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The simultaneous flow of immiscible fluids in porous media occurs in a wide variety of 
applications. The equations governing these flows are inherently nonlinear, and the geometries and 
material properties characterizing many problems in petroleum and groundwater engineering can 
be quite irregular. As a result, numerical simulation often offers the only viable approach to the 
mathematical modelling of multiphase flows. This paper provides an overview of the types of 
models that are used in this field and highlights some of the numerical techniques that have 
appeared recently. The exposition includes discussions of multiphase, multispecies flows in which 
chemical transport and interphase mass transfers play important roles. The paper also examines 
some of the outstanding physical and mathematical problems in multiphase flow simulation. The 
scope of the paper is limited to isothermal flows in natural porous media; however, many of the 
special techniques and dificulties discussed also arise in artificial porous media and multiphase 
flows with thermal effects. 

1. INTRODUCTION 

1 .I Importance of multiphase flow in porous media 
Multiphase flows in porous media occur in a variety of 

settings in applied science. The earliest applications 
involving the simultaneous flow of two fluids through a 
porous solid appear in the soil science literature, where the 
flow of water in soils partly occupied by air has 
fundamental importance128. This unsaturated flow in 
some ways represents the simplest of multiphase flows. 
Yet, as we shall see, it exemplifies a fact underlying the 
continued growth in research in this area: multiphase 
flows in porous media are inherently nonlinear. 
Consequently, numerical simulation often furnishes the 
only effective strategy for understanding their behaviour 
quantitatively. 

Although the earliest studies of multiphase flows in 
porous media concern unsaturated flows, the most 
concentrated research in this field over the past four 
decades has focused on flows in underground petroleum 
reservoirs. Natural oil deposits almost always contain 
connate water and occasionally contain free natural gas as 
well. The simultaneous flow of oil, gas and water in porous 
media therefore affects practically every aspect of the 
reservoir engineer's job of optimizing the recovery of 
hydrocarbons. Here, again, the physics of multiphase fluid 
flows give rise to nonlinear governing equations. The 
difficulty imposed by the nonlinearities along with the 
irregular geometries and transient behaviour associated 
with typical oil reservoirs make numerical simulation an 
essential tool in petroleum engineering. The advent of 
various enhanced oil recovery technoldgies has added to 
this field further levels of complexity and hence an wen 
greater degree of reliance on numerical methods. 
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Most recently, multiphase flows have generated serious 
interest among hydrologists concerned with groundwater 
quality. There is growing awareness that many con- 
taminants threatening our groundwater resources enter 
water-bearing rock formations as separate, nonaqueous 
phases. These oily liquids may come from underground or 
near-surface storage facilities, land-fills at  which chemical 
wastes are dumped, industrial sites such as oil refineries or 
wood-treatment plants, or illegal waste disposal. 
Regardless of the source of the contaminants, our ability 
to understand and predict their flows underground is 
crucial to the design of sound remedial measures. This is a 
fairly new frontier in multiphase porous-media flows, and 
again the inherent complexity of the physics leads to 
governing equations for which the only practical way to 
produce solutions may be numerical simulation. 

1.2 Scope of the article 
The purpose of this article is to review some of the more 

salient applications of numerical simultation in multi- 
phase porous-media flows. In light of the history and 
breadth of these applications, a review of this kind must 
choose between the impossibly ambitious goal of 
thoroughness and the risks of narrowness that 
accompany selective coverage. This article steers toward 
selective coverage. The aim here is to survey several 
multiphase flows that have attracted substantial scientific 
interest and to discuss a few aspects of their numerical 
simulation that have appeared in the recent technical 
literature. I confess at the outset that some important 
multiphase flows receive no attention here at all, and, even 
for the flows discussed, many potentially far-reaching 
contributions to numerical simulation get no mention. 
Perhaps the references given throughout the article can 
compensate in part for these shortcomings. 

In particular, we shall restrict our attention here to 
underground flows in natural porous media. This 
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restriction excludes many applications in chemical 
engineering, one notable example being flows in packed 
beds of catalysts. Also, the article considers only 
isothermal flows. Therefore we do not discuss steam- 
water flows in geothermal reservoirs or such thermal 
methods of enhanced oil recovery as steam injection or 
fireflooding. Several numerical methods also receive scant 
or no mention. Among these are integrated finite 
differences, subdomain finite elements, spectral methods, 
and boundary-element techniques. Some of these 
approaches undoubtedly hold promise for future 
applications in multiphase flows in porous media. For the 
present, however, we concentrate on developments based 
on the trinity of more standard discrete approximations: 
finite differences, Galerkin finite elements and collocation. 

2. BACKGROUND 

2.1 Definitions 
From a quantitative point of view, one of the most 

fruitful ways of examining multiphase flows in porous 
media is through the framework of continuum mixture 
theory. In contrast to a single continuum, a mixture is a set 
of overlapping continua called constituents. Any point in a 
mixture can in principle be the locus ofmaterial from each 
constituent, and each constituent possesses its own 
kinematic and kinetic variables such as density, velocity, 
stress and so forth. How one decomposes a physical 
mixture into constituents depends largely on one’s 
theoretical aims, but in analysing porous media we 
commonly identify the solid matrix as one constituent and 
each of the fluids occupying its interstices as another. 

In discussions of porous-media physics it is important 
to distinguish between multiphase mixtures and 
multispecies mixtures. A mixture consists of several phases 
if, on a microscopic length scale comparable, say, to 
typical pore apertures, one observes sharp interfaces in 
material properties. In this sense all porous-media flows 
involve multiphase mixtures, owing to the distinct 
boundary between the solid matrix and the interstitial 
fluids. At this boundary, density, for example, changes 
abruptly from its value in the solid to that in the fluid. 
More complicated multiphase mixtures occur, common 
examples being the simultaneous flows of air and water, 
oil and water, or oil and gas through porous rock. Here, in 
addition to rock-fluid interfaces, we observe interfaces 
between the various immiscible fluids at the microscopic 
scale. While the detailed structures of these interfaces and 
the volumes they bound are inaccessible to macroscopic 
observation, their geometry influences the mechanics of 
the mixture. This, at least intuitively, is why volume 
fractions play an important role in multiphase mixture 
theory. The volume fraction 4, of phase a is a dimension- 
less scalar hnction of position and time such that 
O<$,< 1, and, for any spatial region 9 in the mixture, 
Jg 4, dx gives the fraction of the volume of 9 occupied by 
phase a. The sum of the fluid volume fractions in a 
saturated solid matrix is the porosity 4.  

On the other hand, there are mixtures in which no 
microscopic interfaces appear. Saltwater is an example. 
Here the constituents are ionic or chemical species, and 
spatial segregation of these constituents is not observable 

multiphase mixtures in that volume fractions do not 
appear in the kinematics of the former. 

It is possible to have multiphase, multispecies mixtures. 
These compositional flows occur in porous-media physics 
when there are several fluid phases, each of which 
comprises several chemical species. Such mixtures arise in 
many flows of practical interest, two important examples 
being multiple-contact miscible displacement in oil 
reservoirs and the contamination of groundwater by 
nonaqueous liquids. In these cases the transfer ofchemical 
species between phases is a salient feature of the mixture 
mechanics. More detailed treatment of compositional 
flows appears later in this article. 

2.2 Review of the basic physics 
While the theory of mixtures dates at least to Eringen 

and Ingram6’, its foundations are still the focus of active 
inquiry, as reviewed by Atkin and Craine17. Among the 
applications of mixture theory to multiphase mixtures 
and porous media are investigations by Prevost ‘24, 

B ~ w e n ~ ~ ’ ~ ’ ,  Passman, Nunziato and Walsh’ l 2  and 
Raats126. The aims of the present article in this respect are 
much more limited in scope than those just cited. What 
follows is a brief review of the basic physics of multiphase 
flows in porous media, using the language of mixture 
theory as a vehicle for the development of governing 
equations7. 

For concreteness, assume that the mixture under 
investigation has three phases: rock ( R )  and two fluids 
( N ,  W).  (The extension of this exposition to mixtures with 
more fluid phases is straightforward.) Each phase a has its 
own intrinsic mass density pa, measured in kg/m3; velocity 
v,, measured in m/s; and volume fraction $a .  From their 
definitions, the volume fractions clearly must obey the 
constraint C, 4,= 1. In terms of these mechanical 
variables, the mass balance for any particular phase a is 

where I-, stands for the rate of mass transfer into phase a 
from other phases. To guarantee mass conservation in the 
overall mixture, the reaction rates must obey the 
constraint C, ra = 0. 

We can rewrite equation (1) in a more common form by 
noting that the porosity is $= 1 - 4 R  and defining the 
fluid saturations SN = 4N/4 ,  S ,  = 4,/4. Thus 

for the rock phase, and 

for the fluids. 
Each phase also obeys a momentum balance. In its 

primitive form this equation relates the phase’s inertia to 
its stress t,, body forces b,, and rate ma of momentum 
exchange from other phases. Thus, 

except, perhaps, at intermolecular length scales. Air is 

and some trace gases. Multispecies mixtures differ from 
another multispecies mixture, consisting of N,, O,, CO,, - V * t, - 4, P a b a  = ma - V,r, (3) 
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If we assume that the rock phase is chemically inert, so 
rR = 0, and fix a coordinate system in which V ,  = 0, then the 
momentum balance for rock reduces to 

V * t R  - + R P R ~ R  =W 
Let us assume that each fluid is Newtonian and that 

momentum transfer via shear stresses within the fluid is 
negligible compared with momentum exchange to the 
rock matrix. In this case t,= --pal, where pa is the 
mechanical pressure in fluid a and 1 is the unit isotropic 
tensor. If gravity is the only body force acting on fluid 
phase a, then +,b,=gVZ, where g stands for the 
magnitude of gravitational acceleration and Z represents 
depth below some datum. For the momentum exchange 
terms, the assumption common to most theories of 
porous media is that momentum losses to the solid matrix 
take the form of possibly anisotropic Stokes drags, 

A,m, = +(vR - v,) = - +v, 

where A, is a tensor called the mobility of phase a. If we 
assume further that the inertial effects in the fluid are 
negligible compared with rock-fluid interactions and that 
there is no interphase mass transfer, then equation (3) 
yields 

' a  v = -- (Vp, - p,gVZ) 
a +S, 

(4) 

which is familiar as Darcy's law. 
Clearly, the mobility A, appearing in equation (4) 

accounts for much of the predictive power of Darcy's law 
in any particular rock-fluid system. Constitutive laws for 
mobility are largely phenomenological, the most common 
versions having the form A,= kk,, /p, ,  where p, is the 
dynamic viscosity of fluid phase a, k is the permeability, 
and the relative permeability k ,  is a coefficient describing 
the effects of other fluids in obstructing the flow of fluid a. 

For a two-fluid system with no interphase mass 
transfer, the relative permeabilities typically vary with 
saturation, and the curves krN(SW), krW(SW) look roughly 
like those drawn in Fig. 1102.  The vanishing-point 
saturations SNr and SWr are called residual or irreducible 
saturations, and they account for the fact that, for a 
particular fluid to flow, it must be present at a sufficient 
degree of saturation to permit the formation of connected 
flow channels consisting of that phase. Actually, this 
picture of relative permeabilities is quite simplistic. In 
nature relative permeabilities often exhibit significant 
hysteresis, and the verification of the relative-permeability 
model in the presence of three or more fluid 
 phase^^^^'^^*'^' or compositional e f f e c t ~ ~ ~ . ' ~  is still not 
clear. 

Equation (4) allows each fluid phase to have its own 
pressure at  any point in the reservoir. These pressure 
differences indeed occur in nature. At the microscopic 
scale the effects of interfacial tension and pore geometry 
on the curvatures of fluid-fluid interfaces lead to capillary 
effects. Leverett" uses the classical thermodynamics of 
G i b b ~ ' ~  to describe these effects, while more recent works 
such as those of Morrowlo3 and Davis and Scriven" 
drawn connections with microscopic effects and 
molecular theories of interfacial tension. These theories 
imply that, at a macroscopic scale, there will be a pressure 
difference, or capillary pressure, between any two fluid 
phases in a porous medium. In two-phase systems, for 

example, there is a single capillary pressure p C N W =  
p N  -pw. In simple models pcNw is a function of saturation; 
however, in actual flows the capillary pressure exhibits 
rather pronounced h y s t e r e ~ i s ' ~ ~ * ~ ~ ~ ' ~ ~  and dependence 
on fluid c o m p ~ s i t i o n ~ ~ .  

Given velocity field equations such as equation (4), we 
can expand the mass balances for the fluid phases to get 
flow equations for each fluid. Using the customary 
decomposition ofthe mobility A, and directly substituting 
equation (4) into equation (2) yields, for a two-phase 
system, 

5)  

Flow equations for systems having more fluid phases will 
be similar, except that if P phases coexist, then P -  1 
independent capillary pressure functions will appear in 
the system. 

2.3 Early investigations 
The picture of multiphase flows in porous media 

outlined above evolved over several decades beginning in 
the 1930s. The use of an extended version of the single- 
phase form of Darcy's law in multiphase flows appears to 
have begun with Richards128 in his work on unsaturated 
flows in the soil physics literature. The explicit use of a 
separate velocity field equation for each fluid began in the 
petroleum industry. Here the pioneering work of Muskat 
et aE.lo4, Wykoff and Botset161, Buckley and L e ~ e r e t t ~ ~ ,  
Fatt and Dykstra68 and Welge159, among others, 
promoted the widespread acceptance of Darcy's equation 
altered by the incorporation of relative permeabilities. 
Today this model is the one most widely used in the 
prediction of multiphase flows in porous media. 

Despite its broad appeal in applications, the 
multiphase version of Darcy's law has some limitations. 

0 0.2 0.4 0.6 0.1 1.0 
WATER STUAATION , S. 

Fig. 1 .  Typical relative permeability curves102 
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Relative permeabilities are not strictly functions of 
saturation, the most glaring violation being the 
phenomenon of hysteresis or dependence on saturation 
history. Such microscopic phenomena as gas slippage at 
the solid walls, turbulence, and adsorption can also 
invalidate the Darcy model in certain These 
limitations are worthy of consideration in the application 
ofthe multiphase Darcy law to any new rock-fluid system. 

3. TWO-PHASE FLOWS 
The simplest multiphase flows in porous media are those 
in which two fluids flow simultaneously but do not 
exchange mass or react with the solid matrix. While many 
flows of practical interest exhibit more complex physics, 
two-phase flows have drawn attention in many 
applications. Among these are unsaturated groundwater 
flows, salt-water intrusion in coastal aquifers, and the 
Buckley-Leverett problem in petroleum engineering. 

3.1 Unsaturated groundwater flow 
In typical soil profiles some distance separates the 

earth's surface from the water table, which is the upper 
limit of completely water-saturated soil. In this 
invervening zone the water saturation varies between 0 
and 1, the rest of the pore space normally being occupied 
by air. Water flow in this unsaturated zone is complicated 
by the fact that the soil's permeability to water depends on 
its water saturation. Let us derive the common form of the 
governing equation and examine some of the com- 
putational dificulties that arise in its solution. 

Most formulations of unsaturated flow rest on the 
assumption that the motion ofair has negligible effect on 
the motion of water. Therefore one usually neglects the 
flow equation for air, assuming that the air pressure 
equals the constant atmospheric pressure at  the surface, 
that is, p A  =pat,,,. Then we can define the pressure head in 
the water by $ = (pw -pA)/(pwg),  having the dimensions of 
length and being negative in the unsaturated zone where 
Sw < 1. Also, instead of saturation, soil physicists typically 
refer to the soil's moisture content, defined by 0 = +Sw. In 
terms of these new variables the capillary pressure 
relationship for the air-water system becomes $ = $(@) or, 
provided $ is an invertible hnction, @=@($). From 
equation (5b), the flow equation for water thus transforms 
to 

4 

where K = pwgkkrw/pw is the hydraulic conductivity of the 
soil. Notice that K is a hnction of $, since relative 
permeability depends on saturation, which varies with $ 
according to the capillarity relationship. 

In many unsaturated flows the compressibility effects in 
water are small, so that time derivatives and spatial 
gradients of pw may be neglected. If this approximation 
holds, then the flow equation reduces to 

a@ 
- = V *  [K. (V$+VZ)]  (6) at 

To get an equation in which $ is the principal unknown, 
we simply use the chain rule to expand the time derivative 

on the left, giving 

where C($) = d@/d$ is the specific moisture capacity. Ifthe 
flow is essentially one-dimensional in the vertical 
direction, then this equation collapses to 

(7) 

which is Richards' equation'28. 
Several investigators in hydrology have examined the 

unsaturated flow equation from analytic viewpoints. 
Philip"' gives one of the earliest theoretical treatments of 
Richards' equation, proposing asymptotic solutions for a 
nonlinear problem. The equation has also attracted 
interest in the applied mathematics community, including 
investigations by Aronson16, Peletier' l6 and Nakano"'. 
Aronson16, for example, observes that, while the classical 
linear heat equation admits solutions in which 
disturbances propagate with infinite speeds, the nonlinear 
equation (7) may propagate disturbances with only finite 
speed. This implies that a moving interface, or wetting 
j*on t ,  can form between the downward-moving zone of 
high moisture content 0 and the zone yet uncontacted by 
the wave of infiltrating water. Under certain initial 
conditions this moving boundary can exhibit steep spatial 
gradients in 0 and consequently in $. The resulting sharp 
fronts pose considerable difficulty in the construction of 
numerical schemes, since the discrete approximations 
used typically have lowest-order error terms that increase 
with the norm of the solution's gradient. We shall discuss 
this difficulty in more detail in Section 6. 

Numerical work by a variety of investigators has 
corroborated the existence of wetting fronts. Much of this 
work appeared during the 1970s, and it includes articles 
by B r e ~ l e r ~ ~ ,  Neumanlo7, Reeves and D u g ~ i d ' ~ ~ ,  
Narasimhan and Witherspoon106 and Segol' 36. Van 
Genuchten15'"52 presents solution schemes for the one- 
and two-dimensional versions of Richards' equation 
using both finite differences and finite-element Galerkin 
methods employing Hermite cubic basis functions. His 
work furnishes a good comparison of the finiteldifference 
and finite-element approaches to the approximation of 
wetting fronts. 

Van Genuchten's investigation also demonstrates 
another difficulty in solving Richards' equation 
numerically. This problem owes its existence to the 
nonlinear coefficient C($) appearing in the accumulation 
term of equation (7). Because the equation itself is 
nonlinear, implicit time-stepping algorithms must 
incorporate an iterative procedure for advancing the 
approximate solution from one time step to the next. 
There then arises a question regarding the proper time 
level at  which to evaluate C($) .  Van Genuchten 
demonstrates that evaluating this coefficient in a fully 
implicit fashion can lead to material balance errors in 
certain schemes, among them the Galerkin scheme using 
two-point Gauss quadrature to evaluate the mass and 
stiffness matrix elements. Figure 2 shows how this scheme 
produces a wetting front that lags the true solution. 
 mill^^^ advances an iterative method for evaluating C($) 
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Solutions to the unsaturated flow equation using 

at the correct time level to guarantee good global material 
balances. 

Allen and Murphy'' propose another approach to the 
time-stepping problem in unsaturated flows. While the 
method is used in connection with finite-element 
collocation - a technique closely related to the two-point 
Gauss quadrature scheme mentioned above - the basic 
idea should be applicable with most spatial 
discretizations. If we return to the original form of the 
accumulation term, equation (7) becomes 

One can circumvent the difficulties encountered in solving 
an equation in both 0 and $ by properly formulating an 
iterative procedure. Let us approximate the time 
derivative using implicit finite differences: 

We can linearize the flux terms in this approximation by 
establishing an iterative scheme in which $ ' I +  

represents the value of $ at the most recent known 

represents the value at the sought iterative level: 
iteration level and $ ' I +  1 ,m + 1 = + 1 ,m + 6$,'1 + 1 m + 1 

This expression allows the nonlinear coefficient K($"+ ') 
to lag by an iteration. 

In the accumulation term we also lag @($'*+'), but in 
addition we linearly project forward to the next iterative 
level using the Newton-like extrapolation 

Here, recall that C($) = d@/d$. The value $'I of pressure 
head at the old time level represents the value furnished by 
the iterative scheme after convergence, which a computer 
code can test using either of two criteria. First, one can 
check whether the iterative increment 6$"+ l , m + l  is small 
enough in magnitude or norm to warrant stopping the 
iteration. Second, one can observe that collecting the 
terms involving the unknown 6$"+1,m+1 on the left and 
ignoring truncation error leaves the known quantity 

acting as a right-hand side in the linearization. This 
quantity is precisely the residual to the flow equation at 
the mth iteration. Whenever IIR'*+l,mll is small in some 
appropriate norm, the resulting increment 6$"+ + will 
be small and, more to the point, we shall have solved the 
time-differenced equation to within a very small error. 

It is easy to see why such a scheme conserves mass, at 
least to within limits imposed by the iterative convergence 
criteria. If we integrate the residual R'*+l~m(z) over the 
spatial domain i-2 of the problem, we find 

dz ~ n +  l , m  

R 

If the integral on the right were zero, this equation would 
be precisely the global mass balance for vertical 
unsaturated flow. Thus by iterating until I1R'" 1 )  is 
small, we implicitly enforce the global mass balance to a 
desired level of accuracy. 

3.2 Saltwater intrusion 
In coastal aquifers both fresh water and salt water are 

usually present. Being denser, the salt water underlies the 
fresh water, the latter forming a lens whose shape and 
thickness may vary with changes in pumping and 
recharge. Figure 3 depicts a typical coastal aquifer in 
cross-section. When the upper portion of the aquifer acts 
as a source of fresh water, it becomes important to design 
pumping and recharge strategies that prevent the flow of 
salt water into production wells. 

Strictly speaking, salt water and fresh water are not 
separate phases. In fact they are completely miscible as 
fluids, and in a coastal aquifer there exists a zone lying 
between the two fluids in which salt concentration varies 
continuously. To be rigorously faithful to the physics of 
the problem, then, one would solve a single-phase flow 
equation coupled with a transport equation for salt. 
Indeed, one of the earliest numerical treatments of 
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to solve for db/dt in terms of heads: 

I 

Fig. 3. Schematic cross-section of a coastal 

saltwater intrusion used just this approach12'. Never- 
theless, the transition zone between salt and fresh water is 
often quite narrow in comparison with the overall 
thickness of the aquifer, and for computational purposes 
we may consider it to be a sharp interface. Such a sharp- 
interface approximation serves as justification for treating 
saltwater intrusion into coastal aquifers as a multiphase 
flow. 

Let us consider the problem of modelling the areal 
movement of salt and fresh water. To get vertically 
averaged flow equations, we first write the equations in 
terms of hydraulic heads, defined in the fresh water ( F )  and 
salt water (S) as follows: 

is the effective rate of withdrawal from the 
zone, and 

q F  ( z  = b = - (vF - 4vZ)Iz  = b ' ( e z  - Vb) 
is the effective rate of exchange of freshwater 
interface C, which we have assumed to be zero. 

vertically averaged flow equation 
A similar development for salt water leads to the 

freshwater 

across the 

Here Ts = Ksls and Cs = &lS.  The sink terms in this 
equation are 

qSlz=b = -(vS - 4vZ)lz = b  * (ez  -Vb) 
which represents the effective rate of withdrawal from the 
saltwater zone, and 

q s l z = a  = - V s l z = a  * (ez - Val 

which gives the effective rate of saltwater leakage into the 
lower confining layer, whose depth is fixed. 

To solve this system we need an equation relating &- 
and &. In this case, since the two fluids are miscible at the 
microscopic scale, there will be no head difference 
between the fluids where they are in contact. Thus the 
head is continuous across the interface C: hF = hs at z = b. 
As Huyakorn and Pinder84 show, this condition allows us 

where p,* = p,/(ps - p F ) .  Combining equation (1 1) with 
equations (9) and (10) yields the coupled system of flow 
equations 

Let us examine the approximate numerical solution to 
equation (12) using finite-element Galerkin methods. In 
these-methods we re lace the unknown functions hF(X, t) 
and hs(x, t) by trial Jnctions 

I 

6F(x, t, = hF,d(X, t, + 1 hF,~(t)N~(x) 
i = l  

I 

&(x, t) = hS,d(X, t) + 1 kf(t)Nf(X) 
i =  1 

The functions hF,a and hs,a satisfy the essential boundary 
conditions for the problem at hand, and each of the sums 
on the right satisfies homogeneous boundary conditions. 
For continuous interpolating trial functions, hF,l( t) and 
h,,,(t) usually stand for the values of head at the ith spatial 
node, while the basis functions Ni(x) dictate the variation 
between nodes. 

To form the Galerkin eqpations _corresponding to 
equation (12), we substitute hF and hs for kF and ks in 
equation (12), multiply each equation by each of the basis 
functions N,(x), . . ., N,(x), and force the integral of the 
result over the spatial domain S2 to vanish. Doing this 
leads to time evolution equations for the unknown nodal 
values hF,i(t) and hS,Jt). For the freshwater equation, there 
results 

i =  1 dt dhsl! dt 
dh", Krjh,, - QGh,, + Mfj' - + M Y  

r 

where K!j, Qrj, Mf;', M Y  and Bf have the meanings 
assigned in Table 1. 

A similar collection of evolution equations arises from 
the saltwater flow equation: 

where the definitions of KYj,. Qfj, M:!, M:f and By again 
appear in Table 1. Rewriting this set of 21 evolution 
equations in matrix form gives a system having the 
structure 

a 
[KIP4 + [MI dt {h) = ( 4  (13) 
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Table I .  Galerkin integrals appearing in the saltwater intrusion equations 

Mi ;  - 4 p f N i N j d x  F2-J* 

TsVhs,a.VNjdx+ NjTsVhs,a.ndx b 

where { h )  signifies a vector containing the 21 unknown 
nodal values of head, [a and [MI are the stiffness and 
mass matrices arising from flux and accumulation terms, 
respectively, and ( r )  is a vector containing known 
boundary data and withdrawal rates. 

The system (13) is nonlinear, owing to the dependence 
of the zonal thicknesses IF and Is on the unknown heads. 
Thus any temporal discretization of these ordinary 
differential equations will have to be iterative in nature to 
guarantee consistency betweeh the numerical solution 
and the flow coefficients at  each time level. Pinder and 
Page121 advance one such iterative scheme. 

The saltwater interface problem exhibits a peculiar 
computational difficulty associated with the saltwater- 
freshwater interface Z. This problem manifests itself as the 
saltwater wedge retreats or advances. Under these 
circumstances the intersection of C with the lower 
confining layer, called the saltwater toe, moves 
horizontally. This moving boundary allows for the 
possibility that the interface may not exist at some areal 
locations, and at  these locations the free surface condition 
becomes degenerate97. To accommodate this degeneracy, 
it becomes necessary to track the moving boundary as the 
flow calculations proceed. 

Shamir and Dagan13’ present a finite-difference 
algorithm for tracking the saltwater toe in a vertically 
integrated, immiscible setting. By examining a one- 
dimensional flow, they develop a scheme for regnerating 
the spatial grid to guarantee that the toe lies on a 

computational node. Thus on the ocean side of the 
separating node they solve the simultaneous flow 
equations for saltwater and freshwater heads, while on the 
inland side they solve the equation for freshwater head 
only. This approach obviously involves a great deal of 
computational complexity in two or three dimensions, 
since it requires the construction of multidimensional 
moving finite-difference grids. However, an analogous 
idea for finite-element grids in two dimensions has proved 
promising5 5. 

In another approach, Sa da Costa and Wilson131 use a 
fixed, two-dimensional, quadrilateral finite-element grid 
to model the immiscible flow equations. They devise a toe- 
tracking algorithm based on the Gauss points used to 
compute the integrals contributing to the matrix entries in 
equation (1 3). At Gauss points inland of the toe the model 
assigns a very small nonzero saltwater transmissibility Ts. 
Thus, while the saltwater wedge never actually disappears 
in the numerical scheme, inland of the toe the flow of salt 
water is negligible. 

3.3 The Buckley-Leverett problem 
The Buckley-Leverett problem serves as a fairly simple 

model of two-phase flow in a porous medium. The 
problem, introduced by Buckley and L e ~ e r e t t ~ ~ ,  has 
particular relevance in the petroleum industry, where gas 
and water injection are two common techniques for 
displacing oil toward production wells in underground 
reservoirs. The simplicity of the Buckley-Leverett 
problem arises from three basic assumptions. First, the 
total flow rate of oil and displacing fluid (say water) 
remains constant. Second, the rock matrix and fluids are 
incompressible. Third, the effects of capillary pressure 
gradients on the flow field are negligible compared with 
the pressure gradients applied through pumping. These 
assumptions are too restrictive to permit widespread 
application of the Buckley-Leverett model, but, as we 
shall argue below, the simplified model acts as a paradigm 
for the numerical difficulties that occur in more com- 
plicated models of oil reservoirs. 

To derive the Buckley-Leverett model, we begin with 
equation (5),  identifying N as oil and W as water and 
assuming an isotropic porous medium: 

where Au = kkru/,uu is the mobility of fluid a. Coupled to 
these flow equations are the constraint SN + SW = 1 and a 
capillary relationship pcNw = p C N W ( S W ) .  If we restrict our 
attention to one-dimensional flow in a homogeneous 
reservoir of uniform cross-section and assume that gravity 
effects are absent, then the flow equations collapse to 

Now we invoke the assumption that capillarity has 
negligible effect on the flow field-wide, so that 
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apcNw/dx N 0. Further, the incompressibility assumption 
implies that 6, p N  and pw are constant in time and that the 
fluid densities are uniform in space, so that 

$ s - T ( A w  at ax ..sx.>=O (14b) 

Now observe that - A,dp,/ax is the Darcy flux qGI ofphase 
a. Also, by assumption, the total flow rate q = qw + qN is a 
constant. Thus we need only solve one of equations (14), 
using the constant value of q to solve the other equation 
by subtraction. 

Let us solve the water equation (14b). Since 
- Awapw/ax = qw = A,q/(A, + AN), we arrive at the 
Buckley-Leverett saturation equation 

"w+"(?&)=o at ax 6 

where fw = Aw/(AN + Aw) is the ji-actional flow of water. 
Equation (1 5) is clearly nonlinear, since fw depends on the 
unknown water saturation Sw through the fluid 
mobilities. While the functional form of fw(Sw) depends 
on the particular rock-fluid system being modelled, 
fractional flow functions typically have an 'S-shaped' 
profile over their supports (Sw, 1 - S N r ) ,  as shown in Fig. 
4. 

Difficulties in solving Cauchy problems involving 
equation (15) arise from two sources. First, the equation 
itself is a nonlinear, hyperbolic conservation law. Its 
hyperbolicity owes to our neglect of capillary pressure 
gradients, inclusion of which would have led to an 
additional second-order term of the form 

Thus equation (15) is, in effect, an approximation to a 
singularly perturbed parabolic problem in which we have 
neglected the dissipative effects of capillarity. 

Second, the flux function q fw/4 appearing in equation 
(15) is nonconvex, its S-shaped form implying the 
existence of an inflection point somewhere in its support. 
The literature on hyperbolic conservation laws with 
nonconvex flux functions is quite extensive, including 
important contributions by Laxgo and Oleinik" and a 
general discussion by Chorin and Mar~den '~ .  Of special 
importance in the present context are the following facts. 
Cauchy problems based on equation (15) may have no 
solutions that are classical in the sense of being 
continuously differentiable over their (x,t)-domains 
R x J .  Instead, such problems may admit only weak 
solutions Sw(x ,  t) .  These solutions need only satisfy the 
integral relation 

for all infinitely differentiable functions q ( x ,  t )  that vanish 
on the boundary a(R x J)126. In contrast to equation (15), 
equation (16) admits functions Sw(x ,  t )  that have 

discontinuities, or saturation shocks. Unfortunately, 
weak solutions may not be unique: there may be several 
different functions S,(x, t )  that satisfy the integral 
equation (16). 

Nature admits only one solution to the Buckley- 
Leverett problem. Much of the research into hyperbolic 
conservation laws has aimed at identifying physically 
correct weak solutions from among the class of functions 
obeying equation (16). To specify the physical solution 
requires an additional constraint known as the entropy 
condition. There are several equivalent forms of this 
constraint, including the following": 

(i) The solution must depend continuously and stably 
on the initial data, implying that characteristics on 
both sides of a discontinuity.must intersect the initial 
curve. 

(ii) The solution must be the same as that obtained using 
the method of characteristics with fw(Sw) replaced 
by its convex hull. 

(iii) The solution must be the limit of solutions, for the 
same initial data, to a parabolic problem differing 
from the hyperbolic one by a dissipative second- 
order term (in this case, capillarity) of vanishing 
influence. 

The tangent construction advanced by Welge' 5 9  

explicitly implements condition (ii) while, as Welge shows 
in his paper, the 'equal-area' rule of Buckley and 
L e ~ e r e t t ' ~  imposes this same constraint in a slightly 
different fashion. 

Any numerical scheme for solving the Buckley- 
Leverett problem, or even more complicated models of 
multiphase flows that are hyperbolic in character, must 
respect the entropy condition or else risk producing 
nonphysical results. Douglas el ~ 1 . ~  7, for example, 
propose adding an artificial capillarity to the Buckley- 
Leverett equation to force convergence to the correct 
physical solution. An equivalent effect can be achieved by 
using certain numerical approximations whose lowest- 

0 swr I-% I S 

Fig. 4. 
related convex functions' 

Typical nonconvex fractional flow fraction f and 

Adv. Water Resources, 1985, Volume 8, December 169 



Multiphase flow in porous media: M .  B. Allen 

order error terms mimic the desired dissipative 
phenomena'. This tactic is perhaps easiest to see in finite- 
difference approximations. Here, an upstream-biased 
difference analog of the flux term df/ax gives 

Since f ' (S)>O over the support of f ,  the lowest-order 
error term acts like the capillarity term neglected in 
equation (1 5 )  while vanishing linearly as Ax + 0. Thus 
upstream weighting imposes a numerical version of 
condition (iii) while maintaining consistency in the 
numerical approximation. 

Several investigators have examined upstream- 
weighted finite-element methods for the Buckley- 
Leverett problem. Mercer and F a ~ s t ~ ~  and Huyakorn 
aqd Pir~der '~,  for example, discuss upstream-weighted 
Galerkin techniques. Shapiro and Pinder advance a 
finite-element collocation scheme for the Buckley- 
Leverett problem using asymmetric basis functions. 

Allen and Pinderl2?' introduce a collocation scheme 
for the same problem in which upstream biasing of the 
collocation points leads to the appropriate numerical 
version of condition (ii). To implement this method, we 
begin with a continuously differentiable trial function for 
saturation: 

I 

i = O  

where the basis functions H0Jx), H,,i(x) are piecewise 
Hermite cubic polynomials (5).  Si(t), S:(t) are the un- 
known nodal values of Sw and dS,/dx, respectively. One 
can similarly represent the nonlinear flux function fw : 

In the standard collocation we derive ordinary 
differential equations for the unknown values Si, Si, by 
setting 

at enough points X k  in the spatial domain to give one 
equation for each unknown. Douglas and Dupont5' show 
that, on a uniform partition xo < + * - < xI = xo + I Ax, one 
can achieve @(Ax4) accuracy in parabolic problems by 
choosing the Gauss points xi - Ax/2 Ax/fi, 
i= 1, . . ., I - 1, as the collocation points. As Allen and 
Pinder demonstrate, however, this highly accurate 
scheme violates the entropy condition in equation (1 5). 
One can force convergence to the correct solution by 
evaluating the flux term at collocation points upstream of 
the Gauss points, as in the equation 

Here, for flow in positive x direction, x?<%~. Allen7 
presents an error analysis showing how this scheme 
introduces artificial capillarity. Figures 5 and 6 compare 
the results of standard collocation and upstream 
collocation, respectively. 
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Fig.  5 .  Solution to the Buckley-Leverett problem 
generated by orthogonal collocation with Ax = 0.1 l 2  
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Fig. 6. Solutions to the Buckley-Leverett problem 
generated by upstream collocation with Ax = 0.1, 0.05, 
0.025 l2  

Several investigators have examined the use of 
upstream weighting in more sophisticated models of 
multiphase flow. Among the many such studies are those 
by Peacemen113, Settari and Aziz'37 and Young164, each 
of which offers a good overview of numerical approxima- 
tions used to model two-phase flows. We shall consider 
upstream weighting further in Section 4. 

One unfortunate aspect of upstream-biased 
approximations is that their artificially dissipative effects, 
while guaranteeing convergence, produce unrealistically 
smeared sharp fronts when the spatial grid mesh is large. 
What is 'large' in this sense depends on the physics of the 
problem and not the computational resources of the 
modeller. Therefore, in some problems, unacceptable 
smearing on uniform grids can occur even when the grid 
mesh approaches limits in affordable fineness. One 
approach to resolving this dilemma is to refine the spatial 
grid only in the vicinity of the steep front. Since the front 
itself moves as the flow progresses, such a strategy calls for 
self-adaptive local grid refinement,. a topic discussed in 
Section 6. 

4. FLOWS WITH INTERPHASE MASS 
TRANSFER 

In many multiphase flows of interest in engineering the 
exchange of chemical species among the fluid phases is 
crucial to the behaviour of the flows. Historically, concern 
with the compositional aspects of multiphase flows in 
porous media originated in the petroleum industry, where 
the effects of gas dissolution, retrograde condensation, 
and vaporization and condensation of injected gases have 
substantial implications in oil recovery operations. As the 
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complexities of groundwater contamination by organic 
wastes become more urgent, however, interest in multi- 
phase flows with mass transfer has spread to the 
hydrology community. In this section we shall focus on 
the more established modelling efforts in the petroleum 
industry, leaving discussion of the newer applications in 
hydrology to Section 5. 

4.1 Compositional oil reservoir flows 
In compositional flows there are several fluid phases in 

which some number of chemical species reside. It is 
therefore necessary to extend the mixture-theoretic 
formalism to accommodate two different categories of 
constituents: phases and species. A more detailed 
exposition of the development given below appears in 
Allen7. For simplicity, let us assume that there are three 
fluid phases, namely water (W), oil (0) and gas(G) with 
chemical species indexed by i = 1, . . ., N + 1. As before, let 
us label the rock phase by the index R. Conceivably, at 
least, each species can exist in any phase and can transfer 
between phases via dissolution, evaporation, con- 
densation and so forth, subject to thermodynamic 
constraints. We shall assume here that the rock is 
chemically inert and that there are no intraphase or 
stoichiometric chemical reactions, although in such 
applications as enhanced oil recovery by alkaline fluid 
injection reactions of this kind may be important. 

In our new formalism, each pair (i, a), with i chosen from 
the species indices and a chosen from the phases, is a 
constituent. Thus, for example, CH, in the gas phase is 
one constituent, CH, in oil another and n-C,H in oil yet 
another. Each constituent (i, a) has its own intrinsic mass 
density p?, measured as mass of i per unit volume of a, and 
its own velocity vq. To accommodate the familiar 
kinematics of phases, we shall still associate with each 
phase a its volume fraction and if 4 = 1 - 4R as before, 
then we define the saturation of fluid phase a as S, = 4,/$. 
Using these basic quantities, we define the following 
variables: 

N 

pa= 1 p;=intrinsic mass density of phase a 
i =  1 

w: = pf/pa =mass fraction of species i in phase a 

p = 4 c Sup" = bulk density of fluids 
u # R  

wi=(4 /~ )  1 S a  P'U~ 
a # R  

=total mass fraction of species i in the fluids 

N 

v" = (l/p") pfvf 
i = l  

= barycentric velocity of phase a 

U9(=V4(-va 
I 1  

=diffusion velocity of species i in phase a 

If the index N + 1 represents the species making up the 
inert rock phase, then the following constraints hold: 

N N 

1 mi= 1 oq=~$'= 1 s,=1 
i = l  i = l  a a # R  

where the index a in the second sum can represent any 
fluid phase, and 

N 

1 u;=o 
i = l  

Each constituent (i,  a )  has its own mass balance, given 
by analogy with equation (1) as 

a 
- (4'pf) + V - (4,pfvq) = rf 
at 

where the exchange terms rf must obey the restriction z fR  (=O. If we impose the further constraint 
that there are no intraphase chemical reactions, then we 
have in addition z+R (= 0 for each species i= 1,. . ., N .  
Since phase velocities are typically more accessible to 
measurement than species velocities, it is convenient to 
rewrite the constituent mass balance as 

d 
- ($S,p"w;) + V - (4S,pawfva) + V * jf = rq 
at 

where jq=4Sapawquq stands for the diffusive f lux of 
constituent (i,a). Summing this equation over all fluid 
phases a and using the restrictions gives a total mass 
balance for each species i: 

+ V . ( j r  +jp +jy) = 0 i = 1,. . ., N 

To establish flow equations for each species, we need 
velocity field equations for each fluid phase and some 
constitutive equations for the diffusive fluxes j:. For the 
fluid velocities we may postulate Darcy's law, equation 
(4), assuming in addition that the porous medium is 
isotropic. For the diffusive. fluxes the appropriate 
assumption is not so clear. In single-phase flows through 
porous media, the diffusive flux ofa species with respect to 
the fluid's barycentric velocity is called hydrodynamic 
dispersion. As reviewed in Section 5,  theories of hydro- 
dynamic dispersion in multiphase flows remain poorly 
developed. The most common approach in oil reservoir 
simulation is to assume that hydrodynamic dispersion is a 
small enough effect that the diffusive fluxes in the mass 
balance for each species are negligible. Thus we arrive at 
the flow equation for species i in the fluids: 

(Vp, - pGgVZ) = 0 i = 1, . . ., N I k krG pGw? 
P G  

+ 

To close this set of equations, we need some supple- 
mentary constraints giving relationships among the 
variables. One class of supplementary constraints consists 
of the thermodynamic relationships giving phase densities 
and compositions as functions of pressure and overall 
fluid mixture composition. Conceptually, these relation- 
ships take the forms 

pa=pa(w:, ..., C O $ - ~ , ~ J  a= W , 0 , G  i= 1, ..., N -  1 
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wq = W?(Wi, - . - 9  WON - 1 ,Pa) 

Sa=Sa((;O1, .. ., ~ ~ - ~ , p ~ )  

a = 0, G 

a= W, 0, G 
However, it is important from a computational viewpoint 
to observe that the actual mathematical statements of 
these relationships may constitute simultaneous sets of 
nonlinear algebraic equations giving phase densities, 
compositions and saturations implicitly. This occurs, for 
example, when one uses equal-fugacity constraints in 
conjunction with an equation of state to solve for local 
thermodynamic equilibria, as discussed further below. 

The other class of supplementary constraints includes 
constitutive relationships for the particular rock-fluid 
system being modelled. These relationships may take the 
following forms: 

PCOW=PCOW(sO, s G )  a= 0, G 

PCGO = PCGO(sO, sG) 

kra = kra(sO, sG) 

Here, as mentioned in Section 2, we have greatly 
simplified the physics of many compositional flows by 
omitting possible dependencies on fluid composition 
through variations in interfacial tension. 

4.2 Black-oil simulation 
Black-oil models are special cases of the general 

compositional equations that allow limited interphase 
mass transfer, the composition of each phase depending 
on pressures only. This class of models has become a 
standard engineering tool in the petroleum industry. As a 
consequence the literature on the numerics of black-oil 
simulation, which apparently begain in 1948 with a 
consulting report by John van N e ~ m a n n ' ~ ~ ,  has become 
quite extensive. Indeed, there are now several books in 
print devoted to black-oil ~ i m u l a t i o n " ~ * ~ ~ .  Since any 
attempt to cover this field in an article of the present scope 
would be futile, we shall merely review the formulation of 
the black-oil equations and discuss selected aspects of 
their numerical solution. 

The fundamental premise of the black-oil model is that 
a highly simplified, three-species system can often serve as 
an adequate model of the complex mixtures of brine and 
hydrocarbons found in natural petroleum reservoirs. For 
practical purposes, petroleum engineers define these three 
pseudo-species according to what appears at the surface, 
at stock-tank conditions (STC), after production of the 
reservoir fluids. Thus, we have the species 0, which is 
stock-tank oil; g, which is stock-tank gas, and w, which is 
stock-tank water. Underground, at reservoir conditions 
(RC), these species may partition themselves among the 
three fluid phases 0, G and Win a distribution depending 
on the pressures in the formation. 

Now we impose a set of thermodynamic constraints on 
this partitioning of species. First, we assume that there is 
no exchange of water w into the nonaqueous phases 0 
and G, so that w," = 1, and = coz = 0. Second, we allow 
no exchange of oil o into the vapour phase G or the 
aqueous liquid W, so that wf = 1, and wy = cof = 0. Third, 
we prohibit the dissolution of gas g into the aqueous 
liquid W, so that w r  =O. However, we allow the gas g to 
dissolve in the hydrocarbon liquid 0 according to a 
pressure-dependent relationship called the solution gas-oil 
ratio, defined by 

Rs( Po) = 
volume of g in solution at RC 

volume of o 

where the volumes refer to volumes at  STC. 
To facilitate further reference to volumes of species at 

STC, we relate the phase densities p' at RC to the species 
densities p$c at STC by defining the formation volume 
factors. For W and G these definitions are fairly simple: 

For the hydrocarbon liquid 0, however, we must also 
account for the mass of dissolved gas at RC: 

Bo(po)=(pSoTC +RSpS,TC)/PO 
If we substitute these definitions into the flow equations 

(16) for the species 0, g, w and divide through by the 
constants pyC, we obtain the three black-oil equations 

!- (&) - V * [&(Vpo - yoVZ)] = 0 (1 7b) at B~ 

where La = AJB,  and ya = pug. 
These equations constitute a system of coupled, non- 

linear, time-dependent partial differential equations. Each 
of the equations is formally parabolic in appearance. 
However, as suggested by the greatly simplified develop- 
ment in Section 3.3, the system can exhibit behaviour 
more typical of hyperbolic equations if capillary 
influences are small. To see this, consider the two-phase 
version of equation (17) in which gas is absent, porosity is 
constant and fluid compressibilities and gravity forces 
have no effect. The flow equations in this case reduce to 

dSw 
at 

- #  -=V-(&Vp,) 

Adding these two equations gives a total flow equation 
V - q = 0, where q = - &Vp, - AWVpW. Calling 13. = lo + ilW 
and p = ( p o  + pW)/2, we can rewrite the total flow equation 
as 

If we examine the case when VpcOWzO, the total flow 
equation reduces to an elliptic pressure equation 

v * ( N p )  = 0 (184 
Then, recalling the fractional flow function 
fW=AW/(Ao+AW), we can rewrite the water flow 
equation as 

This saturation equation is the hyperbolic analog of the 
one-dimensional Buckley-Leverett problem. 

Several approaches to solving the general system (17) 
numerically have appeared in the petroleum engineering 
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literature. We shall review two of the most popular 
methods: the simultaneous solution (SS) method and the 
implicit pressure-explicit saturation (IMPES) method. 

The SS method, introduced by Douglas, Peaceman and 
R a ~ h f o r d ~ ~ ,  and further developed by Coats et aE.45, treats 
the flow equations (1 7) as simultaneous equations for the 
fluid pressures p o ,  p ,  and p , .  Inverting the capillarity 
relationships and imposing the restriction on fluid 
saturations then yields the saturations So, S, and S,. For 
ease of presentation, let us examine the two-phase case, 
assuming that the vapor phase G does not appear and that 
the porosity 4 is constant. 

The first step in the formulation is to rewrite the flow 
equations so that the pressures po and pw appear as 
explicit unknowns. To do this, we apply the chain rule to 
the accumulation terms, giving 

where b, = d(l/B,)/dp, and Sb signifies the derivative of 
the inverted capillarity relationship S,( pcow). This device 
allows us to write the system (17) as follows: 

several variants of the SS method have appeared, 
including formulations treating different sets of variables 
as principal unknowns. Aziz and Settari18 provide a 
survey of these alternative approaches. 

In the IMPES formulation, the basic idea is to combine 
the flow equations (17) to get an equation for one of the 
fluid pressures32. Solving the equation implicitly provides 
the information necessary to update the saturations 
explicitly at each time step, using an independent set of 
flow equations and the restriction that saturations sum to 
unity. Sheldon, Zondek and Cardwell141 and Stone and 
G a ~ d e r ' , ~  introduced this method. 

The development follows a line of reasoning paralleling 
that leading to equations (18). We begin, as in the SS 
method, by expanding the accumulation terms, this time 
leaving saturations and pressures as principal unknowns. 
For the three-phase system, this leads to the following 
finite-difference approximations 

a SG RSSO 4- -+- 
BO ) 

The coefficients C , ,  . . ., C ,  appearing here stand for the 
appropriate derivatives extracted using the chain rule, 
and 4 u  = u'l' - u" defines the time-difference operator. 

The next step involves the crucial assumption that the 
capillary pressures pcow, pCGo change negligibly over a 
time step. This assumption implies that b p o = 4 p w  
=&pG and, furthermore, that we can treat the capillary 
contributions to the flux terms explicitly. Thus, our 
implicit, temporally discrete approximations to equation 
(1 7) become 

0 

Now we can employ Some finite-difierence Or finite 
element method to approximate the spatial derivative in 
equation (1 8), getting a system of evolution equations 
having the form 

Here [MI is the mass matrix, [K] is the stiffness matrix, 
( p ]  represents the vector of unknown nodal values of oil 
and water pressure and {f) is a vector containing 
information from the discretized boundary conditions. 
Since the entries of [MI and [ K ]  vary with the unknown 
pressures, this system is nonlinear. Therefore the time- 
stepping approximation must be iterative. As an example, 
we might use a Newton-like procedure analogous to that 
presented in Section 3.1, yielding 

1 

To get a single pressure equation from this set, we 
multiply equation (19c) by the coefficient B =  
C3/(C7 - C 5 ) ,  multiply equation (19a) by A = BCJC, ,  add 
equations ( 1 9 a 4 ,  and observe that the saturation 
differences in the accumulation terms now sum to an 
expression proportional to 4(S, + So + S,) = 0. Therefore 
our weighted sum of the time-differenced flow equations 
yields 

+B"flV.[(~Z.+l+R,"f'l;+')Vp;+l] -rS+l) (20) 
In this scheme the notation { R ) n + l . m  suggests that we 
regard the right side as a residual, iterating at each time 
step until 11 (R)"' ' *m )I is small enough in some norm. 

The formulation presented above is not unique. In fact, 

The new parameter r is shorthand for the weighted sum of 
the gravity terms, and C = AC2 + C ,  + B(C, + C8) .  
Equation (20) is the pressure equation. 
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Now, provided we have an appropriate technique for 
producing discrete approximations to the spatial 
derivatives appearing in these equations, we can 
implement the following time-stepping procedure. 

(i) 

(ii) 

Solve equation (20) implicitly, using some iterative 
scheme. 
Solve equation (19a) explicitly for AJw and update 
the water saturation; solve (19b) for A& and update 
the oil saturation, setting S;' = 1 - S"' W - S;+ '. 

(iii) Compute p;:; and p;:: using the new saturations; 
then use these to update pw and p G .  

(iv) Begin the next time step. 

Notice that, in contrast to the SS formulation, the IMPES 
approach requires the implicit solution of only one flow 
equ.ation at each time step. As with the SS methods, 
variants on this development have appeared; see Aziz and 
Settari" for a survey. 

The IMPES approach offers the obvious advantage 
that, with only one implicit equation to solve per time 
step, the algorithm requires smaller matrix inversions at  
each iteration. The resulting computational savings can 
be significant in problems involving large numbers of grid 
points. On the other hand, because it treats capillary 
pressures explicitly, the IMPES method suffers instability 
when the time step At exceeds a critical value. This 
limitation can be inconvenient if the critical value of At is 
unknown or small compared with the life ofa field project. 
The SS method, while requiring more computation per 
time step, boasts greater stability. This can prove to be a 
decided advantage when the problem to be solved exhibits 
strongly nonlinear phenomena, such as coning near 
wellbores or liquid hydrocarbons passing through bubble 
points. 

The performance of black-oil models is quite sensitive 
to the treatment of nonlinear coefficients in the discrete 
flow equations. Consider, for example, the spatial 
treatment of the flux coefficients La. It is standard practice 
to use upstream-weighted approximations to these 
coefficients. To see why, examine the results of Fig. 7, 
showing predictions of a one-dimensional black-oil model 
using several midpoint and upstream approximations to 
A,. These plots show that upstream-biased analogs of the 
flux coefficients force the numerical solution to converge 
to the correct physical solution when capillarity is small. 
This result corroborates our discussion of the Buckley- 
Leverett problem in Section 3.3, since, as we have argued, 
the black-oil system exhibits similar hyperbolic features. 

The temporal weighting of the flux coefficients also 
affects the solution to the black-oil equations. It is a fairly 
common practice to treat these coefficients explicitly. As 
Settari and Aziz show, however, this tactic leads to limits 
on time steps allowable for stable solutions. The 
limitation is especially severe in problems with gas 
percolation, which occurs when the fluid mixture pressure 
drops below the bubble point. Blair and Weinaug28 
introduce the implicit treatment of the flux coefficients 

t that alleviates this stability problem. As Coats43 reviews, 
this highly stable method has proved attractive in 
simulating other, more complex oil-reservoir flows. 

One of the most important problems in black-oil 
simulation, and in fact in reservoir simulation more 
generally, is the computational inefficiency associated 
with the solution of large systems of linear algebraic 
equations. In either the SS or the IMPES approach, the 

O O0.0 1 0.2 0.4 0.6 0.8 1.0 

x/L 

0.2 1 -+- ONE-POINT UPSTREAM 

- I  - TWO-POINT UPSlREAM 

iterative time-stepping scheme calls for the solution of 
matrix equations at each iteration of each time step. For 
simulations at practical scales these calculations alone 
can tax the storage and CPU-time resources of the largest 
machines currently available. A great deal of recent 
research has focused on the development of fast iterative 
techniques for the solution of the large matrix systems 
arising in applications. 

Among the oldest of these iterative techniques are the 
block-iterative methods. These methods use the blocked, 
sparse structure of the linear systems to solve the 
equations iteratively, b lo~k-by-b lock~~.  Block iterative 
methods, such as block-successive overrelaxation, tend to 
be quite sensitive to 'tunable' iteration parameters such as 
overrelaxation coefficients. 

Another fairly old class of iterative techniques consists 
of alternating direction methods. These methods, 
introduced in the context of finite differences by 
Peaceman and Rachford' 15, Douglas and Rachford6' 
and Douglass6, reduce the computational effort in multi- 
dimensional problems by implicitly solving over one 
space dimension at a time. While interest in alternating 
direction techniques for finite differences has waned in 
recent years, interest in alternating-direction Galerkin 
and collocation methods has been growing; see, for 
example, Ewing62 and Celia and Pinder36. 

In a different approach, Stone'43 proposes the strongly 
implicit procedure (SIP) for solving matrix equations 
implicitly. The idea here is to replace a matrix equation 
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having the form [ A ] {  p )  = - { R )  by an iterative scheme 
having the form 

(CAI + "l){P)" + = (CAI + "I){ P I m  - ( C 4 (  P>" + { R ) )  
By properly choosing the matrix [N], one can efficiently 
factor ([A]+[N]) into a product of sparse upper- and 
lower-triangular matrices. This idea gives rise to an 
algorithm that gives relatively rapid convergence to the 
solution { p )  of the original equation. 

Finally, much recent interest has focused on conjugate 
gradient methods for solving large matrix equations. 
These methods have their theoretical roots in the 
equivalence between linear systems and minimization 
problems for positive self-adjoint matrices95. However, 
the methods admit extensions to the nonself-adjoint 
operators that arise in fluid flow problems, especially in 
conjunction with such preconditioning methods as in- 
complete LU factorization and nested factorization15'110, 
1 1 5 9 1 2 2 .  The motivation for preconditioning is that, for 
parabolic flow equations, fine spatial grids can yield 
iteration equations [ A ] { p }  = - ( R )  in which the 
condition number of [ A ]  is large. By 'preconditioning' 
[ A ]  with another matrix [A*]-', one can arrive at an 
equivalent system 

that is better conditioned. Clever choices of [A*]-1 
ensure that [ A * ] - ' { R )  will be easy to compute at each 
iteration, thus promoting computational efficiency. It is 
reasonable to expect that preconditioned conjugate- 
gradient methods will play a larger role in oil reservoir 
simulation as the technology continues to advance. 

[ A * ] - l [ A ] { p ) =  -[A*]- '{R)  

4.3 Compositional simulation 
The most ambitious applications of the equations for 

compositional flows arise in the simulation of enhanced 
oil recovery processes. Many of these processes depend 
for their success on the effects of interphase mass transfer 
on fluid flow properties. One noteworthy example of such 
a process is miscible gas flooding. This technology 
consists of injecting an originally immiscible gas, such as 
CO,, into an oil reservoir with the aim of developing a 
miscible displacement front in situ. In successful projects, 
miscibility develops through continuous interphase mass 
transfers, leading the fluid mixture toward its critical 
composition and hence reducing the interfacial tension 
between the resident oil and the displacing fluid. Com- 
positional modelling serves as an important tool in other 
oil recovery problems, too, including production from gas 
condensate reservoirs and recovery of volatile oils. 

There are several ways to classify compositional 
simulators. One way is to characterize the models 
according to their treatment of fluid-phase thermo- 
dynamics. There are at  least two forms in which the 
thermodynamic constraints mentioned in Section 4.1 can 
appear. The oldest form consists of tabular data for the 
equilibrium ratios wy/wp of species mass (or mole) 
fractions in the vapour and liquid hydrocarbon phases. 
Thus, given overall hydrocarbon pressures and com- 
positions at a point in the reservoir, one can compute fluid 
saturations, densities and compositions by performing 
'flash' calculations familiar to chemical engineers'". The 
other form of the thermodynamic constraints is the 
requirement that vapour and liquid fugacities be equal for 
each component: f? =fp, i= 1, . . ., N. This approach is 
especially attractive when used in conjunction with an 

equation of state such as that proposed by Peng and 
Robinson" '. Equation-of-state methods have the 
advantage of thermodynamic consistency near fluid 
critical points, leading to calculations with better 
convergence properties in models of miscible gas floods. 
In either the equilibrium-ratio approach or the equation- 
of-state approach, though, the thermodynamic 
constraints amount to a system of nonlinear algebraic 
equations giving fluid saturations, densities and 
compositions implicitly. 

Another way to classify compositional models is 
according to the manner in which they solve the flow 
equations (16). Two general schemes have appeared. One 
of these treats the flow equations sequentially, solving an 
overall pressure equation and then updating the 
remaining N - 1 composition equations and the thermo- 
dynamic constraints at each time step or iteration. This 
approach parallels the IMPES method in black-oil 
simulation, and, as one might expect, it offers com- 
putational speed at  the expense of some stability. The 
other scheme solves the entire system of flow equations 
and thermodynamic constraints simultaneously at  each 
time step. This approach, analogous to the SS method of 
Section 4.2, leads to enormous matrix equations at each 
iteration. However, it enjoys a greater stability than the 
sequential schemes. Given adequate computers, this fully 
implicit approach is quite attractive, since the com- 
positional equations can exhibit behaviour that is too 
complex to permit a priori estimates of stability 
constraints. 

Among the simulators using sequential methods are 
those advanced by Roebuck et ~ 1 . l ~ ' ;  Nolen"'; Van Quy, 
Corteville and Simandouxl 53; Kazemi, Vestal and 
Shank88; Nghiem, Fong and Azizlo8; WattslS8 and 
Allen6p7. Let us examine the time-stepping structure of 
one such model7, restricting attention to an oil-gas system 
in which gravity has no effect. Summing the flow 
equations over all N species gives an overall fluid mass 
balance 

ay = V * ( TTVpc - ToVpCGO) 
at 

where T, = kk,,p"/p, for each fluid cc and TT = TG + To. This 
leaves N - 1 independent species balances 

where T i  = GwF + T,wp. We can regard equation (21) as 
an equation for the pressure p G ,  using equation (22) to 
solve for the overall species mass fractions mi. The 
thermodynamic constraints then give the saturation, 
densities and compositions of the liquid and vapour 
phases. 

To solve these equations sequentially, we first discretize 
the pressure equation (21) in time, using the following 
Newton-like iterative scheme: 

I I +  l , m  

P" 

This scheme is similar to that used in the unsaturated flow 
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YES 

equation of Section 3.1. After solving for 6pE+1pm+1 9 we 
update the pressure iterate by setting pE+ - - P G  n +  ' y m  + 
6PE+ l ym + . Then we can update each mass fraction 
ml,. . ., using the finite difference approximation 

YES 

to equation (22), setting w : + ~ * ~ + '  = ~ ; + 4 m ~ + l ~ ~ + ~ .  
This update calls for values of p n + ' * m + l  , which are 
available from the latest iteration of equation (23) as 

G+19mVPn+17m CGO ) + P  p n + l , m + l  = A t V .  (T;+l,m+lVp;+l,m+l - 

This iterative sequence requires the solution of a matrix 
equation only in the spatially discrete analog of equation 
(23), since equation (24) has an 'explicit' form at each 
iteration. Notice that, while the scheme is not fully 
implicit, it calls for implicit treatment of the flux 
coefficients, which lends to the stability of the formulation. 
Figure 8 shows a flow chart for the time-stepping 
algorithm, and Fig. 9 shows a profile of vapour-liquid 
interfacial tensions in a simulated vaporizing gas drive7. 
The wave of decreasing tensions indicates the develop- 
ment of a zone in which the fluid displacement is very 
nearly miscible. 

With the advent of large, fast digital computers, interest 
has grown in the hlly implicit approach to compositional 
simulation. Among the models based on this approach are 
those reported by Fussell and Coats42, 
Heinemann", and Chien, Lee and Chen3*. This class of 
formulations treats the discretized flow equations and 
thermodynamic constraints as a set of simultaneous 
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nonlinear algebraic equations, generally using some 
Newton-like iterative scheme to advance between time 
steps. The implicit nature of the formulations leads to 
great stability at  the expense of solving large matrix 
equations of the form [ A ] { y )  = - ( R )  at each iteration. 
Moreover, the iteration matrix [ A ]  typically has less 
sparseness than the matrices arising from sequential 
schemes, since simultaneous schemes account for more of 
the nonlinear coupling between variables. Young and 
Stephen~on'~'  present one approach to mitigating this 
complication by evaluating the flux coefficients explicitly. 
As should be expected, this scheme reduces the com- 
putational effort of the hlly implicit approach while 
sacrificing some of its stability. 

There are several areas of difficulty common to 
practically all compositional simulators. One class of 
problems concerns the mathematical representation of 
fluid phase behaviour. Most research in compositional 
simulation now focuses on methods using cubic equations 
of state coupled with equal-fugacity constraints to 
represent the fluid thermodynamics. While this approach 
guarantees thermodynamic consistency and therefore 
ensures smooth behaviour of fluid densities, it requires the 
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solution of highly nonlinear algebraic equations in between physical and numerical difficulties makes some 
addition to the discretized flow equations. Furthermore, sense if we interpret it as suggesting strategies for future 
the numerical solution of these thermodynamic research. In this section we consider several physical 
constraints often suffers poor convergence when fluid problems. 
pressures and compositions approach critical points12’. 
While the numerical problems associated with fluid phase 
behaviour calculations pose serious challenges to the 
petroleum’ industry, an extensive discussion of research in 
this area would carry us far afield. 

Another problem affecting compositional simulation is 
the numerical smearing introduced by upstream 
weighting. While this source of error affects other 
numerical models using upstream weighting, it is 
particularly problematic in compositional simulation. 
Because compositional models require so much storage 
and CPU time per spatial node, field-scale simulations 
often must use relatively few nodes and correspondingly 
coarser grids. The artifical diffusion that results can 
introduce large errors in species mass fractions and thus 
lead to unreal thermodynamics. 

Several investigators have proposed methods for 
alleviating numerical diffusion in compositional 
simulators. Chase37, for example, proposes local grid 
refinement methods for use with Galerkin finite elements. 
Section 6.4 discusses local grid refinement in more detail. 
Wilson, Tan and CasinaderI6’ advance a method for 
selecting upstream-weighted difference approximations 
that yield reduced artificial smearing. Ewing and 
H e i n e m a n r ~ ~ ~ ’ ~ ~  discuss the use of mixed finite-element 
methods to reduce smearing in compositional models. 
These authors propose that inaccurate fluid velocities, 
obtained by numerically differentiating pressure fields, 
aggravate numerical smearing. By incorporating mixed 
methods into their numerical scheme, they compute more 
accurate velocities and thereby help preserve sharp com- 
position fronts in the numerical solution. Section 6 
discusses mixed finite-element methods more thoroughly. 

Finally, the growing appeal of the fully implicit 
approach implies that the computational effort associated 
with the inversion of large linear systems will become an 
increasingly important concern. The stakes involved in 
the linear algebra of compositional modelling are much 
higher than in black-oil simulation, since a typically fully 
implicit compositional model must solve the discretized 
flow equations and equal-fugacity constraints for between 
seven and ten species. This avenue of research should be 
active for quite some time to come. 

5. OUTSTANDING PROBLEMS PHYSICS 

The next two sections review some of the outstanding 
problems in simulating multiphase flows in porous media. 
Roughly speaking, these problems fall into two categories: 
difficulties arising because our knowledge ofthe physics of 
multiphase flows is incomplete and difficulties in devising 
mathematical methods to capture known physics. The 
two categories are not as distinct as this description 
suggests. For some phenomena our lack of physical 
understanding hinders attempts to model them mathe- 
matically. Viscous fingering is an example, as discussed 
below. For other phenomena, the mathematical 
difficulties are evidence of physical complications that 
lead to peculiar behaviour in the governing equations. 
The occurrence of sharp fronts in immiscible flows is an 
example of this coupling. Nevertheless, the distinction 

5.1 Viscous fingering 
Often, in two-phase flows, the bulk of one fluid lies 

upstream of the other. In this case we say that the 
‘upstream’ phase displaces the ‘downstream’ phase, even 
though there may be large regions where both phases flow 
simultaneously. The global behaviour of such flows 
depends strongly on whether the mobility of the 
displacing fluid is greater or less than that of the displaced 
fluid. In the latter case, when the mobility ratio AdtsPlaclng/ 
blsplaced = M < 1, the flow proceeds stably. This implies 
that velocity fields and saturations depend continuously 
on the boundary and initial conditions and well rates. 
When M > 1, however, channels of high displacing-fluid 
saturation can bypass zones of displaced fluid in a 
geometrically irregular pattern. These irregularities in the 
fluid displacement reflect the instability of immiscible 
displacements at high mobility ratios. The channeling 
phenomenon is called viscous fingering. While this 
phenomenon occurs in both single-phase and multiphase 
flows, we shall restrict our attention to the multiphase 
case. 

Viscous fingering is economically important in oil 
reservoir engineering, where displacement of oil by some 
injected fluid is common to almost all recovery processes 
past primary production. In many cases the injected fluid 
is water, a gas such as CO, or N,, or a surfactant solution. 
These fluids tend to be more mobile than common crude 
oils; therefore viscous fingering can occur. As a result, such 
a displacement scheme may sweep only a small fraction of 
the oil-bearing rock between an injection well and a 
production well. This inefficiency motivates reservoir 
engineers to add mobility control agents, such as 
hydrolysed polymers, to injected fluids to lower their 
mobility . 

Investigations into the physics of viscous fingering in 
immiscible displacements began in the late 1950s. Saffman 
and Taylor’ 3 2  investigated an analogy between porous- 
medium flows and Hele-Shaw flows, confirming that 
M > 1 leads to frontal instability. Chuoke, van Meurs and 
van der Pol4’ applied perturbation techniques to show 
the existence of a critical wavelength for unstable fingers. 
From these early papers through the 1970s the literature 
on viscous fingering mushroomed. Ewing and George63 
provide a fairly extensive review of this body of work. 

Research into viscous fingering has continued in recent 
years76,1 18,163,94,87 . While controversy still exists, there 
seems to be broad agreement that unstable fingers are 
triggered by heterogeneities in the porous medium 
observable at the microscopic scale. However, the macro- 
scopic governing equations based on Darcy’s law do not 
explicitly account for microscopic heterogeneities. 
Mathematical models based on the macroscopic 
equations and assuming a macroscopically homogeneous 
porous medium therefore have no mechanism for 
initiating fingers. Consequently, the homogeneous model 
will not exhibit instability, even though it is present in 
nature. One might, as an analogy, consider the mathe- 
matical model of an ideal pendulum hung vertically 
upward with zero velocity. The idealised model predicts 
that the pendulum is at equilibrium, whereas a natural 
pendulum in such a configuration is unlikely to stay there. 

Adv. Water Resources, 1985, Volume 8, December 177 



Multiphase flow in porous media: M .  B.  Allen 

This failure to capture microscopic physics has 
unfortunate implications in numerical simulation. The 
response of a mathematical method to unstable 
immiscible displacements depends on the degree of 
heterogeneity in the data of the problem. Discrete models 
can represent spatial heterogeneity only within the limits 
imposed by the fineness of the spatial grid. Hence, models 
of immiscible displacement in media exhibiting hetero- 
geneity at many scales can produce qualitatively different 
results depending on the spatial discretization used. 

Several articles have appeared reporting efforts to 
produce better numerical representations of viscous 
fingering, given the inherent limitations of discrete me- 
thods. Among these are papers by Glimm, Marchesin and 
M ~ B r y a n ~ ~ ,  who propose the random choice method for 
solving the flow equations, and Ewing, Russell and 
Wheeler66, who examine a mixed method in conjunction 
with a modified method of characteristics to give accurate 
approximations of fluid interfaces. Another set of ap- 
proaches has been to incorporate the 'average' effects of 
fingering on the mixing of fluids in numerical simulators. 
This line of research began with K 0 v a 1 ~ ~  and became a 
common simulation tool with the introduction of a 
mixing model by Todd and L ~ n g s t a f f ' ~ ~ .  This 'averaging' 
approach, while currently lacking in rigour, may offer 
fertile ground for the interaction of sound physical 
reasoning with the development of numerical techniques. 

Finally, there is a great need for more empirical work 
on viscous fingering. Among the many sources of un- 
certainty regarding the nature of fingering is the paucity of 
field-scale data characterizing its effects. As Settari, Price 
and Dupont'38 asserts 

The study of unstable displacements, particularly viscous 
fingering, is distingyished by the fact that in no other area of 
reservoir engineering is there less agreement. There is not 
even complete agreement on the existence of viscous 
fingering as a real phenomenon for reservoir conditions, let 
alone agreement as to the magnitude and interaction of the 
various mechanisms involved. 

5.2 Multip hase hydrodynamic dispersion 
As the derivation of the compositional equations in 

Section 4.1 demonstrates, individual species within a fluid 
phase need not move with the barycentric velocity of the 
phase. In porous-media flows, the deviation of species 
motions with respect to the mean flow of the fluid is called 
hydrodynamic dispersion. This diffusion-like pheno- 
menon is familiar in the context of single-phase flows such 
as miscible displacement in petroleum engineering or 
soluble contaminant transport in groundwater hy- 
drology. However, the literature on hydrodynamic dis- 
persion in multiphase flows is frustratingly sparse. 

One likely reason for this sparseness is the difficulty of 
understanding the physics of hydrodynamic dispersion 
even in single-fluid flows. Dispersion in porous media 
actually comprises a set of phenomena, including the 
following7 

(0 

(ii) 

178 

molecular diffusion, which to macroscopic observers 
appears retarded owing to the tortuosity of the solid 
matrix; 
Taylor d i f f ~ s i o n ' ~ ~ ,  an effect whereby no-slip boun- 
dary conditions at  the solid walls cause solutes in 
small-diameter pore channels to spread with respect 
to their mean motion; 
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(iii) 

(iv) 

stream splitting, in which parcels of solute-bearing 
fluid divide at  pore-channel intersections, and 
transit-time deviations, in which the dissimilar tor- 
tuosities of adjacent flow paths cause nearby fluid 
parcels to have different net velocities in the mean 
flow direction. 

Notice that the descriptions of these phenomena belong 
to the microscopic level of observation, and hence the use 
of hydrodynamic dispersion to account for their macro- 
scopic effects imposes an inherent loss of information. To 
modelers, this smearing of small-scale heterogeneities has 
undesirable implications. Indeed, in models of solute 
transport in porous media, hydrodynamic dispersion is 
often the most poorly quantified of all physical para- 
meters fed into the simulator. 

Relatively few investigators have ventured to propose 
quantitative forms for hydrodynamic dispersion in the 
multiphase setting. Among the earliest laboratory studies 
of multiphase hydrodynamic dispersion is that of Tho- 
mas, Countryman and Fatt147. These authors find that, 
when two phases flow in a porous medium, each fluid 
alters the effective pore-size distribution available to the 
other fluid. Thus the degree of saturation of a given phase 
has pronounced effects on the observed level ofdispersion. 
More recently, Delshad et aLS3 confirm the dependence of 
multiphase dispersion on saturations. 

As Section 4.1 mentions, most mathematical models of 
species transport in multiphase systems ignore hydro- 
dynamic dispersion. There are, however, at least three 
noteworthy exceptions. The first is the compositional 
model developed by who assumes the second- 
order tensor form 

for each fluid phase a. Here Du,mo, stands for the molecular 
diffusion coefficient in phase a, and and signify the 
longitudinal and transverse dispersivities, respectively, in 
phase a. This formulation amounts to a natural extension 
of the standard hydrodynamic dispersion model to mul- 
tiphase flows. A model described by Abriolal and Abriola 
and Pinder2 assumes a related form for dispersion within 
a phase, namely 

' 

where Du,mo, is a second-order tensor adcounting for the 
effects of molecular diffusion in phase a, modified by the 
matrix tortuosity, and D, is a fourth-order tensor. This 
form extends the tensor equation proposed by Bear23 on 
theoretical grounds. Finally, Baehr and Corapcioglu2' 
and Corapcioglu and Baehr49 derive a set of flow 
equations for immiscible contaminant transport incor- 
porating a dispersion tensor for each phase; however, they 
do not postulate a precise tensorial form for dispersion. 

Multiphase hydrodynamic dispersion appears to be 
one area of uncertainty where numerical simulation 
cannot shed much light. The fundamental questions that 
plague modelers are the same ones that arise in single- 
phase flows. What is the mathematical form of dispersion? 
How can we measure it? Do scale dependencies and 
asymmetric effects influence dispersion? It seems apparent 
that these questions address themselves primarily to 
experimentalists, guided ideally by theoretical studies of 
continuum mixtures such as that advanced by Bowen3'. 
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5.3 Multiphase contaminant flows 
In recent years interest has arisen in multiphase flows 

involving immiscible groundwater contaminants. It has 
long been common practice to store or dispose of 
hazardous chemicals in near-surface or underground 
sites, and fluids escaping from these sites pose serious 
threats to groundwater supplies. Many hazardous chemi- 
cals and wastes take the form of nonaqueous-phase 
liquids, or NAPL. Common examples include gasoline, 
polychlorinated biphenyls (PCB), chlorinated hydro- 
carbons, coal tars and  creosote^'^^. However, many 
dumpsites harbour a menagerie of chemical wastes, 
making it difficult to characterize the NAPL chemically. 
The multiphase flows that lead to contamination of 
groundwater are physically quite complex, and, despite 
the pressing need for predictive tools, numerical simu- 
lation of NAPL flows remains in its infancy. 

One type of flow that is important in this context is the 
simultaneous flow of NAPL and water in the unsaturated 
zone. This soil layer usually lies between near-surface 
NAPL sources and the water table and therefore acts as 
the main pathway for groundwater contamination. As we 
illustrated in Section 3.1, the flow of a single liquid in the 

l unsaturated zone already poses a difficult nonlinear 
problem, so one might expect that multiliquid flows will 
be even harder to simulate numerically. 

Current efforts in multiphase unsaturated flows focus 
mainly on developing physical understanding. 
S~hwille’~’, for example, discusses the migration of 
immiscible organics in the unsaturated zone, reviewing 
such fundamental processes as capillary action, 
volatilization of the organic species, and microbial 
degradation. Allen’ applies continuum mixture theory to 
develop a set of flow equations for two liquids in the 
unsaturated zone. By analysing a medium containing air 
(A), NAPL ( N )  and water (W),  he derives a pair of partial 
differential equations, each resembling Richards’ 
equation in form: 

( C , + ~ ) ~ = V - [ k , , K - ( V $ , + V Z ) I  (25) 

for a = N  or W. Several variables appearing in this 
equation are analogous to those appearing in the single- 
liquid case: C, is the specific moisture capacity of phase a; 
0, is the moisture content of a; $, is the pressure head in 
phase a; K is the soil’s hydraulic conductivity and 2 is 
depth below some datum. Also appearing are the vari- 
ables S,,,, which is the specific storage associated with 
phase a, and k,,, signifying the relative permeability of the 
soil matrix to phase a. The pair of flow equations given by 
equation (25) constitutes a nonlinear system. Coupling 
between the equations occurs through the dependence of 
0,, S,, and k,, on the pressure heads $,; the capillarity 
relationships $, = GW), and the restriction 

In what appears to be the first effort at numerically 
simulating multiphase unsaturated flows, F a ~ s t ~ ~  de- 
velops a two-dimensional finite-difference model for the 
flow of water and NAPL. This model uses a two-equation 
formulation similar to that given by equation (25). To 
solve the discretized flow equations, Faust devises a fully 
implicit scheme akin to the SS method used in black-oil 
simulation. As with other models of multiphase flows, 
Faust’s simulator uses upstream-weighted relative per- 

o N + @ W = $ h ( l - S J .  

meabilities to accommodate possible hyperbolic be- 
haviour, as explained in Section 4.2. 

As a practical matter, the simultaneous flow of NAPL 
and water is only part of the multiphase contamination 
problem. Groundwater contamination itself occurs be- 
cause of mass transfer between NAPL and water. Even 
though NAPL may be immiscible with water, some of its 
constituent species may dissolve in water at very small 
concentrations. While highly dilute, the resulting solution 
of organics in water is often toxic or carcinogenic. 
Therefore, a complete mathematical description of mu1 ti- 
phase contaminant flows ought to incorporate phase- 
exchange effects more familiar in the setting of com- 
positional reservoir simulators. 

Very little work has been done in this area. Baehr and 
Corapcioglu2’ propose a model consisting of individual 
flow equations for each species. Since their model aims 
principally at predicting pollution from gasoline spills, 
they include in their formulation such effects as microbial 
degradation, equilibrium partitioning among fluid pha- 
ses, and adsorption onto the solid phase. Abriola’ and 
Abriola and Pinder293 present a finite-difference model of 
species transport in an air-water-NAPL system. This 
simulator accommodates interphase mass transfer th- 
rough the use of equilibrium ratios analogous to those 
discussed in Section 4.3. The model solves the nonlinear 
algebraic equations resulting from the finite difference 
approximation using a scheme patterned after the SS 
method reviewed in Section 4.2. Considering the range of 
problems solved and the analyses given of the code’s 
performance, this is perhaps the best documented model 
of multiphase, multispecies contaminant transport ap- 
pearing in the literature at this writing. 

6. OUTSTANDING PROBLEMS NUMERICS 

Quite a few of the difficulties arising in numerical 
simulation of multiphase flows concern the limitations of 
the numerical methods themselves. Here the problem is 
that the numerical techniques in common use produce 
approximations that are in some way unrealistic based on 
our understanding of the flows that they model. In this 
case the challenge to researchers is to devise new methods 
or to modify existing approaches to permit more accurate 
simulations. We shall examine three types of numerical 
difficulties of topical interest: grid orientation effects, front 
tracking and local grid refinement. 

6.1 Grid-orientation effects 
Since the early 1970s, petroleum engineers have re- 

cognized that many discrete methods for solving fluid 
flow equations give qualitatively different results when 
onechanges the orientation of the spatial grid with respect 
to the geometry of the physical flow. Todd, O’Dell and 
Hira~aki’~’  first reported this phenomenon in a simulator 
of immiscible flow. They noted that the effects of grid 
orientation are especially pronounced at large mobility 
ratios. A severe example occurs in steamflood simu- 
l a t i ~ n ~ ~ ,  where solutions generated using different grid 
orientations apparently converge to different answers. 
Since these investigations, a substantial body of research 
has developed in the effort to overcome or mitigate grid- 
orientation effects in reservoir simulators. 

One of the first effective techniques for reducing grid- 
orientation effects appeared in 1979, when Yanosik and 
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McCracken162 presented a nine-point finite-difference 
scheme that reduces grid-orientation effects for square 
grids. The nine-point scheme approximates derivatives a t  
a point (xi,yi) in two-dimensional domains by using 
values at all adjacent nodes instead of the corner nodes 
only. Thus the nine-point analog of the Laplacian on a 
uniform grid is 

Coats and R a m e ~ h ~ ~  observe that the nine-point formula- 
tion exhibits poor behaviour when used on nonuniform 
spatial grids. Bertiger and Padrnanabhan2' explain this 
poor performance by demonstrating that the usual nine- 
point formulation on nonuniform grids yields an incon- 
sistent approximation to V2. These authors then propose 
a modified nine-point scheme that restores consistency 
while still reducing the grid-orientation effect. In another 
approach, Potempal 2 3  advances a finite-element tech- 
nique that is closely related to the Yanosik-McCracken 
nine-point difference scheme but again preserves con- 
sistency. Several other investigators have devised mo- 
dified finite-difference schemes yielding solutions that are 
largely independent of grid-orientation effects; among 
them are Vinsome and AulS5; Frauenthal, di Franco and 
Towler7'; Shubin and Bell142 and Preuss and 
B o d v a r ~ s o n ~ ~ ~ .  

Finite-element techniques also admit variants that 

tend to smear information over the spatial subregions of 
the discretizations. Front-tracking methods aim at 
circumventing this difficulty by assigning computational 
degrees of freedom to the unknown location of the front. 
Solving for the frontal locations along with the variables 
characterizing the smooth parts of the flow allows the 
modeller to track the front explicitly without introducing 
numerical diffusion. Since one can concentrate many 
degrees of freedom at the interface, front tracking me- 
thods also hold great promise in the simulation of viscous 
fingering. 

Front-tracking methods have their roots in numerical 
applications of the method of characteristics in 
convection-dominated flows. The first applications of this 
approach in porous-media simulation addressed the 
miscible transport of solutes in single-phase 
In the method of characteristics, one replaces a partial 
differential equation by a system of ordinary differential 
equations valid along curves where the original equation 
agrees with the chain rule. For example, by comparing the 
Buckley-Leverett saturation equation 

with the chain rule 

reduce grid-orientation effects. Among the more promis- 
ing groups of finite-element schemes in this regard are 
mixed methods50~67~'O. The motivation behind these 

one can see that dSW/dS=O along curveS c(x, t ,  in the 
(X, t)-Plane where dx/dt= qfk(sW)/4* Loci of constant SW 
therefore travel with speed qf&(Sw)/4. This fact allows us 
to compute the position of the constant-saturation shock 

Perhaps the most extensively applied front-tracking 
scheme in the current literature is that of Glimm and his 
 coworker^'^*^^^^^. This approach uses an IMPES for- 

techniques is to compute accurate Darcy velocities ex- 
plicitly rather than incurring the loss of accuracy as- 

tiation of fluid pressures. Thus, for example, we factor the 
second-order pressure equation 

sociated with standard schemes requiring the differen- as it moves across a one-dimensional domain* 

V * (kVp) = 0 
into two first-order equations 

V =  -kVp 

- v - v = o  

By properly choosing the trial functions for v and p ,  we 
can compute pressures and velocities having the same 
order of accuracy. In problems involving the effects of 
species transport the mixed method is especially effective 
when used in conjunction with time-stepping procedures 
based on modified methods of  characteristic^^^. A variety 
of numerical experiments reported in the references cited 
above demonstrate the method's ability to give good 
numerical results even in problems with highly variable 
material properties. 

6.2 Front-tracking methods 
As we have seen in previous sections, several multi- 

phase flows in porous media exhibit sharp fronts that can 
be modelled as discontinuous fluid interfaces. The salt- 
water toe and the Buckley-Leverett saturation shock are 
two examples of such discontinuities. Discrete 
approximations using fixed finite elements or finite- 
difference cells have difficulty in capturing the behaviour 
of these sharp fronts, since the computational procedures 

mulation for two-dimensibnal immiscible displacements 
in the absence of capillarity. The scheme solves the 
pressure equation on a finite-element grid whose element 
boundaries move to align themselves with the saturation 
shock. To update saturations, the scheme uses standard 
interior methods in regions where the saturation is 
smooth and couples to the smooth solution a Riemann 
problem propagating the interface, This frontal pro- 
pagation relies on a method of characteristics akin to the 
one-dimensional version outlined above, taking advan- 
tage ofa local coordinate system aligned with the shock to 
advance the discontinuity in its normal direction. Thus 
the actual computations required to track the front reduce 
to locally one-dimensional ordinary differential 
equations. 

Jensen and F i n l a y s ~ n ~ ~ ~ ~ ~  introduce an alternative 
scheme for front-tracking that gives good results in 
convection-dominated species-transport problems. This 
method defines a set of moving coordinates based on the 
method of characteristics for the hyperbolic, or purely 
convective, part of the partial differential equations. 
Within this moving coordinate system, the convection- 
dominated transport problem reduces to a problem of the 
diffusion type. Jensen and Finlayson construct a finite- 
element grid attached to the moving coordinates, ensur- 
ing that the grid in the vicinity of the sharp front is 
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sufficiently fine to avoid the occurrence of nonphysical 
oscillations in the numerical solution. 

In a third approach to front tracking, the Mathematics 
Group at  the Lawrence Berkeley Laboratory applies the 
theory of Riemann problems for first-order hyperbolic 
systems to solve the immiscible flow equations using the 
random choice method47,48*4. The random choice me- 
thod, developed as a numerical technique by Chorin4', is 
an effective procedure for approximating nonlinear hyper- 
bolic conservation laws such as equation (26). The method 
replaces the unknown funttion S,(x,t) by a piecewise 
constant approximation S,(x, t )  and then solves a 
sequence of Riemann problems, each advancing the 
numerical_ solution by sampling the piecewise constant 
function S to determine initial data. When the solution 
possesses shocks, the random choice method preserves 
their sharp fronts, since the sampling at  each time step 
avoids the introduction of spurious intermediate values in 
the numerical solution. However, the method allows small 
errors in the shock location since the sampling identifies 
the frontal position only to within the resolution limits 
imposed by the spatial grid. Although developed for one- 
dimensional flows, the random choice method admits 
extensions to two-dimensional problems. Colella, Concus 
and Sethian47 describe the use of operator splitting 
techniques to decompose a two-dimensional equation 
into a sequence of one-dimensional equations. 

6.3 Adapative local grid rejnement 
Many problems involving multiphase flows in porous 

media exhibit behaviour whose structure is localized in 
small subregions of the spatial domain. We have already 
encountered such phenomena in the form of wetting 
fronts and saturation shocks. Similar localized behaviour 
occurs near wellbores or in the moving concentration 
fronts found in convection-dominated species transport 
processes. To capture the essential physics of these 
features often requires a spatial grid capable of providing 
high resolution in their vicinity. Grid refinement is 
especially important in view of the common use of low- 
order upstream-weighted approximations in near- 
hyperbolic flows. As frequently applied, these approxima- 
tions introduce a numerical diffusion error whose magni- 
tude is @(Ax) for grids of mesh Ax. By refining the spatial 
grid in the vicinity of the front, one reduces numerical 
diffusion by shrinking Ax, all the while preserving the 
desirable effects of upstream weighting. 

Generating this extra resolution usually poses few 
difficulties if the locus of highly structured behaviour 
remains constant in time. However, in the case of moving 
fronts, for example, the zones where increased resolution 
is needed move through the spatial domain as time 
progresses. Under these circumstances the refined portion 
of the grid must be capable of moving in time to follow the 
localized structure of the solution. Such schemes fall 
under the rubric of adaptive local grid refinement (ALGR). 
While ALGR schemes are generally dificult to imple- 
ment, the technical literature in this area is vast. Therefore 
the review that follows merely highlights results that 
appear relevant in multiphase flow simulation. 

There are three basic approaches to ALGR. One of 
these is to increase the polynomial degree of the 
approximation to the solution in regions needing refine- 
ment. Such techniques are called p-methods. Another 
approach is to add computational degrees of freedom in 

the regions of refinement, keeping the polynomial degree 
of the approximation constant. These techniques are 
perhaps most appropriate when used in conjunction with 
upstream weighting, since they reduce numerical diffusion 
by shrinking Ax. Such methods are called h-methods. 
Finally, there are several techniques that allow the 
location of the spatial nodes in the grid to act as variables 
in the numerical approximation. By solving for the nodal 
locations and nodal solution values simultaneously, one 
effectively forces the grid to move in time to accommodate 
the structure of the solution. These methods are called 
moving finite element (MFE) techniques. 

Reports of underground flow simulators using p- 
methods are not very numerous. Chase37 describes a 
chemical flood simulator based on a finite-element Galer- 
kin method that employs hybrid trial functions. These 
trial functions use Co piecewise bilinear Lagrange func- 
tions in smooth regions of the flow but insert C' 
piecewise bicubic Hermite functions in the vicinity of 
steep gradients. Mohsen"' describes another p-method 
applied in finite-element collocation solutions of the 
Buckely-Leverett equation. This approach refines a 
coarse' grid consisting of C' piecewise cubic Hermite 
functions by substituting C' piecewise quintic functions 
near the saturation shock. 

The use of h-methods has been more popular. One 
reason for this fact may be a general aversion to the 
oscillatory tendencies associated with polynomial 
approximations of high degree. Another reason is un- 
doubtedly that h-methods fit more naturally into the 
fi-amework of finite-difference approximations, which do 
not explicitly use trial functions. Quite a few ALGR 
schemes for finite differences have appeared; among them 
are the methods of von R ~ s e n b e r g l ~ ~ ,  Heinemann and 
van Handelmann" and Douglas et ~ l . ~ ~ ,  who present 
both finite-difference and finite-element schemes. A 
considerable amount of theoretical work and numerical 
experimentation has focused on finite-element schemes 
with ALGR19~52~24~54. One of the problems that arises in 
the construction of adaptive refinement codes is the 
management of the data defining the grid as its structure 
changes. There are great computational advantages as- 
sociated with the invention of data structures that can 
accommodate the dynamic refinement and unrefinement 
of a grid without destroying the efficiency of matrix 
solution algorithms2'. 

MFE methods adopt a somewhat different ap- 

d u = O ,  where d is a spatial differential operator, we 
begin with a piecewise polynomial trial function C having 
unknown time-dependent coefficients ul(t) ,  . . ., ~,(t).  In 
addition, we allow the coordinates of the spatial nodes 
X1, . . ., X, to be variable. By choosing {dui/dt, Xi}:' to 
minimize lldC/dt-dCl12 in a Galerkin sense, one can 
develop a finite-element approximation in which the 
nodes tend to concentrate around regions where the 
solution exhibits localized structure. To prevent all of the 
nodes from accumulating near shocks, however, one must 
impose certain penalties on the clustering of nodes. A 
variety of internodal spring functions and viscosity-like 
devices exist to help preserve good global approximations 
by maintaining adequate separation between nodes. 

ALGR techniques have a wide range of potential 
applications in general computational mechanics. Fluid 
flows in particular exhibit highly localized behaviours for 

proach3 5,9 8, 974,s 5 . F or an equation of the form du/dt- 
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which local refinement is an attractive alternative to 
globally fine grids. Gas dynamic shocks, hydraulic jumps, 
moving interfaces, and such singularities as sources, sinks 
and corners are just a few examples of these features. 

7. CONCLUSIONS 
Throughout this review we have seen several facets of 
multiphase flows in porous media reappear in various 
applications. These physical and computational pecu- 
liarities emerge as major themes in the numerical simula- 
tion of flows. Let us close by recapitulating these themes. 

Every flow we have examined obeys a nonlinear, time- 
dependent partial differential equation. Nonlinearity is a 
characteristic feature of multiphase porous-media flows, 
owing to the fact that the permeability of the rock matrix 
to one fluid varies with the saturation of any other fluid. 
Further nonlinearities can arise when storage or com- 
pressibility effects imply pronounced dependence on 
pressure in the accumulation terms or when there is 
strong coupling within a system of flow equations. The 
nonlinear governing differential equations generally give 
rise to nonlinear algebraic equations in the approximat- 
ing discretizations. These algebraic systems, in turn, 
demand iterative solution, and therefore one commonly 
finds Newton-Raphson schemes or related procedures 
imbedded in implicit time-stepping methods for these 
problems. 

Another common feature in multiphase porous-media 
flows is the occurrence of sharp fronts or moving boun- 
daries in the fluid system. The Buckley-Leverett satu- 
ration shock stands as a classic example. Similar inter- 
faces arise in other contexts: unsaturated flows can give 
rise to wetting fronts, and the saltwater intrusion problem 
exhibits a moving boundary in the toe of the saltwater 
wedge. Sharp fronts pose difficulties to the numerical 
analyst, since they require high spatial resolution to 
model and are sometimes associated with uniqueness 
issues. In certain classes of flows they can also exhibit 
instability, as when viscous fingering occurs in displace- 
ments at adverse mobility ratios. The most natural 
solutions to these sharp-front difficulties are front- 
tracking methods and adaptive local grid refinement. 

Finally, various numerical aspects of modelling multi- 
phase flows combine to require truly large-scale com- 
putations. A typical simulator solves large, sparse matrix 
equations at every iteration of every time step. When 
compositional effects are present, the code must solve 
nonlinear thermodynamic constraints as well. The de- 
sirability of local grid enrichment, front-tracking algor- 
ithms, or moving grid schemes adds to this scale of 
calculation both in complexity and in computational 
effort. Scientists who model multiphase underground 
flows have every reason to applaud the emerging gene- 
ration of supercomputers and parallel architectures, since 
these machines may spell the difference between com- 
promise in the approximation of complex flows and the 
practical achievement of realistic simulations. 
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NOMENCLATURE 
Capital letters 
A coe fficien t 
[ A ]  system matrix 
d spatial operator 
B formation volume factor; coefficient 
Bj  (see Table 1) 
C specific moisture capacity; compressibility; 

D diffusion coefficient 
0 hydrodynamic dispersion tensor 
H ,  
HI 
I number of nodes 
J temporal domain 
K hydraulic conductivity scalar 
K hydraulic conductivity tensor 
K i j  (see Table 1) [a stiffness matrix 
M mobility ratio 
M i j  (see Table 1) 
[MI mass matrix 
N 
[ N ]  SIP matrix 
8 order symbol 
P number of phases 
Q i j  (see Table 1) 
R residual 
R, solution gas-oil ratio 
{ R )  residual vector 
B spatial region 
S saturation 
S, specific storage 
T transmissibility (defined variously) 
2 depth below datum 

Coefficient 

Hermite cubic of the first kind 
Hermite cubic of the second kind 

basis function; number of species 

Lower 
a 
b 
b 

e 
C 

f 
{f 1 

{h1 

9 
h 

case letters 
z-coordinate of confining layer 
z-coordinate of interface; derivative of 1/B 
body force 
z-coordinate of free surface 
unit vector 
fractional flow; fugacity 
boundary data vector 
gravitational acceleration 
hydraulic head 
vector of hydraulic heads 

j 

kr 
k 

k 
1 
m 
P 
{ P I  

diffusive flux 
permeability scalar 
relative permeability 
permeability tensor 
vertical thickness 
momentum exchange rate 
pressure 
vector of pressures 
flux; flow rate 
flow rate vector 
mass exchange rate 
right-hand side vector 
specific yield 
time 
stress tensor 
unknown hnction 
diffusion velocity vector 
velocity vector 
horizontal space coordinate 
spatial position vector 
vector of unknowns 
vertical space coordinate 

Capital greek letters 
4 time-difference operator 
At time increment 
Ax space increment 
0 moisture content 
A mobility scalar 
A mobility tensor 
C interface 
Y compositional flux coefficients 
@ free surface 
R spatial domain 

Lower case greek letters 
a dispersity 
y gravity coefficient 
6 iterative increment operator 
5 curve in (x, t)-plane 
I. flux coefficient 
y dynamic viscosity 

density $ volume fraction; porosity 
test function 3 pressure head 

cc) mass fraction 

Subscripts and superscripts 
A air 
atm atmospheric 
C capillary 
F freshwater 
G gas phase 
9 gas species 
i, J ' 
k collocation point index 
1 longitudinal 
rn iteration level 
mol molecular 
N nonaqueous liquid phase 
II time level 
0 oil phase 
o oil species 
R rock phase 

node indices; species indices 
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RC 
ref 
S 
STC 

t 
W 

r 

W 

Z 

reservoir conditions 
reference 
saltwater 
stock-tank conditions 
total 
transverse 
water phase 
water species 
z-direction 
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a phase index 
d boundary 

Special - symbols 
A average; collocation point 

approximation 
derivative; dummy variable I 

* dimensionless ; upstream; preconditioner 
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