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CHANNEL SCOURING POTENTIAL USING 
LOGISTIC ANALYSIS 

By Yeou-Koung Tung,’ A. M. ASCE 

ABSTRACT: Water resource engineers often have to relate qualitative dependent 
variables to one or more independent variables, which may o r  may not be 
quantitative. In such circumstances, the use of conventional regression nnalysis 
would encounter a number of difficulties. This paper introduces a statistical 
method called logistic regression which is specially developed for such condi- 
tions. The method is applied to a hydraulic problem of relating scouring po- 
tential in a channel to depth and velocity of flow. Whether or not the meth- 
dology could kcome  a useful addition in water resources engineering analyses 
further investigations and applications are necessary. 

INTRODUCTION 

The evaluation and assessment of channel scouring potential has been 
one of the main concerns of hydraulic engineers. Methods developed 
for evaluating the scouring potential range from simple empirical-based 
diagrams, e.g., the famous Shields diagram (13), to sophisticated phys- 
ical-based probabilistic models (7). Due to the facts that the distribution 
of bed material is not uniform, the channel geometry varies from one 
location to another, the flow is nonuniform and unsteady, and due to 
other factors, the occurrence of scouring in the channel is a random phe- 
nomenon. 

Water resource engineers often have to relate qualitative dependent 
variables to one or more independent variables, which may or may not 
be quantitative. In the case of channel scouring, the dependent variable 
is the occurrence or nonoccurrence of scouring, which is binary and 
qualitative, depending on a number of attributes such as the particle size 
of bed material, flow velocity, depth of water, etc. (4,12,13). Because of 
the binary nature of the dependent variable, the procedures used by 
most water resource engineers for the assessment of scouring potential 
in the streams are empirical with little scientific basis. The well-known 
Shields diagram and other similar graphical representations (3) for the 
assessment of the occurrence of stream scouring are of this type. Some- 
times, this type of diagram is applied by engineers for stable channel 
design. 

It is important to realize that diagrams so developed can be misleading 
in the sense that they fail to illustrate the random characteristics of the 
process. Therefore, the use of Shields diagram or other diagrams of a 
similar nature for stable channel design could lead to unsatisfactory re- 
sults if care is not exercised. However, it would be ideal and realistic if 
certain explicit probabilistic statements were attached to the diagrams so 
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that the users could be aware of the random nature of the process and 
design a stabie channel with a reliability (or risk) level best suited for 
what is to be designed. Furthermore, explicit presentations of probabi- 
listic statements enable designers to consider the trade-off between risk 
and benefit and to perform optimal risk-based design. 

Hughes (8) is one of the few water resource engineers, who proposed 
a technique for analyzing binary data in his channel scouring study. 
However, the technique developed by Hughes is not applicable to cases 
where there are three or more independent variables and the functional 
relationship between variables is unknown, which generally is the case 
in real world problems. The generalization and application of Hughes’ 
methodology to other problems would be difficult, and no mathematical 
function can be derived to relate the probability of occurrence of channel 
scouring to contributing factors, 

This paper presents a methodology to evaluate the potential of chan- 
nel scouring as function of a number of attributes by logistic analysis. 

WHY LOGISTIC REGRESSION? 

When a dependent variable is related to a number of independent 
variables, regression analysis techniques are usually applied. Commonly 
applied regression analysis techniques are appropriate to use only when 
both independent variable and explanatory variables are quantitative and 
continuous. For cases where the dependent variable and some of the 
independent variables are qualitative, ordinary regression analysis is no 
longer applicable. To analyze a dichotomous (binary) qualitative variable 
as a function of a number of explanatory variables, special techniques 
must be used if the analysis is to be performed adequately. A dependent 
variable with dichotomous nature is normally measured by 0 or 1 in- 
dicating the nonoccurrence or occurrence of an event. In the case of 
channel scouring, we can use 1 to indicate the occurrence of scouring 
and 0 otherwise. . . 

Consider a dichotomous random variable y which has a value of 1 if 
event E occurs, and 0 otherwise. Let xLxr denote a k-vector of variables 
which have influence on the Occurrence or nonoccurrence of event E. In 
statistical data analysis, the vector x is used as explanatory variables for 
y, Suppose we have made a set of n independent observations of (y,x), 
i.e., (yi ,  xi), i = 1, 2, . . ., n, and wish to derive a functional relationship 
between y and x’s. Let us adopt the standard regression model 

y i = X l p  + ~ i ,  for i =  1, 2, ..., IZ... .... . ..... ............. .... .. * (1) 
in which ci = random error term characterized by distributional prop- 
erties, and f3 = k-vector of unknown model parameters. However, i t  is 
because the very nature of dependent variable y in Eq. 1 being dichoto- 
mous and discrete some modifications and special treatment of variable 
y are necessary. The pitfalls of using ordinary least squares method in 
regression analysis, when dependent variable is dichotomous, and the 
evolution of logistic analysis are described in the following: 

1. From physical standpoint, the value of dependent variable y can 
only take a value of either 1 or 0, representing the occurrence or non- 
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occurrence of an event. Any values other than 1 and 0 assigned to y are 
physically meaningless. Ordinary regression analysis does not have the 
capability to handle problems of this nature. 

2. It is generally easier to treat a continuous variable than a discrete 
one. Dependent variabJes of dichotomous nature would pose compu- 
tational difliculties in  data analysis. To gct around such problems we 
will deal with the conditional probability of occurrence of event E ,  i.e., 
P r ( y  = llx'p}, instead of y itself where Pr{ } is probability. To shorten 
the notation, let 6 = P r ( y  = l(x'p}. By doing this, the problem is traxis- 
formed to regress 6 on independent variables x's rather than y on x's as 
originally stated and dependent variable 6 is continuous between 0 arid 
1. Furthermore, we modify the theory demanding that 6 will approach 
to 1 as the value of x'p becomes larger and hypothesize that the rela- 
tionship between x'p and 5 is monotonic. Then the true probabiIity func- 
tion should generally have a cumulative distribution function (CDF) of 
S-shape since 5 must lie between 0 and 1 and be nondecreasing. If we 
plot E, verses x'p, then their relationship should appear as the solid curve 
as shown in Fig. I ,  with its upper and lower asymptotes being 1 and 0, 
respectively. However, even dependent variable is made continuous to 
which ordinary regression analysis is less restrictive to apply. The result 
of unconstrained regression analysis, which would appear a s  a straight 
line, has poor approximation for large or small values of x'p, and, in- 
deed, violates the condition that the function lies between 0 and 1 for 
extreme values of the argument (see Fig. 1). 

3. With the previous modifications and under the assumptions of 
regression model in Eq. 1, for fixed explanatory variables x i ,  yi is a Ber- 
noulli random variable with E(y,Ix,) = E,j and Var(y,lxi) = Var (ej) = E,,+(l 
- ti), where E(() and Var({) are the conditional expectation and variance 
of y, respectively. Since Var(q) depends on t i  which, in turn, depends 
on xi, the ti are heteroscedastic. That is, the variance of regression model 

? 
Unconstrrlncd Ltncar / 
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/I 

FIG. 1.-Llnear Approxlmatlon to Probablllty Function (Nerlove and Press, 1973) 
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depends on the level of dependent variable. Under such circumstance 
the use of ordinary least-squares procedure generates inefficient esti- 
mators and imprecise predictions. It has been suggested that generalized 
(or weighted) least squares can be used to remove the Iieteroscedasticity. 
Unfortunately, there is no guarantee that predicted values of yl will lie 
within the interval (0,l) for all i. . 

An excellent review on the limitations of using ordinary least-squares 
regression analysis applied to the problem of analyzing binary data is 
given by Nerlove and Press (11). 

LOGISTIC ANALYSIS 
To avoid the technical difficulties described previously when ordinary 

regression analysis is used to treat binary data, a special data analysis 
procedure is presented herein. Let us consider the problem of relating 
the probability of occurrence of event, 6 ,  to a number of explanatory 
variables and Eq. 1 is the model to be assumed. If one wants a rela- 
tionship in which t i  is a nondecreasing function of stimulus level x: P, 
the following model may be used 

where F ( x : p )  denotes a CDF. In general, any distribution function F ( t )  
or function with values lying between 0 and 1 can be candidates for use. 
The choice of the form of the function, F ( t ) ,  to be used in the analysis 
depends largely upon the ma theinatical properties, computational tract- 
ability, and feasibility of implementation. 

One of the earliest methods to analyze binary data is called "probit 
analysis." In probit analysis, the functional form of F ( t )  in Eq. 2 is the 
CDF of the standardized normal distribution. Finney (2) applied probit 
analysis to the problem of analyzing quanta1 (binary) responses in bioas- 
say. For the probit malysis to be usdid, i t  requires that data be grouped 
and there are several observations in each group. Also, there is com- 
putational difficulty associated with the numerical integration of the 
standard normal distribution (11). 

Another method developed is called logistic analysis where F ( 1 )  in Eq. 
2 is taken to be the CDF of the standard logistic distribution; that is 

F(t)=-  - m < t < w  .................................... (3) 

Si=F(x,!p), i =  1, ..., II (2) ........................................ 

1 
1 + e-' 

After logistic transformation, Eq. 3 can be expressed as 
' 

............................. .................... (4) 

in which 5 = probability of the occurrence of event E conditioned upon 
the vector of explanatory variable x. The left-hand-side of Eq. 4 is called 
a logit function. As can be seen, the problem is reduced to performing 
regression analysis to estimate the values of unkown parameters P's us- 
ing logit function. The value of logit function is continuous over the 
entire domain of real variables. Various methodologies such as weighted 
least square logit (lo), minimum chi-square (l), minimum logit chi-square 
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(lo), discriminant analysis (6), and maximum likeliliood Iogit (11) have 
been proposed to perform logistic regression. Note that minimum chi- 
square and minimum logit chi-square are two different methods. 

For the purpose of demonstrating the concept of logistic analysis the 
minimum chi-square method is applied to analyze.cliatine1 scouring data 
in Hughes article (8). The comparison of performance for various meth- 
ods is undertaken and is beyond the scope of the paper. 

MINIMUM CHI-SQUARE METHOD 

Without loosing generaIity, following descriptions of minimum chi- 
square method assume that total data points have been grouped. Corn- 
bining Eqs. 2 and 3 the conditional probability of tlie occurrence of event 
E, given a vector of explanatory variable x for group 1, can be written 
as 

or, more explicitly 

‘(’) = {I + exp (-Po - plxll - ... - pkxlk) )  
in which nl = total number of observations in group I ,  Yl = the number 
of occurrence of event E in group 1, i.e., Yl = EYi, i E group 1 and XI = 
vector of independent variables with values representative to group 1. 
For example, xIk can be calculated using the average value of the kth 
independent variable in group 1. Since Yr is the gum of independent di- 
chotomous random variable so it has a binomial, distribution with pa- 
rameters 111 and 61.  The statistic, Q, in Eq. 6 

(54 
1 ....................... 

........................................ (6) 
[YI - W P ) 1  c 

= z nlEI(P) t1 - Er(P)J 
approximately has chi-square distribution in which G = total number of 

’ groups. The method of minimum chi-square is to determine the values 
of the p’s such that the value of statistic Q is minimized. In case where 
data are ungrouped, G = t i ,  til = 1, and Yl = yl. 

The problem of determining the values of p‘s for minimizing Q falls 
within the realm of unconstrained nonlinear programming and tlie tech- 
nique used herein is called Davidon-Fletcher-Powell (DFP) method. The 
DFP method is a quasi-Newton method which simultaneously generates 
the search directions of the conjugate gradient method while updating 
the Hessian matrix. It requires the computation of the gradient of Q with 
respect to p’s, i.e., d Q / d p j ,  at each iteration for purpose of determining 
the search direction and updating the Hessian. For a more detailed de- 
scription of the method, readers are referrred to Luenberger (5). 

APPLICATION 

Application of logistic analysis described previously to evaluate chan- 
nel scouring potential is presented in this section. Data obtained from 
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FIG. 2.-Channel Scourlng Potentlal for Clay Solls Derlved by Loglstlc Analysls 
Uslng Hughes’ Data 

field investigations were provided by Hughes (personal communication, 
1979) and they are representative of sandy-silt, silty-clay, and clay soils. 
The data are plotted as scatter diagrams on log-log paper’shown in Figs. 
2-4. In each scatter diagram a square indicates the occurrence of scour- 
ing and a circle represents the nonoccurrence of scouring. The state of 
channel conditions shown in Figs. 2-4 was extracted from Keeley (9) 
and Hughes‘ judgment based on field observations (Hughes, personal 
communicafion, 1984). For a hydraulic engineer, once the scatter dia- 
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ysls Uslng Hughes’ Data 
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TABLE 1.-Results of Logistic Anatysis by Mlnlmum Chl-Square Method Using ' .30 I I I I 1 1 1 1 1  ' 1 I I I I ' l l  I 

Flow Velocity and Water Depth of Orlglnal Scale 

I I Total 
SANDY S I L T  SOILS 1 

Number of 
mlsclassl- 
fications 

(7)  

Llne o f  equal p r o b a b l l l t y  Number of 
Incidences of 
scourlng nl 

(6) 

rc 3 , o f  scourlng 
-10 
F t- 

0 0 A 

H 

+i 

5 4  
3 

2 

Y, 

- s t a b l e  

Value 
of Q 
(8)  

53.42 
6.41 
62.00 
7.64 
73.23 
6.18 

Soil type vations n 
(5) . 
106 

133 

112 

(1 1 
. Sandy-silt' 

Sandy-siltb ' 
Silty-cla y ' 
SiI ty-cIayb 
Clay soil' 
Clav soilb 

(4) 

-0.381 

-0.287 
-0.800 

-0.325 
-0.313 
-0.327 

18 I 

23 
21 
23 

. 24 
23 

' 57 

85 

43 
'Ungroirpcd data. 
bGrouped data. 

Hughes (8) used log-transformed flow velocity and log-transformed water 
depth because the relation between the two variables is assurtied to be 
a power function. The values of estimated model parameters p's in Eq. 
7 with both ungrouped and grouped data for different soil types using 
flow velocity and water depth of original scale and log-transformed scale 
are given in Columns 2-4 of Tables 1 and 2, respectively. The estimated 
model paramFters values using ungrouped and grouped data are very 
close, exceptp, for sandy-silt soil in Table 1. * '  

In ordinary regression analysis the commonly used measure of model 
performance 'is the correlation coefficieri t. However, in logistic regres- 
sions the value of correlation coefficient is very small. It is because even 
the model may fit the probability very well, unless the probability is near 
0 or 1, the outcome of yi is not explained very well. Therefore, corre- 
lation coefficient does not provide useful information on the perfor- 
mance of a logistic model. After all, i t  is the capability of a model to 
predict the outcome of a discrete random event is of our concern. 

To evaluate the performance of the two logistic models, a useful cri- 
terion is the number of incidences of misclassification by the two models. 

- scoured I * *  
I I I 1 I I l l 1  I I I I 1  I l l l  I ,  '.f .2 . 3  .4 .5 1 2 3 4 5  10 20 30 

DEPTH OF FLOW ( f t )  

FIG. 4.-Channel Scouring Potential for Sandy-Sllt Soils Derived by Logistic 
Analysis Using Hughes' Data 

gram is prepared, the next step is to analyze the data and draw, if pos- 
sible, a line which distinctively separates the incidence of erosion and 
nonerosion. Apparently, in this case, i t  is not possible. Therefore, it is 
argued that, in terms of evaluating channel scouring potential, it would 
be more reasonable to derive a probabilistic measure under various con- 
ditions instead of deriving a curve which best separates the occurrence 
and nonoccurrence of scouring and using it as a criterion in the assess- 
ment of scouring in the channel. 

Based on Hughes' data, for a given soil type the average flow velocity 
and water depth are the two dominant factors affecting the scouring 
potential in the channels. The corresponding logistic regression model 
can be written as 

TABLE 2.-Resuit of Logfstic Analysis by Mlnlmum Chi-square Method Using Flow 
Velocity and Water Depth of Log-Transformed Scale in which Pr{I} is the conditional probability of channel scouring de- 

pending on flow velocity, xil , and water depth, x i 2 ,  for the i th obser- 
vation. Similar to probit analysis, using minimum chi-square method in 
logistic regression requires that data are grouped and there are several 
observations in each group. The requirement to have several observa- 
tions in each group could impose difficulty on determing proper interval 
boundaries for each independent variable if large number of groups are 
to be formed. This difficulty would gradually vanish as number of groups I 

become smaller, but the problem of loss of information content would 
emerge. In this application, logistic analyses were performed under which 
the Hughes' data are both ungrouped and grouped into 16 cells. Two 
different logistic models are examined in this paper. One uses the flow 
velocity and water depth of original scale and the other uses the log- 
transformed flow velocity and water depth as independent variables. 
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Total 
number 

of obser- 
vations n 

(5) 

Number of 
Incidences of 
scouring ti1 

(6) 

Number of 
misclassl- 
fications 

(7) 

Model Parameters 

Soil type 
(1) 

Sandy-silt' 
Sandy-siItb 
Sil ty-cla y ' 
Silty-clayb . 
Clay soil' 
Clay soilb 

-6.327 
-6.339 
-4.149 
-4.598 
-6.287 
-6.288 

6.183 
6.249 
4.100 
4.894 
4.884 
4.885 

-1.187 
-1.276 
-0.563 
-0.855 
-1.102 
-1.126 

13 . 
. . 13 

' 14 
14 
22 
23 

44.29 
5.09 
67.13 
10.43 

2.64 
66.08 , 

106 

133 

112 

57 . 

8s 

43 
'Data ungrouped: 
bGrouped. 
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The general discriminant function for a logistic model can be expressed 
as (10) 

k 

X(xi)  = In (") = In (:) + 2 b j ( X 1  - 2;) ..................... (8) 
1 1 Si j - 1  

in which fl, = the estimate of j th  parameter, xij = the value of j th  in- 
dependent variable of ith observation, and k = number of independent 
variables in logistic model. In this particular application k = 2. Each Zf 
is a weighted mean of the values of the j th  independent variable. This 
average is 

1 1 
2 2 

.............................................. R? = - niio + - mil (9) 

with ntio being the mean of the subset of no values of x1 for which yi = 
0, tnjl being the mean of the subset of t i l  values of xii for which yi = 1, 
and nl + rro = rz. We should keep in mind that, in logistic regression, 
even though y (a binary variable) was regressed on x, it is the logit func- 
tion A(x), and not the conditional probability 6 ,  that is linear in x (see 
Eq. 4). From Eq. 4 the general discriminant function, Eq. 8, for predict- 
ing event outcomes can be derived. The first term in the right-hand-side 
of Eq. 8, ln(nl/.rro), is the ratio of prior probabilities of occurrence to 
nonoccurrence of scouring. This means that T T ~  is the probability of oc- 
currence of channel scouring before measurements of flow characteristics 
were made, and no = 1 - q1 is the probability of no scouring occurring. 
If the values of  IT^ and no are unknown, they can be estimated by nl/n 
and tzo/n, respectively. The schematic diagram of classification with two 
populations using Eq. 8 is illustrated in Fig. 5. To predict the occurrence 
or nonoccurrence of scouring at a given flow condition, we can base the 
value of discriminant function, Eq. 8, using the following rules: scouring 
will occur if A(x) < 0; scouring will not occur if h(x) > 0; and the chance 
is 50/50 if X(x) = 0. 

The total number of data points, number of incidences of scouring, 
and number of misclassifications by the two logistic models for different 
soil types are also given in Columns 5-7 of Tables 1 and 2. The average 
percentage of misclassifica tion for the logistic model using ungrouped 
data with flow velocity and water depth of original scale is 21%, while 
16% for the model using log-transformed scale. Similar results are ob- 
served using grouped data. Therefore, the model using log-transformed 
independent variables for sandy-sil t and silty-clay soils ou t-performs that 
of using original scale. For clay soil, performance of the two models is 
indistinguishable. Furthermore, the results of using ungrouped data 
provide slightly better performance in cIassification than that of using 
grouped data. The values of statistic Q in Eq. 6 for various bed materials 
in two different models considered are given in the last column of Tables 
1 and 2. The performance of logistic models based on their ability to 
predict the discrete outcome, occurrence or nonoccurrence of scouring, 
is generally consistent with the value of Q, i.e., less number of mis- 
classification corresponding with a smaller value of Q, except for silty- 
clay case (Table 2). Exact causes for such inconsistency are yet to be 
explored. However, it might result from the effect of estimation of (ml/ 
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x1 

I I Decide y-0 

FIG. B.-Classiflcatlon of Blnary ReBpOnBtt with Two Independent Variables 
i 

7 i o )  in Eq. 8, data grouping procedure, the behavior of data set, and 
performance of search technique for optimization because the problem 
is nonlinear and global optimality cannot be assured. 
, Once the values in the logistic model are derived, an evaluation of 
channel scouring potential, conditioned upon the flow velocity and water 
depth, can easily be made. A series of curves of different potential levels 
of scouring can be imposed on the scatter diagrams as shown in Figs. 
2-4 which are derived based on the results using ungrouped data. Take 
sandy-silt soils as an example: the corresponding velocities at which the 
channels have scouring probability of 0.95, 0.9, 0.7, 0.5, and 0.3, at a 
depth of 2 f t  (0.6 m), are 5.2, 4.6, 3.8, 3.1, and 2.7 ft/sec (1.6, 1.4, 1.2, 
0.95, and 0.82 m/s), respectively. Scatter diagrams with explicit proba- 
bilistic statements or derivations of functional expressions of scouring 
potential provides additional information to the designer and this en- 
hances risk-based design. 

SUMMARY AND CONCLUSIONS 

Logistic regression is applicable when the dependent variable and some 
of the independent variables are qualitative. It also provides a means to 
evaluate the probability of a random event whose occurrence is affected 
by a number of attributes. To demonstrate the usefulness of the analysis 
in water resources engineering, the method is applied to relate scouring 
potentiaI in a channel as function of velocity and depth of flow using 
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Hughes' data. 1 Iowevcr, tlie nietlivd requires ftrrther investigations to 
ascertain its applicability in practical desigti of stable clianiiel. 
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APPENDIX II.-NOTATION 

The followitrg syitrbals are used in this p y e r :  

I2 = 
111 = 
i lQ = 

Pr = 
( 2 =  

Var (1) = 

conditional expectation; 
cum ti la t iv e d i s t ri b u ti u 11 f LI nc t i on; 
number of groups in data set; 
total number of observations; i 
number of observations with y = 1; 
number of observations with y = 0; 
conditional probability; 
error functioii having a chi-square disttibutiun; 
conditiorial variance; 

vector of independent variables in regression model; 
weiglitcd mean of indcyetdetit variable; 
dependent variable in regression model; 
vector of parameter in regression model; 
random error; 
logit function; 
probability of occurrence of event; 
prior probability of no scouring; and 
prior probability of scouring. 
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