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One common formulation of Richard’s equation for variably saturated flows in porous 
media treats pressure head as the principal unknown and moisture content as a constitu- 
tive variable. Numerical approximations to this “head-based” formulation often exhibit 
mass-balance errors arising from inaccuracies in the temporal discretization. This article 
presents a finite-element collocation scheme using a mass-conserving formulation. The 
article also proposes a computable index of global mass balance. 
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1. INTRODUCTION 

The ability to model water flows in variably saturated soils is importnt to 
several problems in water resources engineering, among them the prediction of 
water table contamination from sources at or near the earth’s surface, The par- 
tial differential equations governing such flows are difficult to solve owing to 
their nonlinearity, and it is generally necessary to use numerical techniques 
such as finite differences or finite elements to produce approximate solutions. 
However, even with numerical schemes there remain difficulties, notably the 
conservation of mass. Discrete analogs to some formulations of variably satu- 
rated flow fail to produce approximate solutions that respect the global mass 
balance law, even though the original differential equation is derived from this 
law. We introduce an approach to this problem using finite element collocation. 
The key to the success of this approach is the choice of a formulation ofthe 
flow equation whose temporal discretization is a differential form of the global 
mass balance for each time interval. Thus the only mass-balance errors in the 
numerical solution are those arising from the use of a nonzero convergence 
criterion in the iterations used to advance between time levels. The use of finite 
element collocation to discretize the space derivatives guarantees approxima- 
tions of high-order spatial accuracy while obviating the costs of integration and 
formal matrix assembly associated with other finite-element techniques. 

11. SETTING OF THE PROBLEM 

soils has the form [ I ]  
The equation governing one-dimensional water flows in variably saturated 

a ah ’ ah 
- ax [K(h)-- ax - K(h)]  = C(h); . 
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Here h stands for pressure head, measured in meters; K represents the hydraulic 
conductivity of the soil, measured in meters/second; and C is called the spe- 
cific moisture capacity of the soil, measured in meters-’. The specific moisture 
capacity C accounts for the variation in the soil’s dimensionless moisture con- 
tent 8 in response to changes in pressure head; specifically, C = d8/dh. In 
practice one uses experimental data to quantify the constitutive relationships 
6(h) and K(h). 

Equation (1) casts the pressure head h as the dependent variable, leaving 8 
and K as nonlinear coefficients. As an alternative to this h-based formulation, 
we can pose the problem in terms of the moisture content 8 as follows: 

b 

I 

- a [o(s)aS - K ( e ) ]  = - ae 
ax ax at ’ 

Here K appears as a function of 8, and D = Kdh/dB is the soil’s hydraulic 
diffusivity, measured in meters*/second. This is the 6-based formulation. 
Although Eq. (1) and (2) are equivalent by the chain rule, modelers prefer the 
h-based formulation in most practical problems, where spatial variations in 
soil properties and sharp gradients in 6 can lead to poor behavior in the &based 
formulation [ 21. 

As a model problem we shall solve the initial-boundary value problem for 
variably saturated flow posed by Warrick et al. [3]. Let a soil column [0, 1.251 
have an initial water saturation described by 

0.15 + x / E ,  0 < x 5 0.6 
0.6 < x < 1.25’ 

where x stands for depth in meters from the surface. Assume that the pressure 
head at the surface is atmospheric, that is 

h(0, t )  = -0 .1495,  (3b) 
and that the pressure head gradient vanishes at the outflow, 

ah - ( 1 . 2 5 ~ )  = 0 .  
dX 

For the constitutive relationships K(h) and C(h) we use the functions measured 
by Warrick et al. 131, which in SI units are 

1.157 X 19.34 X 10’1 100h(-3*4095), h 5 -0.29484 
1.157 x 10-7(5 16.81 100hl-0*97814), h > -0.29484 

0.6829 - 0.09524 ln1100hl, h 5 -0.29484 
0.4531 - 0.02732 lr1100hl, h > -0.29484 W )  = { 

Thus the prescribed atmospheric pressure head at x = 0 corresponds approxi- 
mately to a moisture content 6(0, t )  = 0.38. 

The numerical solution of this problem using finite elements is not entirely 
straightforward. The nonlinearities in the h-based flow equation can lead to 
poor global mass balance and thus to unacceptable numerical approximations. 

I 
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Van Genuchten [4] demonstrates this difficulty quite clearly by comparing sev- 
eral Galerkin approximations to Eq. (1) with the auxiliary data (3). Figure 1 
shows some of his results. Notice in particular that the wetting front in the solu- 
tion using a Hermite cubic trial function with two-point Gauss quadrature on 
each element (marked “2GP, 3LP” in Fig. 1) lags the correct wetting front by a 
significant distance. This poor approximation apparently bodes ill for finite- 
element collocation on Hermite cubic spaces, since there is a direct algebraic 
correspondence between such collocation schemes and ’ Galerkin’s method on 
Hermite cubics with two-point quadrature [5]. We shall examine the difficulties 
with collocation in the next section. 

Recognizing the importance of mass-balance errors, Milly [6] examines the 
effect of temporal discretization on the accuracy of the accumulation term 
C ah/& in Eq. (1). He proposes a global mass-balance criterion of the form 

where l2 = [O, 1.251 is the spatial domain of the flow, At is the discrete time 
interval, and n, n + 1 signify successive time levels. Milly attributes the mass 
balance errors plaguing various discrete analogs to failures to evaluate the coef- 
ficient C(h) in a way that reflects the average behavior of the soil over each 
time interval. He advances an iterative scheme for approximating C(h) that 
leads to arbitrarily good mass balance in the sense of Eq. (4), given a sufficient 
number of iterations. 
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FIG. 1. Numerical moisture-content profiles computed from the h-based formulation 
using the Galerkin method on Hermite cubics with various quadrature schemes (from 
Reference [4]). 
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. .  

We propose a finite element collocation scheme for variably saturated flows 
that conserves mass by a somewhat simpler device. Before describing this 
scheme, however, let us examine in detail the difficulties that arise in the 
straightforward application of collocation approximation to Eq. (1). 

Ill. COLLOCATlOPI USING THE h-BASED FORMULATION 

To construct a collocation approximation to Eq. (l), we can follow an ap- 
proach that is analogous to Van Genuchten's [4]. Let us begin by discretizing 
Eq. (1) in time using an implicit Euler difference scheme: 

aK"+' ah"+' aKn+ K"+'- +----- 
ax2 ax ax ax 

s 

h"+1 - h" 
= o  ( 5 )  C"+' *t 

a2h n+ 1 

Here, as in Eq. (4), the superscripts n, n + 1 indicate successive time levels 
and At  is the time interval between them. This approximation imposes a trunca- 
tion error that is O ( A t ) .  

Since the coefficients K"+l, Cn+l depend on the unknown h"", it is necessary 
to use an iterative method to advance Eq. ( 5 )  from one time level to the next: 
We can effect a Newton-like iteration scheme as follows: 

aKn+ 1. m C n + l , m  

(hn+lvm + 8h - h") = 0 .  (6) 

In this scheme, the variable h"+lVm signifies the known approximation to the 
new pressure head h"" at the m-th iterative level; Knil9" and Cn+lVm stand for 
K(h "+ ) and C(h"i**m), respectively, and the unknown 6h represents an in- 
crement that must be added to h"+lTm to produce an improved approximation 
h n+ * m+ . At each time level the iterative scheme begins with the.initia1 value 
h"+lvO = h" and ends by assigning h"+' = h"fly"+l when either the increment 
6h or the residual 

---- 
ax A t  

aKn+ 1, m+ 1 n+ 1. m+ 1 aKn+ 1, m+ 1 
- ah a2hn+ 1. m+ 1 

+ 
ax2 ax ax ax 

K"+I. rn+ l  

is sufficiently small. 
To construct a collocation analog of this discrete-time scheme, let us 

approximate the unknown 8h by a piecewise Hermite cubic finite element 
representation: 

In this equation Ho,i(X) and hl&) are elements of the Hermite cubic basis 
for C polynomial interpolation on a partition of SZ, and 6i and 6; stand for the 
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values of S& and a(&)/ax, respectively, at node i of the partition [7]. Once we 
have solved for the coefficients {Sip in Eq. (7), we can compute a new 
iterative approximation to the pressure head in the obvious way: 

N 

Q+ I .m+  1 (x) = C [(hy+'** + 6ijHo,i(x) + + ~ ! ) H I , ~ ( X ) ]  a 

i= 1 

There are several ways to represent the coefficients K and C. One approach 
that seems to produce well-behaved approximations is simply to interpolate be- 
tween the nodal values 
representations become 

t 

K(hi) or C(hi) .  If we use linear interpolation, then the 

N 

t ( X )  = c C(h,)L,(x) 
i= I 

where {L,}y=l is the Lagrange basis for Co linear interpolation on the partition 
of 0 [7]. 

If we substitute all of these finite element approximations into the discrete- 
time equation ( 6 ) ,  there remains the task of solving for the 2N unknowns 
{ S i ,  6f}r=l. Since the boundary conditions translate to ho = h(0, t )  and hh = 
ah/ax( 1.25, t ) ,  we know that 61 = 6; = 0. To solve for the remaining 2N - 2 
unknowns, we collocate the finite-element approximation to Eq. (6). That is, 
we force 

at 2N - 2 values Xk E Q. Douglas and Dupont [5] show that, if the finite ele- 
ment partition of il is uniform, then the 
Gauss points 

- 
0 xk = X ,  + (t 2 & ) A x ,  

where A x  is the mesh of the partition. This 
tions with a spatial error that is 0(Ax4). 

0 

optimal collocation points are the 

i = 1, . . . .  N - 1 

scheme produces approximate solu- 

Figure 2 shows the numerical pressure head profiles at two and nine hours 
using this scheme with Ax = 0.05, A t  = 240, and an iterative convergence 
criterion requiring that the maximum residual max{R n+ I m l  ( x k ) } E ; *  - be less 
than 5.0 x 10-6/s. Figure 3 depicts the corresponding moisture content distri- 
butions at two and nine hours, computed from the constitutive relationship 
8(h). Observe that the wetting front at two hours lies at approximately x = 

Y A A  .~ 
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FIG. 2. 
ing finite-element collocation. 

Numerical pressure-head profiles computed from the h-based formulation us- 
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0.24, which is very close to that in Van Genuchten's solution in Figure 1 using 
Hermite cubics with two-point Gauss quadrature on each element. Thus the'col- 
location method outlined above exhibits mass-balance errors similar to those of 
the Galerkin method with two-point quadrature, as we expected on the strength 
of the theoretical correspondence between the two methods. 

IV. AN ALTERNATIVE COLLOCATION SCHEME 

One can generate a mass-conserving collocation scheme by discretizing a dif- 
ferential equation derived directly from the global mass balance, Eq. (4), in the 
limit At  + 0. This yields a governing equation of the form 

t 

ae 
ax [ K ( h ) *  ax - K(h)] = - at (h) 

provided the integrands in the global equation are continuous. Since the left 
side of this equation is exactly the same as the left side of the h-based formula- 
tion (Eq. (l)), while the right side is simliar to that appearing in the &based 
formulation (Eq. (2)), we might. call Eq. (8) a$ybrid formulation. 

Let us discretize Eq. (8) in a fashion analogous to our treatment of Eq. (1). 
First, replace the time derivative by an implicit difference scheme having trun- 
cation error O(At ) :  

Here On+' ,  8" stand for O(h""), O(h"), respectively. Next, to accommodate the 
nonlineariries in K and 8, assume an iterative method of the form 

aKf l+ l .m  

( h " + 1 9 m  + a h )  - - + a h )  + -- K n + l , m -  a2 ( h n f 1 . m  a K n + l , m  a 
ax2 ax ax ax 

6h - 8" = 0 a (9) 

for updating the implicit coefficients from one time level to the next. Finally, 
project the unknowns 6h to Hermite cubic subspaces and the coefficients K and 
de/dh = C to Lagrange linear subspaces as in Section I11 above. 

There remains the question of a finite-element representation of 6. We have 
found through numerical experiments that a Hermite cubic expansion of 8 gives 
superior results. To effect such a representation, we use the chain rule to com- 
pute the nodal gradients in 6: 

) 
d 6" f 1 9 

- Yefl+l." At  
+ - dh 

a 

Then, using the finite element spatial discretizations together with the iterative 
time-stepping scheme in Eq. (9) ,  we collocate at the 2iV - 2 Gauss points as 
before to advance the iterations from one time level to the next. 
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Figure 4 shows the pressure head profiles at two and nine hours using the 
new scheme with the same A x , A t ,  and convergence criteria as used in produc- 
ing Figure 2 .  Figure 5 displays the corresponding profiles for moisture content. 
Notice that the wetting front at two hours in this plot falls at abiut x = 0.30, 
which agrees with the locatim of the wetting front that Van Genuchten identi- 
fies as the correct solution in Figure 1. Finite element collocation applied to the 
hybrid formulation in Eq. (8) apparently furnishes approximate solutions that 
more closely respect the balance of mass. 

It is useful in checking a coded algorithm for this type of problem to have a 
computable technique for checking global mass balance. For the collocation 

wish to verify at any time level that Eq. (4) holds to a good approximation. It 
happens that each of the integrals in this equation can be rapidly computed us- 
ing information that is already available from the collocation solution at each 
time step. Consider first the flux integral on the right side of Eq. (4). Since 
f i  E C'(n) and 2 E Co(s2), the differential flux (I?(d&lx) - ri> E C0(Q and 
hence the fundamental theorem of calculus yields 

, 

method presented in this section we can readily derive such a technique. We 
1 

Now look at the accumulation integral on the left side of Eq. (4). This can be 
written as 

But the integrand in each term in this decomposition is a cubic function of x ,  
and so two-point Gauss quadrature suffices for the exact calculation of these 
integrals. Since 
putation of the 
puted values: 

the Gauss points are precisely the collocation points, the corn- 
accumulation integral reduces to a sum of previously com- 

where each Fk is a collocation point. 

tegral to the flux integral: 
Now we can define a mass balance index as the ratio of the accumulation in- 

Ax 2N-2 

K(h,) (hi  - 1) - K(h1) (hi - 1) 2 A t  k=l 
1 - 2 @ + I  - p )  1 ;k IMB = 

For a perfectly conservative numerical scheme IMg = 1. For real schemes, 
however, the necessity of stopping the time-stepping procedure after a finite 
number of iterations will generally prohibit an exact mass balance. Figure 6 ex- 
hibits ranges of values of lMB computed from the hybrid collocation scheme us- 
ing several spatial meshes Ax.  The plots show that the new formulation gives 

I 



c 

f 

L 

FINITE ELEMENT COLLOCATION METHOD 

PRESSURE HERO (MI 
-3.0 -2 .5  -2.0 -1.s -1.0 -.5 .o 7 .oo 7 

237 

FIG. 4. 
finite-element collocation. 
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FIG. 6. 
collocation with various spatial meshes. 

Mass-balance error 11 - IMBl in the hybrid formulation using finite-element 

reasonable global mass balances that improve upon refinement of the spatial 
partition. These results corroborate the good agreement between the profiles 
shown in Figure 5 and Van Genuchten’s “correct solutions” plotted in Figure 1. 

V. CONCLUSIONS 

The collocation scheme presented here gives numerical solutions to the vari- 
ably saturated flow equation that enjoy high-order spatial accuracy and stand in 
quantifiable agreement with the principle of global mass balance. The choice of 
a hybrid formulation incorporating features of both the h-based and 8-based 
flow equations proves instrumental in forcing mass conservation, since this for- 
mulation is directly descended from the global mass balance criterion. The di- 
rect projection of the accumulation term d8/& onto Hermite cubic interpolation 
polynomials avoids the delicate problem of choosing representative values for 
the time-varying coefficient that arises on applying the chain rule to this term. 
When one imposes an iterative time-stepping scheme upon this hybrid form in 
conjunction with finite element collocation, the individual collocation equations 
drive the mass-balance error at each collocation point toward zero as the itera- 
tions proceed. 

a 
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