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RIVER FLOOD ROUTING BY NONLINEAR 
MUSKINGUM METIIOD 

By Yeou-Koung Tung,' A. M. ASCE 

ABSTRACT: The linear form of the Muskingum model has been widely applied 
to river flood routing. I iowever, a nonlinear relationship between storage and 
discharge cxists in most actual river systems, making the use of the linear model 
irinppropriale. 111 t tiis paper, a nonlinear Muskingum model is solved using the 
state variable modeling tecliniclue. Various curve fitting techniques are ern- 
ployrd for the cdibra[ion of modc4 pranteters, and their performances within 
the model are compared. thth linear atid nonlincar niodels are applied to an 
cxaniple with pronounced nonliiwarity between storage and discliarge. The re- 
sults show that the nonlinear Muskingum modcl is superior to the linear one. 

I 

INTRODUCTION I 

It is well-recognized by hydrologists and water resource engineers that 
river flood routing models have a wide spectrum of sophistication. The 
Muskingum method (15), which represents a linear reservoir concept, is 
an example of the simplest form. The full-scale dynamic wave model 
(the Saint-Venant Equations) (8) is an example of the most sophisticated 
form. The amount of time and effort required to implement, calibrate, 
and solve the selected model increases with the degree of model so- 
phistication. Although a sophisticated model usually provides more ac- 
curate results, its use is justilied only when there are sufficient data of 
good quality available. Thus, a tradcoff must be made in the selection 
of a flood routing model based upon the quality of given data, the social 
or economic importance of . ,  the project, the fiscal constraints, and the 
sa fc ty requ irenicn t s. 

Because of its simplicity, among the many models used for flood roul- 
ing in natural channels and rivers, the Muskingum model Iias been one 
of the most frequently used tools. The most common form of the Mus- 
kingum model (hcrein referred to as the linear Muskingum model) is 

' 

s, = K [ x l ,  + (1 - x )  O f ] .  . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1) 

in which S, = the absolute channel storage at time t ;  I ,  and 0, = the 
rates of inflow and outflow at time t ,  respectively; K = the storage time 
constant for the river reach, which has a value reasonably close to the 
flow travel time within the river reach; and x = a weighting factor vary- 
ing between 0 and 0.5. Strupczewski and Kundzewicz (31) have recently 
shown that the theoretical values of x range from -00 to 0.5. To perform 
channel flood routing, Eq. 1 is solved in conjunction with the continuity 
equation 4 
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. ns, s ,=-= I ,  - 0, . . 
dt  

in which S ,  = the time rate of change of channel storage at time 1.  'The 
nunierical solution of Eqs. 1 and 2 results in the well-known Muskitigum 
routing equation as 

0, = c,r, + CII!-I + c20,4 ...................................... (3) 

in which C,, CI , and C, = coefficients that are functions of K, x, and 
discretized time interval Af; C,) + C, + C2 = 1. 

After the introduction of tlie linear Muskingum model, there have been 
a significant number of studies done both on the model and the impli- 
cations involved in its use (2,9-10,11,13,14,22-25,31,32,34). The appli- 
cation of the Muskitigum model basically involves two steps: calibration 
and prediction. The calibration procedure, in essence, is centered on model 
parameter identification using historical inflow-outflow data. Conven- 
tionally, parnnieters K and x in the linear niodel are graphically csti- 
ma led by a trial and error procedure, which is subjective and inefficient. 
Several methods utilizing curve-fitting techniques such as least squares, 
linear programming, and other statistical methods were recently pro- 
posed to enhance tlie efficiency of the calibration procedure (9,1Y,29,3O). 
Finally, prediction with the model is siriiyly a straightlorward applica- 
tion of tlie routing equation given by Eq. 3. 

I n  natural channel rcaclics, i t  is not uncommon to observe a nonlinear 
storage-discliarge rclatiotiship as opposed t o  a linear one assumed by 
Eq. I .  Uiider such circumstances, the use of the liiiear Muskingun! model 
could result in significant error in the prediction o f  flood levels. There 
have been several methods proposed to address this nonlinear behavior 
by considering the values of K and x, in the linear model, to vary both 
with respect to time and space (13,26,27). Napiorkowski, et al. (22) re- 
ccntly detivcd a lumped nonlinear state model from hydrodynamics. 
The linearization of the resulling model was found to be equivalent to 
the linear Muskingum model. Their physical-based approach yields 
fiinctional relationships between model parameters and hydrodynamic 
characteristics of the system. 

Alternatively, the formulation of the linear model can be modified to 
account for nonlinearity by writing 

. S ,  = a[xl ,  + (1 - x) O,]"' ......................................... (4) 

in which OL arid 112 = constants. Eq. 4, a s  compared with Eq. 1, l ins  triore 
degrees of freedom, which presumably would yield a closer f i t  to the 
nonliiiear relation between storage and discharge. IIowever, because of 
[lie prcscncc of norilinciarity i n  the eqrialion, tlic calibration procedure 
becomes niore coniplica led. Furthcrniore, the rot1 ting prc)ccditres for flood 
prediction will no longer be as  straightforward as those for using the 
liiiear niodel. Nonlinear forms of the Muskingum models such as Ecl. 4 
a t i d  others can be found in  hydrology texts. I lowevcr, with the exccy- 
tion of Gill's rcccnt works (9), tlie solution proccduTcs for such nonlinear 
models have never been mentioned or dcveloped. The routing tech- 
nique, proposed by Gill, for solving Eq. 4 rcquircs a trial and error so- 
lution of a system of nonlinear equations at  cacli time stcp. The tecli- 
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nique, could be very time consuming if several time steps are involved. 
In this paper, a routing technique is proposed for the nonlinear model 

expressed by Eq. 4 using the concept of state variable modeling. By tak- 
ing advantage ol this concept, the trial and error procedure to obtain a 
solution is eliminated. 'Ihree techniques for parameter estim a t' 1011s are 
employed, arid their performances are compared. 

STATE VARIABLE MODELING CONCEPT 

The concept of state variable modeling was developed primarily to 
analyze automatic control systems in  the field of electrical engineering 
(3). It  is capable of describing systems which are linear or nonlinear, 
time-variant or time-invarian t, deterministic or stochastic, while having 
multiple inputs and outputs at the same time (18). For a system to be 
solvable by the state variable modeling analysis, it must be lumped. In 
other words, a system must be represented in only one dimension such 
as  time or space arid must be describable by ordinary differential or dif- 
ference equations. Water resource systems are usually distributed, but 
they can be approxiniated by dividing the entire system into subsys- 
terns, which may be individually treated as a lumped system. Also, water 
resource systems are dynamic in nature with the inputs, outputs, and 
llirouglipirts varying with respect to lime. 

State varicl.lle modcling follows tlie "modern system" theory in which 
thc input space is first related to the state space through the state eqcia- 
Lion (Fig. 1). 'I'lieti the state space, and in some cases in input space, is 
related to the $>ulput space through the output equation. The state equa- 
tion is used to describe the change in tlie state of system with respect 
to time in response to various inputs. The output equation is used to 
relate the o'utput to the state of tlie system and, in some cases, to the 
inputs. In state variable modeling, the system structure is given explicit 
representation as a state vector X, where X = ( X I ,  X2, ... X,,) and the 
state variables X I ,  X2, .... X,, are functions of time or space, or both. 

In water resources systems, the state variables are usually expressed 
in volumetric or mass units and cari represent, e.g., tlie volume of water 
or the amounts of pollutant contained in various parts of tlie system. 
The input and output variables commonly correspond to volume or mass 
flow rates, which may bc rainfall intensity or rate of discharge of pol- 
lutant. The state of a system is a measure of tlie level of activity in each 
of its conipoiierits and can be tlioujilit of as the interface between the 
past and tlic future of the state of the system. 

Tlie state variable model for continuous time can be formulated as 
follows 

. 

FIG. 1.-Modern Approach to Dynamic System Modeling 
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I I -  
I 

u ( t )  I 

I I 

I n p u t s  I I outputs 
I 

Conipute storage a t  next  time i n s t a n t ,  

St+, = S t t t t .  A t by Eq. ( 9 )  
A 

FIG. 2.-Schematic Diagram of State Variable Model 

3, = AX, - + B U , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - (5) 
and 1, = a, + DJ, ........................................... (6) - - 
in which Eqs. 5 arid 6 are the state equation and output equation, rc- 
spectively; z, = ti&,/dt = tlie time rate of change of tfie state vector; u, 
= the input vector; 11, = the output vector; and A, g, C, and _U = nia- 
trices that can be constant or fltnctions of tinie Or siaCt, or bGth. The 
system representation given by Eqs. 5 and 6 is shown scheniatically in 
Fig. 2. 'The lime rate of cliange of the system state, &, is formed a s  the 
sum of modified inputs, IW,, and thc modified current state, AX, . Also, 
tlic state feedback has ainajor role in determining 11.w futurF behavior 
of the systcm. The rate of change of the state vector, z,, is continuously 
integrated with the current state to produce the new state. The output, 
y,, is formed by summing the new state which has been scaled by ma- 
trix C with a direct contribution from modified input, w,. These fea- 
turesof state variable modeling make it  particularly a ttkactive because, 
once the system parameters are identified, tlie only requirements for a 
solution are the inilial conditions of the system and the input to the 
s y s t e in.  

There have been a number of applications of state variable modeling 
concepts to wastewater treatment water quality control (6,36), operation 
o f  hydroelcctric power stations (5), rainfall-runoff process modeling 
(4,21,33), reservoir operation (17), and flow roulirig in storm sewers and 
channels (1,20,22). 

STATE VARIABLE FORMULATION FOR NONLINEAR MUSKINGUM MODEL 

The dcrivation of the state variable formulation for the nonlinear Mus- 
kitigutn model, Eq. 4, is straightforward. By rearranging and maniyu- 
lating Eq. 4, the rate of outflow at time f, O f ,  can be expressed in terms 
of channel storage, S,, and inflow rate, I , ,  as 

................................. (7) 0, = ( - l - x  )(y'"- a (2) l - x  I ,  
Eq. 7 forms an output equation in tlie state variable model. Combining 
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Eq. 7 and the continuity equation, Eq. 2, the state equation can be ex- 
pressed as 

1 /in 

S ,  = -(-!--)(3) + (L) I ,... ............................. (8) 
, 1 - x  a l - x  

where the state variable for the system is the channel storage and the 
input is the inflow at the upstream end of the channel reach. 

Once the state variable model is formulated, the output from the sys- 
tem can be obtained by solving the state equation and the output equa- 
tion recursively. Altliough water resource systems actually operate con- 
tinuously in tirne, the data are usually analyzed using discrete-time 
intervals. Tlie solution procedure for the discrete-time state variable 
nonlinear Muskingum model, thus, involves the following five steps: 

Step 1.-The inflow hydrograph to the channel reach is discretized into 
several time stages where time intervals need not be equal. 

Step 2.-From tlic initial stale of syslcm storage, S1 , and initial inflow 
rate to the channel reach, I , ,  tlie time rate of change of storage 

. 

S t a r t  9 
t= to 0 

and i n i t i a l  storage S ,  

t = t + l  + 
'k-x-; nd o f  Routing 

des stop ' 

FIG. 3.-Flow Chart for Discrete Tlme-State Varlable Model for Nonlinear Mus- 
kingum Routing 

1451 



volume in the channel reach at the initial state, S I ,  can be eval- 
uated by tlie state equation, Eq. 8. 

Step 3 . T h e  state of the system, i.e., channel storage, at the next time 
stage, S2, is estimated or ayproxiniated as 

.................................................. Sz==Sl + S I A t  (9) 
Step 4.-The magnitude of the outflow rate a t  the current stage can then 

bc calculated by solviiig tlie orilput eqiiatioti, €31. 7, using cur- 
rent values of inflow rate and cliannel storage at the same stage. 

Step 5,-Using current informa tion on inflow and channel storage, Steps 
2-4 are repeated recursively until the last stage is reached. 

. .  

mine a new x value 

A flow chart for the above algoritlini is s l ~ o w n  iii  Fig. 3. 

PARAMETER ESTIMATION 

The nonlinear Muskingum model considered in this paper consists of 
three parameters, u, x, and 1 1 1 ,  wliich arc to be estimated from observed 
stream flow data. Gill (9) proposed a three-point estimation technique 
involving the solution of a system of siniultaneous nonlinear equations 
at each time point. The selection of these tlirec points for parameter 
estiination is arbitrary and is left to the judgment o f  the individual an- 
alyst. In  this paper, three parameter estimation techniques are employed 
to minimize the sum of the squares o f  deviations between observed 
clianiicl storage and cornyutcd channel storage over the total data points, 
i.e. 

t1 

.................................... tviininiize F = 2 {Sf - $}*. (10) 
1-1 U , T , l I I  

or, equivalently 
n 

.................... Minimize F = {$ - a[xZ, + (1 - xj0,]”’)2..  (11) 
f = l  u,x,rn 

in which sf = the observed channel storage a t  time f ,  which can be cal- 
cula tcd from given Ilistorical inflow and outflow hydrograplis selected 
for cnlibratioti; a n d  S, = tlie computed clianiicl storage dctcrrriiticd by 
tlw iiotilinear Muskingum model. 

I-iooke-Jeeves Pattern Search in Conjunction with Linear Regression 
(HJ t LR).-The nonlinear Muskingum model considered herein can be 
reditccd to a linear form if the value of the weighting factor, x ,  is known 
or assumed. In other words, the nonlinear Muskingum niodel can be 
expressed (via logarithms) as 

........................ I r i  (S,) = In (a) + 1 1 1 . I n  [ x * Z f  + (1 - x*)O,J (12) 

in which a weighting factor x takes as assumed value x * .  If the value of 
x is given or assumed, the logarithms of channel storage and weighted 
flow have a linear relationships. Under such circumstances, the param- 
eter values for a dnd m can be estimated by using the simple Iinear 
regression technique. By using this technique, the values of a and 111 
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Given initial parameter values 
( ao* x o *  mo) 

r - - 
t 

Apply simple regression, or conjugate gradient, 
or Davidon-Fletcher-Powell techniques to 
estimate a and m so as to minimize F i n  Eq. (11 )  

Yes As top ] 

FIG. 4.-Flow Chad of Parameter Estimation for Nonllnear Muskingum Model 

wotild niininiize tlie sum of the square of deviations between observed 
and computed clianncl storages, based on a given value of weighting 
factor I*. Since the weighting factor x itself is an unknown parameter, 
the values of all three parameters can be estimated by using a combi- 
nation of direct search techniques and simple linear regression (LR). The 
scheme employed herein for identifying the value of x is called the pat- 
tern starch teclinique developed by Ilooke and Jeeves (12). The tech- 
nique, coded hereiti a s  (HJ), is based on tlie philosophy that any set of 
moves that have been successful in improving objective function values 
in early trials will  be worth repeating. The entire methodology for pa- 
rameter estimation involves sequential applications of this (HJ + LR) 
method in an iterative manner. The flow chart of tlie (HJ + LR) algo- 
rithm is sliowii in Fig. 4. 

?’he HJ method starts cautiously with short excursions from a starting 
point. Then, the step sizes grow with each repeated success. Subsequent 
failure indicates that shorter step sizes are in order. If a change in di- 
rection is required, the technique will start over again with a new pat- 
tern. I n  the vicinity of the peak or valley of the response surface, the 
step sizes become very small to avoid overlooking any promising direc- 
tions. The technique has been applied by Tung and Mays (33) to identify 
parameters in a nonlinear hydrologic system model proposed by Prasad 
(28). 

Hoo ke- Jeeve Pattern Search in Conjunct ion with Con jugate Gradient 
Method (HJ + CG).-The optimal estimation of unknown parameters in 
the nonlinear Muskingum model can also be derived by solving the ob- 
jective function, Eq. 11, with an unconstrained optimization technique 
or a combination of direct search and unconstrained optimization. Sim- 
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ilar to the previous method described, the J€I  direct search technique is 
employed to estimate tlie value of weighting factor x. Two uncon- 
strained optimization schemes, i.e., the conjugate gradient (CG) and 
Davidon-Fletcher-Powell (DFP) methods, are applied to estimate the value 
of OL and nz. Tlie descriptions of DFP are presented in the next section. 

Applications of the two unconstrained optimization techniques require 
computation of the gradients of the objective function with respect to 
unknown parameters under estimation. The gradient of the objective 
function with respect to a and ri i ,  for a given value of x* determined by 
the €1J method, can be expressed as 

a t  
- . -2 C {Sf - ~ [ x * I ,  + (1  - x*)O,]"'} . [x*I, + (1 - x*)O~]"'. ....... (13) 
(3 a f = I  

il f - = -2 c (3, - a [ x *  I ,  + (1 - x * )  O,]"'}{(x* I f  + (1 - x * )  O,]"'} 
attt f = 1  

......................................... (14) 
The ternis aF/acx and aF/dtI l  form the two elements of the gradient 

vector G = (dF/Ja, dF/dnr). The gradient will be evaluated and serve as 
the basis for determining the new direction vector, along which the search 
for optimalty is pursued. Tlie Fletcher-Reeves algorithm (7) of tlie CG 
method starts with a n y  initial values for unknown parameters, zl = 
(aI, n i l )  and continues with iteration index k = 1 as follows: 

Step 1,--Evaluate the graticnt, Gk and set tlie vector of search direction, 

Step 2.-Minimize F (& + &PA) with respect to P k  I 0 to obtain the 
next starting point, ZAtl = & + p:_UA, in which Pt = the value 
of the step size that minimizes the objective function value along 
the direction defiiied by GI. , 

and redefine the direction vector as 

.In [X*Z, + (1  - X*)O,J 

- Dk = -ck - 

Step 3.--Evaluate the gradient, Sr-,  , at the new starting point, Zk+,  

....................................... Dk+l = -sk+l + Y k E k . . .  (15) 
m 8  m 

(16) in which yk = ....................................... % + I  % + I  

G Gk 
where the prime indicates the transpose of the vector. 

' Step 4.-Go to Step 2 until convergence criteria or stopping rules are 
satisfied. Useful stopping rules that are conimonly used in search 
techniques for preventing excessive computations are the spec- 
ification of a maximum number of iterations and step size re- 
ductions. 

Descriptions of tlie CG method are given by Luenberger (16). 
Tlie basic structure of the (HJ + CG) method for parameter estimation 

is very similar to tlie (HJ + LR) method. As previously described, the 
only difference is between the two methods employed to estimate pa- 
rameters and w.  

€Iooke-Jeeves Pattern Search in Conjunction with the Davidon-Fletcher- 
Powell Method (HJ + DFP).-Similar to the two previous methods, (HJ 

+ LR) and (fJJ + CG), this technique for estimating a and 111 is called 
tlie Davidon-Fletcher-Powell (DFP) method. The DFP method is a quasi- 
Ne-wton method that simultaneously generates the search direction while 
constructing arid updating tlie inverse of the Hessian matrix. The yro- 
cedure of the DFP method is as follows: 

Step 1.-Select any symmetric positive matrix S and initial point z l ,  then 

Step 2.-Set search direction _Dk = -Skck. 
Step 3.-Minimize F ( Z k  + P k I ) k )  with respect to P k  2 O to obtain & + I ,  

Step 4.-Sct - Q A  = CAtl  - ck and updating matrix - as 

begin tlie iterations with index k = 17 

c k  = (jtuk, and s k + l  . 
. 

Step 5.-Check with convergence criteria and stopping rules before re- 
turning to Step 2. 

Again, for descriptions of the DFP m e t l i d  readers are referred to Luen- 
berger ( 16). 

AP~LICATIONS 

The nonlinear Muskingum model, Eq. 4, is applied to channel flood 
routing using an example from Wilson (35). The state variable modeling 
technique is used as a tool for performing flood routing. I'arameter es- 
timation techniques previously described are used and tlieir perfor- 
mance in calibration are compared. The reasons for selecting this ex- 
ample for rlornoiistration are twofold: (1) 'I'he example presents a 
prorwunccd iionlinearity between wcighted flow and storage volume; 
and (2) the example has been studied previously for testing tfie different 
routing methodologies developed by Gill (9). Therefore, tlie perfor- 
mance of parameter estimation procedures proposed herein can be com- 
pared with Gill's brevious study. 

The observed inflow and outflow hydrographs for the example are 
tabulated in Cols. 2 and 3 of Table 1 and are also shown in Figs. 5(u-b). 
The parameter values in  Eq. 4 estimated by different techniques are given 
in Table 2. For purpose of comparison, tlie parameter values in the linear 
Muskingum model, as derived by Gill (9) using the least squares method, 
are also prcsented in the last row of Table 2. Tlie estimated value of 
weighting factor, x, differs very little among the various methods, but 
the values of a and uz vary quite significantly. Finally, the tlvo metliods, 
(I1 I t C C )  and  ( I  1) t t31T), produce almost identical results. 

To evaluate the performance of different parameter estimation tecli- 
niqiies in the calibration process, the inflow hydrograph is roil ted to 
produce a computed outflow hydrograph for a given parameter set. Then, 
the coniputed a n d  ohscrvcd outflow hydrographs are compared and their 
deviations are calculated. The computed outflow Iiyclrograplis obtained 
by the state variable modeling of the iionlinear Muskingum model using 
different parametcr values are tabulated in Cols. 4-7 of Table 1 and are 
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(2) (3) (4) (5) 
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TABLE 1.-Comparison of Performance of Muskingum Model Using Dlfferent Pa- 
rameter Estlmatlon Procedures - - 
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22 
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Eq. 4 
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34.9 
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38.9 
31.5, 
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20.1 

25.20 
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(LS) 
Eq. 1 

(8 )  
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26.4 
44.6 
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FIG. 5.-(a) Inflow Hydrograph, Observed Outflow Hydrograph, and Computed 
Outflow Hydrographs; (b) Inflow Hydrograph, Observed Outflow Hydrograph, and 
Computed Outflow Hydrographs 
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plotted in Fig. 5. Col. 8 is obtained by solving the linear Muskingum 
model with the conventional method. In Table 2, the compitted outflow 
hydrograph in Col. 7 is derived by the state variable niodelixig technique 
with tlie parameter values estimated by Gill (9) because tlie computed 
outflow hydrograph was not directly available in Gill’s paper for com- 
pa risori. 

Two criteria are used herein for evaluating the performance of differ- 
ent parameter estitnation techniques and models: (1) The sum of the 
absolute value of deviations between the computed and observed out- 
flows; this deviation is termed “error”; and (2) tlie sum of the square o f  
errors. The magnitudes of tlie two error criteria described above for dif- 
ferent parameter estimation techniques and models are given in the last 
two rows of Table 1. As can be observed, the two methods, (€11 + CG) 
and (HJ + DFP), outperform all other parameter estimation techniques 
considered in this presentation. The method of (HJ + LII) performed 
slightly better than Gill’s nictliod. The linear form of tlie Muskingum 
niodel (see Col. 8) yields the least desirable rcsitlts of all rnellwds con-. 
sidered because, as indicated in Figs. 6(n-e), the system Iias an aypre- 
ciable nonlinearity between weighted flow and channel storage, which, 
makes the linearity assumption inappropriate. This example Iiighlights 
the limitation of using the linear Muskingum model in channel flood 
routing when tlie system’s behavior is actually nonlinear. 

SUMMARY AND CONCLUSIONS 

The Muskingum model commonly applied to river and channel flood 
routing may experience severe limitations because ol its inherent as- 
sumption of a linear relationship between channel storage and weighted 
flow. Although nonlinear forms of the Muskingum model have been 
proposed, the routing procedure is still lacking. This study presents a 
routing technique for one type of the nonlinear Muskingum model, Eq. 
4, using the concept of state variable modeling. The state variable rout- 
ing technique is direct and eliminates monotonous trial and error pro- 
ced ures. 

When a nonlinear flood routing model is considered, the task of pa- 
rameter estimation, in the calibration process, becomes more involved. 
Three parameter estimations procedures are devised using the Iiooke- 
Jecve (I-IJ) pattern search technique in conjunction with simple linear 
regression (LR), the conjugate gradient (CG), and the Davidon-Fletcher- 
Powell (DFP) techniques. Comparisons were made of the rnodel param- 
rtcr estimation techniques developed and Gill’s procedure (9), including 
the use of the linear model. I t  was found that methods (EJJ + CG) and 
(11J + DFP) yield better results than the other methods considered in 
this study. The results of applying the linear model to the given example 
were far from desirable. This demonstrates the severe limitation of the 

1 

linear niodel and that care should be 
appears to be nonlinear. 
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