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‘ CHANNEL SCOURING POTENTIAL USING
LOGISTIC ANALYSIS

By Yeou-Koung Tung,' A. M. ASCE

ApstnacT: Water resource engineers often have to relate qualitative dependent
variables to one or more independent variables, which may or may not be
quantitative. In such circumstances, the use of conventional regression analysis
would encounter a number of difficulties. This paper introduces a statistical
method called logistic regression which is specially developed for such condi-
tions. The method is applied to a hydraulic problem of relating scouring po-
tential in a channel to depth and velocity of flow. Whether or not the meth-
odology could become a useful addition in water resources engineering analyses
further investigations and applications are necessary.

INTRODUCTION

The evaluation and assessment of channel scouring potential has been
one of the main concerns of hydraulic engineers. Methods developed
for evaluating the scouring potential range from simple empirical-based
diagrams, e.g., the famous Shields diagram (13), to sophisticated phys-
ical-based probabilistic models (7). Due to the facts that the distribution
of bed material is not uniform, the channel geometry varies from one
location to another, the flow is nonuniform and unsteady, and due to
other factors, the occurrence of scouring in the channel is a random phe-
nomenon. :

Water resource engineers often have to relate qualitative dependent
variables to one or more independent variables, which may or may not
be quantitative. In the case of channel scouring, the dependent variable
is the occurrence or nonoccurrence of scouring, which is binary and
qualitative, depending on a number of attributes such as the particle size
of bed material, flow velocity, depth of water, etc. (4,12,13). Because of
the binary nature of the dependent variable, the procedures used by
most water resource engineers for the assessment of scouring potential
in the streams are empirical with little scientific basis. The well-known
Shields diagram and other similar graphical representations (3) for the
assessment of the occurrence of stream scouring are of this type. Some-
times, this type of diagram is applied by engineers for stable channel
design.

It is important to realize that diagrams so developed can be misleading
in the sense that they fail to illustrate the random characteristics of the
process. Therefore, the use of Shields diagram or other diagrams of a
similar nature for stable channel design could lead to unsatisfactory re-
sults if care is not exercised. However, it would be ideal and realistic if
certain explicit probabilistic statements were attached to the diagrams so
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that the users could be aware of the random nature of the process and
design a stable channel with a reliability (or risk) level best suited for
what is to be designed. Furthermore, explicit presentations of probabi-
listic statements enable designers to consider the trade-off between risk
and benefit and to perform optimal risk-based design.

Hughes (8) is one of the few water resource engineers, who proposed
a technique for analyzing binary data in his channel scouring study.
However, the technique developed by Hughes is not applicable to cases
where there are three or more independent variables and the functional
relationship between variables is unknown, which generally is the case
in real world problems. The generalization and application of Hughes’
methodology to other problems would be difficult, and no mathematical
function can be derived to relate the probability of occurrence of channel
scouring to contributing factors. : .

This paper presents a methodology to evaluate the potential of chan-
nel scouring as function of a number of attributes by logistic analysis.

Wy Loagistic REGRESSION?

When a dependent variable is related to a number of independent
variables, regression analysis techniques are usually applied. Commonly
applied regression analysis techniques are appropriate to use only when
both independent variable and explanatory variables are quantitative and
continuous. For cases where the dependent variable and some of the
independent variables are qualitative, ordinary regression analysis is no
longer applicable. To analyze a dichotomous (binary) qualitative variable
as a function of a number of explanatory variables, special techniques
must be used if the analysis is to be performed adequately. A dependent
variable with dichotomous nature is normally measured by 0 or 1 in-
dicating the nonoccurrence or occurrence of an event. In the case of
channel scouring, we can use 1 to indicate the occurrence of scouring
and 0 otherwise. :

Consider a dichotomous random variable y which has a value of 1 if
event E occurs, and 0 otherwise. Let x,x; denote a k-vector of variables
which have influence on the occurrence or nonoccurrence of event E. In
statistical data analysis, the vector x is used as explanatory variables for
y. Suppose we have made a set of n independent observations of (y, x),
ie., (yi,x),i=1,2, ..., n and wish to derive a functional relationship
between y and x’s. Let us adopt the standard regression model

vi=xip+e, for i=1,2,..,n....c.iiinn. feteeree e (D)

in which ¢ = random error term characterized by distributional prop-
erties, and B = k-vector of unknown model parameters. However, it is
because the very nature of dependent variable y in Eq. 1 being dichoto-
mous and discrete some modifications and special treatment of variable
y are necessary. The pitfalls of using ordinary least squares method in
regression analysis, when dependent variable is dichotomous, and the
evolution of logistic analysis are described in the following:

1. From physical standpoint, the value of dependent variable y can
only take a value of either 1 or 0, representing the occurrence or non-
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“occurrence of an event. Any values other than 1 and 0 assigned to y are
physically meaningless. Ordinary regression analysis does not have the
capability to handle problems of this nature,

2. It is generally easier to treat a continuous variable than a discrete
one. Dependent variables of dichotomous nature would pose compu-
tational difficulties in data analysis. To get around such problems we
will deal with the conditional probability of occurrence of event E, i.e.,
Pr{y = 1|x'B}, instead of y itself where Pr{} is probability. To shorten
the notation, let £ = Pr{y = 1|x'B}. By doing this, the problem is trans-
formed to regress § on independent variables x’s rather than y on x's as
originally stated and dependent variable £ is continuous between 0 and
1. Furthermore, we modify the theory demanding that ¢ will approach
to 1 as the value of x'B becomes larger and hypothesize that the rela-
tionship between x'B and ¢ is monotonic. Then the true probability func-
tion should generally have a cumulative distribution function (CDF) of
S-shape since £ must lie between 0 and 1 and be nondecreasing. If we
plot £ verses x'B, then their relationship should appear as the solid curve
as shown in Fig. 1, with its upper and lower asymptotes being 1 and 0,
respectively. However, even dependent variable is made continuous to
which ordinary regression analysis is less restrictive to apply. The result
of unconstrained regression analysis, which would appear as a straight
line, has poor approximation for large or small values of x'B, and, in-
deed, violates the condition that the function lies between 0 and 1 for
extreme values of the argument (see Fig. 1). '

3. With the previous modifications and under the assumplions of
regression model in Eq. 1, for fixed explanatory variables x;, y; is a Ber-
noulli random variable with E(ylx;) = & and Var(yilx;) = Var (¢;) = £(1
~ &), where E(]) and Var(]) are the conditional expectation and variance
of y, respectively. Since Var(e;) depends on § which, in turn, depends
on x;, the § are heteroscedastic. That is, the variance of regression model

Unconstrained Linear ,”
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FIG. 1.—LInear Approximation to Probablliity Function (Nerlove and Press, 1973)
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depends on the level of dependent variable. Under such circumstance
the use of ordinary least-squares procedure generates inefficient esti-
mators and imprecise predictions. It has been suggested that generalized
(or weighted) least squares can be used to remove the heteroscedasticity.
Unfortunately, there is no guarantee that predicted values of y; will lie
within the interval (0,1) for all i. oo

An excellent review on the limitations of using ordinary least-squares
regression analysis applied to the problem of analyzing binary data is
given by Nerlove and Press (11). '

Loaistic ANALYSIS

" To avoid the technical difficulties described previously when ordinary
regression analysis is used to treat binary data, a special data analysis
procedure is presented herein. Let us consider the problem of relating
the probability of occurrence of event, £, to a number of explanatory
variables and Eq. 1 is the model to be assumed. If one wants a rela-
tionship in which & is a nondecreasing function of stimulus level x; B,
the following model may be used ' : .

E=F(XB), §=1, .00, i iiiiiiiiinieentianreaaneanes 2)

where F(xiB) denotes a CDF. In general, any distribution function F(t)
or function with values lying between 0 and 1 can be candidates for use.
The choice of the form of the function, F(t), to be used in the analysis
depends largely upon the mathematical properties, computational tract-
ability, and feasibility of implementation.

One of the earliest methods to analyze binary data is called “probit
analysis.” In probit analysis, the functional form of F(t) in Eq. 2 is the
CDF of the standardized normal distribution. Finney (2) applied probit
analysis to the problem of analyzing quantal (binary) responses in bioas-
say. For the probit analysis to be useful, it requires that data be grouped
and there are several observations in each group. Also, there is com-
putational difficulty associated with the numerical integration of the
standard normal distribution (11). : ‘ )

Another method developed is called logistic analysis where F (t) in Eq.
2 is taken to be the CDF of the standard logistic distribution; that is

1
F(f)=-1+7,‘ e ....(3)
After logistic transformation, Eq. 3 can be expressed as
In[—— ] =x'B e Perenas Ceeeians 4
"(1—§ i - @

in which ¢ = probability of the occurrence of event E conditioned upon
the vector of explanatory variable x. The left-hand-side of Eq. 4 is called
a logit function. As can be seen, the problem is reduced to performing
regression analysis to estimate the values of unkown parameters B’s us-
ing logit function. The value of logit function is continuous over the
entire domain of real variables. Various methodologies such as weighted
least square logit (10), minimum chi-square (1), minimum logit chi-square
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(10), discriminant analysis (6), and maximum likelihood logit (11) have
been proposed to perform logistic regression. Note that minimum chi-
square and minimum logit chi-square are two different methods.

For the purpose of demonstrating the concept of logistic analysis the
minimum chi-square method is applied to analyze channel scouring data
in Hughes article (8). The comparison of performance for various meth-
ods is undertaken and is beyond the scope of the paper.

Minimum CHI-SQuARE METHOD

Without loosing generality, following descriptions of minimum chi-
square method assume that total data points have been grouped. Com-
bining Eqs. 2 and 3 the conditional probability of the occurrence of event
E, given a vector of explanatory variable x for group I, can be written
as

1
&) = Pr(Yn;, X B) = m ......................... (5a)
or, more explicitly
1
- e e 5b
LB {1 +exp (—Bo— Brxn — ... = Bexu)} : b

in which n; = total number of observations in group [, Y; = the number
of occurrence of event E in group I, i.e., Y; = ZY;, i € group l and x; =
vector of independent variables with values representative to group I
For example, x; can be calculated using the average value of the kth
independent variable in group l. Since Y, is thre 5um of independent di-
chotomous random variable so it has a binomial distribution with pa-

rameters n; and §;. The statistic, Q, in Eq. 6

G :
[Yi = m&(p)] .
= e e ettt et eieeeeaeas R ()
Q =1 m&(B) [1 - &(B)) ©

approximately has chi-square distribution in which G = total number of

" groups. The method of minimum chi-square is to determine the values

of the B’s such that the value of statistic Q is minimized. In case where
data are ungrouped, G =n, m; =1, and Y, = y;.

The problem of determining the values of B’s for minimizing Q falls
within the realm of unconstrained nonlinear programming and the tech-
nique used herein is called Davidon-Fletcher-Powell (DFP) method. The
DFP method is a quasi-Newton method which simultaneously generates
the search directions of the conjugate gradient method while updating
the Hessian matrix. It requires the computation of the gradient of Q with
respect to B’s, i.e., 3Q/ap;, at each iteration for purpose of determining
the search direction and updating the Hessian. For a more detailed de-
scription of the method, readers are referrred to Luenberger (5).

APPLICATION

Application of logistic analysis described previously to evaluate chan-
nel scouring potential is presented in this section. Data obtained from
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FIG. 2.—Channel Scouring Potential for Clay Solls Derlved by Loglstic Analysis
Using Hughes’ Data

field investigations were provided by Hughes (personal communication,
1979) and they are representative of sandy-silt, silty-clay, and clay soils.
The data are plotted as scatter diagrams on log-log paper'shown in Figs.
2-4. In each scatter diagram a square indicates the occurrence of scour-
ing and a circle represents the nonoccurrence of scouring. The state of
channel conditions shown in Figs. 2-4 was extracted from Keeley (9)
and Hughes' judgment based on field observations (Hughes, personal
communication, 1984). For a hydraulic engineer, once the scatter dia-
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FIG. 3.—Channel Scouring Potential for Siity-Clay Solls Derived by Loglstic Anal-
ysis Using Hughes' Data
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FIG. 4.—Channel Scouring Potentlal for Sandy-Siit Solls Derlved by Logistic
Analysls Using Hughes’ Data

gram is prepared, the next step is to analyze the data and draw, if pos-
sible, a line which distinctively separates the incidence of erosion and
nonerosion. Apparently, in this case, it is not possible. Therefore, it is
argued that, in terms of evaluating channel scouring potential, it would
be more reasonable to derive a probabilistic measure under various con-
ditions instead of deriving a curve which best separates the occurrence
and nonoccurrence of scouring and using it as a cntenon in the assess-
ment of scouring in the channel.

Based on Hughes’ data, for a given soil type the average ﬂow velocxty
and water depth are the two dominant factors affecting the scouring
potential in the channels. The corresponding logistic regression model
can be written as

Priyi=1lxy, xp} = ————mmmm—————————— . veeed (7
P T e S e CBo— Pra Pl o0
in which Pr{} is the conditional probability of channel scouring de-
pending on flow velocity, x;;, and water depth, x;,, for the ith obser-
vation. Similar to probit analysis, using minimum chi-square method in
logistic regression requires that data are grouped and there are several
observations in each group. The requirement to have several observa-
tions in each group could impose difficulty on determing proper interval
boundaries for each independent variable if large number of groups are

to be formed. This difficulty would gradually vanish as number of groups -

become smaller, but the problem of loss of information content would
emerge. In this application, logistic analyses were performed under which
the Hughes’ data are both ungrouped and grouped into 16 cells. Two
different logistic models are examined in this paper. One uses the flow
velocity and water depth of original scale and the other uses the log-
transformed flow velocity and water depth as independent variables,
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TABLE 1.—Results of Logistlc Analysis by Minimum Chi-Square Method Using
Flow Velocity and Water Depth of Original Scale

Total .

X number Number of Number of C

Model Parameters of obser- | Incidences of | misclassl- | Value

Soil type o B, B2 vations n scouring n,y fications of Q

(1) (2) (3) 4 (5) (6) 7 (8)

Sandy-silt* | -3.670 | 1.677 | —0.381 ) o - 18, 53.42
Sandy-silt® | -3.533 | 1.815 | —0.800 106 57 23 6.41

Silty-clay*® -3.706 | 1.511 | —-0.287 ' 21 62.00

Silty—clay" -3.728 | 1.583 | -0.325 133 85 23 7.64

Clay soil* —-2.960 | 0.926 | —-0.313 ' .24 73.23

Clay soil® -2.962 | 0.889 | —0.327 112 43 23 6.18

*Ungrouped data.
*Grouped data.

Hughes (8) used log-transformed flow velocity and log-transformed water
depth because the relation between the two varjables is assumed to be
a power function. The values of estimated model parameters p’s in Eq.
7 with both ungrouped and grouped data for different soil types using
flow velocity and water depth of original scale and log-transformed scale
are given in Columns 2-4 of Tables 1 and 2, respectively. The estimated
model parameters values using ungrouped and grouped data are very
close, exceptp, for sandy-silt soil in Table 1.

In ordinary regression analysis the commonly used measure of model
performance’is the correlation coefficient. However, in logistic regres-
sions the value of correlation coefficient is very small. It is because even
the model may fit the probability very well, unless the probability is near
0 or 1, the outcome of y; is not explained very well. Therefore, corre-
lation coefficient does not provide useful information on the perfor-
mance of a logistic model. After all, it is the capability of a model to
predict the outcome of a discrete random event is of our concern.

. To evaluate the performance of the two logistic models, a useful cri-
terion is the number of incidences of misclassification by the two models.

TABLE 2.—Result of Logistic Analysis by Minimum Chl-Square Method Using Flow
Velocity and Water Depth of Log-Transformed Scale

Total g
Model Parameters number Number of Nt{mber of | .
of obser- | incidences of | misclassi- | Value
Soil type Bo B B, vations n | scouring n, fications | of Q
(1) (2) (3) 4) (5) (6) (7) 8)
Sandy-silt* | -6.327 | 6.183 | —1.187 13 | 4429
Sandy-silt®: | —6.339 | 6.249 | -1.276 106 57 -~ |.. 13 5.09
Silty-clay* -4.149 | 4.100 | -0.563 ) 14 67.13 -
Silty-clay® -| —4.598 | 4.894 | —-0.855 | - 133 85 14 | 1043
Clay soil* -6.287 | 4.884 | —1.102 22 66.08 -
Clay soil® -6.288 | 4.885 | —1.126 112 43 23 2.64
*Data ungrouped. i
*Grouped.
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The general discriminant function for a logistic model can be expressed
as (10) :

k
X(X,') =In (1 El‘ §) = In (ﬂ) + Z ﬁj (x,-,- - .ff*) ........ teesenesneane (8)

=& o, j=t

in which f}, = the estimate of jth parameter, x; = the value of jth in-
dependent variable of ith observation, and k = number of independent
variables in logistic model. In this particular application k = 2. Each %}
is a weighted mean of the values of the jth independent variable. This
average is

with mj, being the mean of the subset of ny values of x; for which y, =
0, m;; being the mean of the subset of n; values of x; for which y; = 1,
and ny + np = n. We should keep in mind that, in logistic regression,
even though y (a binary variable) was regressed on x, it is the logit func-
tion A(x), and not the conditional probability £ that is linear in x (see
Eq. 4). From Eq. 4 the general discriminant function, Eq. 8, for predict-
ing event outcomes can be derived. The first term in the right-hand-side
of Eq. 8, In(m/m), is the ratio of prior probabilities of occurrence to
nonoccurrence of scouring. This means that m, is the probability of oc-
currence of channel scouring before measurements of flow characteristics
were made, and 7y = 1 — m, is the probability of no scouring occurring.
If the values of 1, and wo are unknown, they can be estimated by n,/n
and 11y/n, respectively. The schematic diagram of classification with two
populations using Eq. 8 is illustrated in Fig. 5. To predict the occurrence

or nonoccurrence of scouring at a given flow condition, we can base the -

value of discriminant function, Eq. 8, using the following rules: scouring
 will occur if Mx) < 0; scouring will not occur if A(x) > 0; and the chance
is 50/50 if A(x) = 0. .

The total number of data points, number of incidences of scouring,
and number of misclassifications by the two logistic models for different
soil types are also given in Columns 5-7 of Tables 1 and 2. The average
percentage of misclassification for the logistic model using ungrouped
data with flow velocity and water depth of original scale is 21%, while
16% for the model using log-transformed scale. Similar results are ob-
served using grouped data. Therefore, the model using log-transformed
independent variables for sandy-silt and silty-clay soils out-performs that
of using original scale. For clay soil, performance of the two models is
indistinguishable. Furthermore, the results of using ungrouped data
provide slightly better performance in classification than that of using
grouped data. The values of statistic Q in Eq. 6 for various bed materials
in two different models considered are given in the last column of Tables
1 and 2. The performance of logistic models based on their ability to
predict the discrete outcome, occurrence or nonoccurrence of scouring,
is generally consistent with the value of (, i.e., less number of mis-
classification corresponding with a smaller value of (, except for silty-
clay case (Table 2). Exact causes for such inconsistency are yet to be
explored. However, it might result from the effect of estimation of (w,/
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1) in Eq. 8, data grouping procedure, the behavior of data set, and
performance of search technique for optimization because the problem
is nonlinear and global optimality cannot be assured. . :
." Once the values in the logistic model are derived, an evaluation of
channel scouring potential, conditioned upon the flow velocity and water
depth, can easily be made. A series of curves of different potential levels
of scouring can be imposed on the scatter diagrams as shown in Figs.
2-4 which are derived based on the results using ungrouped data. Take
sandy-silt soils as an example: the corresponding velocities at which the
channels have scouring probability of 0.95, 0.9, 0.7, 0.5, and 0.3, at a
depth of 2 ft (0.6 m), are 5.2, 4.6, 3.8, 3.1, and 2.7 ft/sec (1.6, 1.4, 1.2,
0.95, and 0.82 m/s), respectively. Scatter diagrams with explicit proba-
bilisti¢c statements or derivations of functional expressions of scouring
potential provides additional information to the designer and this en-
hances risk-based design.

SUMMARY AND CONCLUSIONS

. Logistic regression is applicable when the dependent variable and some
of the independent variables are qualitative. It also provides a means to
evaluate the probability of a random event whose occurrence is affected -
by a number of attributes. To demonstrate the usefulness of the analysis
in water resources engineering, the method is applied to relate scouring
potential in a channel as function of velocity and depth of flow using
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H

ughes’ data. However, the method requires further investigations to

ascertain ils applicability in practical design of stable channel,
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AppenDIX Il.—NoTATION -

Var () '= conditional variance; -

The following symbols are used in this paper:

E() = conditional expectation;
F() = cumulative distribution function; -

G = number of groups in data set;

n = total nuiber of observations; - I

m = number of observations with y = 1;

1y = - number of observations with y = 0;

Pr = conditional probability; :

Q = error function having a chi-square distribution;
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vector of independent variables in regression model;
weighted mean of independent variable;

dependent variable in regression model;

vector of parameter in regression model;

random error;

logit function;

probability of occurrence of event;

prior probability of no scouring; and

prior probability of scouring.
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