = dX,/dt = the time rate of change of the slate vector; U,
= the input vector; Y, = the output vector; and A, B, C, and D = ma-
trices that can be constant or functions of time or space, or both. The
system representation given by Eqs. 5 and 6 is shown schematically in
Fig. 2. The time rate of change of the system state, X,, is formed as the
sum of modified inputs, BU,, and the modified current state, AX, . Also,
the state feedback has a major role in determining the future behavior
of the system. The rate of change of the state vector, X,, is continuously
integrated with the current state to produce the new state. The output,
Y,, is formed by summing the new state which has been scaled by ma-
trix C with a direct contribution from modified input, DU, . These fea-
tures of state variable modeling make it particularly atiractive because,
once the system parameters are identified, the only requirements for a
solution are the inilial conditions of the system and the input to the
system. ' ‘ HE] ISolve for outflow 0, by Eq.(7)
There have been a number of applications of state variable modeling -
concepts to wastewater treatment water qualily control (6,36), operation

Given inflow hydrograph lt=] N
and initial storage S] ’oe

[Solve for St by Eq.(8)

of hydroelectric power stations (5), rainfall-runoff process modeling ‘ Compute storage at next time instant,
(4,21,33), reservoir operation (17), and flow rouling in storm sewers and . S = 5.45..4¢t by £q. (9)
channels (1,20,22). tH Tt )
STATE VARIABLE FORMULATION FOR NONLINEAR MuskinguM MoDEL : ) >
\wRoutl ng
The derivation of the state variable formulation for the nonlinear Mus- No
kingum model, Eq. 4, is straightforward. By rearranging and manipu-
lating Eq. 4, the rate of outflow at time f, O,, can be expressed in terms Yes
of channel storage, S,, and inflow rate, 1,, as
: 1 \/s\" x
O( = - - l' ................................. (7)
1 -x/\a I-x FIG. 3.—Flow Chart for Discrete Time-State Varlable Model for Nonlinear Mus-

Eq. 7 forms an output equation in the state variable model. Combining kingum Routing
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volume in the channel reach at the initial state, 5l , can be eval—
uated by the state equallon Eq. 8.

Step 3.—The state of the system, i.e., channel storage, at the next time
stage, S,, is estimated or approximaled as

Sy m S S Al e )

Step 4.—The magnitude of the outflow rate at the current stage can then
be calculated by solving the oulput equation, Eq. 7, using cur-
rent values of inflow rate and channel storage at the same slage.

Step 5.—Using current information on inflow and channel storage, Steps
2-4 are repeated recursively until the last stage is reached.

A flow chart for the above algorithm is shown in Fig. 3.

PARAMETER EsSTIMATION

The nonlinear Muskingum model considered in this paper consists of
three parameters, «, x, and m, which are to be estimated from observed
stream flow data. Gill (9) proposed a three-point estimation technique
involving the solution of a system of simultaneous nonlinear equations
at each time point. The selection of these three points for parameter
estimation is arbitrary and is left to the judgment of the individual an-
alyst. In this paper, three parameter estimation techniques are employed
to minimize the sum of the squares of deviations belween observed
channel storage and computed channel storage over the total data points,

i.e.

Minimize F = Z (St = S (10)

a,x,m

or, equivalently

n
Minimize F= > (S, = alxli+ (1 = x) O P o oeeiieniiiiiinnn. (11)
a,x,m =1
in which §, = the observed channel storage at time f, which can be cal-
culated from given historical inflow and outflow hydrographs selected
for calibration; and $, = the computed channel storage determined by
the nonlinear Muskingum model.

Hooke-Jeeves Pattern Search in Conjunction with Linear Regression
(H] + LR).—The nonlinear Muskingum model considered herein can be
reduced to a linear form if the value of the weighting factor, x, is known
or assumed. In other words, the nonlinear Muskingum model can be
expressed (via logarithms) as :

InS)=In(@)+m-In[x*L + 1 -x%0] .......... (12)

in which a weighting factor x takes as assumed value x*. If the value of
x is given or assumed, the logarithms of channel storage and weighted
flow have a linear relationships. Under such circumstances, the param-
eter values for @ dnd m can be estimated by using the simple linear
regression technique. By using this technique, the values of a and m
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|Start|

Given initial parameter values

( Ags Xy2 mo)

Apply simple regression, or conjugate gradient,
or Davidon-Fletcher-Powell techniques to
estimate o and m so as to minimize F in Eq. (11)

Convergence Yes

criteria or stopping rules
satisfied?

Apply HJ pattern search to deter-
mine a new x value

FIG. 4.—Flow Chart of Parameter Estimation for Nonlinear Muskingum Model

wotuld minimize the sum of the square of deviations between observed
and computed channel storages, based on a given value of weighting
factor x*, Since the weighting factor x itself is an unknown parameter,
the values of all three parameters can be estimated by using a combi-
nation of direct search techniques and simple linear regression (LR). The
scheme employed herein for identifying the value of x is called the pat-
tern search technique developed by Hooke and Jeeves (12). The tech-
nique, coded herein as (HJ), is based on the philosophy that any set of
moves that have been successful in improving objective function values
in early trials will be worth repeating. The entire methodology for pa-
rameter estimation involves sequential applications of this (H] + LR)
method in an iterative manner. The flow chart of the (H] + LR) algo-
rithm is shown in Fig. 4.

The HJ method starts cautiously with short excursions from a starting
point. Then, the step sizes grow with each repeated success. Subsequent
failure indicates that shorter step sizes are in order. If a change in di-
rection is required, the technique will start over again with a new pat-
tern. In the vicinity of the peak or valley of the response surface, the
step sizes become very small to avoid overlooking any promising direc-
tions. The technique has been applied by Tung and Mays (33) to identify
parameters in a nonlinear hydrologic system model proposed by Prasad
(28).

Hooke-Jeeve Pattern Search in Conjunction with Conjugate Gradient
Method (HJ + CG).—The optimal estimation of unknown parameters in
the nonlinear Muskingum model can also be derived by solving the ob-
jective function, Eq. 11, with an unconstrained optimization technique
or a combination of direct search and unconstrained optimization. Sim-
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ilar to the previous method described, the JH direct search technique is
employed to estimate the value of weighting factor x. Two uncon-
strained optimization schemes, i.e., the conjugate gradient (CG) and
Davidon-Fletcher-Powell (DFP) methods, are applied to estimate the value
of a and m. The descriptions of DFP are presented in the next section.

Applications of the two unconstrained optimization techniques require
computation of the gradients of the objective function with respect to
unknown parameters under estimation. The gradient of the objective
function with respect to « and m, for a given value of x* determined by
the HJ] method, can be expressed as

oF 5
£=_22““““W+ﬂ—xﬁam1fn+u—fnwm: ..... (13)
()F n _ ’
—=-2 ,21 {Si = alx*I + (1 - x)O"HIx* I, + (1 — x*) O,]"}

N o A S Vo ) R (14)

The terms aF/da and aF/dm form the two elements of the gradient
vector G = (dF/da, 8F/3m). The gradient will be evaluated and serve as
the basis for determining the new direction vector, along which the search
for optimalty is pursued. The Fletcher-Reeves algorithm (7) of the CG
method starts with any initial values for unknown parameters, Z, =
(e, ,my) and continues with iteration index k = 1 as follows: -

Step 1.—}'[;)vnluale the gratient, G;, and set the vector of search direction,
Di = =G4
Step 2.—Minimize F (Z; + B:D,) with respect to #; = 0 to obtain the
_next starting point, Z;,; = Z; + B¥D,, in which B} = the value
of the step size that minimizes the objective function value along
the direction defined by D,.
Step 3.—Evaluate the gradient, G,,,, at the new starting point, Z;,,,
and redefine the direction vector as

Dk.{q = "ka| + 'kak .......................................... (15)
in which vy = SlaGon (16)
Gi Gy

where the prime indicates the transpose of the vector.

Step 4.—Go to Step 2 until convergence criteria or stopping rules are
satisfied. Useful stopping rules that are commonly used in search
techniques for preventing excessive computations are the spec-
ification of a maximum number of iterations and step size re-
ductions.

Descriptions of the CG method are given by Luenberger (16).

The basic structure of the (H] + CG) method for parameter estimation
is very similar to the (H] + LR) method. As previously described, the
only difference is between the two methods employed to estimate pa-
rameters and m.

Hooke-Jeeves Pattern Search in Conjunction with the Davidon-Fletcher-
Powell Method (HJ + DFP).—Similar to the two previous methods, (HJ
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' gkn = __S'_k"

+ LR) and (H] + CG), this technique for estimating a and m is called

the Davidon-Fletcher-Powell (DFP) method. The DFP method is a quasi-
Newton method that simultaneously generates the search direction while
constructing and updaling the inverse of the Hessian matrix. The pro-
cedure of the DFP method is as follows: :

Step 1.—Select any symmetric posilive matrix S and initial point Z;, then
begin the iterations with index k = 1. ; .

Step 2.—Set search direction Dy = —5:Gy .

Step 3.—Minimize F (Z; + B¢D)) with respect to B, = 0 to obtain Zy,,,
P, = BEDy, and Gy, -

Step 4.—Set Q, = Gy, — G, and updating matrix :_E} as

PP 5QQiS
PQ  QSQ

Step 5.—Check with convergence criteria and stopping rules before re-
turning to Step 2.

..................................

Again, for descriptions of the DFP method readers are referred to Luen-
berger (16). \ '

APPLICATIONS

The nonlinear Muskingum model, Eq. 4, is applied to channel flood
rouling using an example from Wilson (35). The state variable modeling
technique is used as a tool for performing flood routing. Parameter es-
timalion techniques previously described are used and their perfor-
mance in calibration are compared. The reasons for selecting this ex-
ample for demonstration are twofold: (1) The example presents a
pronounced nonlinearity between weighted flow and storage volume;
and (2) the example has been studied previously for testing the different
rouling methodologies developed by Gill (9). Therefore, the perfor-
mance of parameter estimation procedures proposed herein can be com-
pared with Gill’s previous study. '

The observed inflow and outflow hydrographs for the example are
tabulated in Cols. 2 and 3 of Table 1 and are also shown in Figs. 5(a-b).
The parameter values in Eq. 4 estimated by different techniques are given
in Table 2. For purpose of comparison, the parameter values in the linear
Muskingum model, as derived by Gill (9) using the least squares method,
are also presented in the last row of Table 2. The estimated value of
weighting factor, x, differs very little among the various methods, but
the values of a and m vary quite significantly. Finally, the two methods,
(J11 + CG) and (11} + DFP), produce almost identical resulis.

To evaluate the performance of different parameter eslimation tech-
niques in the calibration process, the inflow hydrograph is routed to
produce a computed outflow hydrograph for a given parameter set. Then,
the computed and observed outflow hydrographs are compared and their
deviations are calculated. The computed outflow hydrographs obtained
by the state variable modeling of the nonlinear Muskingum model using
different parameter values are tabulated in Cols. 4-7 of Table 1 and are
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*Least square method is used.
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plotted in Fig. 5. Col. 8 is obtained by solving the linear Muskingum
model with the conventional method. In Table 2, the computed outflow
hydrograph in Col. 7 is derived by the state variable modeling technique
with the parameter values estimated by Gill (9) because the computed
outflow hydrograph was not directly available in Gill's paper for com-
parison. :

Two criteria are used herein for evaluating the performance of differ-
ent parameter estimation techniques and models: (1) The sum of the
absolute value of deviations between the compuled and observed out-
flows; this deviation is termed “error”’; and (2) the sum of the square of
errors. The magnitudes of the two error criteria described above for dif-
ferent parameter estimation techniques and models are given in the last
two rows of Table 1. As can be observed, the two methods, (H] + CG)
and (H] + DFP), outperform all other parameter estimation techniques
considered in this presentation. The method of (H] + LR) performed
slightly better than Gill’s method. The linear form of the Muskingum
model (see Col. 8) yields the least desirable results of all methods con-,
sidered because, as indicated in Figs. 6(a—€), the system has an appre-
ciable nonlinearity between weighted flow and channel storage, which
makes the linearity assumption inappropriate. This example highlights
the limitation of using the linear Muskingum model in channel flood
routing when the system’s behavior is actually nonlinear.

SummARY AND CONCLUSIONS

The Muskingum model commonly applied to river and channel flood
rouling may experience severe limitations because of its inherent as-
sumption of a linear relationship between channel storage and weighted
flow. Although nonlinear forms of the Muskingum model have been
proposed, the routing procedure is still lacking. This study presents a
routing technique for one type of the nonlinear Muskingum model, Eq.
4, using the concept of state variable modeling. The state variable rout-
ing technique is direct and eliminates monotonous trial and error pro-
cedures.

When a nonlinear flood routing model is considered, the task of pa-
rameter estimation, in the calibration process, becomes more involved.
Three parameter estimations procedures are devised using the Hooke-
Jeeve (HJ) pattern search technique in conjunction with simple linear
regression (LR), the conjugate gradient (CG), and the Davidon-Fletcher-
Powell (DFP) techniques. Comparisons were made of the model param-
cter estimation techniques developed and Gill's procedure (9), including
the use of the linear model. It was found that methods (HJ + CG) and
(HJ + DFP) yield better results than the other methods considered in
this study. The results of applying the linear model to the given example
were far from desirable. This demonstrates the severe limitation of the
linear model and that care should be exercised if a system’s behavior
appears to be nonlinear.
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